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ABSTRACT

¢ The problem of computing the eigensystem of Ax = ABx when A and

B are symmetric and B 1s positive definite 1s considered. A general-

ization of the Lanczos algorithm for reducing the problem to a symmetric

L- tridiagonal eigenproblem 1s given. A numerically stable variant of the

algorithm 1s described. The new algorithm depends heavily upon the com-

putation of elementary Hermitian matrices. An AIGOL W procedure and a

bo numerical example are also given.
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u The Lanczos Algorithm for the Symmetric Ax = ABX Problem

by

— G. He Golub, R. Underwood, and J. H. Wilkinson

.

1. Theoretical Background

I In many fields of work the solution of the eigenproblem

_ Ax = ANBx (1)

« is required. where Aand B are symmetric and B 1s positive definite.
This problem can be reduced to the standard symmetric eigenproblem by

he making use of the Cholesky factorization of B defined by

- B = 1I' | (2)

Equation (1) 1s then equivalent to

. ran (le) = aly) (3)

~L 7 T. and L AL 1s a real symmetric matrix.

« When A and B are narrow symmetric band matrices of high order
a |

this reduction has the disadvantage that L AL 1s, 1n general, a

full matrix. However, L itself is of band form and hence we can certainly

oT multiply an arbitrary vector by "tart in an economical manner. In fact,
1f we write

-

| “= 1

-



then z can be determined in the steps

x

| Ly=x, Ay=w , Lz=w (5)

and 1n this way we can take full advantage of the band forms of L

C and A . The total number of multiplications in the determination of z

1s only marginally greater than in the determination of both Ax and

Bx taking advantage of the band forms of A and B .

C Now in the Lanczos algorithm for a symmetric matrix C , the only

way 1n which C is used is in the pre-multiplication of vectors. The

algorithm may be described as follows. Tet Xq be an arbitrary unit

L. vector (fle lis — 1) ; then determine sequences of vectors y, and x
defined by

L Ype1 = Cp = OX, - Pr¥p.1 Yped®pe1 = Vp
(7)

1 Pray = 25 7g > 0
- where the sequence 1s continued until y =© . The «a and Br+1 Tr Tr

are determined so that y 1s orthogonal to x and x and o
r+l r r-1 1

| . so that Yo 1s orthogonal to Xo These relations ensure that

I Vp = B, and Yq 1S automatically orthogonal to X0%ps oo aX
Notice that when Y,.+7 has been determined, Equations (6) and (7)

i imply that

.

| 2
.
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where T, 1s the tridiagonal matrix with diagonal elements equal to the

ay superdiagonal elements equal to the Ps and subdiagonal elements

equal to the 7. . This is true even if a; and B, are chosen

arbitrarily! If Yop = © » then (8) gives
“

and provided only the Xx, are independent, T gives r of the
C eigenvalues of C and enables us to compute the corresponding eigenvectors.

In the Lanczos algorithm, the orthonormality of the X. ensures their

independence and also the symmetry of I, .

- Since Yt 1 1s orthogonal to the r orthogonal vectors X3¥5s 00 er X ,

] the process must terminate with Yor if it has not done so before.
In fact, we may regard the Lanczos algorithm as a method of ensuring

'L that the X, are independent and that the process does terminate. pep

| the Lanczos algorithm terminates before Vary then we have

L ’ = Vp TCX, X-BX . (0)
If we choose X..1 to be any unit vector orthogonal to Xyperes®

F ;

L then Equation (10) gives

.

Cx, -ax -Bx _,=6=0 X41 (11)

| Hence we may take 7,, = 0 and continue the algorithm with SE
This again ensures that subsequent X; are orthogonal to all earlier x,

J.

We may restart as often as necessary until we finally reach the null Vor1

If the termination takes place after +
Tory HS BEA CREEPER Pu oi

steps then we have



| Clxq5%,, oo Xx] = [x15%,, [ Sa (12)

where T 1s the direct sum of k symmetric tridiagonalmatrices of

orders Isls ‘ Eg + The eigensystem of T gives the eilgensystem
: of ¢ . Premature termination of the sequence should not be regarded

as a breakdown; in fact it leads to a simplification since it is easier

to find the eigenvalues and eigenvectors of several smaller tridiagonal

matrices than of one large one. The only disadvantage is the necessity

‘ for determining the restarting vectors.

At first sight the Lanczos algorithm is very attractive whenever

C 1s sparse (including, 1n particular, the case when C = Lar

L- Except when restarting, we need only the two vectors X, and X 4
3 to determine y,,. and Xx,. and hence requirements on the high-speed

store appear to be very modest. Unfortunately, if the algorithm is

{4 carried out as described, the later x may be very far from orthogonal

| to the earlier ones. When this is true, we have no guarantee that Ype1
will be null to working accuracy. Moreover, we may get near linear

| dependency of X19Xpy ees X for some r < ntl .
This departure from orthogonality is sometimes said to be the

i result of accumulation of rounding errors, but this is very misleading.
It occurs when there 1s a good deal of cancellation when computing Vpr1

+ from Cx, -ax -BX, , - This cancellation can occur even in the

| determination of Y, whenC is of order 2 (say), and in this case one
could scarcely speak of accumulation of rounding errors. pefpre

discussing how to obtain a complete set of orthonormal Xs we consider

4



the implication of Equation (8) when rounding errors are taken into

nN account. We now have

Clx 5%, ceo X | = [x 5%, ceerX IT + [0,0, ve esVipq) = [eqs Ens II) e..] (13)

LC where € is defined by the relation

= - - + €

| Tier¥ie1 = OF "Of Pia te (14)

¢
the Xs denoting the computed X:e1 . If N and z are an eigenvalue

and eigenvector of I. we have

- TC Tz =z (15)

and hence

Lo Clxy5%, eens x Jz = Mxq,x,, ceesX Jz t 2, Vey” [es Es on £12 (16)

|

8 where the z, are the components of z . Now z may be taken to be

\ a unit vector and [E1580 000s 12 1s therefore of the order of

I machepsx |[C|| where macheps 1s the machine precision. Hence 1if 2, Yop
| ; is also of the order of machepsx ||C|| we have

i cw = AW +e (17)
where w = (215%, 50 05x 2 and |le|| is of order machepsx| C|| .

| This shows that 1f we reach a NY which 1s negligible to working
accuracy, eigenvalues and eigenvectors of I, give good a8Pproximations

to eigenvalues and eigenvectors of C . (The latter must be interpreted

| in terms of exact eigenvalues of some C+E where E 1s small.) Also,
he

- 5
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| provided the XqsoeesX, have not yet departed too far from orthogonality,
| we shall indeed get good approximations to r eigenvalues and r

eigenvectors of C .

However, even 1f Yor is not itself negligible it may happen

C that for some eigenvalues MA of Tr the corresponding z may have

a moderately small Zo Then ZVppq MAY be negligible even if Yor
1s not sufficiently small in itself. This situation may be induced to

- some extent by starting with an initial vector XJ which consists
mainly of a linear combination of a few dominant eigenvectors; such an

- initial vector 1s obtained if an arbitrary vector X is premultiplied
I several times with C | It cannot be too strongly emphasized that the

size of the vectors €, is not in any way affected by cancellation or

L by the normalization of Vis1 to give X11 ,the vector €, consists
| entirely of the rounding errors made in actually multiplying the

computed Xs by C and subtracting multiples of X, and X. 1

Even the accuracy of the Q, and 2 is quite irrelevant in so far as

it effects the size of the &. though if they were chosen at random it

1s unlikely that a small Vpe1 would emerge. These considerations show

- why the Lanczos algorithm often gives remarkably accurate approximations

to dominant eigenvalues and eigenvectors after quite a few steps.

| In order to be certain of obtaining the full set of eigenvalues and

eigenvectors 1t 1s necessary to ensure that the computed x sre
i

orthogonal to working accuracy. The conventional way of doing this is

as follows. After computing Yppp Via Equations (7),it is reorthogonalized

with respect to XoXo meXy . (N.B. Since the lack of orthogonality

6



| 1s caused by cancellation and not by the accumulation of rounding errors,

> 1t 1s just as necessary to reorthogonalize with respect to x and
| X.1 (although Ypr1 has just be orthogonalized with respect to
oo these vectors) as to the earlier vectors.) We may write
.

rel = Ype1 TTT Tp¥p Teer 7 MX, (18)

C where the Ms are chosen so as to give orthogonality. If cancellation

takes place when deriving the Vet , then V1 must be reorthogonalized

yet again with respect to all earlier vectors. Moreover, 1f Yopq OF

C. Vp vanishes, then a technique is needed for restarting. Although a
perfectly satisfactory procedure may be constructed on these lines, it

1s not aesthetically pleasing. We now describe an alternative procedure

for ensuring the orthogonality of the computed Xs to working accuracy.

~ Suppose XsXpy ees X have already been determined and are

i orthogonal to working accuracy, and that the matrix X_ = [%15%55 00 +X]
has been reduced to upper-triangular form by premultiplication with r

| elementary Hermitian matrices P,P, oP, . Here

L pt 2d, [ul <2 19

| and the first 1-1 components of Ww. are zero. From the orthonormality
of the x, , this reduced form must consist of the first r columns of I .

The vector Yr is then determined from Equation(7) and the vector 241
1s determined from the relation

| Zr Th PPV (20)

|



Now with exact computation Yor1 would be orthogonal to X see erX

e and hence Zh] would be orthogonal to the r vectors F. CPx, ,
(1 =1,...,r) . But these vectors are ©1285 0rere , and hence with

exact computations Zi would have zero components in elements 1
“ to r . We now determine P so that

+1 Prt1%m1 has zero components

in elements r+2,...,n . With exact computation P1%m1 would be
a multiple of .P el Now define X +1 by the relation

Co

so that Xr 1s automatically a unit vector. 1f 311 the computation

|- had been exact X.+7 would merely be a multiple of Yr+1 , the multiple

I being chosen so as to make XKpq @ unit vector. Notice that this
technique gives us a method of continuing when Intl = © . Tie merely

[ define X41 by the relation

i *pry BR © Bey (22)
which corresponds to having taken I in place of Pr in Equation (21).

From the derivation of the P. r the vector X41 is automatically

’ orthogonal to XX x since

= oo = P seo oi”, I. —- 3Xp = BF Pie; 1%2 Pin Pre; (i <r) (23)

giving

= e P * 0 8 «0 0 1Frei r+l r FoPi PFs Fro rll (2k)
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Notice that with this technique, when determining Vp WE need only

_ X.. and X_._q1° To determine an X41 accurately orthogonal to
Xq5 0 uX, we need only Pes REFR and these may be stored via the

corresponding wo. Since the first 1-1 components of w, are

C zero, approximately 5 n° registers are needed to store full information
2

on the P. as against n 1f we store the Xs The full set of

Equations (21) shows that

so that in retaining information on the Pp, via the w, we effectively

w have full information on the X,

The quantity 7. may be derived via the relation
a’

7; 71} (26)
\

We can take Bs to be equal to the 7s derived 1n this way or we

can determine 1t by making Vsi4q orthogonal to Xi 10 that 1s, via
|. the relation

T

By = Xi 1%; (27)

-. Even after the reorthogonalization 7s and Bs determined 1n this way

B will agree to within a small multiple of machepsx |[C[|, . In practice,

1t 1s 1nstructive to compare the Bs and 7s obtained from Equations

« (26) and (27). We have finally

— Cla yXeneyX | = [x1,%,, 0 [XI 8 3% (28)1772 n 172

“

9
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to working accuracy, where the x gyre orthogonal to working
1

| accuracy and T is a symmetric tridiagonalmatrix. If

| Tz, = Az, ) (29)

then

Clxy5x%,, “ees x lz, = n[xp,%, oll [80 (30)

¢ giving

LIN BN |] = A. ° LA J J

so that the P. give sufficient information to enable us to determine
eigenvectors of C . When C = 1," tag,”T , we have

-1,.=T _ il ~T
. IL “AL Qz; = MQz, or A(L Qz,) = A B(L Qz) (32)

| and hence eigenvectors of A-AB may be determined using the matrix IL .
If the Z2, are a set of orthonormal eigenvectors of T , then p, = 1 gz

: 1 1

i gives a set of eigenvectors for the problem Ap = ABp such that

gh IT. T — [ -T T

| p.Bp, = z.Q L br L Qz, = Z;2, = 1 (33)

| T _.r.r.-1._T_-T _T .| PiBpy = z;Q°L ty Qz, = 225 = 0 (i # 3) (34)

b

| 10



0 reducb may be used to reduce the eigenproblem Ax = ABx to the

| standard symmetric eigenproblem Ty = Ay where T is tridiagonal.
While reducb may be used whenever A and B are symmetric

~ and positive definite, 1t 1s best used 1n problems in which the band width

of A and B are small in comparison to their order.

The derived tridiagonal system may be solved by a variety of

¢ methods [4]. The eigenvalues of the derived standard problem are

- those of the original problem, but the vectors are related as indicated

by Equations (31) and (32).
bo

|

L

|
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| 3. Formal Parameter List

u Input to procedure reducb.

n order of matrices A and B .

. ma number of lower diagonals of A .

mb number of lower diagonals of B .

a elements of the lower triangle of the symmetric matrix A

- stored as an nx (matl) array.

b elements of the symmetric matrix B stored as an

nx (mb+l) array.

C_

Output of procedure reducb.

alpha diagonal elements of the symmetric tridiagonalmatrix T

b similar to LI ATT.

| beta codiagonal elements of T .

i b the lower triangle of L such that IL = B , stored as an

| nx (mb+l) array (overwriting the original in b ).
U information on the matrices P, = I - 20; (This may be stored

| as an nxn array, but for economy it can be stored as a linear
array of order =n (n+l) .)

| . fail exit used if B , possibly as the result of rounding errors, is

1 not positive definite.

|

12



i 4. ALGOL W [3, 5] Procedures

| procedure reducb (integer value n, ma, mb:

long real array alpha, beta(=);
long real array u(w,+);
procedure fail);

comment Reduction of the symmetric elgenvalue problem

Ax = | ambda*Bx

with symmetric band matrix A and symmetric positive

C definite band matrix B, to symmetric tridiagonal form
by the Lanczos method,

The lower trlangles of A and B are stored in the
arrays a(l::n,0::ma) and b(l::n,0::mb), where ma
and mb are the number of subdiagonals in A and B,
respectively. VL, the Cholesky factor of B, is

C computed and overwritten on B in b. yy is used to
= store details of the transformat Ion. The diagonal

of the result Is stored in the array alpha(l::n)

i and the subdiagonal in the last n-1 stores of thearray sub(l::n).

The actual parameter corresponding to fail will
| be executed if B, perhaps on account of rounding
L errors, is not positive definite. :

begin integer p.a,r,s;

| long real yO,vl,z;
long real array v,x0,x1,y(1l::n);

i comment Compute the Cholesky factor of B:for 1:=1 step 1 until n do
begin p:=(if 1>mb then0 else mb-i+1);

rs:=i-mbe+p;
| for [ :=p step 1 until mb do

begin s:=j-1;
q:=mb=~j +p;
z:=b(i,j);

for k:=p step1 unt i] s do
begin z:=z-b(i,k)*b(r,q);

q:=q+l;
and;

if j=mb then
begin If z<0 then fail;

b(i,j):=longsqrt(z);
end
else b(i,j):=z/b(r,mb);
rs=r+l;

end J;
end form;

13



comment Compute tridiagonal form;
N beta(l):=01; y(l):=11;

for i:=2 step l until n do y(i):=01;
fork:=1step1unti]l n do
begin

BN z:=01; !
for j:=1 step 1 until n do

“ begin x0(j ):=x1(j);
X1(j):=y (5);

- z:=z+y(j)ry(j);
end;

E yO:=yl; yl:=z;

~ comment Multiply xbyinv(L)*A*xinv(L"');s:=mb-1;

for i:=n step - 1 untilldo
| begin p:=(if | <=n-mb then 0 else mb+i-n);

q:=i;
| z:=x1(1);

~ ~ for je=s step ~l until p do
begin q:=q+l;

z:=22-b(q,j)wv(q);
- end;

v(i)s=z/b(i,mb);
ang lve;

. for i:=1stepl until n do
o begin p:=(If i>ma then 0 else ma-i+1);

q:=i-ma+p;
z:=01;

— fori :=pstepl1 until ma do
| begin z:=z+a(i,j)*v(q):
. q:=q+l;
- end;

p:=(if i<=n-ma then 0 else ma+i-n);
f or j:=ma-1 step -1 untilp do
begin z:=z+a(q,j )*v(q);

C q:=q+l;
end;
y(l):=2z;

end av;
for i:=1stepl until n do

begin p:=(Lf 1>mb then 0 else mb=i+1);q:=i;

- z:=y(1l);
for j:=s step ~1 untilp do
begin q:=q-1;

2:=z=-b(i,j)»v(q);
end;

‘ v(i)e:=z/b(i,mb);
= end solve;

1k



| comment Compute alpha(k) andbeta(k);z:=01;

for j:=1stepl until n do
z:=2+x1(jl*v(j);

| alpha(k):=z:=z/vyl;
for j:=lstepl until n do
v{j)i=v(j)=z*x1(j);
if k™=1 then
begin z:=01;

for j:=lstepl until n do
Z:=z+x0(j)*y(j);
beta(k):=z:=2/y0;
if k=n then g0 to 11;

L for j:=1stepl until n do
y(j)i=y(j)=-z+x0(j);

end:

comment Normal ize and reorthogonal ize y with
respect to previous col umns of X;

- fori:=2stepl until k do
begin;

for j:=istepl until n do z:=z+u(j,i)*y(j);
z:=z/u(i,l);
for j:=j stepl until n do y(j)e=y(jl=zeu(j,i);

end;
L

2:=01;
for is=k+l step l until n do z:=z+y(i)*y(l);
if z=01 then

~ begin,1):=11;
for i:=k+l stepl until n do u(i,k+1):=01;

end else
L begin

z:=if y(k+1)>=01 then. longsqrt(z) else -longsqrt(z);
u(k+1,k+1):=y(k+1)+z; ulk+l,1):=u(k+l,k+1)*z;

| for ji=k+2step l until n do uj, k+1)i=y(j);
end;

for j:=l1stepluntil n do

. y(j):=if j=k+1 then11 else 0 1 ;
for i:=k+1 step -1luntlil 2 do

| begin z:=01for ji:=istepl until n do z:=z+u(j,i)*y(j);
z:=zf/u(i,l);

for j:=1 step 1 until n do y(j):=y(j)=z«u(j,i);
| end;

11:

end k;
. end reduch;

15
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5. Organizational and Notational Details

The lower triangle of A is stored in such a manner that array

« element a(i, ma-i+j) contains the value of matrix element A(i,j) ,

i=1,, oon , and j=max(i-ma,1),...i . Thus, columns of a correspond

to diagonals of A . B 1s stored similarly. L , the Cholesky factor

“ of B, 1s lower triangular with the same number of diagonals as the

lower triangle of B . L is stored as .B is, overwriting B in b .

P The initial vector X, 1s chosen to be er The details of the

“ elementary Hermitian matrices P. are contained in the vectors Ul and

the scalars Ky , where

“ B * Ky

If it should happen that Z. = 8 , cf. (20) , then u. = 0 , and K.=1, so

that the corresponding P, 1s the identity matrix. Also, since X, is e, ,

- Py 1s chosen to be the identity matrix, and information on P is not
stored. Otherwise, U1 is stored in the ith column of u , and K.

is stored in u(i, 1) , i=2,...,n .

) The diagonal of the reduced symmetric tridiagonal matrix 1s stored in
the array alpha, and the off-diagonal in the last n-1 elements of the

array beta. Beta (1) 1s set to zero.
LC

(.

- 16



| 6. Discussion of Numerical Properties

| The behaviour of the reorthogonalization process 1s far from obvious.

A detailed error analysis tends to obscure the essential simplicity of

the underlying mechanism and we content ourselves with an exposition of

the latter. For convenience it will be assumed that cll, = 1 .
We proceed by induction. Let us assume that on a computer with

t-digit mantissa Xp oKps ee esX, have been determined and satisfy

“ t

and

- xix, = 5. +0(2”F i, 3 ¥

| In other words we assume that the X. produced by the reorthogonalization
ho technique are orthogonal to working accuracy.

| In the next step y,, is first determined and the computed vector
satisfies the relation

L | .

If a great deal of cancellation takes place Jpe7 will not be

| accurately orthogonal to Xx and x 4 but the determination of a: T T -t
and PB ensures that Vr 1%p 2 Yori ¥pn1 = 0(2 °) (N.B. This will only

imply accurate orthogonality if 1111 were of order unity; if
T -t

17 pl 1s small, Yp41¥, can be of order 2 without y_,, being
orthogonal to x, to working accuracy.) We now show that
T -t

Veep ¥3 = 0(2 7) for all earlier x, . In fact we have

17



T JT -t
Ypr1¥Xy = x. (Cx, —ax  - BX, 1) + 0(277) (iv)

oo _ LT ~1
= x Cx, +0(2 7)

= xT (x Q t
ri irl+ iN + BXJ) + o(27Y

- £
=0(2")

The essential point 1s that the inner-products of Vel with respect

to XpseeorX, are all negligible. If in particular [A is of
the order of unity y.., will already be accurately orthogonal to

ot ‘ i] and reorthogonalization will be unnecessary. In any case
we may write

L = + . -t
Yt az ny%q t NoXy + . tnx, ’ In, | = 0(2 ) (v)

L and

3 -ty _ -t
@ = fly ll + 0 = 7 roe) or)

The vector Yrr1 1s now multiplied by PsP, ene, P successively and

_ the resulting vector is used to determine Pt From the derivation
of the previous P. it is evident that

P P ... Py . (de mies +... me 027%)r+1°r r+1” Trl LL rr

_ +02") (vii)718041

where e., denotes the i-th column of I | Notice on the right-hand side
of (vii :

(vii), Yp+18pp7 May not necessarily be much larger than the term

18



: -t
denoted by 0(2 ) . If a great deal of cancellation took place when

_ Yppq Was computed then V,..q Will be correspondingly small. However,
Independent of the size of
1ndep 12 Yq we have

yo = PP...p .e +0027 .
. r+1 rH+1T1T2 Trlr] (viii)

and substituting this in (111) we have

-t |

| 7..1P20 BEOGET H ans prob 0270) (ix)
C

Hence taking Xl = PiPoeeP i8q » Equation (1x) becomes

Y_  -X =Cx_-0 x -B.X +o(2 7% (x)
C r+1 r+l r rr rr-l X

and since earlier Xs have been determined via the relation
L

: X; = P;P,...P.e, (xi)
L

it 1s clear that Xl 1s orthogonal to all earlier Xs to working

| accuracy. If there had been exact computation throughout, X41 would

| have been Vopr! 17 ll = Z., (say). If cancellation has taken place| -k CL

and [71 | = 2 (say), then (vii) shows that we can expect the computed

| i Ix 1-2, to be of the order of okt . Hence as k becomes larger
and approaches t , X41 increasingly diverges from Lab] However,

-k

since Yq = 2 the replacement of Ypr1 © L1:€-r Yt 1% 1 by

i 7 1X 1 on the left of Equation (111) 1s merely a change of order )~T |

19



Co Having established these relations, we are now 1n a position to

| compare the computed Bs and 7s oe We have

| B. — x. Cx, + o(2"%) > x (Cx )+0(2"t ¥“ 1 1-1""1 i i=l ) (xii)

= x! (a. X, 2 +B, x. t7.x +027) + ~tEEi RS BSSTO fwB- ) o(2 7)

-t

(Without the normalization of C we have Bs 7. + 0(2 lel) ) Since
[ Bs andy. are floating point numbers, the number of figures agreeing

in the mantissa depends on the degree of cancellation. put it is clear

L that if we replace Ps by 7; we still have, as before,
L 7s, 4X = Cx, -Q.X. -7.X + 0(27% Coi+171+1 BR fs NE i 8 | (x111)

i and hence we can take the derived tridiagonal matrix to be symmetric.

| In the case when Yt 1s zero (or 1s considered to be negligible) wecan clearly take x to be
y r+1 P,P, SRL FC and we have

r+1 r+1 r rr r r-1 :

In this case Bri will also turn out to be negligible to working

accuracy.

An error analysis of the symmetric Lanczos process with Schmidt

reorthogonalization has been given by Paige [2].

. 20



7. Test Results

To test reduch, the matrices

| 10 2 3 1 1 12 1 <1 2 1

; 2 12 12 1 1 1% 1 -1 1

A= 3 1 11 1 =-1 B= -1 1 16 -1 1

1 2 1 9 1 2 =1 -1 12 -1

1 1 -1 1 15 1 1 1 -1 11

¢ were used. A and B are of full width, soma = mp =L4 , 0p an
IBM System 360 model 67 computer using floating point arithmetic with

a 14 hexadecimal digit fraction, the following results were obtained

be (Although not necessary, the elements of u were 1nitially zeroed.):

:

0.833335533333333 , +00 ©. 000000000000000, +00
L 0.726877633595368, +00 -0-288543403757058, +00

0.11623723591711510101 ~-0.2178371544673993 5+00
0, 105692992323769, +01 0.30292372765570k, +00
0.862433487500640, +00 0.219669706658649, +00

© 0.000000000000000,+00 0.000000000000000,+00 0. 000000000000000, +00
0. 109306814617572, +00 0.378822780886040, +00 0. 000000000000000. +00
0. 17735746321942Lk. 5-01 0.27151912995k477710700 0.2223431656602210700

| 671791653895, ,+00 ~0.334341703878002, 1-01 ~0.108503313670229, +00
0. 9650956046996, ,~01 -0.165232422022066, ~01 0.18885777510100k, +00

0. 000000000000000, +00 0.000000000000000, +00
0.000000000000000, +00 0. 000000000000000, +00
0.000000000000000, +00 0.000000000000000, ,+00
~0.586525191923192, +00 0.000000000000000, +00
-0. 10646186474048310+00 -0.143933941331729710™00
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The resulting tridiagonal system was solved using the procedure

. ftql2 After the vectors of the tridiagonal system were transformed according
to equations (31) and (32), the final results were essentially the same as those

reported in [1] for the above matrices.

C

C

C -.

C

C

C

C

C
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