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MATHEMATICAL PROGRAMMING LANGUAGE

AN APPRAISAL BASED ON PRACTICAL EXPERIMENTS

:

“~ Pierre E. Bonzon

Abstract

L

The newly proposed Mathematical Programming Language is approached

] from the user's point of view. To demonstrate its facility of use,
VC three programs are presented which solve large scale linear programming

i problems with the generalized upper-bounding structure.

|
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| Introduction.
~ —_—

The purpose of the work reported here was to investigate

the applicability and usefulness of the newly proposed Mathematical

C Programming Language, or MPL [1].

We were particularly interested in finding answers to such

questions as:

= - can MPL be regarded as a highly readable communication language

for mathematical algorithms?

~ are mathematical algorithms significantly easier to write

- and modify. in MPL than in any other currently available language?

| - what performance,in solving large scale systems, can be expected

L from MPL programs?

| To date, only a subset of MPL, called MPL/71, has been
implemented, using PL/1 as a translator[7]. In particular, MPL/71

| does not yet allow for partitioned data structures, thus preventing
us from dealing efficiently with block angular structures. Therefore,

= our experimentation had to be limited in scope.

) From the half a dozen programs that we have been writing

and testing for a period of 3 months, we have selected three, that

| should enable us to bring convincing answers to our questions.

We shall first present the revised simplex algorithm in its

simplest form, that is when an initial feasible basis 1s readily

avallable through the slack variables. This program shows clearly

how both pricing and column-generation can be accomplished simply

by two matrix multiplications. This, we believe, is sufficient in

itself to make up for our first point.
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. Two different versions of the generalized upper-bounding

— algorithm are then given. It will be thus demonstrated how easily

specialized algorithms can be implemented, and in particular how few

C changes are required to modify an existing program (our second point).

_ These two programs having been run with the data of a large

problem that was at hand, this will help us giving some elements of

Co an answer for the third point also.

._ -.

The Revised Simplex Algorithm [2].

— Consider the following linear programming problem. ging

.

” min z = CX

= such that x > 0
¢

Ax © b, with b > 0

where c = (ey)

. X = (x,) i=1, ...,n

_ A= ((@))  §=1,...,0»

b = (b,)

§ —

An initial feasible basis, as well as its inverse, are

= readily available through the addition of slack variables.

¢ Let (x Jj =ntl, . . . , n+m, be the slack variables, with

coefficients (ey) equal to zero and ((a;,)) forming an m by m identity
matrix for j = ntl, . . . , nm,

¢ 2



At the beginning of some iteration, assume that the current

NN -1

pasis inverse, B © the associated basic solution, x, = B-1b = b, and

| the data of the original problem, A, ¢, are available.
- Onz step of the revised simplex algorithm proceeds then as

L

follows:

I Pricing: By definition, the simplex multipliers, or prices, are

(=

"— The relative costs are then given by

(yee,c,. =c¢c, - T, a,. C=
J J i=1 1 ij? J 1, «+ +, Dm .

he

II Pivot column selection: The pivot column s 1s given by

¢c = min c
s

gj 3

) If c, > 0, the current basic solution is optimal.

IIT Column generation: If Py = (a5), i=1, . . . , m, represents
—the jth column of the original matrix A, then the entering

column 1s given by

P=381P = (a)
S S is’ » i=1, . . . ,m,



oo IV Pivot row selection: pq pivot row r is given by

b_ | bs
TF _ min — = gq .

C a a
rs is 7 0 4:5

If all Ais <0, the optimum is unbounded.

. V Updatethe inverse: The ypdated inverse is given by pivoting
i -1 ~ -

the first m columns of |p : P] on a .
S rs

| VI Update the basic solution: The updated values of the basic
-

variables are

b, «b, - 62
i" P17 ayes i=1,... ,m itr

[

| b.«6
| r

Now, 1t has been observed that by considering instead the

following augmented matrices and vectors

A 1
|

| A c <— [c { 0]
— [] [] [] —-—

“1 a + ©

pt 0
i

-1

B < me nm <—— [7 3 1]
a a @

. "1 "m | L
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| the pricing operation becomes equivalent to a matrix multiplication, 1i.e.,

|

c = -7A .

C

Furthermore, if

P |

C ]
Py<— —— ,

J

then, as before

.

- ~1 -

| P, = B P, and c¢, = -1nP
J J 3 io.

- To complete the algorithm, the ypdated inverse will be given by pivoting

~1. = -

the first ml columns of 3 . Pp] on a _, and the mtlth row of the
i updated inverse will contain the updated simplex multipliers for the

next iteration (initially they are all zero, except . 1m+1 )

The Program Revised-Simplex.

This MPL program reproduces exactly the 6 steps procedure described

in the previous section, introducing the augmented matrices and the

corresponding simplifications in the pricing operation.

The following notation 1s used, due to the non-availability of

lower-case and special characters:

5



| B for the right-hand side b and b

: INVERSE for the augmented inverse pt
| COST for the augmented c

i PI for the prices 1r
AC for the augmented matrix A (to distinguish it from the

original A).

C | |
Some of the interesting features-of the MPL are well 1llustrated

in this program. To be convinced of the advantage of MPL notations, as

a communication tool, over other common languages, just compare the

— following lines of instructions:

i I Declaration:
| MPL: DEFINE INVERSE MATRIX M+l BY M+l

- ALGOL-W: REAL ARRAY INVERSE (1 :: M+l, 1 :: M41)

X PL/1: DECLARE INVERSE (M+1, M+1) BINARY FLOAT

| II Set Notation:

- MPL: FOR 1 IN (1, ..., M) : P(I) > 0, [*'*];

ALGOL-W: FOR I : = 1 UNTIL M DO IF P(l) > 0 THEN BEGIN . ..END:

- PL/1: DO I= 1 TO M WHILE (P(l) > 0);

END;

III Matrix Operations:

MPL: COST = -PI * AC;

ALGOL-W, PL/l: several lines of iterated statements.

6
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1

C
"OUP IATE INVERSE

INVERSE (Ry%)=TNVFPSF(R,%)/P(R)}

FOr 1 IN (Jeeee yM#l })2l-=R,

— INVERSE (I, %)=INVERSE(I,y%)=P(I)XINVERSE(Ry*);

- WYPCATF BASIC VAR TABLFS AND OBJECT] VE"
_ BASICI{R)=S:B(P)=THFTA;

FOR T IN (lyeee sM)SIa=R,B(I)=B(1)=P{I)*THETA;

I=7+P{M+1) 2 THFT A; .

" RECYCLE"

‘ 60 TO RECYCLE: |

SOLUTION

BOUMDED :DFFINE X "SOLUTICN" ROW N3

«— X=0 FOR 1 IN (lyewesy™M)3BASIC{I)C<=N,X{BASIC(I))=8B(1);
PUT SKIP CATA{X,Z):G0 TD NUT:

UNBOUNDEDPUT SKTI® LIST (CKCUNRIUNDEDD>);
OUTst EMD

«_ -

&

$C

6
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«
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It must be noticed here that several more features of MPL, not

b yet implemented in MPL/71, would stillenhancethe clarityof programs by

| introducing more standard notations for common operations. ag apn
example, the concatenation of matrices would readily produce the

augmented matrices.

in conclusion, the extensive use of standard mathematical

L- notation 1n a programming language allows the mathematician-programmer

to write compact statements, directly meaningful to him. As such MPL

programs could well serve as a communication language for mathematical

algorithms. -
-

|
The-Generalized Upper-Bounding Algorithm [3].

~ Consider the following linear programming problem. pind

min z = CX

such that x > 0

ax <b

SNe k=1, «00, &
TC =

jor, EI
with Le < Tra

where

c = (es)

X = (x)
b= (b,)

J

A= ((ai ))

d = (d,)

9



|
Here, 1n addition to the usual matrix inequality constraint,

the sums of disjoint sets of variables are fixed. Transportation problems,

| for example, exhibit such a structure.Problems of this kind can, of course, be solved by the simplex

method by incorporationg the sums 1nto the augmented matrix constraint.

Such an approach, however, would prove infeasible in large

C problems, where the number of supplementary rows thus introduced could

be too large to be dealt with efficiently.

The procedure about to be described here 1s a specialization

. of the revised simplex method, which solves such problems while main-
taining a "working" basis of dimension m+lby mtl.

. Let us refer to the sets of variables defined by

L tx, Pr < k < RY. , k=1,. . . , 1%

as the successivegub sets k.

The technique 1s developed from the following observation:

| Meach set of basic variables for this problem must include at least

| one variable from each gub set k".

As the result of this property, it is then possible to identify

in each basis a set of ££ variables, called the keyvariables, repre-

sentative of each gub set. The remaining basic variables, after proper

elimination of the key variables, form the working basis. The method

then follows the usual steps of the revised simplex as applied to this

reduced system. Special attention must be given in maintaining a

10



complete set of key variables, gince some of them may be candidates

for leaving the basis of the original system at each iteration.
:
t

At the beginning of some iteration, assume that the current

| working basis inverse, BL augmented as in the previous section,\..

the set of key variables, *, , the current solution, b, and 4dk k'

and the data of the original problem, are available. Ope step of
the generalized upper-bounding algorithm works then as follows:

Lu

I Pricing: Th j ts for th t ] stem, =

. g e revised costs for the entire sy / Cy j= 1,...,0%m,
are given by

. h

c, = -n(P, - P,

| i 3 i) | for Xs in gubset k
or

c, = —-mP, -
— J J He

. where yu _ “TP, is the simplex multiplier associated with thek

sum constraint over gubset k.

|

II Pivot column selection: The pivot column s is given by the

usual criterion

c = min c
5 3

3

If c_ > 0, the current solution is optimal.

III Column generation: The entering column from the augmented matrix

A 1s given by

11



:

P = tp -pS S i ) for x in gubset 0 .
o

i

g The entering column from the matrix constraint defined by
sums 1s given by

C =

where

= Y, ak if k #0

°_ i:x, in ‘gub set k 18

a = -— -

| U4 - , > a, .L:x, in gubset k 1S

| IV Pivot row selection.

The pivot rowr ig given by performing

b, d

6 = min - k_ )X a, >0 a a
18 %s 9s

>

3 Is 0

If all REP qq < 0, the optimum is unbounded.

V Update the values of the basic variables (excluding the pivot).

The updated values are

b, « by - Ba, i,k # r

d «d - og
k © % TH tL

12
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VI Swapping, 1n necessary.

In the case where 8 = da, i.e., when the pivot variable

| 1s a key variable, another variable from the same gub set p ust pe“ made key. If a non-key basic variable, say the ith of working basis,

can be found in gub set p, then swapping occurs, 1.e., Tr < 1 The

working inverse 1s then updated by the formula

C

-1 -1

B: * 8.5 i # r

- ~g1 « gt - y) gL
rj rj - {j

1:X, in gub set p

L If there 1s no non-key basic variable in gub set p, then the

L entering variable necessarily can be made key for gub set p. No
pivoting 1s needed in this case.

VII Update working inverse and pivot variable.

~ The updated working inverse 1s given by pivoting the first

- m+l columns of Bt .P] on a and b = 6.
. + 8 rs’ r

The Program COMPOSITE-GUB.

A complete implementation of the generalized upper-bounding

algorithm just described must deal explicitly with the problem of

finding an initial feasible working basis and its corresponding set of

13



| key variables. The first method that we have considered is an extension

| of the usual two-phase method, known as the composite simplex method [5].

In short, whereas the two-phase method introduces artificial

| - variables, the compositemethod allows the slack variables to take
negative values. In the two phase method, feasibility and optimality

are dealt with in two separate phases. In the composite method, feasibility

C- and optimality can be worked toward simultaneously by a pricing procedure
combining, with appropriate weights, the objective function and the sum

~ of the negative slacks. However, the optimality criterion can be

attained before feasibility 1s achieved, in which case new weights
>

must be assigned. It is possible to ensure a successful termination

| of the process after at most two weight combinations, 1.e., (1,0) and
(0,1). In this case the procedure becomes equivalent to the two-phase

. method without artificial variables. This is the particular set-up
that we have actually programmed in COMPOSITE-GUB.

The 1nitial working basis 1s given by theslacks variables, and

| the key variables are selected with the smallest coefficient in each

_gub set. The corresponding basic solution will in general be infeasible,

l1.e., some b. will be negative.

In the simplex iterations, the pivot row selection criterion

must be extended to allow for negative slacks to become positive.

Following [5], we take 8 = min(6,, 6,), where 6, is given by the

usual criterion restricted to positive bs and

by
9, = - min ) =

i is

a, < 0

14



PROGRAM COMPOSITE_GUB

"PROBLEM DESCRI PTION

FINDMINZ=C*X SUCH THAT

X>=0

A AxX<=By WHEREAMATRIXMB YN
SUM X(I)=D(K) FOR RANGE{(K)<=I<KRANGE(K+1)y K=ljseeesrl

| IT IS ASSUMED RANGE(1l)=1m
~ “DATA”

GIVEN{MyN, L})INTEGER,

~ “A MATRIXMBYN,y THIS STATEMENT REPLACED BELOW"

8 COLUMN M,

C RUW Ny

Co DO COLUMN Lo
RANGE INTEGER ROW L+1;

ELET GUB_K=({RANGE{K)yeas sRANGE(K+1)~1)3
3 $LET ZERO=1F-4;

SLET INFINITY=1€F6;

"e "INPUTS PARS EAAND CONSTRUCTAUGMENTED MA TRI X*
DEFINE AC "AUGMENTED" MATRIX M+1 BY M#N,{ 14d) "SUBSCRIPTS" INTEGERyA:

| AC=03INSGET LISTUY)SIF ID0,1_GET LIST(ILA);AC(I,J)=A:60 YO IN _};FORTIN (lyeeesM)oyAC(I N+[)=1 "SLACKS";
FOR J IN (lyewesN)sAC(M+149d)==C(J) "COSTS";

r

L "INITIAL WORKING BASISH
, DEFINE BASIC INTEGER COLUMN M “INDEXFORUON-KEYBASIC VARIABLES";
| F O RIIN{lreaerM) yBASIC(I)=N+¢I "INITIAL NUN~-KEY BASIC ARE SLACKS";
- DEFINE SET INTEGER COLUMNMMSETI ND E X F O RNON-KEY BASIC;

SET=0 "SLACKSNOT INA N YSETn;

"INITIALKEY VARIABLES, CHOSENW | T HSMALLEST COEFFICIENTSY

| DEFINEKEY INTEGERCUOLUMNL “INDEX FGR KEY BASICH,K "SUBSCRIPT" INTEGER:
FOR K IN (lseeeyl)y] DEFINE TEST=INFINITY;FOR J IN GUB_K,

IF COJIKTEST | _KEY(K)=JSTEST=ClJII_1_1I:

MIN[TIAL INVERSE”
DEFINE INVERSE MATRIX M+1l BY M+1l:

INVERSE=0;FORIINT 1 yeeeeM#l),INVERSE(I,I)=1 “IDENTITY MATRIX";

INITIAL VALUES FOR NON~-KEY BASIC AND OBJECTIVES

DEF INE Z=0., O "UBJECTIVE“:

FOR K IN (lyoeogldsy| FOR I IN (lyreeersM)yB(II=B(I)=AC(I,KEY(K)IXD(K):
I=Z+C(KEY{K))%D(K)_1|:

“CHECK FEASIBILITY™

DEFINE PHASE INTEGER “INDEX FORPHASE";

D EFI NEINFEASIBILITYROWM+1 "INDEX FOR INFEASIBLE BASIC";

CHECK :PHASE=2; INFEASIBILITY=) “ASSUMING FEASIBILITY";
FOR I IN (lreaesMIB(I)<-ZERDy|_PHASE=1; INFEASIBILITY (T)=1 '~

18
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"SIMPLEX ITFRATION®

ITERATF::“PRICING

DFFINFPIR O WM+#1“ PRICE SFORINEQUALITIES?Y:

If PHASE=1,PI=-INFEASIBILITY®INVERSE:

IF PHASE=2yPI =I NVERSE(M+] ,y%x);
DEFINECOST ROWM+N “RELATIVECOSTS";

COST==~PI*AC; .
| DEFINE MU POW L “PR ICES FOR SUMS”:

FOU K IN (lyeeepl dol MUIK)=-PIX*AC(%*,KEY(K));

- FOR J IN GUB_K,COST(JI=COST(J)~-MU(K)_I
"PIVOT COLUMN SELECTION"

DEFINE S "PIVOT COLUMN" INTEGER, DELTA=INFINITY:

FOR J IN (lyeessM#N),IF COST(JIKDELTA,|_S=J:DELTA=COST(J)_I;
§ IF DELTAD-ZERQOy I_IF PHASE=1, GO TJ INFEASIBLE:

FPHASE=2, GO TO BOUNDED _1I;

"COLUMN GENERAT ION»

DEFINE SIGMA=0WSET INDEX F O RENTERING VARIABLE";

Lo FOR K IN (1v-i'..eL)sIF RANGEI(K)<=SANDS<KRANGE(K+1)ySIGMA=K
DEFINEP "ENTERING" COLUMNM#1“ F R O MINEQUALIYIESY;

P=INVEKSE*AC(%,S);

| fSIGMADD ¢P=P~-]INVERSE*AC(*,KEY(SIGMA)):
. DEFINE Q “ENTERING® COLUMN L “FROM SUMS”;

FOR K IN (lovee ol)! _Q(K)=0;FORTI N{looeoasMISSETI(I)=K,
N Q(K)=Q(K)=P(I)_I|;
L IF SIGMA>C, QUSIGMA)=Q(SIGMA)+1;

. “PIVOT ROW SELECTION”
DEFINE R"PIVOT ROW” INTEGERy THETASINFINITY
FOR | IN(lsesesM):P(I)I>ZEROCANDBI(1)>=-2€ERND,

| | FBOI}/PUIIKTHETA| _R=I;THETA=B(I)/P(I)_I:
FCR KIN (1 9¢ « « oL)SQIK)>ZERDy

| IF DUK)/QEKIKTHETA,| _R=M+K;THETA=D(K) /7Q(K)_1:
| - IF PHASE=]y |._DEF INE R2 "ALTERNATER® INTEGER yTHETA2==-INFINITY;
. FOR I IN (loeaesM):PIINIK~-2ERO AND B(I)<~Z2ERO,

| FBUI)/PUI)>THETARyl _R2=T13THETA2=B(I)/P(I)_1I;
| FTHETA2~==INFINITY AND THETAZ2<THETA,

_ | _R=R2;THETA=THETA2 _I_1I3
I THETA=INFINI TY, GO TO UNBOUNDED ;

- "UPDATERBASIC VARIABLES (EXCLUDINGPIVOT)AND UBJECTIVE®
FCR I IN (loses oM)2Ilaz=RyB(I)=B(I)=-P(IIXTHETA

| FOR K IN (Lye. .sL)iK~=R=M,D{K)=D(K)=Q(K)*THETA;
| I=2+P(M+] )xTHETA;

“SWAPPING, IF NECESSARY”

IFR>DM«“PIVOTISKEY"”,
{ _DEFINE RHO=R~-M "SET INDEX FOR PIVOT";

FOR IT IN (lryeeoeoM)yIF SET(I)=RHO "NON-KEY IN SET RHO,

| _R=13P(R)=Q(RHQO) "PI VOT I S MADE NON-=KEY";
KEY(RHO)=BASIC(R);D{(RHO)=B(R)"NON=KEY MADEK EY ~ ;

16



= INVERSE(R,*)==INVERSE(R,*);
2 FOR T IN (lyeeesMI:SET(I)=RHO AND I-=R,

INVERSE(Ry*)=INVERSE (Re*)~INVERSE( 1+*)3G0 TO PIVOT _I;

) "NO NON-KEY FROM SET RHO"
| D{ RHO)=THETA;KEY{RHO)=S “ENTERING VARIABLE MADE KEY";
| GO TO RECYCLE "PIVOTING NOT NEEDEO"_|:

| "UPDATE INVERSE®™
PIVOT: INVERSE(Ry*)=INVERSE(Ry*)/P(R);

oo FOR I IN (lyeee sM#l)e[~=R,

L INVERSE( 14% )=INVERSE(I ,*)=P(I)*INVERSE(R,*);
“UPDATE PIVOT VARIABLE"

: B(R)=THETA;BASICIR)=S;SET(R)=SIGMA;

RECYCLE"

L RECYCLE:IF PHASE=l, GO TO CHECK;
IF PHASE=2,GOTOITERATE;

1

| "SOLUTION" ~
( BOUNDED:DEFINE X "SOLUTION" ROW N3;X=0;

FOI IT IN (19eee sMISBASICIIIC=NyX(BASICI{I})=B(1);

PUT SKIP DATA(X,2)3G0 TO QUT;

INFEASIBLE:PUT SKIP LIST(CKKINFEASIBLED>>):60 TO OUT;
: UNBOUNDED :PUT SKIP LIST(CKUNBOUNDED>>):

- DUT :END

17
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V The program DUAL-GUB [6].

The initial basis defined by the variables with smallest

coefficient in each gub set and completed with the slack variables 1s

u dual feasible, 1.e., all c, > 0. Furthermore cy = 0 for 1 basic
(complementary slackness) and some b, < 0 (primal feasibility relaxed).

This 1s the setting required for the dual simplex method, which works

C toward primal feasibility while maintaining dual feasibility. The

algorithm differs from the previous one essentially in the choice of

the pivot only. No phase I 1s needed.

C The following changes are required:

1) The pivot row r 1s given by performing

C | 6 = min (b,, d, )
b, <0 i" ok
i

d, <0

If all b,, d > 0, the current solution 1s optimal.

2) Swapping, if necessary: If 6 = d_ < 0, another basic variable 1is

- necessarily to be found in the same gub set (because of d > 0)

C and swapplng can always take place.

+ 3) Row generation: The transformed row (a 4), j=1, . . . , nm, is
defined by

\ ©

w= - f . 1n gub set k3 "P, Hy or Xs g
where

C

Hy = "Pix .

18
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4) Pivot column selection: The pivot column s 1s given by

= min .

mag ® | <0 ars
|

if all a, > 0, the primal is infeasible. We can then proceed
with the usual column—-generation, pivoting and updating.

L

- VI Results and Conclusions.

It has been an easy matter to get the program DUAL-GUB by

L just deleting and inserting a few lines in the previous program
COMPOS ITE-GUB,

-

The two programs have been first tested on small examples

(e.g., m= 2, n=28, £=5). By taking advantage of the availability

: of a free dual feasible basis, the dual algorithm always needed a

| few less iterations to provide the solution. But it was expected that,
+ 1n larger problems, the extra computation required by the row genera-

tion, which amounts to another pricing operation, would prove dis-

advantageous.

This was confirmed by our last experiment. ye run each program

for 5 minutes on a problem with m = 26, n = 527, & = 100. COMPOSITE-CUB

provided a solution after some 180 iterations were executed, at the

rate of 45 per minute. DUAL-GUB carried about 120 iterations, at the

rate of 30 per minute, but primal feasibility was not achieved.

19



f PROGRAM DUAL GUB:
| “PROBLEM DESCRIPTI ON

FIND MIN Z=C%X SUCH THAT

X >=0

: AX<=B,WHEREA MATRIXMB YN

Lo SUM X(1)=D(K) FOR RANGE (K)<=T<RANGE(K+1), K=l,.0ayl
ITISASSUMED RANGE(1)=1"® :

- GIVEN (MyNyL) INTEGER,
"AMATRIXMBYNs THIS STATEMENT REPLACED BELOW®™

B COLUMNM,

C ROW N»

y D COLUMN Ls

C- RANGE INTEGER ROW L+1;
$LET GUB_K=(RANGE(K)yess RANGE(K+1)=1):
$LET ZERD=1F-3;

3 $LET INFINITY=1Eé6;

4 “INPUT SPARSE A AND CONSTRUCT AUGMENTED MATRIX®
— DEF INEAC"AUGMENTED® MATRIX M#1 B Y M#Ns (I,J) “SUBSCRIPTS” INTEGER, A:

AC=0;IN:GETLISTUJIIFIDO,| _GET LIST(I,A)3AC(I,J)=A:G0 TO IN _1{;

| FOR | IN(lyoae oM)oAC{IsN+I)=1"SLACKS™:FORJ IN (lseee oN} yACI{M+1,d)==C(y) "COSTS";

| "INITIAL WORKING BASISM
DEFINEBASICINTEGERCILUMN M “INDEX FOR YON-KEY BASIC VARIABLES;

: FORIINULyauerM) BASIC(I)=N+I FOR": NON-KEY BASIC ARE SLACKS"DEFINE SET INTEGER COLUMN M “SET INDE X NON—-KEY BASICY:
~ SET=0 "SLACKS NOT IN ANY SET™;

"INI TTALKEYVARIABLES,CHOSENWITH SMALLEST COEFFIC IENTS"
DEFINE KEYINTEGERCOLUMNL “INDEX FOR KEY BASIC", X"#SUBSCRIPT" INTEGER:

FORK | N(lsesoesl)s|{_DEFINE TEST=INFINITY;FOR J IN GUB_K,

IF CJIKTEST,|_KEY{(K)=J; TEST=CCJ)_{_1I:

“INITIAL INVERSE®

DEFINE- INVERSE MATRIX M+1BY M#+}1;
INVERSE=03FOR I IN(lveeesM+l)oINVERSE(II)=1 IDENTITY MATRIX":

“INITIAL VALUES FOR NON=-KEY BASIC AND OBJECTIVE"

DEFINE Z=0.0 “OBJECTIVE”:

FO RKIN(loeearb)gy _FORII N(loooosM)yBII)=B(I)=AC (I,KEY(K))*D(K)
Z=Z+C(KEY(K)I*D(K)_I3

20



| — "SIMPLEX ITERATION™
i RECYCLE:*PRICING"

DEFINE PI ROW M+1 ‘@PRICES FOR INEQUALITIES":
PI=INVERSE{(Me+ly*);

| OEFINE COST ROW M+N ‘@RELATIVE COSTS”;:
i COST=-P I*AC;

DEFINE MU ROWL “PRICES FOR SUMS”:

FORJINGUB_KeCOST(JI=COSTLII-MU(K}_1{3

“PIVOTRUW SELECTION”

DEFINE R “PIVOT ROW®™ INTEGER, THETA=INFINITY

FORT | Nf(lyeoeosM)yIF BLIIKTHETAy| _R=I;THETA=B(I)_ 1:
FOR K IN(lyeeagl)oIFO(KIKTHETAsl _R=M+K3THETA=DIK) I;
IFTHETAD=-ZEROy, GO T O FEASIBLE:

C

"SWAPPING, IF NECESSARY”

IFR>M PIVOT IS KEY”,

| _DEFINERHO=R=-M “SET INDEX FOR PIVOT”;
FOR | IN (lyeeesoM)oIF SET(I)=RHO “NON-KEY IN SET RHO",

. $_R=] “PIVOT MADE NON-KEY”:
” KEY{RHO)=BASIC{R);D{(RHO)=8(R) “NON-KEY MADE KEY®;

INVERSE(Ry%)==INVERSE(Ry%)3

— INVERSE(R ¢*)=INVERSE(R,*)=INVERSE(Is*)_J_1:

L "ROW GENERATION®
DEFINE T "ENTERING®™ ROW M+N;

PI=INVERSE(R,%)3

| T=PI*A(:
F O RKIN(lvrooeosl)y | _MUCK)=PI®AC(%,KEY(X)):

i FORJ IN GUB_K,T{J)=T(J)=MU(K)_I;
“PIVOT COLUMNSELECTION®

. DEFINES “PIVOT COLUMN® INTEGER, DELTA®RINFINITY;

IF COST(II/(=T(JIICKDELTA,|_S=J3DELTA=COST(JI)/(=T(J))_I3
IF DELTA=INFINITY, GOTO INFEASIBLE; .

“COLUMN GENERAT I ON’

DEFINE SIGMA=0 “SET INDEX FOR ENTERING VARIABLE";

FOR K IN (lseeeel)y IFRANGE(K)IK=S A N D SKRANGE(K+1),SIGMA=K:
DEFINE P “ENTERING” COLUMN M+1 “FROM INEQUALITIES":
P=INVERSE*AC(*,S);

| FSIGMADD ¢P=P~INVERSE*AC{*,KEY{SIGMA))
DEFINEQ “ENTERING” COLUMN L “FROM SUMS™;

Q{(K}I=Q(K)=-P(I)_|3
| FSIGMADO,Q(SIGMA)}=Q(SIGMA)+1:
THETA=THETA/PI(R);

“UPDATE BASIC VARIABLES AND OBJECTIVE"

B(R)I=THETA;BASIC(R)=S;SET(R)=SIGMA;



g — FOR T IN (lveeesM)zI~=ReB(I)=B(I)~P(])*THETA;
] F O RKIN(lsooeol)yDIKI=D(KI=Q(K)XTHETA:

I=7+P(M+]1)*THETA;

| “UPDATE INVERSE’
PIVOT:INVERSE (Ry*)=INVERSE(Ry*)/P(R) 3

FOR | IN{lygeaoeorMtl):I~=R,

| INVERSE(I,*)=INVERSE(I,*)<P(I)*INVERSE(R,*)
“ “RECYCLE”

GO TO RECYCLE:

| “SOLUTION
C FEASIBLE:DEFINE X "SOLUTION" ROW N;

X=03FOR I IN(lyeaepMITBASIC(I)IC=N,X(BASIC( J7)=B(1);
FORK IN{(lse « © Le XU(KEY(K))=D(K)
PUT SKIP DATA(X,2);G60 TO OUT;

INFEASIBLE: PUT SKIP LIST(CCINFEASIBLED>);

. OUT: END h

|

~ 4
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CC —————————————————————————————

|

BN The performance of these programs, while not measuring with
commercial codes, is good enough to view the present implementation

as capable of supporting the kind of experiments usually attempted

C when testing mathematical algorithms.

The full credit that MPL deserves will of course be greatly

enhanced by the introduction of additional standard mathematical

L notations, as announced in the specification manual. a pore

efficient compiler also will prove necesary before MPL will possibly

be used for production applications.

. -

L

’

L

i

-
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