ON "PASCAL", CODE GENERATION, AND THE CDC 6000 COMPUTER

BY

NIKLAUS WIRTH

STAN-CS-72-257
FEBRUARY 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

O. r "paAfCode Generation, and the CDC 6000 Computer

by Niklaus Wirth

Abstract:

TG AT 18 a genersl purpose programming language with character-—
istics similar to ALGOL 60, but with an enriched set of program- and
data sbitic vwlig Suwcilities. It has been implemented on the CDC 6000
computex Thir paper discusses selected topics of code generation,
in par Ll w0« “he selection of instruction sequences to represent,
simple cgerations on arithmetic, Boolean, and powerset operands.
Methods to -implement recursive procedures are briefly described, and
it is hirted that the more sophisticated solutions are not necessarily

also the best. The CDC 6000 architecture appears as a frequent source

of pitfal 1« and nuisances, and its main trouble spots are scrutinized

and discuusoed.

The preparation of this paper was made possible by support from the

National Science Foundation, Grant number GJ-992, IBM Corporation,
and Xerox Corporation.

On "PASCAL", Code Generation, and the CDC 6000 Computer

1. Introduction

This set of notes has a dual purpose. It is on the one hand

directed to the user of the PASCAL compiler system who would like to

gain some insight into the machine code which is generated for various
basic operations. It is even recommended that he study these notes
carefully, because their understanding may prevent him from certain
pitfalls which are inherent in the use of the CDC 6000 computer [1].

On the other hand the notes-may be of interest to compiler writers

in general, because they point out some problems and dilemmas and our
choices of solutions. It becomes apparent that the choice of the code
to be generated is crucial for a good compiler system, and that it is
far from trivial as is usually believed.

The true purpose of a higher-level language is that it allows a
programmer to conceive his algorithms in terms of some convenient

abstractions. For instance, he is given the opportunity to think in

terms of familiar notions of numbers, of relations, and of repetitions,
instead of having to express his program in terms of bitstrings,
arithmetic instructions, and transfers of control. However, these
abstractions are only truly useful, 1f he can assume that his implemen-

tation observes all the properties which are commonly attributed to

these abstractions, or else if it automatically issues a warning. As

an example, when dealing with numbers in a high-level language, one
should like to assume all the common axioms of arithmetic to hold. Of
course this is not possible, since computers can only represent finite

ranges of values. So one expects to receive a warning, if an operation

has trespassed the limits imposed by the implementation and an

operation generates a result not in accord with the rules governing

the abstraction. So the system is cxpected to provide an error

indication, e.g. 1f an overflow occurs in an addition, if a value is being
assigned which lies outside the specified range of values of variables,

or if an array index is used which lies outside the defined limits.

Unfortunately, such potential warnings require the execution of
additional instructions, which in general is costly. As far as range
checking is concerned, they can be requested to be generated by the
compiler for run-time execution by enabling so-called options. (The
A-option generates assignment range checks, the X-option index checks.)
They are relatively costly, but may speed up the finding of logical
mistakes a great deal.

As far as irregularities of the arithmetic are concerned, one has
become used to receive these warning signals automatically from the
hardware, particularly because they are easily generated by the hardware,
whereas a solution to detect overflow by software is usually beyond any

reasonably economical feasibility. Unfortunately, the CDC computer

fails to satisfy even the most modest expectations in this respect, and
the effort to provide a system with security in the above sense was
therefore a series of constant frustrations. Equally disappointing are
some of the "features" of its floating-point arithmetic instructions.
One can go only a relatively short distance in trying to correct
mistakes of the hardware by means of software; otherwise a system
becomes ridiculously inefficient and will not be used by conscientious
programmers who are willing to take the peculiarities of a hardware

into account and guarantee safety of their algorithms by analytical

rather than experimental means. And this would have been against the
intentions of PASCAL. So all that can reasonably be done is to

elucidate the shortcomings and limitations of the hardware that are

still transparent through the "software cover", and to make the programmer
fully aware of them. And this is the purpose of this note.

It concerns itself with the simple operations of integer and real
arithmetic, with Boolean operations and with powersets. The reader 1is
supposed to be familiar with the CDC COMPASS notation. The operands
are usually assumed to have been brought into the X1 and X2 registers.
(If they were loaded into other registers, a corresponding renumbering
is necessary which is, however, irrelevant to the operation itself).
Registers X1 ~X5 are used as a stack for intermediate results, whereas
X0 is used exclusively as local work register.

Section 6 deals with the topic of implementing recursive procedures
and the addressing of local variables. Although the general techniques
are well-known, analysis of possible solutions and their experimental
comparison yielded some noteworthy results. It is shown that attempts
to make full use of available hardware features such as base registers
may not necessarily lead to an optimal performance. Again, the
instruction set of the CDC computer is hardly optimal to implement
mechanisms for recursive procedures. Conspicuously absent is a sub-

routine jump instruction which leaves the code invariant (reentrant).

2. Integer Arithmetic

Data of type integer or of subranges thereof are represented by
fixed-point binary numbers. Addition and subtraction are represented
by the

IXi Xj + Xk
instructions. Other operations are implemented by short sequences of

instructions, as outlined below.

2.1 Multiplication

Due to a recent change of the hardware, fixed-point multiplication

can be performed by a single
DX1 x1*x2

instruction. It should, however, be noted that this instruction 1is
essentially a floating-point instruction, and yields incorrect answers
for fixed-point operands with hd > 2h8 . This can be regarded as an
overflow condition which is, alas, neither trapped nor indicated by the
computer. A "safe code", checking against all imposed limits of operands
and result, is quite elaborate and uneconomical by any standards, and was

therefore not implemented.

If one of the operands is a constant C being representable as

either

1. c=2" (2, 4,8, 16...)

2. c = 2m+2n (5: 5 6: 9, 10, 12 ‘”L:
m>n

3., c=2"-o" (7, 14, 15 ...)

then the compiler generates the following code for the multiplication

of X1 by c
1: IX1] n multiply by 2"
2,3 IX1 n
Bxo X1
ILX1 m-n
X1 X1+XO

Again, overflow conditions are simply ignored. Case J yields only

correct results, if|Xl*2m‘< 259 .

2.2 Division (div)

Integer division is represented by the instruction sequence

PX1 x1

PX2 x2 pack

NX2 x2

FX1 X1/x2 divide

UXl1 B7,X1

IX1 B7,X1

BXO X0-XO

1x1 X1+X0 suppress neg. zero

and suffers from the same basic shortcoming as multiplication: an
operand ‘X\ > 2h8 yields an incorrect result.

If the divisor is a constant c = 2" ; the compiler again produces
an "optimized" code, performing division by shifting. Unfortunately,
a single right shift instruction is unsatisfactory, because it may
generate a "negative" zero as result. Negative zeroes, however, must
not be allowed to occur, since comparisons may yield wrong answers if
applied to them. Thus, the optimized division is implemented as

AX1 n divide by 2"

BXO X0-X0 suppress
IX1 X1+XO negative zero

Note that the unconditional generation and addition of a zero can be

accomplished with a code that is not only shorter than a conditional

jump, such as

AX1 n
NZ X1,L
SX1 BRO

L

but also avoids the insertion of padding instructions (NOPs) for word
boundary alignment.

The D-option provides an additional security measure against
division by zero. It causes the compiler to insert a

ZR X2, error

jump instruction preceding every division instruction. (This applies
to the Modulus operation as well.) It 1is particularly recommended in
the case of integer division, where the actual divide instruction
generates a "floating-point infinity" value, which is incorrectly
treated by the subsequent conversion instructions and thereby represents

a senseless result.

2.3 Modulus (mod)

The modulus or remainder operation is defined as
x mod y = x—(x div y) ¥ ¥y

As it involves integer multiplication and division operations, it

suffers again from the same deficiencies of the 6000 arithmetic. Its

corresponding code is:

PXD X1
PX6 %2
NX6 X6
FX6 X0/X6
UX6 B7,X6
IX6 BT,X6
DX6 X6%X2
IX1 X1-X6

2.4 Sign inversion

The use of one's complement representation for negative numbers
makes again the most obvious choice of code
BX1 -x1
unsatisfactory, because it might generate a "negative zero". So we use

BXO X0-XO
IX1 XO-X1

2.5 Comparisons
Since the computer does not offer a compare instruction, subtraction
has to be used; this has primarily the disadvantage of generating wrong
results in the case of overflow. The cases of testing for equality and
inequality are handled correctly, because the one's complement addition
generates an end-around-carry in the case of "negative overflow", thus
maintaining a result indicating inequality. Note that the Boolean
subtraction
BX1 X1-X2
cannot be used, because a comparison of x1 and x2 = -xl1 would yield
a zero result, thus indicating equality.
Whereas equality testing is "safe" with the
X1 X1-X2
instruction ignoring overflows, this is not the case for the tests of
ordering (xl1 < x2) by subtraction and subsequent inspection of the
sign bit. The reason is that if overflow occurs, i.e., |xl-x2| > 279 P
then the sign bit will be the opposite of the true sign. This situation
is quite hopeless, since overflow is in no simple way detectable on this

machine. In order to obtain a (sign) bit representing the relation

x <y for any values X,y , the following algorithm can be used:
1. Compare the signs of the two operands.
2. If they are different, then the result is obvious.
3. If they are equal, the subtraction x-y can be performed
without danger of overflow, and x-y < 0 is the result.
A minimal instruction sequence to perform these operations and avoiding

the use of undesirable jump instructions is

BXO X1-X2 compare sign bits

IX2 X1-X2

BX1 XO¥X1 if unequal, choose sign of X1
BX2 -XO¥X2 if equal, choose sign of X1-X2
BX1 x1+x2

Now the sign bit of X1 is 1, if X1 <X2 , and 0 otherwise. Still,
the effort to perform a faultless comparison is formidably cumbersome,
and the PASCAL compiler does not generate it. The programmer is left

with the responsibility to verify that for every comparison of x and y ,

[-y| <277

2.6 Taking the absolute value (ABS)

The code used to take an absolute value is designed to avoid jump
instructions, not only because they are long and slow, but because they

usually introduce NOP instructions for alignment.

Bxo X1
AXO 59 generate 60 sign bits
BX1 X0-X1

2.7 Testing for even or odd (ODD)

Since ocne's complement representation is used for negative numbers,
the least significant bit of the operand must be compared with its sign

bit:

BXO X1
IX0 59
BX1 X1-XO
This leaves the sign-bit of X1 equal to 1 , if X1 was odd, and

0 otherwise.

The compiler "optimizes" in the case of ODD(x) with x being of
a subrange type with only non-negative values. It then generates the
single instruction

IX1 59

2.8 Summary

The foregoing explanations reveal that the absence of any overflow
indication makes analytical verifications necessary that guarantee the
non-occurrence of these conditions. An effective aid in experimental
testing is the A-option, causing interval check instructions to be
generated with every assignment to a variable that is declared to be of
a subrange'type. The A-option is activated by the "comment"

{$at ...

and causes the code for an assignment to a variable

VAR V: a..b
to become:
SXT * location identification for error trap
SX1 a
1x0 X6-X1
SX1 b
IX1 X1-X6
BXO X1+X0
NG X0, error jump to error routine
SA6 Vv

It should be noticed that unfortunately the attractive and shorter code

sequence

sx7 ¥

sxo xb6b-a

SX1 x6-b-1

BXO -X1+XO

NG X0, error

SA6 v
cannot be used, because the instructions

SXi Xj+K
perform an 18-bit arithmetic ignoring the leading 42 bits of the
register Xj which —-- of course —-- is not in the spirit of a check.

This ignoring rather than checking of the leading bits in 18-bit

arithmetic is the reason why the so-called "increment" instructions

cannot be used by the PASCAL compiler, except in the following special

circumstance: if a variable x is declared of a subrange whose limits
are both less than 217 in absolute value, then the assignment statement
X :=x+tk
is compiled as
SA1 x
SX6 X1tk
SA6 x

10

5. Floating-point Arithmetic

The PASCAL compiler uses the canplete set of F-instructions for
arithmetic with values of type "real". Comparison is performed by
subtraction due to the lack of a compare instruction. This is possible
without handicap since the occurrence of overflow generates a signed
"infinity" -value, but no immediate trap. Sign inversion is represented
by

BXO X0-XO generate zero
X1 X0-X1

and the absolute value function by

BXO X1
AXO 59
BX1 X0-X1

Arithmetic with the F-instruction possesses some peculiar properties
which will briefly be reviewed, and has for instance the consequence that
x-y = 0 does not necessarily imply x =y , if the difference is
computed by an Finstruction. The trouble arises from the fact
that F-arithmetic truncates without rounding, and F-addition truncates
without post-normalization. Every addition is therefore compiled into
two instructions:

FX1 X1+X2 add/subtract
Nx1 X1 post-normalize

If the two values

a = 1720 L40...00B 1.0

b =171717.. .77B = 1.0-2
are compared by subtraction
FXO X1-X2 a-b

the result is

E
!
l

1720 Y0... ...00/00... . ..o
-1720 37... @ .. 77/%... . .9

1720 00... ...00 / ho... ... 0

where the slash marks the separation between the lower and the upper
half of the 96-bit accumulator. The result is 0 although the two
operands were different.

Notice that subtracting 0.5 from both a and b , and then

computing their difference, yields

a - 0.5=0.5 : 1717 40O... . . . 00

b - 0.5 =0.5-2-48 : 1716 77... ... 76

717 %0... ...00/00 0
1717 37... W77/ 0000
177 00... ...01 /000

i.e., a difference which is not =zero. Thus the result does not only

depend on the true result, but also on the values of the operands.
This unpleasant, property of the CDC F-arithmetic stems from the fact

that automatic post-normalization is absent.

3 .1 Rounding
It was at one time hoped that this defect could be avoided by

letting the PASCAL compiler automatically generate R-instructions,
which include a certain kind of rounding. However, R-arithmetic
turned out to feature some even stranger properties, so that it was
decided not to use R-instructions. In order to point these features

cut, a brief review over R-arithmetic is necessary:

12

The R-instructions differ from the F-instructions only insofar

as a l-bit is appended to normalized operands before the arithmetic

operation is performed. Thus for instance the subtraction of

b = 1.0—2"14'8 from a = 1.0 yields

}

1720 L40... ...00 / 40 0
1-bits appended

"1720_57--. '-077_/60-.. o0 0
1720 oo0... . .00 /60 ...0

which of course is still zero.
The principal defect with "CDC-rounding", however, is that its
effect is unpredictably either the addition of 1/2 or 1/4 in the

last position, because rounding takes place before instead of after

normalization (which must again be performed by a separate instruction).

The following example illustrates this, which is shown on hand of a

five-bit number representation:

16 = 10000 / 1 inserted
+17 = 10001 / 1::::=’ round-bits
33 = 100010 / 0
10001 / 0 =34
31 = 11111 / 1 & inserted round-bit
+2 = 00010 / 0
33 = 100001 / 1
10000 / 1 = 32

In the first case, the pre-rounding results in correct rounding of the

not exactly representable 33 to 34 , yhereas in the second case

pre-rounding has no effect.

The same phenomenon can be observed in the cases of multiplication

and division. The following example again uses a five-bit number

representation:

13

AL C i

round-bit
1

15x12 = 11110 / 1 x 1looo

11110 / 1 e—m—d

+ 01111 / 01 e——1
101101 / 11

10110 / 111 = 176

round-bit
1

10010 / 1 x 10100

18 x 10

10010 / 1 e——0o

+ 100 / 101 1e—d
10111 / 001 = 18k

In the first case, the rounding effect is nil, leaving the inexactly
representable value 180 be an unrounded 176; in the latter case the
rounding effect transforms 180 into the value 184. (Suitable adjust-
ment of exponents is not shown here.)

A method introducing proper rounding instead of "CDC-rounding"
relies on the use of the D-instruction set [2]. Whereas the F-instructions
yield the high-order 48 bits of the 96-bit accumulator, the D-instructions
yield the low-order 48 bits with a suitably adjusted exponent, thereby
allowing access to a double precision result.

Notice that it is an ingeniously efficient method to compute a
double precision result by

1. computing the DP-result and dispose of the low half

(F-instruction), then
2. computing the same again and dispose of the high half

(D-instruction).

14

This computer allows it to be done in no other way!
The PASCAL compiler will generate the following code for floating-

point operations, depending on the choice of the R-option:

R-option OFF ON
X+y X1 x1+ x2 FXO x1+ x2
X1 X1 Nxo XO

DXL x1+ x2
RX1 X1+ XO
X1 X1

X ¥y FX1 X1 * x2 FXO x1* x2
DX1 x1* x2
RX1 x1+ XO

x/y FX1 X1/ x2 RX1 X1/ x2

Examples of addition/ subtraction:

sev g 1720 ho... ...00 / 00... 0
1. 1.0-2 1717 TTees ««+T7 / 00... ::: O
1720 37ee. .77/ 40eee .e. 0

1720 00... +..00 / kO... ... 0

= 1640 k40... . ..00 after addition of high
and low
-48
2. Take a = 1.0 and b = 2 , then subtract a-b

F-subtraction yields

I

a 1720 4%0... ...00 / 00... ... 0
b = 1720 OOO.' « 000 /ﬂ)‘l"Ooco eee O

1720 3Teee «o.77 / 4O...

which, after normalization, 1is

1717 T7ee. « .76 = Rl

R-subtraction inserts a 1l-bit after the slash in the first operand,
and thus yields the result

1720 40... ...00 = 1.0 exactly

15

The combined use of F and D instructions yields the true result,

because the normalization instruction left shifts the high order

result to
177 TTees .76
whereafter a "rounded" -addition is used to add the correction
+ 1717 009.. . ..01
yielding

1727 TTeee «..77 = 1.0-2"1*8

3.2 Conversion from fixed to floating-point (integer to real)

Wherever a real operand is permissible, PASCAL allows the specifi-
cation of an operand of type integer as well. However, the compiler is
theh forced to generate the necessary representation conversion instruc-
tions, which are not only time-consuming, but potentially hazardous.

It is therefore recommended to avoid "mixed-mode" arithmetic expressions
wherever possible. The generated conversion instructions are

PX1 BO,X1 pack with zero exponent
X1 BO,X1 normalize

The result of this conversion is wrong, whenever the integer operand

. . 48 | .

in X1 is larger or equal to 2 8 in absolute value, since the
exponent bits are simply ignored by the P instruction. pa test to verify

that the operand is within bounds could be compiled as

Bxo X1
AXO 48
NZ X0, error

but is easily seen to be more costly than the conversion itself.

16

3.3 Conversion from floating to fixed-point (real to integer)

PASCAL does not provide for any implicit real to integer conversion.

However, the standard function TRUNC(x) allows to truncate the

fractional part of a real number. The used code is:

Uxi
IX1
B¥O
IX1

The result of this conversion is again wrong, if |x| > 2

B7,X1

B7,X1

X0-X0 } avoid

X1+XO0 negative zero

L8

17

4. Boolean Operations

The standard type Boolean is defined in PASCAL as
type Boolean = (false, true)
Since the values of all scalar types are mapped onto the integers
0,1,2,... , the values false and true are represented by the numbers
0 and 1 respectively.
The operations A and v are implemented by the Boolean AND and
OR instruction, namely

BX1 x1*x2 and
BX1 x1+x2

Negation is performed by

MXO 59
BX1 -X0-X1

If a relation has to be assigned to a Boolean variable, e.qg.

b :=x<y
then a sequence of instructions is necessary to obtain a 0 or 1
value. Again every effort is made to avoid the use of jumps. The
following code is used in the above assignment; leaving a Boolean value
in X1

FX1 X1-X2 X-y

Mxo 1
BX1 XO¥X1 Extract sign bit
IX1 1 move it to correct position

Analogous code is generated for the relations > , <, and > . But
unfortunately the equality relations cannot be reasonably implemented
without a jump; in the assignment

b :=x=y

the following instructions are generated:

18

FX0 X1-X2

BX1 X0-XO
NZ X1,L
sXx1 1

L ...

Boolean comparisons, although occurring rather infrequently, are treated

as special cases, because a simpler and shorter code is applicable:

p<a BX1 -X1*X2
Pp<gq BX1 -X2%X1

D};!;((?_ ?)9(0_)(1 negation
PF£a BX1 X1-X2

The remaining three relations are compiled analogously.

19

5. Powerset Operations

PASCAL 6000 restricts powerset types to be built only on base sets
with less than 59 components. This allows a powerset value S to be
represented by one "word", in which the i-th bit indicates the presence
(1) or absence (0) of the element i in S

5.1 Generation of the Singleton Set [i]

Assume that i is loaded into register X1, then

SB7 X1
sx1 1
Lxl B7,X1

Notice that the numbering of bits starts with 0 at the low order end.
This choice was made in order to be able to load powerset constants

with small valued components (less than 18) by a single SXi instruction.

5.2 Set Intersection, Union, and Difference

These three operations are implemented by a single instruction

intersection BX1 x1*x2
union BX1 x1+x2
difference BX1 -X2¥X1

5.3 Set Membership (in)

The relation i in S is implemented by shifting the bit representing

i into the sign position which can be tested:

SBY X1 i
AX1 B7,X2 S
IX1 59

If the expression i is in the form of a constant ¢ , then the compiler
generates of course only the single instruction
X1 59-c

20

5.4 Set Comparison

Sets can be compared for equality and inclusion. Equality is
tested by a Boolean subtraction
BXO X1-X2
and a subsequent zero test. Note that the peculiar property of the
zero test to recognize a word with either 60 zero-bits or 60 one-bits
as a zero is responsible for the restriction that powersets may contain
at most 59 instead of 60 elements. If sets with 60 components were
allowed, then a full set and an empty set would not be distinguishable
by a single subtraction followed by a zero-test.
Inclusion expressed as x <y and meaning x C y , is implemented
by the single instruction
BXO ~X1*X2
which is followed by a zero-test instruction. The same instruction is
used for the relation x >y , whereas strict inclusion (xc y) 1is not

implemented.

21

Some Exercises Addressed to the CDC 6000 Expert

1. Is the following code to represent the function trunc(X1)

acceptable? If not, why?

BXO XO0-XO
PXO XO

FX1 X1+XO
UX1 B7,X1

NZ B7, overflow

2. Is the following code for X1 mod X2 acceptable? If so, prove it.
PX1 X1
Px2 x2
NX6 %2
FX6 X1/X6
Bxo XO
FX6 X6+X0
DX6 X6%X2
FX6 X1-X6
UX1 X6

5. Why can the instructions

BXO X1-X2
ZR X0, equal

not bve used to represent a comparison Xl = X2 ? Prove that

1x0 X1-X2
ZR X0, equal

always yields the correct action.

22

. Irnplemcntution of Recursive Procedures

The language PASCAL has been carefully designed so that dynamic

storage allocation is not required, with the following two exceptions:

1. Variables local to procedures may be allocated storage only

when the procedure is called, and

2. Components of class variables are allocated storage by calling

the standard procedure "alloc". An area of store is allocated
to the entire class variable as soon as the procedure is
called to which the class is local.
In this section we will briefly review the well-known techniques for
handling recursive procedure calls and of allocating storage to their
local quantities, and discuss the code selected to represent the
procedure call mechanism.

Due to the first-in last-out nature of the hierarchy of activated
procedures a stack may be used to allocate local variables. This is of
great advantage, since storage retrieval is trivial in the case of
stacks, resulting in low storage management overhead. We consider the
set of local variables of each activated procedure as a record (often
called "data segment") in the stack. Since their lengths may all be
different, the most convenient method to thread the way back through
such a stack is by constructing a chain of pointers linking the records.
Every record then contains a "header" containing

1. the link to the previous record, and

2. the (frozen) program status (counter) of the calling procedure.

Variables are addressed relative to the origin of the record of

which they are a part. The origin address is unknown at compile-time,

25

and must be determined at run-time. This can be done by descending
through the link chain, until the desired record is reached. But how
is the desired record recognized'? The most straight-forward method
which interprets the scope rules of an ALGOL block structure correctly

is probably the following:

Method I:
1. Define the level of an object to be 1 greater than the
level of the procedure to which it is local. The level of
the main program is 0
2. Indicate the level of each record (equal to the level of its
components) in its heading.
3. Whenever an object on level 1 has to be accessed, the record
containing it is found by descending down the chain of links
until the first occurrence of a level indicator with value i
is found.
This accessing method has the obvious drawback of inefficiency (and of
not being applicable in the case of parametric procedures). A slight
modification, however, improves efficiency and generalizes to parametric

procedures.

Method II:

Instead of indicating levels explicitly in the record headings,
a second link chain is constructed connnecting each record A with its
static ancestor, i.e., with the record B of the procedure in which A
was declared locally. In order to distinguish the two link chains, the
former is called the "dynamic link" and the latter the "static link".
An example of a state of computation is shown below for a given --

admittedly not very realistic -- program.

2k

var vO; . stack

procedure QO (procedure X); T AN

var wl;

procedure Ql;
Ql

Q0
Pl

var w2;

begin w2 := wltvO; x

/&"’

end;

PO
begin wl := vO; Ql

Ql
Q0

end;

procedure PO;
Pl

var vl;

procedure Pl;

S i i i i i e
3
e

Ql
var ve;
Q0
begin v2 := v1+v0; QO(PO)
Pl
end;
PO
begin vl := vo; Pl
end; main
begin {main program) vO := 0; PO |
dynamic static
end. link link
Method III:

Although the use of a high-speed index register to represent the
origin of the link chains improves access speed significantly, the
process of descending down the static chain to the record (data segment)
with the desired level is relatively time-consuming. An ingenious
device to reduce access time was introduced by Dijkstra [4] and is now

widely used in compilers for block-structured languages. TIhe device

25

';
.f
|
:

is an array of base addresses, called the Display D , which is at any
time a copy of the static chain. If an object at level 1 is to be
accessed, the origin address of its data segment is quickly obtained

as I)i « The method is particularly attractive for computers with a

set of high-speed index registers which can be used as the Display.

The price for this increase in access speed -- apart from the reservation
of registers -- 1s the setting and updating of the Display each time a
procedure is called and terminated. To be more specific, the necessary

actions are as follows:

1. if an actual procedure of level i 1is called, D; has to be
set;
2. if control is returned from a procedure at level i to one

at level j , (3> i) , Di ...Dj have to be reassigned;
3. if a formal procedure at level i 1s called from a procedure

at level j , D,

i "'Dk have to be reassigned, where k is

the level on which the static link emerging from the calling
and the called procedures merge. Since k is not known at
the time the procedure declaration is compiled, k can be
chosen as zero without significant loss in efficiency.
This scheme was used in the implementation of PASCAL 6000. It is
described in Reference 4. Registers Bl...B5 are used as the Display,
B5 is the origin of the link chains, and B6 is the pointer to the top

of the stack. The compiled instructions are the following:

26

Procedure call of P

SX7 L save return address
38} P and jump
L SBj B5
SAl B5
SB(J-1) X1 1 update the display, if j > i
SAl X1 1
SBi X1

Procedure entry:

S — —

Pf SBi X1 prolog, entry for calls
SA1 X1 ‘ of formal procedures
SB(i-1) X1
SAl X1 update display
SB1 X1 l
?A SAT B5+2 save return address in header
gi; gél_l) save static link
SX7 B5 . .
SAT BG+1 save dynamic link
SBi B6 new display entry
SB5 B6 T
SB6 B6+L top of stack, L = data segment length

Procedure exit:

SB6 BS reset top of stack

gg; §i+l } reset T

SA1 B5+2

SBY X1 fetch return address and jump
JP B7+0

Notice that global variables in the main program are assigned absolute

addresses. Since BO = 0 , they can be considered as based on BO

27

In the first half of 1971, Prof. C. A. R. Hoare and his collaborators
modified and bootstrapped the PASCAL compiler for the ICL 1966 computer [6].
One of the more significant alterations concerned the elimination of
the Display, due to the fact that the ICL computer has no set of index
registers that are available for a Display, and since the use of a
Display was not considered to be an advantage, in this case. During
a visit of Prof. Hoare in July l9fl, he suggested that maybe even with
a register set available for the Display, the benefits gained should be
investigated. His suggestion was certainly valid, since variables
either global or local to the most recently called procedure could be
accessed with the same speed even without a Display. Thus the gain from
a Display is limited to faster access of objects at intermediate levels,
while the price is the updating at every call regardless of whether such
objects are accessed or not. A superficial look at the PASCAL compiler
itself showed that accesses to such intermediate level objects were
indeed relatively rare, and it was decided to generate a version that
would not use a Display (Method II). This version still uses the address
register B5 as origin of the link chains (and base address of the most
local data segment) and B6 as pointer to the top of the stack. The

generated code is:

Procedure call P

* X6 := base of environment of P
SXT7 L
0 P
L e

28

Procedure eatry:

SXO BS5
X0 18 pack and store
BX7 XT7+XO dynamic link and
SB5 B6 return address
SAT BS5+1
SB6 B7+L stack pointer

¥ SA6 BS static link

Procedure exit:

SAl B5+1

SBE B5 fetch and unpack
SB7 X1 dynamic link and
IX1 42 return address
SB5 X1

JP B7+0

Fetching an object x at level j from code at level i :

1) §=0: SA1 BOtx

2) i =1i: SA1 B5+x

3) O0<j<i: SAl BS5
SA1 X1 repeated i-j-1 times
SA1 XI+x

A comparison of the codes generated by the two compilers shows that gains
and losses of execution speed should be measured, but also those of code
length. The shorter codes for procedure entry (2 - é% words Vs.

L - 6 words), procedure exit (2 vs. 3 words), and procedure calls

(no updating of display) are very attractive, particularly in a compiler
where space is more on a premium than time. (It should be noted that

the instructions marked with an asterisk can be omitted in the call or
the entry code of procedures declared on the first level). Of course

it must be kept in mind that the decision about which compiler is to be
preferred depends not only on the weighting of space vs. time, but even

more on the programs to be processed. But it is obvious that if the

29

E

majority of these programs rarely use nested procedure declarations,
and often call procedures on the same level, then the compiler without
Display is to be preferred. The compiler itself, although featuring
nested procedure declarations, but seldom accessing intermediate level
variables, belongs to this class. Comparisons of code generated by the
two compiler versions produced the following results:
1. The efficiency of codes not using a Display is in the average
slightly higher (the compiler itself runs about 1.5% faster).
2. The size of codes not using a Display is smaller (by about
44 measured on 25 sample programs, about 64 in the case of
the compiler's code).
bl The compiler program itself is slightly less complex without
Display.
This episode where a more sophisticated method was abandoned in favor
of a simpler and more direct technique could well be added to the list
of D. Knuth's examples of adverse influences of "computer science" on
"computer usage" [5]. Their common characteristic is that improved
methods are adopted without closer inspection of the nature and direction
of the improvement, and without analysis of the circumstances to be
improved. An interesting fact is that the Burroughs B5500 computer —-
specifically designed for ALGOL implementation -- did contain exactly
the two base registers required to efficiently address objects at
levels 0 and i . ©Unfortunately, addressing of intermediate level
objects was impossible due to the software; this deficiency was
justifiably criticized. The remedy adopted in the successor B6500 was,
however, not a correction of the deficient software, but the inclusion

of a full set of high-speed registers to serve as Display.

30

7. Summary of the Main Trouble Spots of the CDC 6000 Architecture

1. Use of one's complement arithmetic. In order to keep comparisons

simple and efficient, the occurrence of negative zeroes must be

prohibited. (Note that PL and NG test the sign bit only.) Various
optimizations are more cumbersome and less effective, because
negative zeroes must be suppressed by additional instructions.

Some instructions are themselves unsafe against the generation

of -0 !

2. No overflow check on fixed-point arithmetic. This lack is very
serious and may cause wrong restuls in totally unexpected
situations. Overflow check by software is prohibitive.

3. No compare instructions. The use of subtraction may cause wrong

results, unless expensive precautions are taken.

4, Use of 4B8-bit multiplier and divider for fixed-point 60-bit numbers

without warning of possible "overflow" of operands.

5. Floating-point addition and subtraction without automatic post-
normalization.
6. Floating-point arithmetic with rounding of operands instead of

rounding postnormalized results.

T No subroutine Jjump instruction depositing the program counter P
in an operand register, and no return jump loading P from a general
operand register. This defect requires the use of 3 instructions
each to jump and deposit a return address, and to retrieve it and
return, whereas many other computers need only a single instruction

for these purposes.

31

Conclusions
When considering these complaints, the reader should bear in mind
that this computer's architecture was conceived in the very early 1960's.
The CDC 6600 machine was a very advanced design for a special purpose:
fast number crunching. The design relied heavily on the use of several
arithmetic units working simultaneously ("in parallel"). Integer
arithmetic was considered as almog£ dispensible, and overflow interrupts
as undesirable, because of the impossibility to mirror the present state
of the entire machine by a simple program counter and of resuming compu-
tation. The use of simultaneously operating units is apparently also
made responsible for the otherwise incomprehensible absence of post-
normalization, namely because the unit for floaint-point addition does
not contain a left-shift circuitry. A few years later, the CDC 6400
(and 6500) computers were announced; they were to have the same instruction
set as the 6600, but only one conventional integrated arithmetic-logical
unit. Although the "reasons" for the absence of interrupts and post-
normalization had vanished, these "features" were retained in the name

of compatibility. It was apparently considered most important that

pitfall loaded programs could be transported to the new machines at no
extra cost. This policy of staying "upward compatible with all previous
mistakes" was sternly maintained when the successor to the 6000 series
was announced in 1971.

This attitude, which is by no means atypical amongcomputer
manufacturers, makes it doubtful whether any progress toward more
reliable and more efficient computing will ever be achievable. It
does not seem so, until the computer consumers' attitudes will no longer

justify the present manufacturers' policies. They, in turn, will not

32

change before they are made aware of the hidden cost involved in using

the present equipment. I am convinced that the cost incurred by the
programmers having to discover bugs the hard way by reprogramming
repeatedly, and having to reexecute programs many times until they
were believed to be correct, is incomparably higher than the reduction
in cost due to staying compatible with outdated architectures. The
project to develop the PASCAL compiler for the CDC 6000 computer

unfortunately provided ample support for this conviction.

Acknowledgments

I am grateful to W. Kahan for pointing out some additional problems

with the CDC floating-point arithmetic as well as the method for obtaining

correct rounding.

33

References

[1] N. Wirth, "The programming language PASCAL", ACTA INFORMATICA,
Vol. 1, 35-68 (1971).

[2] D. S. Lindsay, "A rounded arithmetic FORTRAN compiler for CDC 6000
machines", U. of California, Berkeley, Dec. 1971.

(3] B. Randell and L. Russell, "ALGOL 60 implementation", Acad. Press,
196k,

[4] N. wWirth, "The design of a PASCAL compiler", Software - Practice

and Experience, Vol. 1, ,....., (1971) .

[5] D. E. Knuth, ™he dangers of computer-science theory", unpublished
paper, August 1971.

[6] J. Welsh and C. Quinn, "A PASCAL compiler for ICL 1900 series
computers", Dept.‘of Computer Science, Queen's University,

Belfast, Sept. 1971.

3h

005001 {$C+

005001
005004
005007
005010
005012
005076
005105
005112
005117
005117
005127
005127
005140
005145
005154
005154
005160
005171
005200
005210
005212
005212
005216
005223
005223

005074

005075

005076

005077

005100

005101

005102

Ti3t EXPRESSIONS AND ASSIGNMEWS 1}

VAR IyJyK8 INTEGER;

Xy¥y2t REAL;
Ng 0..9999;
P,Q@% BOOLEAN,

BEGIN { REAL ARITHMETIC 3

x 8= 1.0; Y= x + 3.14159; Z 3= X*Y + X/Y;
X 8= X + (Y #(Z 4+ (1.0 + X)))s
X a= ABS{+Y)} Y 8= SQR{X); Z 3= =-X3
{$R+ ROUNDED REAL ARITHMETIC}
X 8= ¥ +# 23 X t= Y*Z3 X &= Y/2Z3
{ INTEGER ARITHMETIC)
I ¢= 1; U= I + 100; K 8= 1 * J3 Ks= I DIV Jj
K 8= (=J) MOD K3 J a= SQRWJ)}
I 8= TRUNC(X) Z 8= I; X 8= I/J;
{ BOOLEAN ARITHMETIC 3
P 3= TRUE; Qs=P a ~(QvP);
Pt=x=Y; P s=1= J; Q= P = Q3
Pt1= X<Y; Pt=]1<JsQs=P < Q
P a= x <Y; Pt= I <€ J; Q $=P< Q;
Q s= 0DD(I);
{ OPTIMIZATION OF INTEGER ARITHMETIC }
I a= I*8 + J*10;
J 1= I DIVE8 = N OV 2; K 8= I MID 16;
N s= T + 100
END o
005103
SA3 80+005005
SA7 85+80 FX2 X2/7X3
SX7 85+80 FX1 X1+X2
SA7 80+005000 005104
NX6 80,1
SB86 854000001 SA6 B0+005006
SA1 804005225 NO
005105
BX6 Xi SA1l 80+005004
SA6 80+005004 SA2 80+005005
NO 005106
SA3 80+005006
SA1 80+005004 SA4 B80+005225
SA2 B0+005226 005107
SAS BO+005004
FX1 Xi+X2 FX4 x4+x5
NX6 80,X1 NX&4 B0y X4
SA6 80+005005 005110
FX3 x3+x4
SAI BO+005004 NX3 B0, X3
SA2 80+005005 FX2 X2+X3
NX2 B0,yX2
FXxt X1*¥Xx2 005111
SA2 80+005004 FX1 X1+X2
NO NX6 B0y,X1
SA6 BO+005004

35

005112

005113

005114

005115

005116

005117

005120

005121

005122

005123

005124

005125

005126

005127

SAI 804005005
8X0 Xi

AX0O 73

BX6 X0-X1

SA6 80+005004
NO

SA1 80+005004
FX6 Xi*x1

NO

SA6 B0+005005
SA1 80+005004
BX0 X0-X0

I X6 X0-X1

SA6 B0+005006
SA1 80+005005
SA2 B0+005006
FXQ Xi+Xx2

NXO B0, X0

DX1 X1+X2

RX1 X0+X 1

NX6 80,X1

SA6 B80+005004
NO

SA1 B80+005005
SA2 80+005006
FXO X1#Xx2

DX1 X1*¥X2

RX6 X0+X1

NO

SA6 80+005004&
SA1 B0+0050 05
SA2 804005006
RX6 X1/X2

NO

SAb6 80+005004
SX6 80+000001
SA6 804005001

56

005130

005131

005132

005133

005134

005135

005136

005137

005140

005141

005142

065143

005144

SA1 80+005001
SX0 80+000144
I X6 Xi+X0

NO

SA6 B0+005002
SA1 B0+4005001
SA2 BP+005002
DX1 X1*¥x2

0x0 X0=X0

IX6 X1+X0

SA6 B0+005003
NO

SA1 B0+005001
SA2 B0+005002
PX2 B0,yX2

NX2 80,X2

PX1 B0y,X1

FXI X1/X2

Uxi 87,4 X1

LX1 B7,X1

0x0 X0-X0

I X6 X1+4X 0

SA6 80+005003
SAI 80+005002
8Xx0 X0=-X0

IX1 X0-X 1

SA2 B0+005003
PX6 B0,X2

NX6 80,4X6

PX0 B0y X1

FX6 X0/X €

UX6 B7,X6

LX6 87, X6

DX6 X2*X6

I X6 X1-X6

SA6 80+005003
SAt 8040065002
DX6 X1*X1

SA6 80+0C5002
NO

005145

005146

005147

005150

005151

005152

005153

005154

005155

005156

005157

005160

005161

005162

SA1 804005004
uxi B7,4X1

1x1 B7,X1

0x0 X0-X0

1X6 X1+X0

SA6 B80+005001
SA1 80+005001
B8X6 X1

PX6 80,yX6

NX6 80, X6

SA6 80+305006
NO

SA1 804005001
SA2 80+005002
PX2 80,X2

NX2 B0, X2

PX1 BO,X1

NX1 B0,X1

RX6 X1/7X%X2

SA6 80+005004
NO

SX6 80+000001
SA6 804005010
SA1L 80+005010
SA2 80+005011
SA3 804005010
0x2 X2vX3

MXO0 73

0x2 ~X2-X0
8X6 X1aX2

SA6 B0o+005011
SA1 80+005004
SAZ2 B0+005005
IX0 X1-X2

MX6 00

NZ X0,005163
SX6 B80+000001
NO

37

005163

005164

005165

005166

005167

005170

005171

005172

005173

005174

005175

005176

005177

NO

SA6 80+00501
SAL B0+005001
SA2 80+00500 2
1x0 X1-X2

MX6 00

NZ X0,005166
SX6 80+000001
SA6 80+005010
SA1 80+005010
SA2 80+005011
BX1 X1i=X2

MXO 73

8Xb6 “*X1-X0
SA6 B0+005011
NO

SA1 BO0+005004
SA2 B0+005005
FX1 X1i-X2

MX0 01

%X6 X0aX1

LX6 01

SA6 80+005010
SA1 80+00500 1
SA2 B0+005002
1x1 X1=X2

HXO 01

8X6 Xgax1

LX6 01

SA6 80+005010
SA1 804005010
SA2 80+0050 11
8X6 *X1aX2
SA6 80+005011
NO

005200

005201

005202

005203

005204

005205

005206

005207

005210

005211

005212

005213

005214

005215

SA1 80+005004
SA2 80+005005
Fx1 X2=X1

HXO 01

BX6 “X1AX0
LX6 01

SA6 B80+005010
SA1 004005001
SA2 B0+005002
1x1 x2-x 1

MX0 01

BX6 “X1aX0
LXo6 01

SAb 80+005010
SA1 80+005010
SA2 80+005011
B8X1 “X2AaX1
MXO 73

BX6 “X1-X0

NO

SA6 804005011
SA1 B80+005001
8X0 X1

LX0 73

8X1 X1-X0

MXO 01

B8X6 X0aX1

L X6 01

SA6 804005011
SA1 B0+005601
LX1 03

NO

SAZ2 80+005002
LX2 01

8X0 x2

LX2 02

Ix2 X2+X0

I X6 X1+X2

NO

SA6 80+005

38

005216

005217

005220

005221

005222

005223

005224

005225
005226

SAL B0+005001
AX1 03

BX0 X0-X0

IX1 X1+X0

NO

SA2 804005007
AX2 01

I X6 X1=X2

SA6 B80+005002
SA1 B80+005001
BX0 Xi

AXO 04

LX0 04

I X6 X1=X0

SA6 80+005003
SA1 B0+00500 1
SX6 x14000144
SA6 B0+005007
SA1 B5+80

S87 X1+80

JP B87+000000
17204000000000000000

17216220771740156064

