MATHEMAT ICAL PROGRAMMING LANGUAGE

An Appraisal Based on Practical Experiments

BY

PIERREE. BONZON

STAN-CS-72-267
MARCH 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

{

MPL

MATHEMATICAL PROGRAMMING LANGUAGE

AN APPRAISAL BASED ON PRACTICAL EXPERIMENTS

by

Pierre E. Bonzon

Technical Report No. 72-6

February 1972

DEPARTMENT OF OPERATIONS RESEARCH
Stanford University
Stanford, California

This work was performed while the author was a visitor at
Stanford University, under a Grant from the Swiss National
Research Council.

Partial research and reproduction of this report was supported
under the auspices of National Science Foundation Grant GJ 30408X%

Reproduction in whole or in part is permitted for any purposes

of the United States Government, This document has been
approved for public release and sale; its distribution is

unlimited.

MATHEMATICAL PROGRAMMING LANGUAGE
AN APPRAISAL BASED ON PRACTICAL EXPERIMENTS

by

Pierre E. Bonzon
Abstract

The newly proposed Mathematical Programming Language is approached

from the user's point of view. To demonstrate its facility of use,

three programs are presented which solve large scale Tinear programming

problems with the generalized upper-bounding structure.

Key words:
Mathematical Programming Language
Large-scale systems

Generalized upper-bounding

—

Introduction.

The purpose of the work reported here was to investigate
the applicability and usefulness of the newly proposed Mathematical
Programming Language, or MPL (1].
We were particularly interested in finding answers to such
questions as:
- can MPL be regarded as a highly readable communication language
for mathematical algorithms?
~ are mathematical algorithms significantly easier to write
and modify. in MPL than in any other currently available language?
- what performance,in solving large scale systems, can be expected

from MPL programs?

To date, only a subset of MPL, called MPL/71, has been
implemented, using PL/1 as a translator [7]. In particular, MPL/71
does not yet allow for partitioned data structures, thus preventing
us from dealing efficiently with block angular structures. rTherefore,
our experimentation had to be limited in scope.

From the half a dozen programs that we have been writing
and testing for a period of 3 months, we have selected three, that
should enable us to bring convincing answers to our questions.

We shall first present the revised simplex algorithm in its
simplest form, that is when an initial feasible basis is readily
available through the slack variables. This program shows clearly
how both pricing and column-generation can be accomplished simply
by two matrix multiplications. This, we believe, is sufficient in

itself to make up for our first point.

Two different versions of the generalized upper-bounding
algorithm are then given. It will be thus demonstrated how easily
specialized algorithms can be implemented, and in particular how few
changes are required to modify an existing program (our second point).

These two programs having been run with the data of a large
problem that was at hand, this will help us giving some elements of

an answer for the third point also.

The Revised Simplex Algorithm [2].

Consider the following linear programming problem. pipg

min z = cx

such that x>0

Ax b, with b >0

where c = (cj)
x= (x,) i=1,...,n
J
A= ((a,)) i=1, , 0
b = (bi)

An initial feasible basis, as well as its inverse, are
readily available through the addition of slack variables.
Let 0%), j=mnt+tl, . . ., n+tm, be the slack variables, with

coefficients (cj) equal to zero and ((aij)) forming an m by m identity

matrix for j = n+l, . . . , n+m

At the beginning of some iteration, assume that the current

basis inverse, B! : : ; -
’ the associated basic solution, XB = B-1b = b, and

the data of the original problem, A, ¢, are available.
One step of the revised simplex algorithm proceeds then as

follows:

I Pricing: By definition, the simplex multipliers, or prices, are

"= (‘nll , om) = CB B_l
The relative costs are then given by
:)
c =c, - m a, .] =
3 e R 5 j=1, ..., ntm

II Pivot column selection: The pivot column s is given by

. If ¢_> 0, the current basic solution is optimal.

s

IIT Column generation: If Pj =(aij)’i =1, . . ., m represents

-the jth column of the original matrix A, then the entering

column is given by

IV Pivot row selection: The pivot row r is given by

3
11

br bi

- = min — =g

C a a > 0 a
rs 1S ais

If all a, <0, the optimum is unbounded.

v V Update the inverse: rpe updated inverse is given by pivoting

the first m columns of [B_l : Pl on 3
‘s rs’

VI Update the basic solution: The updated values of the basic

r—

variables are

b<~b—8a N i=19"-,m,i#r

Now, it has been observed that by considering instead the

following augmented matrices and vectors

P

i A o1 7]
|
A<= O ¢ <— [c i 0]
-c -c_ . 0
! i
g1 o
-1
L (R — q—— T <— [r 3 1]
LS " : 1
|

i.e.,

the pricing operation becomes equivalent to a matrix multiplication,

c = -7A
Furthermore, if
P
R
P,<— | === R
~-c
h|
then, as before
- -1 -
P, =B P and ¢, =-qP
J J 3 3

To complete the algorithm, tpe updated inverse will be given by pivoting
the first wtl columns of B-l E-Ps] on ars’ and the mtlth row of the

updated inverse will contain the updated simplex multipliers for the

next iteration (initially they are all zero, except . - 1)
m+1)

The Program Revised-Simplex.

This MPL program reproduces exactly the 6 steps procedure described

in the previous section, introducing the augmented matrices and the
corresponding simplifications in the pricing operation.
The following notation is used, due to the non-availability of

lower-case and special characters:

r—

B for the right-hand side b and b

INVERSE for the augmented inverse B_l

COST for the augmented c
PI for the prices 1T

AC for the augmented matrix A (to distinguish it from the

original A).

Some of the interesting features-of the MPL are well illustrated

in this program. To be convinced of the advantage of MPL notations, as

a communication tool, over other common languages, just compare the

following lines of instructions:

I Declaration:

MPL: DEFINE INVERSE MATRIX M+l BY M+l
ALGOL-W: REAL ARRAY INVERSE (1 :: M+l, 1 :: M+l)

PL/1: DECLARE INVERSE (M+l, M+1) BINARY FLOAT

II Set Notation:

‘ MPL: FOR 1 IN (1, ..., M) : P(I) >0, [***];
ALGOL-W: FOR I : = 1 UNTIL M DO IF P(l) > 0 THEN BEGIN
PL/1: DO I= 1 TO M WHILE (P(l) > 0);

END;

IIT Matrix Operations:

MPL: COST = -PI * AC;

ALGOL-W, PL/1: several lines of iterated statements.

«.END;

PROGRAM REVISED_SIMPLEXS
"PROBLFM DISCRIPTION

FIND MIN Z=C*X SUCH THAY

X>=0

A% X<=R, WHERE A MATRIX M BY N
I IS AsSSuM-n 3>=00

-mb.ﬂb’:

GIVEN {(MyN}) INTEGFF,
4 MATRIX M RBY N,
3 COLUMN M,
C ROW N3

$LET 7ERN=1E-63

$LET INFINITY=1F63

WOONSTRUCT AUGMENTED MATRIX WITH SLACKS AND CCST ROW®

DEFINF AC MAUGMENTED® MATPIX M+1 BY M#N,{I,J) "SUBSCRIPTS"™ INTEGER;
AC=0);

Fur T IN au-oooqzeo‘lﬂOw J IN AN-QOQ¢Z»obﬁquﬁgaubanq&v'—w

FOR I IN (Lysee MY AC{T4N+1)=1 "SLACKS";

FOR J IN (lyeessN)yACIM+1,J)==CtJ) "COSTS™;

WINITIAL BASIS®
DEFINSE RASTIC INTEGER CPLUMN M ®INNDEX FOR BASIC VARIABLESY;
FAR T IN (Jgeoee ™M), BASIC(I)=N+] "INITIAL BASIC ARE SLACKS";

WINITIAL INVERSE"®

DeFINE INVERSE MATEIX M+l 3Y M+13

THVERSE =%53FNR T IN (lyoeoayMel), INVERSE(I T)=1 "IDENTITY MATRIX";
WINITIAL VALUJE FOP OBJECTIVE 2%

DEFINE Z=ue";

NSIMPLEX TTFRATION®

FuCYCLE sWpPRICTINGY
DEFINE PI RCw M+] "PRICES OR SIMPLEX MULTIPLIERS";
PI=INVIRSE(MET, *)3
NDEFINE CPST POW MseN “RELATIVE CNSTS™;
COST==PI%AC;

WpIVOT COLUMN SELECTICON®
DEFINF S ®"PIVDT COLUMN® INTEGER OELTA=INFINITY;

FOY 3 IN (JyreeosM¥N) o IF COSTU(JICDELTA, | _S=J;0eLTA=20ST(J) {3
IF DELTA>-ZERD, GO TC BCUNDEDS

WCOLUMN GENERATICNY
DEFINF P "ENTERING® COLUMN M+1;
P=INVEPSEXACI*x,45)3

wpTyYORT FW SFLECTION®

JEFINE R "PIVOT ROWY INTEGFR,THETA=INFINITY;
FOR I IN {lyeeorM)SP{TI)DZERD,

IF B(I)/P(1)KTHETA, |_R=I3THETA=8(1)/P(I)_1I;
IF THETA=INFINITY, GO TO UNBOUNDED;

7

"OUYPIATE INVERSEM

INVEXSF (0, %) =TNVEPSF (R, %)/P (R);

FOR 1 IN (Jyeee Me1)21-=R,

INVERSE (1, %)=INVERSE(I, #)=P (I)*INVERSE(R*) ;

"UPCATF BASIC VAR TABLFS AND OBJECTI VE"
BASIC({R)=S;8(R)=THFTA;

FOR T IMN (lreeesyM)2I~=R,B(I)=B(I)=-P(I)*THETA;
L=1+P{M+1)*THFT A3

" RECYCLE"
G0 TO RECYCLE;

MSOLUTTON®
BOUNDED :DEFINE X “SOLUTICN" ROW N3
X=03FOR 1 IN (1.....M).BASICII)(zN.X(BAS:C(Ill—B(I».
PUT SKIP CATA(X,Z);G0 TD 0OUT;
UNBOUNDZD :PUT SKTO LIST(<KCUNBOUNDED>>);
OUT : END

It must be noticed here that several more features of MPL, not

yet implemented in MPL/71, would stillenhancethe clarity of programs by
introducing more standard notations for common operations. ag ap
example, the concatenation of matrices would readily produce the
augmented matrices.

in conclusion, the extensive use of standard mathematical
notation in a programming language allows the mathematician-programmer
to write compact statements, directly meaningful to him. As sucQ MPL

programs could well serve as a communication language for mathematical

algorithms. ~

The-Generalized Upper-Bounding Algorithm ([3].

Consider the following linear programming problem. find

min z = cx

such that x > 0

ax <b
rk+l-l k = l, see g4 »Q
< =
L %=
J—rk ith <
WIER I < Ty
where
c = (e,
(J)
x = (x,
(J)
b= (b,.)
J
A= ((aij))
d = (dk)

Here, in addition to the usual matrix inequality constraint,

the sums of disjoint sets of variables are fixed. Transportation problems,
for example, exhibit such a structure:
Problems of this kind can, of course, be solved by the simplex
method by incorporationg the sums into the augmented matrix constraint.
Such an approach, however, would prove infeasible in large
problems, where the number of supplementary rows thus introduced could
be too large to be dealt with efficiently.
The procedure about to be described here is a specialization
of the revised simplex method, which solves such problems while main-
taining a "working" basis of dimension mt+l by m+l.

Let us refer to the sets of variables defined by

k- Tk = k+1

as the successive gub sets k.

The technique is developed from the following observation:
Meach set of basic variables for this problem must include at least
one variable from each gub set k".

As the result of this property, it is then possible to identify
in each basis a set of & variables, called the key variables, repre-
sentative of each gub set. The remaining basic variables, after proper
elimination of the key variables, form the working basis. The method
then follows the usual steps of the revised simplex as applied to this

reduced system. Special attention must be given in maintaining a

10

complete set of key variables, gince some of them may be candidates

for leaving the basis of the original system at each iteration.

At the beginning of some iteration, assume that the current

. s 1 -1 | | |
working basis inverse, B”" aygmented as in the previous section,

the set of key variables, X, | the current solution, Bi and 3
k !

and the data of the original problem, _L,.. syailable. One step of

the generalized upper-bounding algorithm works then as follows:

I Pricing: The revised costs for the entire system, P =1 ntm
j, 9 sy ’

are given by

e, = --n(Pj - ij) ! for X in gubset k
or
c, = —-qP -
3 " h} Mk
where M -ﬂPj is the simplex multiplier associated with the
k

sum constraint over gubset k.

" II Pivot column selection: The pivot column s is given by the

usual criterion

¢ = min cC

If ¢ > 0, the current solution is optimal.

IIT Column generation: The entering column from the augmented matrix

A is given by

11

t
t
¥
3

(Ps - P,) . for x_ in gubset ©

The entering column from the matrix constraint defined by

sums is given by

QS=(qkS)’ k=l,...’£
where

q ., = - Y a -

ki if k

5. i:xi in gub set k is #o

Qog = 1 - a,._ .

i:xi in gubset k

IV Pivot row selection.

The pivot row r ig given by performing

b d
6=_min -—i-,_l(__
a, >0 a a)
_1is ais qks
qks >0

If all 30 aks < 0, the optimum is unbounded.

V Update the values of the basic variables (excluding the pivot).

The updated values are

i,k#r

12

VI Swapping, in necessary.

In the case where § = d /q i.e., when the pivot variable

rs'
is a key variable, another variable from the same gub set p ot pe
made key. If a non-key basic variable, say the ith of working basis,

can be found in gub set p, then swapping occurs, i.e., r <« i The

working inverse is then updated by the formula
BT « B! 147

Y -1 -1
B <« B -
i T8y L By
1:x; in gub set p
If there is no non-key basic variable in gub set p, then the

entering variable necessarily can be made key for gub set p. No

pivoting is needed in this case.

VII Update working inverse and pivot variable.

The updated working inverse is given by pivoting the first

m+l columns of [B_l .P] on a and b = 4.
« s rs' T

The Program COMPOSITE-GUB.

A complete implementation of the generalized upper-bounding
algorithm just described must deal explicitly with the problem of

finding an initial feasible working basis and its corresponding set of

13

key variables. The first method that we have considered is an extension

of the usual two-phase method, known as the composite simplex method [5].
In short, whereas the two-phase method introduces artificial
variables, the compositemethod allows the slack variables to take

negative values. In the two phase method, feasibility and optimality

are dealt with in two separate phases. In the composite method, feasibility

and optimality can be worked toward simultaneously by a pricing procedure
combining, with appropriate weights, the objective function and the sum
of the negative slacks. However, the optimality criterion can be
attained before feasibility is achieved, in which case new weights

must be assigned. It is possible to ensure a successful termination

of the process after at most two weight combinations, i.e., (1,0) gand

0,1). In this case the procedure becomes equivalent to the two-phase

method without artificial variables. This is the particular set-up
that we have actually programmed in COMPOSITE-GUB.
The initial working basis is given by theslacks variables, and

the key variables are selected with the smallest coefficient in each

_gub set. The corresponding basic solution will in general be infeasible,

i.e., some Si will be negative.

In the simplex iterations, the pivot row selection criterion
must be extended to allow for negative slacks to become positive.
Following [5], we take 6 = min(el,ez), where 6, 1is given by the

usual criterion restricted to positive bi’ and

b
6, = . min :l—
bi < 0 a;
3s ° 0

—

PROGRAM COMPOSITE_GUB;

WPROBLEM DESCRI PTION
FINDMINZ=C*XSUCH THAT

X>=0

AxX<=By, WHEREAMATRIXMB YN

SUM X{I)=D(K) FOR RANGE(K)<=I<RANGE(K+1)y K=lseeasl
IT IS ASSUMED RANGE(1l)=1"

“DATA”
GIVEN{MyNyL)INTEGER,
“A MATRIXMBYN, THIS STATEMENT REPLACED BELOW"
B COLUMN M,
C ROUW Ny
O COLUMN Lo
PANGE INTEGER ROW L¢1;
$LET GUB_K=(RANGE{(K)yoeeosRANGE(K#+1)~1)3
$LEY ZERQO=1F-4;
$SLET INFINITY=1E6;

"INPUTS P A RS EAANDCONSTRUCT AUGMENTED MATRI X"

DEFINE AC "AUGMENTED"™ MATRIX M#1 BY M#N,{ 1,Jd) "SUBSCRIPTS" INTEGER,A}
AC=03IN:GEYT LIST(J)IF U>0,|_GET LIST(ILA);AC(I,J)=A360 YO IN _1I;
FORTIN (lyeeeyM)yAC(I N+I)=1 "SLACKS®™;

FOR J IN (lyseeesNIJAC(M+1,44)==C(J) "COSTS";

"INITIAL WORKING BASISY

DEFINE BASIC INTEGER COLUMN M "INDEXFORUON-KE YBASICVARIABLES";

F O RIIN{]yaeerM) yBASIC(I)=N+] "INITIAL NUN-KEY BASIC ARE SLACKS";
DEFINESET INTEGER COLUMNM“SET | N D E X F O RNON-KEY BASIC™;

SET=0 "SLACKSNOTINA N YSETn;

"INITIAL KEY VARIABLES, CHOSENW | T HSMALLEST COEFFICIENTSY
DEFINEKEY INTEGERCOLUMNL “INDEX FOR KEY BASIC#,K "SUBSCRIPT™ INTEGER;
FOR K IN (lyeeesl)y| _DEFINE TEST=INFINITY;FOR J IN GUB_K,

IF CUJIKTEST, | _KEY(K)=J3TEST=ClII_{_1I;

MINITIAL INVERSE"
DEFINE INVERSE MATRIX M+l BY M+1;
INVERSE=03FOR I IN{ 1 yeeeyM#l), INVERSE(I,I)=1 "IDENTITY MATRIX";

"INITIAL VALUES FOR NON~KEY BASIC AND OBJECTIVE®

DEF INE Z=0. O "UBJECTIVE®;

FOR K IN (Lyeeeslds|_FOR T IN (lyeeesM)yBCID=B(I)=AC(I,KEY(K)I*D(K);
Z=Z+C(KEY(K))*D(K)_} 3

“CHECK FEASIBILITY"
DEFINMEPHASE INTEGER “INDEXFORPHASE"Y;
DEF I N EINFEASIBILITY ROW M+1 WINDEX FOR INFEASIBLE BASIC™;
CHECK:PHASE=2; INFEASIBILITY=)“ASSUMING FEASIBILITY";
FOR I IN (lveaessMIzB(IICK~ZEROy|_PHASE=13;INFEASIBILITY(T1=1
18

i
i
{
i
!

— r—

WSIMPLEX ITERATION®

ITERATF:“PRICING"™

DEFINFPIR O WM#1“ PRI CESFORINEQUALITIES";
If PHASE=1,PI=-INFEASIBILITY®*INVERSE;
IF PHASE=24PI=I NVERSE(M+],%);
DEFINECOST ROWM+N“RELATIVECOSTS";
COST==PI*A(; "
DEFINEMU POW L “PR ICES FOR SUMS”:
FOR K IN (lyeaesl)y _MUIK)==PI®AC(%,KEY(K));
FOR J IN GUB_KyCOST(J)=COST{J)=-MU(KI_]| 3

"PIVOUT COLUMN SELECTION"
DEFINE S "PIVOT COLUMN" INTEGER, DELTA=INFINITY:
FOR J IN (lyeeesMe¢N),IF COST(JIKDELTA,|_S=J;DELTA=COST(J)_I;
IF DELTA>-ZEROQOy I_IF PHASE=1, GO TJ INFEASIBLE;
| FPHASE=2, GO TO BOUNDED _13;

"COLUMN GENERAT ION™

DEFINE SIGMA=0O “SET INDEXF O RENTERING VARIABLE";

FOR K IN (1 v-i'..+L)eIF RANGE(K)S=SANDS<KRANGE(K+1)ySIGMA=K}

DEFINEP "ENTERING" COLUMNM+1“ F R O MINEQUALIYTIESY;

P=INVERSE*AC(%,5);

I fSIGMADD ¢4P=P~INVERSE*AC(*,KEY(SIGMA));

DEFINE Q “ENTERING®CJILUMN L “FROM SUMS”;

FOR K IN (loeee oL)ol_QEK)I=0;FUORTII N{loeeesyMITSETI(I)=K,
Q(K)=Q(K)=-P(I) _|;

IF SIGMAD0, QUSIGMA)I=Q(SIGMA)+1;

“PIVOT ROW SELECTION”

DFFINF R"PIVOTROW” INTEGERs THETASINFINITY;:

FOR | IN(lsesesM)I:P(I)I>ZEROA NDB(1)D>=Z2ERD,

I FBOI}/P(I)KTHETA,| _R=I3THETA=B{1)/P(I)_1I3

FCR K IN (1 9¢ « « oL)SQ(K)D>ZERDY

IF DUK)/QUKIKTHETA, | _R=M+K;THETA=D(K) 7/Q(K)_13

IF PHASE=14y | _DEF INE R2 "ALTERNATE® INTEGER,THETA2==INFINITY;
FOR I IN (lseaesMIZP{II<~2ERD AND B(1)<~ZEROQ,
I FBUL)/PUI)>THETA | _R2=T13THETA2=B(I)/P(I)_]|;
| FTHETA2~==INFINITY AND THETA2<THETA,
| _R=R23THETA=THETA2 _I_1:

IT THETA=INFINITY, GO TO UNBOUNDED ;

"UPDATERASICVARIABLES (EXCLUDINGPIVOT)AND UBJECTIVE®™
FCR 1 IN (lseeesM)tI~=RB(I)=B(I)-P(I)*THETA}

FOR K IN (lLoe..gL)K~=R=M,D(K)=DI(K)=Q(K)*THETA:
L=2+P{M+]) *THETA:

“SWAPPING, |IF NECESSARY”
IFR>DM«“PIVOTISKEY"”, 3
| _DEFINE RHO=R~-M ®“SET INDEX FOR PIVOT";
FUR I IN (lyeeesM)yIF SET{I)=RHO "NON-KEY IN SET RHO™,
| _R=I;P(R)=Q(RHO) "PI VOT I S MADE NON=KEY™;
KEY(RHO)=BASIC(R) ;D{(RHO)=B(R)"NON=-KEYMADEK E Y ~ ;

16

e

—

INVERSE(Ry*)==INVERSE(R,*);
FOR T IN (lyeeeyM)ISET(I)=RHO AND I-=R,
INVERSE(Ry*)=INVERSE(Ro*)~INVERSE(I+%)3G0 TO PIVOT _|;

“NO NON-KEY FROM SET RHOW
DU RHO)=THETA;KEY{(RHO)=S “ENTERING VARIABLE MADE KEY";
GO TO RECYCLE "PIVOTING NOT NEEDED"_|;

“"UPDATE INVERSE™
PIVOT:INVERSE(R,y*)=INVERSE(Ry ®)/P(R);

FOR I IN (lyeeeoMtl):[~=Ry

INVEQSE(I,*)=INVE&SE(Iv*)-P(I)*lNVERSE(Rv*,3

WUPDATE PIVOT VARIABLE"™

B(R)=THETA;BASIC(R)=S;SET{R)=SIGMA;

"RECYCLE"
RECYCLE:IF PHASE=1, GO TO CHECK;
IF PHASE=2,GOTOITERATE;

“SOLUTION® -
BOUNDED:DEFINE X "SOLUTION® ROW N;:X=0;
FOX T IN (1yeeesM):BASICIII<=NyX(BASICII}}=B(]);
FOR K IN (loseesl) g X{KEY(K))I=D(K):
PUT SKIP DATA(X,2);G0 TO 0UT;
INFEASIBLE:PUT SKIP LIST{(<KINFEASIBLED>)3G0O TO OUT;
UNBOUNDED:PUT SKIP LIST(KCKUNBOUNDED>>);

DUT:END

17

-~

V The program DUAL-GUB [6].

The initial basis defined by the variables with smallest
coefficient in each gub set and completed with the slack variables is

dual feasible, i.e., all Ej > 0. Furthermore Ei = 0 for i basic

(complementary slackness) and some b, < 0 (primal feasibility relaxed).

i

This is the setting required for the dual simplex method, which works
toward primal feasibility while maintaining dual feasibility. The
algorithm differs from the previous one essentially in the choice of
the pivot only. No phase I is needed.

The following changes are required:

1) The pivot row r 1s given by performing

& = _min (b,, d,)
b, <0 "k
i
dk <0
If all Bi’ ak > 0, the current solution is optimal.
2) Swapping, if necessary: If 6 = ar < 0, another basic variable is

necessarily to be found in the same gub set (because of dr > 0)

and swapping can always take place.

- 3) Row generation: The transformed row (;rj)’ j=1 . . . , nm, is
defined by
arj = ﬂPj - My for Xj in gub set k
where
uk = nij .
18

4) Pivot column selection: The pivot column s is given by

C - c.
S .
-a a_, <0 -a
rs rj rj

if all gr] Z‘ O, the primal is infeasible. We can then proceed

with the usual column-generation, pivoting and updating.

VI Results and Conclusions.

It has been an easy matter to get the program DUAL-GUB by
just deleting and inserting a few lines in the previous program
COMPOSITE-GUB,

The two programs have been first tested on small examples
(e.g., m =2, n=28, 4 =5). By taking advantage of the availability
of a free dual feasible basis, the dual algorithm always needed a
few less iterations to provide the solution. But it was expected that,

- in larger problems, the extra computation required by the row genera-
tion, which amounts to another pricing operation, would prove dis-
advantageous.

This was confirmed by our last experiment. e run each program
for 5 minutes on a problem with m = 26, n = 527, & = 100. COMPOSITE-GUB
provided a solution after some 180 iterations were executed, at the
rate of 45 per minute. DUAL-GUB carried about 120 iterations, at the

rate of 30 per minute, but primal feasibility was not achieved.

19

PROGRAM DUAL,GUB;

“PROBLEM DESCRIPTI ON
FIND MIN Z=C%*X SUCH THAT

X>=0
A¥X<=B,WHEREAMATRIXMB YN
SUM X(1)=D{(K) FOR RANGE (K)<=I<RANGE(K+1), K=1y.aayl

ITISASSUMED RANGE(1)=1"

"DATA®
GIVEN (MyNyL) INTEGER,
"AMATRIXMBYN, THIS STATEMENT REPLACED BELOW®
B COLUMN M,
C ROW N,
D COLUMN Ly
RANGE INTEGER ROW L+13;
$LET GUB_K=(RANGE(K)}yee o+ RANGE(K+1)=1);
$LET ZERD=1F-3;
$LET INFINITY=1E6;

“INPUT SPARSE A AND CONSTRUCT AUGMENTED MATRIX®

DEFINEACTAUGMENTED® MATRIX M#1 B Y M#Nys(I,J) “SUBSCRIPTS” INTEGER,A;
AC=03;IN:GETLIST(JI;IFJIDO0,|_GET LIST(I,A}3AC(I,J)=A3G0 TO IN _i;
FOR | IN(lgeaos 'M,'AC(I'N’I,:['SLACKS“;

FORJ IN (lyeeesN)yAC{M+1,4)==C(Jg) "COSTS";

“"INITIAL WORKING BASIS®

DEFINEBASICINTEGERCILUMN M “INDEX FOR YON-KEY BASIC VARIABLES*;
FORIIN(LyeoorM)yBASIC(I)=N+I ‘FB AL NON-KEY BASIC ARE SLACKS™;
DEFINE SET INTEGER COLUMN M “SET INDE X NON-KEY BASIC%;

SET=0 "SLACKS NOT IN ANY SET¥;

WINITTTALKEYVARIABLES, CHOSEN WITH SMALLEST COEFFIC IENTS™ _
DEFINE KEYINTEGERCOLUMN L “INDEX FOR KEY BASIC®,K®"SUBSCRIPT® INTEGER;
FORK | NU(lseooslL)s|_DEFINE TEST=INFINITY;FOR J IN GUB_K,

IF CUJIKTEST, | _KEVI(K)=J; TEST=CCII_{_1I3

“INITIAL INVERSE®
DEFINE- INVERSE MATRIX M+1BY M#+1;
INVERSE=03FOR I IN (lvseeesM+1l)oINVERSE(IyI)=1 %“IDENTITY MATRIX";

“INITIAL VALUES FOR NON-KEY BASIC AND OBJECTIVE®"

DEFINE Z=0.0 “OBJECTIVE":

F O RKIN‘I'.OQ'L,"__FORII N(1'000’“"B(I’=B(1)"'AC(!'KEY‘K”*D‘K,;
I=Z+C(KEY(K))*D(K)_1{3

20

S WSIMPLEX ITERATION®™

RECYCLE:"PRICING"
DEFINE PI ROW M+1 ‘@PRICES FOR INEQUALITIES"™;
PI=INVERSE(M+1y%);
OEFINE COST ROW M#N ‘@RELATIVE COSTS”,;
COST=-P I*AC;
DEFINE MU ROWL “PRICES FOR SUMS”;
FORKIN(Lyeoosl)y _MU(K)==PIRAC(%,KEY(K))}
FORJINGUB_KeCOST(JI=COST(II-MU(K)_1{3:

“PIVOTRUW SELECTION”
DEFINE R “PIVOT ROW®™ INTEGER, THETA=INFINITY

FORI | Nf{lyeoeesM)yIF BIIIKTHETA, | _R=I;THETA=B(I)_ 1|
FOR K IN(lyeeagl)g IFOIKIKTHETA sl _R=M+K3THETA=DIK) 1|3
IFTHETAD=ZERG, G O T O FEASIBLE;

"SWAPPING, IF NECESSARY”
IFR>M"PIVOT IS KEY ",
| _DEFINERHO=R=-M “SET INDEX FOR PIVOT”;
FOR | IN (lyeeesMIsIF SET(I)=RHO “NON-KEY IN SET RHO%,
N t_R=I “PIVOT MADE NON-KEY”;
KEY{(RHO)=BASIC{R);D(RHO)=8(R}) “NON-KEY MADE KEY*;
INVERSE(Ry*)==INVERSE(Ry *)3
FOR I IN (lseeesM)ISET(I)=RHO AND I-~=R,

- INVERSE(R 4 *)= INVERSE(R, #)=INVERSE(I,%)_I_1I3
L MROW GENERATION®

DEFINE T "ENTERING® ROW M#+N;

PI=INVERSE(R,*) ;
L. T=PI*AC:

FORKIN(Iseoerl) ol _MU(K)=PI®AC(®,KEY(X));
FORJ IN GUB_K,T{J)I=T(J)=MU(K)_];

“PIVOTCOLUMNSELECTION"
. DEFINES “PIVOT COLUMN® INTEGERy DELTASINFINITY;
- FOR J IN (1'0001M+N) T‘J’(‘lERO'
IF COST(J)/(=-T(J)ICDELTA,|_S=J3 SDELTA=COSTIIN /(=T (I)_1;
IF DELTA=INFINITYy GO TO"INFEASIBLE;

“COLUMN GENERAT I ON’

DEFINE SIGMA=0 “SET INDEX FOR ENTERING VARIABLE™;

FOR K IN {lyeeesl)y IFRANGE(K)IK=S A N D S<RANGE(K+1),SIGMA=K

DEFINE P “ENTERING” COLUMN M+1 “FROM INEQUALITIES*;

P=INVERSE*AC(*,S);

| FSIGHA)O,P=P-INVERSE*AC(*pKEY(SIGMA H

DEFINEQ “ENTERING” COLUMN L “FROM SUMS™;

FORK IN (lseeerl) ol _Q{XK)=03FORIIN(L1y,
Q(K)=Q(K)=P(I)_I3;

| FSIGMADO,Q(SIGMA}=Q(SIGMA)+1;

THETA=THETA/P(R);

eeyMISSET(T)=K,

“UPDATE BASIC VARIABLES AND OBJECTIVE"
B(R)=THETAIBASIC(R)=S;SET(R)=SIGMA;

31

FOR T IN (lyaeesM)IsI==ReB(I)=B(1)~-P(I)*THETA;
FORKIN(lyoaaol)yDIKIZD(KI=Q(K)I*THETA;
I=7+P(M+]1)*THETA;

“UPDATE INVERSE”

PIVOT:INVERSE (Ry*)=INVERSE(Ry*)/P(R);
FOR | IN{lyaoeosMtl):I~=R,
lNVERSE(l.*)=!NVERSE(Io*)3P(ID*INVERSE(Rv*)ﬁ

“RECYCLE”
GO TO RECYCLE;

“SOLUTION*

FEASIBLE:DEFINE X "SOLUTION® ROW N;
X=03FOR T IN{(lyeaosMI2BASIC(I)<=N,X(BASIC(17)=B(1);
FORK IN{lse « 0 oL)sX(KEY(K)}=D(K);3
PUT SKIP DATA(X,2)3;G0 TO OUT;

INFEASIBLE:PUT SKIP LIST(KKINFEASIBLED>);

OUT: END

22

The performance of these programs, while not measuring with

commercial codes, is good enough to view the present implementation

as capable of supporting the kind of experiments usually attempted

when testing mathematical algorithms.
The full credit that MPL deserves will of course be greatly

enhanced by the introduction of additional standard mathematical

notations, as announced in the specification manual. p pore

efficient compiler also will prove necesary before MPL will possibly

be used for production applications.

23

re

— r——

REFERENCES

[1] Mathematical Programming Language Specification Manual for
Committee Review, Technical Report STAN-CS-70-187, Stanford
University, November 1970.

[2] Dantzig, G. B., Linear Programming and Extensions, Princeton

University Press, 1963.
[3] Dantzig, G: B. and Van Slyke, R. M., Generalized Upper Bounding

Techniques, J. Comp. Syst. Sc., vol. 1, 1967 (213-226).

[4] Lasdon, L. S., Optimization Theory for Large Systems, The

MacMillan Company, 1970.

[5] Wolfe, P., The Composite Simplex Algorithm, SIAM Review, vol. 7,
No. 1, 1965 (42-54).

[6] Grigoriadis, M. D., A Dual Generalized Upper Bounding Technique,

Management Science, Vol. 17, No. 5, 1971 (269-284).

[7] McGrath, M., Documentation for MPL 71 Translator, Dept. of

Computer Science, Stanford University, October 1971.

24

