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ABSTRACT

The problem of computing the eigensystem of Ax = ABx when A and
B are symmetric and B is positive definite is considered. A general-
ization of the Lanczos algorithm for reducing the problem to a symmetric
tridiagonal eigenproblem is given. 3 numerically stable variant of the
algorithm is described. The new algorithm depends heavily upon the com-
putation of elementary Hermitian matrices. An ALGOL W procedure and a

numerical example are also given.




The Lanczos Algorithm for the Symmetric Ax = ABx Problem

by

G. H. Golub, R. Underwood, and J. H. Wilkinson

1. Theoretical Background

In many fields of work the solution of the eigenproblem
Ax = ABx (1)

is required. where A and B are symmetric and B is positive definite.
This problem can be reduced to the standard symmetric eigenproblem by

making use of the Cholesky factorization of B defined by

Equation (1) is then equivalent to
i T (1t = aTx) (3)

and If{kIrT is a real symmetric matrix.
When A and B are narrow symmetric band matrices of high order
this reduction has the disadvantage that L-IAL-T is, in general, a
full matrix. However, L itself is of band form and hence we can certainly

multiply an arbitrary vector by L_;AL_T in an economical manner. In fact,

if we write

z = L-1an Tx ()



then z can be determined in the steps

~
T
Ly=x, Ay=w , Lz=w (5)
and in this way we can take full\‘ advantage of the band forms of L
C and A . The total number of multiplications in the determination of z
is only marginally greater than in the determination of both Ax and
Bx taking advantage of the band forms of A and B
¢ Now in the Lanczos algorithm for a symmetric matrix C , the only
way in which C is used is in the pre-multiplication of vectors. The
algorithm may be described as follows. Tet Xy be an arbitrary unit
L. vector (Hxi”2 = 1) ; then determine sequences of vectors Y, and X,
defined by
b Vo =CX) = Xy 5 T¥p = Voo XKllo =1 5, v2 >0 (6)
L Yper = O%p - X T B0 Ya®pn = Ve o
()
g Fally = 25704y >0
- where the sequence is continued until y =0 . The «_  and B
r+l r r
are determined so that y is orthogonal to x and x and «
r+1 r r-1 1
g so that ¥ 1s orthogonal to X1 These relations ensure that
Yy = Br and Ypoq 18 automatically orthogonal to Xl’x’a’ NV
- Notice that when Y,.1 has been determined, Equations (6) and (7)
imply that
L
C[xl,xe,...,xr] = [xl,x2,...,xr]Tr+ [0,0, ""O’Yr-l-l] (8)
L

-



where Trr is the tridiagonal matrix with diagonal elements equal to the

a

- B superdiagonal elements equal to the ﬁi and subdiagonal elements

equal to the 7y - This is true even if Q& and B_.l are chosen

arbitrarily! If Ype1 = © 5 then (8) gives

~
Clxps%ps . wosx, ] = [xpxy O xlt (9)
and provided only the x, are independent, T, gives r of the
C eigenvalues of C and enables us to compute the corresponding eigenvectors.
In the Lanczos algorithm, the orthonormality of the X: ensures their
independence and also the symmetry of Tr .
b Since Ve is orthogonal to the r orthogonal vectors X15Xpseees X s

the process must terminate with yh+l if it has not done so before.

—

In fact, we may regard the Lanczos algorithm as a method of ensuring

~—
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that the X, are independent and that the process does terminate. ynep

the Lanczos algorithm terminates before Voe1 7 then we have

0 Cx_ =~ a X - B x

- yi‘+l - r r (10)

If we choose X4 to be any unit vector orthogonal to xl,.“,xr ’

then Equation (10) gives

—

r - _ =0 =0 °
L Cx, - x pXx, _, =6=0 Xpp (11)

l Hence we may take Yp+t1 =~ 0 and continue the algorithm with Xy 7

This again ensures that subsequent X; are orthogonal to all earlier
J

We may restart as often as necessary until we finally reach the null Vi1

If the termination takes place after ¢ +r 47

+
l,rl re,rl 5 5,...,rl+r2+...+rk
steps then we have
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g mhe
C[xlsz’ . ')xn] = [Xl’xz.’ .. J)@% (12)

where T is the direct sum of k symmetric tridiagonalmatrices of
orders Ity 0 5@2&5 + The eigensystem of T gives the eigensystem
of ¢ . Premature termination of the sequence should not be regarded
as a breakdown; in fact it leads to a simplification since it is easier
to find the eigenvalues and eigenvectors of several smaller tridiagonal
matrices than of one large one. The only disadvantage is the necessity
for determining the restarting vectors.

At first sight the Lanczos algorithm is very attractive whenever
C is sparse (including, in particular, the case when C = I:IAL-T).
Except when restarting, we need only the two vectors Xr and X,
to determine y ., and X, and hence requirements on the high-speed
store appear to be very modest. Unfortunately, if the algorithm is
carried out as described, the later xr may be very far from orthogonal
to the earlier ones. When this is true, we have no guarantee that yh+l
will be null to working accuracy. Moreover, we may get near linear

dependency of X

!

X.yeee3X for some r < ntl
)2’ 3r

This departure from orthogonality is sometimes said to be the

result of accumulation of rounding errors, but this is very misleading.

It occurs when there is a good deal of cancellation when computing Vi1

- from Cx. -0 x =-B X . i i i
: v yily Br r 1 This cancellation can occur even in the

determination of Y5 when C is of order 2 (say), and in this case one

could scarcely speak of accumulation of rounding errors. pefgore

discussing how to obtain a complete set of orthonormal x, we consider
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the implication of Equation (8) when rounding errors are taken into

account. We now have

C[xl,xe, . .,Xr] = [Xl,XZ) . "”xr]Tr-I- [0,0, .o "yl‘*‘l] - [El, 82, co ey Er]

where ei is defined by the relation

Tiar¥ien T O3 % Pt S o (14)
the Xii1 denoting the computed X4 - If A and z are an eigenvalue
and eigenvector of Tr we have

T Tz = Az (15)

and hence

C[xl,x2 seees xr]z = )\.[xl,xz, ...,xr]z+ 2, Va1 [El, Exs vy Er]z (16)

where the z, are the components of z Now z may be taken to be

a unit vector and [El, 52,...,€r]z is therefore of the order of

machepsx ||| where macheps is the machine precision. Hence if Yy
r
is also of the order of machepstCH we have

cw = AW +e

(17)

where w = [xl,xz,...,xr]z and |le|| is of order maChepsxl_Cﬂ .

This shows that if we reach a Ve which is negligible to yworking
accuracy, eigenvalues and eigenvectors of Tr give good approximations

to eigenvalues and eigenvectors of C (The latter must be interpreted

in terms of exact eigenvalues of some C+E where E is small.) Also,
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provided the xl,...,xr have not yet departed too far from orthogonality,

we shall indeed get good approximations to r eigenvalues and r
eigenvectors of C

However, even if Ve is not itself negligible it may happen
that for some eigenvalues A of Tr' the corresponding z may have
a moderately small . Then 2. Yy MAY be negligible even if Yyt
is not sufficiently small in itself. This situation may be induced to
some extent by starting with an initial wvector X which consists
mainly of a linear combination of a few dominant eigenvectors; guch an
initial vector is obtained if an arbitrary vector XO is premultiplied
several times with C . It cannot be too strongly emphasized that the
size of the vectors €, 1s not in any way affected by cancellation or
by the normalization of yﬁ+l to give Xi+l ,the vector Ei consists
entirely of the rounding errors made in actually multiplying the
computed Xy by C and subtracting multiples of X, and X. 1
Even the accuracy of the @, and B, is quite irrelevant in so far as
it effects the size of the . though if they were chosen at random it
is unlikely that a small Yt would emerge. These considerations show
why the Lanczos algorithm often gives remarkably accurate approximations
to dominant eigenvalues and eigenvectors after quite a few steps.

In order to be certain of obtaining the full set of eigenvalues and
eigenvectors it is necessary to ensure that the computed x, are
orthogonal to working accuracy. The conventional way of doing this is

as follows. After computing Ve via Equations (7), it is reorthogonalized

with respect to xr,xr_l,.;:gxl . (N.B. Since the lack of orthogonality
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is caused by cancellation and not by the accumulation of rounding errors,

it is just as necessary to reorthogonalize with respect to x and
r

Xr-l (although yr+l has just be orthogonalized with respect to

these vectors) as to the earlier vectors.) We may write
el = Y1 7 M¥Fp "M% 7 e 7 X (18)

where the ni are chosen so as to give orthogonality. Tf cancellation
takes place when deriving the §f+l , then §f+l must be reorthogonalized

yet again with respect to all earlier vectors. Moreover, or

if
Y1

Ypt1 vanishes, then a technique is needed for restarting. Although a

perfectly satisfactory procedure may be constructed on these lines, it
is not aesthetically pleasing. We now describe an alternative procedure
for ensuring the orthogonality of the computed X, to working accuracy.
Suppose xl,xg,...,xr have already been determined and are
orthogonal to working accuracy, and that the matrix x = [x_,x o s X ]
r 1’72 r
has been reduced to upper-triangular form by premultiplication with r

elementary Hermitian matrices Pl’Pé" ,”p} . Here

T
By =T - 2wpn o vl =2 (19)

and the first i-1 components of w, are zero. From the orthonormality

of the xi , this reduced form must consist of the first r columns of I .

The vector Y1 is then determined from Equation (7)and the vector Zoq

is determined from the relation

z =P ... PEP

r+1 T (20)

1+l




Now with exact computation Ypt1 would be orthogonal to XpseeerX,

and hence ¢ would be orthogonal to the r vectors P ..P.x. ,

I+l r‘ l i
(1 = 1,...,r) . But these vectors are el,eg,...,er , and hence with
exact computations Z,..7 Wwould have zero components in elements 1

to r . We now determine P so that .
r+l Prt1%pe1

in elements r+2,...,n . With exact computation I3+lzr+1 would be

has zero components

a multiple of Now define x . by the relation

r+l °
*re1 T PaFor P (21)
so that Xn.pq 18 automatically a unit vector. 1f 311 the computation

had been exact x .. would merely be a multiple of Va1 . the multiple

being chosen so as to make g a unit vector. Notice that this

r+1
technique gives us a method of continuing when Vbl = 6 . Te merely

define X471 by the relation

- o
-pp,. @ Pe (22)

re1 e+l

which corresponds to having taken I in place of I}+l in Equation (21).

From the derivation of the Pi 1 the vector X1 is automatically
orthogonal to X Xyr ek since
X; = PjP,...Pe. = PyPo PP, o -Pe; (1<) (23)
giving
T T T T =e_  .e, =0.
= € N i
X 1% r+lPi P‘ePlPng...Prei r+l171 (2k)



Notice that with this technique, when determining Yoy W€ need only

X, and x To determine an x accurately orthogonal to

r-1 " 1

X oX, wWe need only Pl,...,Pr and these may be stored via the

1
corresponding W, o Since the first i-1 components of w, are
zero, approximately %‘nz registers are needed to store full information

. 2
on the Pi as against n if we store the Xy e The full set of

Equations (21) shows that
[xl,xg,...,xn] = PlPEQ-oPn ] (25)

so that in retaining information on the Pi via the W, we effectively
have full information on the Xy

The quantity 7. may be derived via the relation
L

=gy (26

We can take Bi to be equal to the 75 derived in this way or we
can determine it by making Vi orthogonal to Xiq that is, via

the relation

B. = X, .X. ) (1)

Even after the reorthogonalization 73 and 5i determined in this way
will agree to within a small multiple of nmﬁhepmlmﬂg . In practice,
it is instructive to compare the Bi and 74 obtained from Equations

(26) and (27). We have finally

Ol ] = ny @ (oKl B (28)
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L anmannt

to working accuracy, where the x.

are orthogonal to working

accuracy and T is a symmetric tridiagonalmatrix. If

Tz, = M2z, i (29)
then
Clxysxpy - oor %, 17, = A Dy, 0 HENOEK (30)
giving
= A - _
C(PlPe...Pn)zi "g‘"i Pz, or  CQz; = MQz, (31)

so that the tPj give sufficient information to enable us to determine

eigenvectors of C . When C = L'lAL'T we have

-1 _-T - -
L'ALTQz, = MGz, or A(L Tin) ~ AB(L Tqz) (32)

and hence eigenvectors of A-AB may be determined using the matrix L .

If the z; are a set of orthonormal eigenvectors of T , then , - L-QQZ
i i

gives a set of eigenvectors for the problem Ap = ABp such that

Il
N
N
I
=

T T.T — [-T T
Pini = ziQ L lLL L in 1% (53)

T _ LT -1 T -T _
PiBPj = ZiQ L lLL L sz

|
N
\Y

i
o

125 (143 (34)

10
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2. Applicability

reducb may be used to reduce the eigenproblem Ax = ABx to the
standard symmetric eigenproblem Ty = Ay where T is tridiagonal.

While reducb may be used whenever A and B are symmetric
and positive definite, it is best used in problems in which the band width
of A and B are small in comparison to their order.

The derived tridiagonal system may be solved by a variety of
methods [4]. The eigenvalues of the derived standard problem are
those of the original problem, but the vectors are related as indicated

by Equations (31) and (32).

11



3. Formal Parameter List

Input to procedure reducb.

n order of matrices A and B
C ma number of lower diagonals of A

mb number of lower diagonals of B

a elements of the lower triangle of the symmetric matrix A
- stored as an nx (mat+l) array.

b elements of the symmetric matrix B stored as an

nx (mb+l) array.

| .
Output of procedure reducb.
L
alpha diagonal elements of the symmetric tridiagonalmatrix T
‘L. similar to IFATT .
beta codiagonal elements of T
- b the lower triangle of L such that ILT = B , stored as an
} nx (mb+l) array (overwriting the original in b ).
- U information on the matrices Pi =1 _gwiwg (This may be stored
| as an nxn array, but for economy it can be stored as a linear
array of order %x1(n+l).)
- . fail  exit used if B , possibly as the result of rounding errors, is

not positive definite.

————y T r—

‘ 12
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. ALGOL W [3, 5] Procedures

comment

procedure reducb (integer yalue n, ma, mb:

long real array a, b(w, w);

long real array alpha, beta(r);
long real array u(w,+);
procedure fail);

Reduction of the symmetric elgenvalue problem

Ax = | ambda*Bx

with symmetric band matrix A and symmetric positive
definite band matrix B, to symmetric tridiagonal form
by the Lanczos method.

The lower triangles of A and B are stored in the
arrays a(l::n,0::ma) and b(1l::n,0::mb), where ma
and mb are the number of subdiagonals in A and B,
respectively. L, the Cholesky factor of B, is
computed and overwritten on B in b.  is used to
store details of the transformat lon. The diagonal
of the result Iis stored in the array alpha(l::n)
and the subdiagonal in the last n-1 stores of the
array sub(l::n).

The actual parameter corresponding to fail will
be executed if B, perhaps on account of rounding
errors, is not positive definite. :

bggln _l_n_t,ggg]: P.q,r.,s;
long real vO,yl,z;
long real array v,x0,x1,y(1::n);

gomment Compute the Cholesky factor of B:
for i:=1 step 1 unti] n do
begin p:=(if i>mb then 0 else mb-i+1);
r:=i-mb+p;
for i :=p step 1 unti] mb do
begin s:=j-1;

q:=mb=j+p;

z:=b(1,j);

for k:=p step 1 unt i] s do

begin z:=z-b(i,k)*b(r,q);
qQ:=q+l;

begin if z<0 then fail;
b(i,j):=longsqrt(z);

end

else b(i,j ):=z/b(r,mb);

r:=r+l;

end j;
end forml;

13



comment Compute tridiagonal form;
“ beta(l):=01; y(1):=11;
for i:=2 stepl until n do y(i):=01;
fork:=1step1until n do
begin
- z:=01; y
for j:=1 step 1 until n do
C begin x0(j):=x1(j);
x1(j):=y(j);
z:=z+y(j)ry(j)
end;
y0:=yl; yl:=z;

~ ;ommgn; Multiply xby inv(L)*A*inv(L");
s:=mb~1;
for T:=n step - 1 untill do
begin p:=(if | <=n-mb then 0 else mb+i-n);
q:=i;
z:=x1(1);
¢ ~ for jt=s step~luntilpdo
bezln q:=q+1;

z'az-b(q,J)*v(q);

( Y:=z/b(i,mb);
lve;
i:=l1stepl until n do
B m_np°=(_f.l>math.=n 0 glse ma-1+1);
qi=i-ma+p;
z:=01;
- for i:=pstepl until ma do
begin z:=z+a(i,j)*v(q):;
- qi=q+l;
- end;
p:=(if i<=n-ma thep 0 else ma+i-n);
f or j:=ma-1step -1 untilp do
begin z:=z+a(q,j )*v(q);
o q:=q+l;
end;
y(i):=2z;
end av;
for i:=1§;ggj until n do
begin %:-(I i>mb then 0 else mb-i+l);
q:=l;
b z:=y(1);
for j:=s step -1 until p do
_ggin q:=q-1;
z:=2=-b(i,j)*v(q);
end;
v(i):=z/b(i,mb);

.
- end solve;

F

1k
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c.o.‘lﬁm.ent Compute alpha(k) andbeta(k);
z:=01;

for j:=1stepluntil n do
z:=z4x1(j)*v(j);

alpha(k):=z:=z/y1;

for j:=lstepluntil n do
y(i)ei=v(j)=z*x1(j);
if k™=1 I.b_e.n
begin z:=01;
for j:=1stepluntil n do
Z:=z+x0(j)*y(j);
beta(k):=z:=2/y0;
if k=n thep go to 11;
for j:=1stepl untll n do
y(j)=y(j)=-z*x0(j);
end;

comment Normal ize and reorthogonal ize y with
respect to previous col umns of X;

fori:=2stepluntil k do

begin ;
I.Q.j==l5£.eg_1 until n do z:=z+u(j,i)+*y(j);
2:=zfu(i,l);
for j:e=j §_tg_g_1 until n do y(j)s=y(jl=z«u(j,i);
end;
2:=01;
foris=k+1 step 1l until n do z:=z+y(i)*y(i);
if z=01then
begin,1):=11;

z:=if y(k+1)>=0] then. longsqrt(z) else -longsqrt(z);
u(k+1 k+1)'=y(k+1)+z u(k+l,1):=u(k+]l,k+l)*z;
for J:=k+2§_t_g,g1 until n do u(;,k+1)°=y(_|)

for j:=ls;gg luntil n do
y(j):=if j=k+1 then 11 else 0 1 ;

for i:=k+lstep -1luntil 2 do
Qgg%n z:=01
jt=lstepluntil n doz:=z+u(j,i)ry(j);
z:= {u(i 1); ’ v
for j:=i step 1 until n do y(j):=y(j)-zwu(;,i);

end k;

end reduch;

15



5. Organizational and Notational Details

The lower triangle of A 1is stored in such a manner that array
element a(i, ma-i+j) contains the value of matrix element A(i,jJ) ,
i=1,, soun , and j=max(i-ma,1),...i . Thus, columns of a correspond
to diagonals of A . B is stored similarly. L , the Cholesky factor
of B, 1is lower triangular with the same number of diagonals as the
lower triangle of B . L is stored as .B is, overwriting B in b

The initial vector X, is chosen to be e_l . The details of the
elementary Hermitian matrices P‘l are contained in the wvectors Ui and

the scalars Ki , Where

If it should happen that 2, = ® , cf. (20) , then Ui =6, and Ki =1, so

that the corresponding Pi is the identity matrix. Also, since X, is e

is chosen to be the identity matrix, and information on Pl is not

1 14
P
stored. Otherwise, Ui is stored in the '%E_h column of u , and K.l
is stored in u(i, 1) , i=2,...,n .

The diagonal of the reduced symmetric tridiagonal matrix is stored in

the array alpha, and the off-diagonal in the last n-1 elements of the

array beta. Beta (1) is set to zero.

16
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and Br ensures that y£+

6. Discussion of Numerical Properties

The behaviour of the reorthogonalization process is far from obvious.
A detailed error analysis tends to obscure the essential simplicity of
the underlying mechanism and we content ourselves with an exposition of
the latter. For convenience it will be assumed that ”C“2 =1

We proceed by induction. Let us assume that on a computer with

t-digit mantissa xl,x2,...,xr have been determined and satisfy

- -t . .
7ixi+l = CXi ‘aixi -Bixi-l‘l' 0(2 ) 1 = l,-..,r-l (l)
and
T -t ..
x.lx:j = 513+o(2 ) i,j<r . (ii)

In other words we assume that the X; produced by the reorthogonalization
technique are orthogonal to working accuracy.
In the next step ¥y is first determined and the computed vector
r+l

satisfies the relation

-1 .
Vpep = CXp - X =B X o+ o™ %) (1i1)

If a great deal of cancellation takes place Y41 will not be
accurately orthogonal to X, and X, 1 but the determination of a,
X, V.%o =0(2"% (N.B. This will onl
1% 2 V1501 = .B. is wi only

imply accurate orthogonality if ”yf+l“2 were of order unity; if
. T -
”yr+lH2 is small, V1%, can be of order 2 t without I+l being
orthogonal to Xr to working accuracy.) We now show that
-t )
= 0(2 ") for all earlier xi . In fact we have

T
Yr1 4

17
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T

T -t
Yrr1¥s Xi(er -ax r-—Brxr_l)+ o(2™") (iv)

1t

T -t
erxi +0(2 )

T

= X0y %% Bi%; 1) + o(27%

o(2™%

The essential point is that the inner-products of y}+l with respect
to x 2 seeyX are all negligible. If in articular .

1 r b ”yr+l”2 is of
the order of unity Y41 will already be accurately orthogonal to
ﬁ, (] Q%D ang_reorthogonalization will be unnecessary. In any case

we may write

_ -t
1 Qz + 'rlle'F T]2X2+ . ..+qur r l‘qil = 0(2 ) (V')

and

@ =y, I+ 0% =y +o®) | (vi)

The vector Y41 1s now multiplied by Pl’P cresP, successively and
the resulting vector is used to determine Pr+1  From the derivation
of the previous P, it is evident that
} o2~
ST AN S AN VRS 'L SR SN (27%
=y +0(27) (vi)
r+1® r+1

where e, denotes the i-th column of I | Notice on the right-hand side

of (vii), 4 may not necessarily be much larger than the term

r+1%r+1

18
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denoted by 0(2-t) . If a great deal of cancellation took place when

Yppp Was computed then Vel will be correspondingly small. However,

independent of the size of Vipq We have

-t
Vpep = 7ppyPyPoe s P +0(2 ")

17172 P11 (viii)

and substituting this in (iii) we have

7I+1P1P2". %@D@BE] ﬂ er L Brxr-l+ 0(2-1:) . (ix)

Hence taking X4q = PlPQ"'Pr-i-lerl-l » Equation (ix) becomes

_-t)

Y1 %y = R L o(2 (x)
and since earlier Xy have been determined via the relation
X, = PP,...P.e, (xi)
it is clear that Xt is orthogonal to all earlier Xy to working
accuracy. If there had been exact computation throughout, x would

r+1

have been yr+l/ Hyri-lHE = Z,, (say). If cancellation has taken place
and Hyr+1H _ 27K (say), then (vii) shows that we can expect the computed
l[xﬁl-zﬁlll to be of the order of 2k_t . Hence as k becomes larger
and approaches t , X 41 increasingly diverges from Zpty However,
Y1 = E-k the replacement of Ypp1 7 i.e., Y11 by
Y+1¥pe1 OD the left of Equation (iii) is merely a change of order 2"t ,

19
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Having established these relations, we are now in a position to

compare the computed Bi and 7. .. e have
1

B, =x_cx,+ o(27%) = x¥(c -t

i %%y = x;(Cx; ;)+0(2™")

T -t -t
=% @ 1% TRy Xt 7%+ 0(27) +0(27)

_ -t
=7;t0(27) .
Since

(Without the normalization of C we have Bi =7 + O(Q-tlbuz) )
l .

g

N and y, are floating point numbers, the number of figures agreeing
in the mantissa depends on the degree of cancellation. put it is clear

that if we replace Bi by 7, we still have, as before,

- -t .
Tir1¥ie1 T OXg - O%; Y% g+ 0(27) (xiii)

and hence we can take the derived tridiagonal matrix to be symmetric.
In the case when yf+l is zero (or is considered to be negligible) we

can clearly take Xr+1 to be P1P2 . "Prer+l and we have

. -t
0-x Cx, -ax -Bx .+ o(2 ")

1 =9 =V T rrpr-1

In this case Br+l will also turn out to be negligible to working
accuracy.
An error analysis of the symmetric Lanczos process with Schmidt

reorthogonalization has been given by Paige [2].

20
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7. Test Results

To test reducb, the matrices

——

10 2 3 1 1
2 12 12 1
A= 3 1 11 1 -1
1 2 1 9 1

1 1 -1 1 15

2 1 -1 2 1

2 -1 -1 12 -1

1 1 1 -1 11

were used. A and B are of full width, soma = mp =4 , on an

IBM System 360 model 67 computer using floating point arithmetic with

a 14 hexadecimal digit fraction, the following results were obtained

(Although not necessary, the elements of u were initially =zeroed.):

o

0.833333333333333 10700
0.72687763359556810+oo
0.11623723 5917115, ;+01

o. 10569299232376910+Ol

0.862433487 3006holo+oo

U

8

o.ooooooooooooooolo+oo
-0, 2885434037 57058104-00
-0.2178371544673 9910+°O
0. 30292372765570ulo+oo
0.2196697 o66586h9lo+oo

O.OOOOOOOOOOOOOOOl +00 0. 000000000000000., +00 O.OOOOOOOOOOOOOOOlO+OO

0

10

0. 109306814617572, ;+00  O. 5788227808860uolo+oo 0.000000000000000, +00
0. 177357 46321942k, (-01  0.271519129954777, +00 o.2225l+81+1636802210+00
671791653895, 1+00 -0.331+3h170387800210-01 -0.10850331567022910+oo
0. 965095600&6993610-01 -0.163232u2202206610-01 0-188837775101oohlo+oo

O.OOOOOOOOOOOOOOOlO+OO

O.OOOOOOOOOOOOOOOlO+OO

O.OOOOOOOOOOOOOOOlO+OO

-0.586523191923192 lo+<>o
-0. 1064618647 40483 lo+'oo

21

O.OOOOOOOOOOOOOOOlO+OO
O.OOOOOOOOOOOOOOOlO+OO
0.000000000000000 o+OO

1
O.OOOOOOOOOOOOOOOlO+OO

-0.439339413317297 1000



The resulting tridiagonal system was solved using the procedure
ftql2 After the vectors of the tridiagonal system were transformed according

to equations (31) and (32), the final results were essentially the same as those

reported in [1] for the above matrices.
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