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Abstract

An n-omino is a plane figure composed of n unit squares joined
together along their edges. Every n-omino is generated by joining
the edge of a unit square to the edge of a unit square in some
(n-1)-omino so that the new square does not overlap any squares.
Let t(n) denote the number of n-ominoes, then it is known that the
sequence ((‘t:(n))l/n :n=12,...) increases to a limit 6 , and
3.72 < @ < 6.75. A procedure exists for computing an increasing
sequence of numbers bounded above by 6 . (Chandra recently showed
that the limit of this sequence is 6 .) In the present work we give
a procedure for computing a sequence of numbers bounded below by © .
Whether or not the limit of this sequence is 0 remains an open
question. By computing the first ten terms of our sequence, we have

shown that 0 < 4.65.

This research was supported by the Office of Naval Research under grant
number N-0001%-67-A-0112-0057 NR O44-402, and by the National Science
Foundation under grant number GJ-992. Reproduction in whole or in part
is permitted for any purpose of the United States Government.






A PROCEDURE FOR IMPROVING THE UPPER BOUND

FOR THE NUMBER OF n-OMINOES

D. A. Klarner and R. Rivest
Computer Science Department

Stanford University

1. Introduction

We begin with some definitions and a formulation of the problem
treated in subsequent sections. Also included in this section is a
brief indication of some of the known results dealing with the n-omino
enumeration problem. Some of what follows together with more details
may be found in [3] or [k].

Let C denote the set of all integer points in the Cartesian
plane, that is, C = 1x1 where I denotes the set of all integers.
Elements of C are called cells, and two cells are said to be connected
if the distance between them in the Cartesian plane is 1 . The set of
cells C may be regarded as the vertex set of an infinite planar
graph R whose edges consist of all pairs of connected cells in C
For each natural number n , let R(n) denote the connected subgraphs
of R having exactly n vertices. Clearly, R(n) has infinitely
many elements for each number n , but we are only interested in certain
equivalence classes defined on R(n) by means of the automorphism
group o of R

The automorphism group < of R consists of isometries of the
plane which map C onto C ; more precisely, an element of & is the

restriction of such an isometry to C . An important subgroup T of



corresponds to the set of translations of the plane which map C onto C
All of the elements of o/ may be formed by cambining the elements 7T
with combinations of some of the following isometries of the plane:
reflection along the x-axis or y-axis, 90° , 180° , or 270° rotation
about the origin.

Two elements of R(n) are said to belong to the same translation
class if one of these elements can be transformed into the other by an
element of T . The set of all translation classes induced in R(n)
by T is denoted T(n) . Representative elements of the translation
classes induced in R(4) by 3 are shown in Figure 1. 1In the figure,
boxes have been drawn around the cells of the animals, and the
vertices and edges of the graphs have not been indicated in the
conventional way.

Two elements of R(n) are said to be the same if one of them can
be transformed into the other by an element of o/ . The set of equivalence
classes induced in R(n) by o/ is denoted S(n) . Representative
elements of the equivalence classes induced in R(4) by o are shaded
in Figure 1.

Let t(n) = |I(n) | and s(n) = IS(n) | , then it follows from the

definitions that

(1) % t(n) < s(n) < t(n) < 8s(n) (n = 1,2,...)
Furthermore, it was shown in {3] (i) that the limits
(2) 6 = 1t (t()Y™ , o' = 1im (s(n) Y™
n —o n-—om
. . . 1/n .
exist, (ii) 6' =6 , (iii) o > (t(n)) for all n , (iv) and

6 > 3.72 . This last result was an improvement over 6 > 3.14 and
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Representative elements of classes in T(4) .

Figure 1.



® > 3.20 given in Eden [1], and [5] respectively. Also/Eden showed

that
o o< ()

and since
1/n
CEEEY () ML

it follows from his result that 0 <6.75 . Thus, the best bounds on

© after [3] were
3.72 < 6 <6.75.-

Read [6] (for more details see also [4]) gave a method for computing
the generating function for the number of elements of T(n) involving
n-ominoes whose cells occupy no more than r rows of cells in the
plane. For example, when r = 2 this generating function is
(ld—xg)/(l-Qx-Px:% . In general, Read's method gives rise to a
rational function prbd/qrbd with p. and q, relatively prime
polynomials such that qr(O) = 1 . Thus, 1if the largest real root
of qr(l/x) is @, , then it follows that @, < @, ., <6 for
i=1,2yes. . Therefore, this method leads to a procedure for
improving lower bounds on 0 indefinitely. It might be remarked that
the amount of work required by this method to improve the bound 3.72 < @
(proved by an entirely different method in [3]) appears to be prohibitive.

An alternative procedure for improving lower bounds on 6 indefinitely
was proposed by the late Leo Moser. Consider the set W(n) of translation
classes of n-ominoes X such that X has exactly one cell in its

bottom row and more than one cell in all other rows; also, one cell in
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the top row of X is to be distinguished from the other cells. For

example, W(l) has one element, W(2) is empty, and W(3) has four

elements. Figure 2 illustrates the elements of W(4) ; the distinguished

cells in top rows are marked with a cross. Now we use elements of

W(n) to construct elements of a set T*(n) consisting of translation

classes of n-ominoes X such that X has exactly one cell in its

bottom row and a distinguished cell in its top row. Let t*(n) = IT*(n) ],

then it is easy to see that

(5) t(n-1) <t (n) < nt(n) ,
and this implies

(6) 1m @)Y - o

n-—-owo

*
Now we estimate t*(n) from below. Every element X €T (n)

corresponds to a unique sequence (Xl"' ”Xk) with Xﬁ.ew(nl)""’xk‘zw<nk)

where k , Nyseeeon  are certain numbers uniquely determined by X

with n = nl+ . --+nk . This sequence is found by cutting X into

with lines running along the bottom of each row of X containing

exactly one cell. The element X; lies between the i-th and (i+l)-st

of these lines, and the distinguished cell in the top row of Xi is

either the distinguished cell of X (in case i = k ), or it is the

pieces

cell joined to the unique cell in the bottom row of Xi+l - Letting

w(n) = |[W(n) | , it follows that

(7 *(n) = 3 n,) . ..
) t kgl L w(n) . .ow(ny)

where the inner sum extends over all compositions (nl" '”nk) of

. L * *
into k positive parts. 1f (w (1),w (2),...) is any sequence of

n



Figure 2. Elements of W(4)



non-negative numbers such that w*(n) < w(n) , then of course

® o> 8T Wy ey

k=1
Setting
(9) Fx) = Y w(n),
n=1
we have
£ = * *
- (10) l_f"x = ngl ZW(nl)...w(nk)}xn

where the inner sum extends over all compositions (ri,...,nk) of n
into exactly k positive parts for k = 1,2,... . The coefficient of

X" in the power series in (10) is a lower bound for t*(n) so long

*

as 1 <w (n) <w(n) . Thus, if we define
- n

w5 = L v

* *
and define a sequence (tr(l),tr(e),__.) by

f (%) [
r * n
(12) Tor () 2: tr(n)x s
r n=1
then it follows that
* * *
(13)  t, (n) St.(n) <t (n)
for r = ,2,¢¢. and n = 1,2,... . Furthermore, if we put
. * 1/n
(W) @, = m (& ()Y,
n —o
then 2 < Py <. . .<#6. Finally, we come to the computation of Qr .



Since fr(x)/(l- fr(x)) is a rational function which generates a
sequence of increasing positive integers, it follows that wr is equal
to the largest real root of the equation f}(l/x)-l = 0 . Thus, Moser's
procedure comes down to enumerating the sets W(1),...,W(r) to find ?,
One has more and more work to find improvements by this method, and
indeed, so far no one has had the ambition required to calculate Qr
for a large enough number r to improve the bound 3.72 < 6 .

So far we have seen two procedures for improving lower bounds
on © indefinitely. ©No such procedure is known for improving the upper
bound on 0 , and it is our goal in this paper to show that such a
procedure exists. Furthermore, we shall achieve a considerable
improvement over Eden's bound 0 <6.75. The next section deals
with combinatorial aspects of this problem which lead to a technical
problem involving generating functions. This problem is dealt with
in the third section, and in the final section we discuss the calculations

which lead to our new upper bound for 6 .



2. n-Ominoes Viewed as Sequences of Twigs

In this section we develop an idea which originates with Eden [1].
We begin with a description of this idea, reformulating it so that our
development appears straightforward. The idea is that a unique planted
plane tree EX embedded in R may be associated with each n-amino X
The tree EX is then interpreted as a sequence of "twigs", that is,
certain small subtrees also embedded in R . Eden's set of twigs E
(shown in Figqure 3) is finite, and each YeE is assigned a weight
- w(Y) = £a$ , where a denotes the number of cells in Y less 1 ,
and b denotes the number of "dead" cells in Y . (Dead cells are
colored black in Figure 3.) Let Ek denote the set of all sequences
of elements of E having length k for k = 0,1,..., and define the
weight of FeE® to be W) = xw(Yl) . "W(Yk) where ¥ = (Yl,...,Yk)
for k = 1,2,... , and define the weight of the empty sequence to be x .

It turns out that sequences of twigs corresponding to elements of

T(n) have weight Xpyn , and the sum of the weights of all finite

sequences of elements of E is

-1 @ k
(1) x{l - L w(Y)} =Y x{ ) W(Y)}
YeE k=0 | YeE

= ﬁ L owd .

k=0

YeEk

Since (YeE)w(Y) = y(l-l-x)3 , the generating function given by (1) is

(2) —* - Z. P (1) = 3 5n+1<m-l) .

-y(l+x)3 n=0 n—O =1

Thus, if it is shown that there exists an injection of T(n) into the

nn
set of finite sequences of E having weight Xy , then we are



Figure 3.

Eden's set of twigs E .
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justified in concluding that the coefficient e(n,n) of xnyn in

this power series is an upper bound for t(n) . Hence, if 1/8 is
the radius of convergence of the "diagonal? power series of (2), that
is, the power series

o

(3) Y e(mmn) ,
n=0

then 6 < € where 0 is defined in ($1.2). Rut,

(%) e(n,n) =(ffi> ana e ="

and this is Eden% result mentioned in §l.

It remains to describe an injection of T(n) into the set of finite
sequences of elements of E having weight x°y" . Suppose XeR(n) ,
then a spanning tree EX of X which is at the same time a planted plane
tree embedded in R may be defined as follows: Assign labels 1 and O
to the left-most cell in the bottom row of X and the cell below this
one respectively, then draw an edge from cell 0 into cell 1 . Now

we define a process which generates a spanning tree of X assigning

labels 1,...,n to the vertices of X . The process consists of a
sequence of n steps P(l),...,P(n) which may be described in general.
P(i): An edge has been drawn from cell ji into cell i .

Three cells together with cell j. surround cell i which for the
moment we call a; » bi » Gy going clockwise around cell i from
cell ji . If a; is a cell of X and has not been labelled earlier
in this process, then an edge is drawn from cell i into a;, , and

ay is assigned the successor of the last label used in this process.
Repeat this for b, and c; , and go onto P(i+l) or stop if

i =n. It can be shown easily by induction that carrying out

11



P(1),...,P(n) creates a spanning tree of X which is also a planted
plane tree embedded in R . At vertex i in this tree we find exactly
one of the twigs shown in Figure 3, denote this twig by Yi , and
define E . (Yl,...,Yn) . See Figure 4 for an example of a spanning
tree created by this process; the sequence of twigs in this example 1is
(Ey, By>Eqg E; Eg Bg Bg Eg E, Eg) , and
xw(Eu) ...w(E8) = X-Xeyox2y-yox2y-xy-y.y.xy.xy.y = 010

Now we show that the weight of Ey = (Yi""’Yk) is Xy for
all XeR(n) . To see this, we need the concept of the partial planted
plane trees embedded in R which are formed by the sequences (Yl’”"Yk)
for k = 1,...,n . Modify step P(i) above by adding the operation of
coloring cell i Dblack. (Assume that all cells of X are white
initially.) Carrying out modified steps P(1), ...,P(k) gives rise to
the partial planted plane tree having twigs Yl"' qu . Suppose
XW(Yl) - .wﬂk) = xayb , then it is easy to show by induction that the
number of black cells (which we call dead cells) in the partial tree
is Db, and the total number of cells in the partial tree is a . Since
every cell of X is colored black after carrying out modified steps
P(1), ...,P(n) , and since X has n cells altogether, it follows that
W(E,) = Xy

Finally, if X,X'eR(n) , and X is a translation of X' , then
EX is a translation of EX' . Thus, the spannipg tree of a representative
element of a translation class of n-ominoes is representative of the
spanning trees of all the n-ominoces in the translation class. This
completes the description of an injection of T(n) into the set of

finite sequences of elements of E having weight xpyn .



Figure L,

A spanning tree generated by Eden's method.
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Our development of Eden's idea now follows naturally. The spanning
tree EX of XeR(n) may be viewed as a sequence of elements selected
from a set of "larger" twigs. For example, such a set of twigs may be
defined for k = 1,2,... as follows: Let E(k) denote the set of all
partial planted plane trees Z embedded in R such that (1) the
dead cells of Zare connected to the root of Zwith a path of length
less than k , and (2) Z must be a sub-tree of the partial spanning
tree of some polyomino. The weight of an element YeE(k) is defined
to be wk(Y) = xayb where a denotes the total number of cells in
Y less 1 , and b denotes the total-number of dead cells in Y
The weight of a sequence ¥ =:(Yl"”’Yf) of elements of E(k) is
defined to be Wk(§)==xmk(Yl). ..wk(Yr) . Every n-omino X gives rise
to a unique sequence of elements of E(k) , and it can be shown by
induction that the weight of such a sequence is xnyn . It follows from
these definitions that E(1l) = El and the elements of E(1l) are shown
in Figure 3. The elements of E(2) are compactly represented by the
drawings in Figure 5 which are interpreted as follows; Each drawing
represents the collection of twigs having in common the dead cells
marked as black vertices. The elements of each collection are obtained
by including all subsets of the cells marked with square vertices as
white cells of a twig. The sum of-the weights of all the twigs in each
collection is written below each drawing.

Following (1), the sum of the weights of all finite sequences of
elements of E(k) is given by

-1 )
(5) x(1- L. w(Y)} = L e (mn)dy"
YeE(k) m, n=0

and the coefficient e (n, n) of xny'n is an upper bound for t(n)

n

1k



Figure 5. Elements of E(2) -
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Furthermore, it can be shown that ek+l(n,n) < ek(n,n) for k = 1,2,...
and all n, in fact, for any fixed k , strict inequality must hold
for all sufficiently large n . (Since our final result does not
depend on these claims, we shall not bother to prove them.) Thus, if
l/&k denotes the radius of convergence of the diagonal power series

of the power series given in (5), we have & >& > ... 26, where @
is defined in (1.2). In the next section we show how to compute an
upper bound for &k; in fact, it follows from the results proved there
that €1=6-75,6255-50 » and & < 5.25 . The amount of work
required by this procedure for k = 4 or 5say, may not be
prohibitive, and the upper bound for 0 might be further improved by
this method. However, there is a set of twigs more efficient than the
extension of Eden's set and it is the procedure associated with this
set that we plan to push to the limits of our computing ambition.

There are eight L-shaped L-sets of cells near a given cell u
which we call L-contexts of u ; rather than take space to define these
L-sets precisely, we merely picture them in Figure 6. Using this
concept, we describe the set of twigs L shown in Figure 7. Each
element of L is composed of the following things: (1) a root
cell along with a specified L-context of this cell, (i1) a set
(possibly empty) of open cells which is linearly ordered, and
(i11) each open cell is assigned one of its L-contexts. In Figure 7
we have marked the L-context of a twig's root cell with asterisks, the
root cell itself is colored black, the open cells are colored white, and
the L-context assigned to each open cell is indicated with an L .
Where necessary (that is, in twigs L5 and L_ ), the linear order

p)

assigned to the open cells of a twig is indicated by numbering them.

16
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Every element XeR(n) corresponds to a unique n-term sequence of

elements of L . Just as in Eden's method, this sequence is constructed
algorithmically by assigning a linear order to the cells of X at the
same time assigning an element of L to each cell of X .The left-
most cell u in the bottom row of X is cell 1 of X . The L-context
U of u which consists of the cell to the left of u and the three
cells below u form the L-context of a twig (which we will specify in

a moment) whose root is u . Let w and y denote the cells connected
to the right and above u , and let x denote the cell (% u)

connected to w and y . The twig assigned to u (that is, cell 1

of X ) is (i) Ly , if W, X,y £X , (ii) L, , if W, xfX , yeX ,

(iii) Ly , if WX , x,yeX , (iv) Ly, , if yfX , weX , (v Lg,
if w,yeX . It is easy to check that (i)-(v) cover all possible
situations. The L-context of a twig is interpreted as a set of cells
whose status of belonging or not belonging to X is known. This is the
case with the root of the twig assigned to u . Note however that this
is true for cell 2 of twigs L3 and 15 only after the twig assigned
to cell 1 has been specified. Now the linear order assigned to the
cells of X and the assignment of twigs to the cells of X is carried
out by doing Q(2),...,Q(u) where Q(i) is defined as follows: Suppose
labels l,...,ji 1 have been given to cells of X with ji 1 the

last label given any cell. Go to cell i of X which is the open cell
of a twig assigned to yet another cell of X , and let the L-context
specified be the L-context of the twig to be assigned to cell i . All
previously labelled cell of X are deleted, and cell i is viewed as
the root cell of some connected component of X . Now the twig assigned

to cell i is determined in the same way as for cell 1 , and the open

19



cell (or cells) belonging to this twig is (are) labelled l+ji (or
1+Ji and 2+ji according to the linear order specified by the linear
order of the open cells of the twig). Note that generally the L-context
of cell i may require one to reflect and/or rotate the appropriate
twig to be assigned to it. The sequence of elements of L assigned

to X by this method is defined to be Ly, = (Xl,...,Xn) where X, is
the twig assigned to cell i by Q(i) . The spanning tree and sequence
of twigs generated by this method corresponding to the decomino shown

in Figure 4 is shown in Figure 8.

Clearly, a common sequence is assigned to the elements of a
translation class of n-ominoes, and n-ominoes belonging to different
translation classes are assigned different sequences. Hence, there is
an injection of T(n) into the set of n-sequences of L . Furthermore,
. if the elements of L are given the weights W(Ll) =y, W(I‘z) = Xy,
W(L5) = x2y ,W(Lh) = Xy, W(LS) =x2y , and the weight of a sequence
X = (Xl’XE" . .) of elements of L is defined to be W(X) = xw(Xl)w(X2)‘... ,
then W(LX) = xnyn to all XeR(n) . Thus, there is an injection of
T(n) into the set of sequences of L with weight xnyn .

Letting £(m,n) denote the number of sequences of L having

weight xmyn , we can use (1) with L in place of E to find

@©

(6) L tmu)xy? ——F
m,n=0 l-y(1+2x+2x2)

2 n 2\1n
Y xy(1+ex+2xt)
n=0

Thus, £(n,n) is equal to the coefficient of 1 in (L+2x+ 2}:2)n ,

that 1is,

20
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( = n n-k-1
7) t(o,m) = X (k,k+l,n-2k-l : ’

but

(8) éo (k,k+l,r;1-2k-l>2h_k_l - % kio(k,kﬂ::l-?k-l)(i)k(f_la)kﬂ

271 1 . n
< f2(/2+f2+l> < (2+2/2)
It follows that
(9) 0 = 1im (teNY® < 1t (2(mn)Y? < 2+2/2 < N85,
n-—-w n-—e -

which is already a substantial improvement on Eden's bound 6 <6.75 .
We can improve further on © < 4.83 using L in analogy to our
improvement on 6 < 6.75 using E

Consider the infinite set H of twigs generated from the set of
twigs L in the following way. Every partial spanning tree of a
polyomino is a member of H , where the spanning tree is generated with
the procedure Q corresponding to the set of twigs L . Each twig XeH
is like a polyomino except that (1) it has a unique root cell
indicated, (ii) a particular L-context is associated with the root
cell, (iii) a spanning tree of X is indicated, (iv) all nonterminal
nodes of the spanning tree are dead cells, and (v) sane of the terminal
nodes of the spanning tree may be open cells, each with an associated
L-context. Thus, the subset of H consisting of n-cell twigs with no
open cells is isomorphic to T (n)

A partial order < may be defined on H as follows: For any

X,¥eH put X < Y whenever

22
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(1) X has fewer cells than Y ,

(ii) the root of X has the same L-context as the root of ¥ ,

(iii) the spanning tree of X is isomorphic to a subtree of ¥

rooted at the root of Y .

In essence, X S'f whenever Y can be "grown" from X by repeatedly

applying the process Q to the open cells of X . The element ¢
(a twig of no cells) is considered to be the smallest element of H .
The covering relation of H ordered by < is a tree with root P .
A finite subset C (# {#3}) of H is called a cut if every element
of H is comparable to some element of C (for example, the set L
forms a cut of H ). A cut is said to be minimal if no other cut is
properly contained in it.

Given a minimal cut C , it is easy to show that the spanning tree
of any n-omino X can be uniquely decomposed into a spanning tree
corresponding to elements of C | The set of twigs corresponding to X
are ordered by the label assigned to their root by the process Q .

The set C of twigs thus forms a "complete" set of building blocks,
that is, a set of twigs capable of constructing any n-omino. Furthermore,
using the weight function w defined on L , we define the weight of

an element X = (Xl,...,xk) of C to be w(X) = w(X ..w(xk) , and

1)
the weight of a sequence Y = (Yl"'”gﬁ) of elements of C is

defined to be W(Y) = xw(Yl). ..W(Yj) . Thus, if Cy denotes the
sequence of elements of C corresponding to XeR(n) , then W(LX):= W(CX)
Hence, there is an injective mapping of T(n) into the set of all
sequences of C having weight xPyn .

Next, suppose C and C' are minimal cut sets, and every element

of C is dominated by some element of C!' , then we write C <C!' . It

23



is rather easy to prove that if ¢ (myn) denotes the number of

C
n

sequences of C with weight xmy , and if C < C', then

lC(n,n) > IC,(n,n) . The point is, if sequences of elements of C

and C' are converted into sequences of elements of L , then the

sequences giving rise to the number lc,(n,n) constitute a subset of

the sequences giving rise to the number lc(n,n) . Thus, for each

sequence (Cl’CE’“@) of minimal cuts with Cl <C2 < ..., we have
(10) £, (n,n) >4, (n,n) > . > t(n)

c 2 % 2 2

1 2
To calculate £, (n,n) we use (1)- with C, in place of E
i
x = m_n

(11) Lt (mum)x'y

1 - z w(T) * myn=0 i

TeC.
i

Thus, estimating 4 (nyn) in (11) presents us with the problem of

i
estimating from below the radius of convergence of the "diagonal function"
of a rational double power series. We want to use the fact (implied

by (10)) that if l/hi denotes the radius of convergence of

2, (n,n)x” , then
i

(12) A >N, >0 >0

This is the problem treated in the next section.
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3. The Diagonal of a Rational Function

- In this section we tell how to find a lower bound for the circle

of convergence of the diagonal of a double power series which represents

a rational function. More precisely, suppose P(x,y) and Q(x, y) are

«
polynomials with integer coefficients such that P(0,0) = 1 and
Q,(x,y)/P(x,y) is in reduced form, then consider the representation of
Q(x,y)/P(x,y) as a power series
-
Q(x -
(1) Foy) = g = L fmn)dyt .
? m, n=0
N The diagonal of F(x,y) is defined to be
X )
L (2) Fp(z) = Z £(n,n)z"
n=0
i
L In Section 2 we encountered the problem of determining an upper bound for
. 1
. (3) ® = lin inf (2(n,n))Y"

n-oo

that is, q>-l is a lower bound for the radius of convergence of FD(z) .
To solve this problem, we use the integral representation for FD(Z)
- given in [2].

We can suppose there exist positive constants & and B such that
the power series in (1) represents F(x,y) for all x and y such
that |x| < a , lv] <B . Thus, the function F(s,zs_l)s_l is
represented by the Lauren-t power series

d

(%) F(s,28 )s™ = § g(m,n) 2P 0L
m, n=0

inside the circular anmulus A = {s: ls | <a, lZHS-lI <B} =

{s: |z lB-l < |s| < @} which is not empty provided |z| <O0B . Note
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that the residue of F(s,zs l)s at s =0 is just FD(z) . Thus,
if C 1is a circle inside A with its center at s = 0 , then we can

apply the residue theorem to conclude that

(5) F(z) = _;-_m.j; F(s,zs-l)s-lds ;

furthermore, the integral on the right is the sum of the residues of
F(s,zs_l)s_1 at the singularities enclosed by C . Now we take into
account the special form of F(x,y) .

There exist numbers u,v with w = wv , together with polynomials

PO(Z)"" o Pw(z) with integer coefficients such that

v . .
© =Ll o) Lete, o)

Using this form of P(x,y) , we have

F(s,zs_])s_1= s v;lQ(s’ZS_%)
Z P.(z)sJ

A

(7)

There exist functions 1 = ﬂl(z),...,uw = nW(z) such that

W . w
(8) jz;OP:JmsJ = Pw(z)ag (s-1,)

in fact, the functions “l’ .

on the left in (8) is irreducible. We shall assume the n's are

)ﬂw are distinct provided the polynomial

distinct and treat this case only.
Suppose “,j is inside C for j = 1,...,t , and II.J is outside
C for j = t+1l,...,w . Then we can combine (5),(7) and (8), and sum

the residues of F(s,zs-l)s-:L at JIJ. for § = 1,...,t to find
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2) - v-1 -1 Tﬂr -1
(9) FD( ) - j=l “J. Q(’(j)z“'j ) PW(Z) kel (’[j -“k) *
k£

Hence, the singularities of Fb(z) form a subset of the roots of the

equation
W
(10) R(z) = Pw(z)j’l;l'l (n5(z) - (2)) = O

Jfk

and a lower bound for the radius of convergence of Fb(z) is the
minimum modulus of all these roots. TIf it is known that
{f(nyn): n = 0,1,...} is an increasing sequence of integers, i lower
bound for the radius of convergence of Fy(z) is the smallest real
root of (10). Note that if the ='s are not all distinct, then the
product in (10) is 0 , and this test fails.

Finally, R(z) , the function defined by the left member of (10),

is symmetric in =x. . ..,1_, so R(z) can be expressed as a polynomial

1, W
in Ib/Rw" "Pw/Pw-l . Consulting Uspensky [7, pages 277-291], we
see that R(z) is closely related to the descriminant of svf(s,zs-l)
regarded as a polynomial in 8 | Furthermore, the descriminant of a
polynomial can be computed in terms of its coefficients by means of

Sylvesterts determinant.. Applying the formulas given in Uspensky, we

find

(1) (B (2))""PR(z)= det M(z) ,

where M is a (2w-1) x (2w-1) matrix whose first w-1 rows consist
of CycliC shifts of (PW’PW-J..,..‘,PO,O’ ...,O) > and the next w rows
consist of cyclic shifts of (WPW,(W-l)PW 17 --.,Pl,O, ® .+

Thus we are led to the following conclusion: If F(x,y) is a

rational function with the form given in (1), and if the diagonal

2T



FD(z) of F(x,y) generates an increasing sequence of integers, then
an upper bound for @ defined in (3) is the largest real root of the

polyncmial equation

(12) det M(1/z) = 0
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4. Computational Results

A sequence (Kl,Ke,KB,---) of upper bounds for 6 were computed
corresponding to a sequence of increasingly larger minimal cut sets
01?02,.%4, of H . The minimal cut Ci is defined to contain all
twigs having at most 1 dead cells. Thus, we clearly have Ci < Ci+l ,
i=12,....

The computation was performed on the PDP-10 at Stanford
University% Artificial Intelligence Center with a program written
in SAIL, an AILGOL dialect. The results are summarized below. The
computation of KlO required approximately one hour of computer time.
In addition, the largest real root of equation 12 of Section 3 for
Clo was found to be 7.005 . Since th must be smaller than h9 ,
however, we disregard this root as a spurious one introduced by

replacing FDOQ by R(z) , and select the smaller root 4.65. Fran

the table we conclude that

(1) 1im (@)™ - o < 465
n—-o
: o M
1 5 4.83
2 21 | 483
3 93 4.83
4 409 4.80
5 1803 4.77
6 7929 | 4.74
7 34928 4.72
8 151897 4.70
9 656363 4.67
10 2821227 4.65

Table 1
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