
-w

|

ON "PASCAL", CODE GENERATION, AND THE CDC 6000 COMPUTER

BY

NIKLAUS WIRTH

.

| STAN-CS-72-257

i FEBRUARY 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

pr IIS

pe

O. r "»asAiCode Generation, and the CDC 6000 Computer

| by Niklaus Wirth

Abstract:

"TLUC ALT 1s a general purpose programming language with character-

istics similar to ALGOL 60, but with an enriched set of program- and

data suite wuolig Jucilities. It has been implemented on the CDC 6000

compul er Thi: paper discusses selected topics of code generation,

ir parLi: wo» he selection of instruction sequences to represent,

simple cgsrations on arithmetic, Boolean, and powerset operands.

Methods to -implement recursive procedures are briefly described, and

it is hirted that the more sophisticated solutions are not necessarily

also the best. The CDC 6000 architecture appears as a frequent source

of pitfall 1 < and nuisances, and 1ts main trouble spots are scrutinized

and discussed.

The preparation of this paper was made possible by support from the

National Science Foundation, Grant number GJ-992, IBM Corporation,
and Xerox Corporation.

1

On "PASCAL", Code Generation, and the CDC 6000 Computer

1. Introduction

This set of notes has a dual purpose. It 1s on the one hand

| directed to the user of the PASCAL compiler system who would like to

| gain some 1nsight into the machine code which 1s generated for various

basic operations. It 1s even recommended that he study these notes

carefully, because their understanding may prevent him from certain

pitfalls which are inherent in the use of the CDC 6000 computer[1].

On the other hand the notes-may be of interest to compiler writers

in general, because they point out some problems and dilemmas and our

choices of solutions. It becomes apparent that the choice of the code

to be generated 1s crucial for a good compiler system, and that 1t is

far from trivial as 1s usually believed.

| The true purpose of a higher-level language 1s that it allows a

| programmer to conceive his algorithms in terms of some convenient

| abstractions. For instance, he is given the opportunity to think in
| terms of familiar notions of numbers, of relations, and of repetitions,
| instead of having to express his program 1n terms of bitstrings,

arithmetic instructions, and transfers of control. However, these

abstractions are only truly useful, 1f he can assume that his implemen-

tation observes all the properties which are commonly attributed to

these abstractions, or else 1f 1t automatically issues a warning. As

| an example, when dealing with numbers 1n a high-level language, one

should like to assume all the common axioms of arithmetic to hold. Of

| course this is not possible, since computers can only represent finite

ranges of values. So one expects to receive a warning, 1f an operation

1

has trespassed the limits imposed by the implementation and an

oo | operation generates a result not in accord with the rules governing

the abstraction. So the system is cxpectedto provide an error

indication, e.g. 1f an overflow occurs in an addition, if a value is being

: assigned which lies outside the specified range of values of variables,

or 1f an array index 1s used which lies outside the defined limits.

Unfortunately, such potential warnings require the execution of

additional instructions, which in general is costly. As far as range

checking is concerned, they can be requested to be generated by the

compiler for run-time execution by enabling so-called options. (The

A-option generates assignment range checks, the X-option index checks.)

They are relatively costly, but may speed up the finding of logical

mistakes a great deal.

As far as irregularities of the arithmetic are concerned, one has

become used to receive these warning signals automaticallyfrom the

hardware, particularly because they are easily generated by the hardware,

) whereas a solution to detect overflow by software 1s usually beyond any

reasonably economical feasibility. Unfortunately, the CDC computer

fails to satisfy even the most modest expectations in this respect, and

the effort to provide a system with security in the above sense was

therefore a series of constant frustrations. Equally disappointing are

some of the "features" of its floating-point arithmetic instructions.

One can go only a relatively short distance in trying to correct

mistakes of the hardware by means of software; otherwise a system

becomes ridiculously inefficient and will not be used by conscientious

programmers who are willing to take the peculiarities of a hardware

into account and guarantee safety of their algorithms by analytical

2

| rather than experimental means. And this would have been against the

3 intentions of PASCAL. So all that can reasonably be done 1s to
| elucidate the shortcomings and limitations of the hardware that are

| still transparent through the "software cover", and to make the programmer

| fully aware of them. And this 1s the purpose of this note.

It concerns itself with the simple operations of integer and real

| arithmetic, with Boolean operations and with powersets. The reader 1is

supposed to be familiar with the CDC COMPASS notation. The operands

are usually assumed to have been brought into the X1 and X2 registers.

(If they were loaded into other registers, a corresponding renumbering

i is necessary which is, however, irrelevant to the operation itself).

Registers X1-X5 are used as a stack for intermediate results, whereas

XO 1s used exclusively as local work register.

Section 6 deals with the topic of implementing recursive procedures

and the addressing of local variables. Although the general techniques

are well-known, analysis of possible solutions and their experimental

comparison yielded some noteworthy results. It 1s shown that attempts

to make full use of available hardware features such as base registers

may not necessarily lead to an optimal performance. Again, the

instruction set of the CDC computer 1s hardly optimal to implement

mechanisms for recursive procedures. Conspicuously absent is a sub-

routine jump instruction which leaves the code invariant (reentrant).

i 2. Integer Arithmetic

: Data of type integer or of subranges thereof are represented by

fixed-point binary numbers. Addition and subtraction are represented

by the

IXi Xj + Xk

instructions. Other operations are implemented by short sequences of

| instructions, as outlined below.

2.1 Multiplication

| Due to a recent change of the hardware, fixed-point multiplication

can be performed by a single

DX1 x1*x2

instruction. It should, however, be noted that this instruction is

| essentially a floating-point instruction, and yields incorrect answers
for fixed-point operands with |x| > 2" . This can be regarded as an
overflow condition which 1s, alas, neither trapped nor indicated by the

computer. A "safe code", checking against all imposed limits of operands

and result, 1s quite elaborate and uneconomical by any standards, and was

therefore not implemented.

If one of the operands 1s a constant C being representable as

elther

1. c= 2") (2, 4,8, 16...)2. Cc = ol 4 ol (3, Ds 6, 9, 10, 12 Li
m> n

3. c¢c=2"-2h (7, 14, 15 ...)
}

I

: then the compiler generates the following code for the multiplication

= of X1 by c :

1: IX1 n multiply by 2"

; LX1 m-n

1 IX1 X1+XO

| Again, overflow conditions are simply ignored. Case J yields only

| correct results, if x1 % 2" < 29

2.2 Division (div)

Integer division 1s represented by the instruction sequence

| PX1 X1

PX2 x2 pack
NX2 x2

FX1 X1/X2 divide
| UxXl1 BY7,X1

IX1 BY7,X1

BXO X0=XO);1x1 X1+X0 suppress neg. zero

and suffers from the same basic shortcoming as multiplication: an

| operand |x| > PR yields an incorrect result.
| If the divisor 1s a constant c = o" , the compiler again produces

an "optimized" code, performing division by shifting. Unfortunately,

a single right shift instruction is unsatisfactory, because 1t may

generate a "negative" zero as result. Negative zeroes, however, must

not be allowed to occur, since comparisons may yield wrong answers if

applied to them. Thus, the optimized division is implemented as

AX1 n divide by 2"
BXO X0-X0 suppress

IX1 X1+XO negative zero

Note that the unconditional generation and addition of a zero can be

p)

accomplished with a code that 1s not only shorter than a conditional

| jump, such as

| AX1 n
1 NZ X1,L

oX1l BO

L ...

| but also avoids the insertion of padding instructions (NOPs) for word

boundary alignment.

The D-option provides an additional security measure agalnst

division by zero. It causes the compiler to insert a

| ZR X2, error

jump instruction preceding every division instruction. (This applies

] to the Modulus operation as well.) It 1s particularly recommended in

| the case of integer division, where the actual divide instruction

| generates a "floating-point infinity" value, which 1s incorrectly

| treated by the subsequent conversion instructions and thereby represents

a senseless result.

2.3 Modulus (mod)

| The modulus or remainder operation 1s defined as

| x mod y = x—(x div y)¥* ¥

As 1t involves 1nteger multiplication and division operations, 1t

suffers again from the same deficiencies of the 6000 arithmetic. Its

corresponding code 1s:

PXD X1

PX6 x2

NX6 X6

FX6 XO/X6
Uxé6 BT,X6
IX6 B7,X6
DX6 X6%X2

IX X1-X6

6

_ 2.4 Sign inversion

The use of one's complement representation for negative numbers

makes agaln the most obvious choice of code

BX1 -X1

unsatisfactory, because it might generate a "negative zero". So we use

BXO XO-XO

- IX1 XO0-X1

2.5 Comparisons

. Since the computer does not offer a compare instruction, subtraction

has to be used; this has primarily the disadvantage of generating wrong

results in the case of overflow. The cases of testing for equality and

inequality are handled correctly, because the one's complement addition

RN generates an end-around-carry in the case of "negative overflow", thus

_ maintaining a result indicating inequality. Note that the Boolean

subtraction

o BX1 X1-X2

cannot be used, because a comparison of xl and x2 = -xl1 would yield

R a zero result, thus indicating equality.

Whereas equality testing is "safe" with the

X1 X1-X2

instruction ignoring overflows, this 1s not the case for the tests of

ordering (xl < x2) by subtraction and subsequent inspection of the

} sign bit. The reason is that if overflow occurs, i.e., |x1 - x2| > 277 ’

_ then the sign bit will be the opposite of the true sign. This situation

1s quite hopeless, since overflow 1s 1n no simple way detectable on this

machine. In order to obtain a (sign) bit representing the relation

7

x < vy for any values x,y , the following algorithm can be used:

2 1. Compare the signs of the two operands.

| . 2. If they are different, then the result is obvious.

5. If they are equal, the subtraction x-y can be performed

| | without danger of overflow, and x-y < 0 is the result.

; A minimal instruction sequence to perform these operations and avoiding

the use of undesirable jump instructions is

BXO X1-X2 compare sign bits
| 1X2 X1-X2

BX1l XO¥X1 if unequal, choose sign of Xl

BX2 -XO*X2 if equal, choose sign of X1-X2
BX1 x1+x2

Now the sign bit of X1 is 1, if X1 <X2 , and 0 otherwise. Still,

the effort to perform a faultless comparison 1s formidably cumbersome,

JN and the PASCAL compiler does not generate it. The programmer is left

| with the responsibility to verify that for every comparison of x and y ,
~ k-y| <2? .

|
4

| .
| 2.6 Taking theabsolutevalue (ABS)
|

The code used to take an absolute value 1s designed to avoid jump

| instructions, not only because they are long and slow, but because they

usually introduce NOP instructions for alignment.

| Bxo X1 .

Co AXO 59 generate 60 sign bits

| BX1 X0-X1

2.7 Testing for even or odd (ODD)

Since one's complement representation is used for negative numbers,

the least significant bit of the operand must be compared with its sign

bit:

BXO X1

E LXO 59
- BX1 X1-XO

This leaves the sign-bit of X1 equal to 1 , if X1 was odd, and

0 otherwise.

| | The compiler "optimizes" 1n the case of ODD (x) with x being of

a subrange type with only non-negative values. It then generates the

single instruction

IX1 59

| | 2.8 Summary

| The foregoing explanations reveal that the absence of any overflow

| indication makes analytical verifications necessary that guarantee the

lL non-occurrence of these conditions. An effective aid in experimental

testing is the A-option, causing interval check instructions to be

E generated with every assignment to a variable that 1s declared to be of

a subrange'type. The A-option 1s activated by the "comment"

{gat 3

and causes the code for an assignment to a variable

| VAR V: a..b

to become:

oX7T 0* location identification for error trap
oX1 a

| 1x0 X6-X1
SX1 Db

IX1 X1-X6
BXO X1+XO

NG XO, error jump to error routine
SAG V

It should be noticed that unfortunately the attractive and shorter code

sequence

sx * |
SXO xX6-a

SX1 x6-b-1

BXO -X1+XO0

— NG X0, error
SA6 vv

cannot be used, because the instructions

SXi XJj+K

perform an 18-bit arithmetic ignoring the leading 42 bits of the

register Xj which -- of course —-- 1s not in the spirit of a check.

This ignoring rather than checking of the leading bits in 18-bit

arithmetic is the reason why the so-called "increment" instructions

cannot be used by the PASCAL compiler, except in the following special

-- circumstance: if a variable x 1s declared of a subrange whose limits

are both less than gL in absolute value, then the assignment statement

} X :1=x+k

is compiled as

| SAL x
SX6 X1lt+k

. SA6 Xx

10

5. Floating-point Arithmetic

2 | The PASCAL compiller uses the canplete set of F-instructions for

} arithmetic with values of type "real". Comparison is performed by

subtraction due to the lack of a compare instruction. This is possible

| without handicap since the occurrence of overflow generates a signed

| "infinity" -value, but no immediate trap. Sign inversion is represented

| | oy

BXO X0=-XO generate zero
: Xl XO0-X1

and the absolute value function by

| BXO Xl
: AXO 59

oo BX1 XO0-X1

| Arithmetic with the F-instruction possesses some peculiar properties

|) which will briefly be reviewed, and has for instance the consequence that

| x-y = 0 does not necessarily imply x = vy , 1f the difference 1s
I.

| computed by an Finstruction. The trouble arises from the fact
(

| that F-arithmetic truncates without rounding, and F-addition truncates

| without post-normalization. Every addition is therefore compiled into
| two instructions:

FX1 X1+X2 add/subtract
Nx1l X1 post-normalize

If the two values

oo a = 1720 40...00B = 1.0

| b =171717.. .77B = 10-2718
are compared by subtraction

— FXO X1-X2 a-b

| the result 1is

11

Ee ———-,

1720 40... ..,.00/ 00... . ..o0

i -1720 37... @® 77/40... 0
| 172000... ...00/ bh... ...0

| where the slash marks the separation between the lower and the upper

| half of the 96-bit accumulator. The result is 0 although the two
operands were different.

Notice that subtracting 0.5 from both a and b , and then

computing their difference, yields

a — 0.5=0.5 : 1717 40.... . . 00

b - 0.5 =0.5-2-48 : 1716 77... ... 76

1717 HO... ...00/00 0

-1717 37... ...77/00 0

17l7y 00... ...01 / 00 ... coo 0

l.e., a difference which is not zero. Thus the result does not only

1 depend on the true result, but also on the values of the operands.

| This unpleasant, property of the CDC F-arithmetic stems from the fact
that automatic post-normalization 1s absent.

|

3 .1 Rounding

It was at one time hoped that this defect could be avoided by

letting the PASCAL compiler automatically generate R-instructions,

which include a certain kind of rounding. However, R-arithmetic

turned out to feature some even stranger properties, so that it was

decided not to use R-instructions. 1p order to point these features

cut, a brief review over R-arithmetic is necessary:

12

| The R-instructions differ from the F-instructions only insofar

| as a l-bit 1s appended to normalized operands before the arithmetic

| operation is performed. Thus for instance the subtraction of
| -4

b =1.0-2 8 from a = 1.0 yields

| !

1720 40... ...00 / LO0
y l-bits appended

-1720__O7eee__-. T7/ 60 ee. eo 0

1720 oo... . .o0 / 60... ...0

which of course 1s still zero.

The principal defect with "CDC-rounding", however, is that its

effect is unpredictably either the addition of 1/2 or 1/4 in the

last position, because rounding takes place before instead of after

normalization (which must again be performed by a separate instruction).

The following example illustrates this, which is shown on hand of a

five-bit number representation:

. 16 = 10000 / le, inserted+17 = 10001 / 1 round-bits

~ 33 = 100010/ ©
10001 / 0 = 34

1
1 = 11111 / 1 ¢——— inserted round-bit
+2 = 00010 0

| 33 = 100001 / 1
10000 / 1 = 32

In the first case, the pre-rounding results in correct rounding of the

not exactly representable 33 to 34 , yhereas in the second case

pre-rounding has no effect.

X The same phenomenon can be observed in the cases of multiplication

and division. The following example again uses a five-bit number

representation:

13

| round-bit

2

| 15x 12 = 11110 / 1 x llooo

11110 /—
+ 01111 / 01

| 101101 / 11
| 10110 / 111 = 176

| round-bit
|

18 x10 = 10010 / 1 x 10100

10010 / er]: 100 / 101 1

10111 / 001 = 18k

In the first case, the rounding effect is nil, leaving the inexactly

representable value 180 be an unrounded 176; in the latter case the

rounding effect transforms 180 into the value 184k. (Suitable adjust-

ment of exponents is not shown here.)

A method introducing proper rounding instead of "CDC-rounding"

relies on the use of the D-instruction set [2]. Whereas the F-instructions

vield the high-order 48 bits of the 96-bit accumulator, the D-instructions

vield the low-order 48 bits with a suitably adjusted exponent, thereby

allowing access to a double precision result.

Notice that it 1s an ingeniously efficient method to compute a

double precision result by

1. computing the DP-result and dispose of the low half
A ——

(F-instruction), then

2. computing the same again and dispose of the high half

(D-instruction).

14

This computer allows it to be done in no other way!

The PASCAL compiler will generate the following code for floating-

RB point operations, depending on the choice of the R-option:

R-option OFF ON

X+y FX1 x1+ x2 FXO x14 x2
NX1 X1 Nxo XO

DX1 x1+ x2
RX1 X1+ XO

NX1 X1

X *y FX1 X1 * x2 FXO x1* x2
DX1 x1* x2

- RX1 x1+ XO

x [y FX1 X1/ x2 RX1 X1/ x2

Examples of addition/ subtraction:

1. 1.0-2 1717 TTees +++T7 / 00... ::: 0

CL 1720 37ee. «77/80. ... 0
1720 00... +..00 / BO... ... 0

= 1640 M0... . ..00 after addition of high
and low

_148
2. Take a = 1.0 and b = 2 , then subtract a-b :

F-subtraction yields

a= 1720 Lo... ...00/ 00... ...0
b = 1720 00... ...00 /40... +... 0

1720 3Teee oooT7 / HOees oo ©

which, after normalization, 1s

~l

R-subtraction inserts a l-bit after the slash in the first operand,

and thus yields the result

1720 40... ...00 = 1.0 exactly

15

—————————————————————————————

The combined use of F and D instructions yields the true result,

3 because the normalization instruction left shifts the high order
result to

1717 T7ees «oo 76

| whereafter a "rounded" -addition is used to add the correction
+ 1717 009.. . 01

yielding

1717 T7eee .u77 = 1.0270

3.2 Conversion from fixed to floating-point (integer to real)

Wherever a real operand 1s permissible, PASCAL allows the specifi-

cation of an operand of type integer as well. However, the compiler is

theh forced to generate the necessary representation conversion instruc-

| tions, which are not only time-consuming, but potentially hazardous.
It 1s therefore recommended to avoid "mixed-mode" arithmetic expressions

i wherever possible. The generated conversion instructions are

PX1 BO,X1 pack with zero exponent
NX1 BO,X1 normalize

| The result of this conversion 1s wrong, whenever the integer operand

in X1 1s larger or equal to 8 in absolute value, since the

exponent bits are simply ignored by the P instruction. A test to verify

that the operand 1s within bounds could be compiled as

Bxo Xl1

AXO 48

NZ X0, error

but 1s easily seen to be more costly than the conversion itself.

16

3.3 Conversion from floating to fixed-point (real to integer)

PASCAL does not provide for any implicit real to integer conversion.

However, the standard function TRUNC(x) allows to truncate the

fractional part of a real number. The used code is:

UX1 B7,X1
IX1 B7,X1
BYO X0-XO avoid

IX1 X1#+XO negative zero

The result of this conversion 1s again wrong, 1f |x| > p48

17

oo

L. Boolean Operations

The standard type Boolean 1s defined in PASCAL as

type Boolean = (false, true)

Since the values of all scalar types are mapped onto the integers

0,1,2,... , the values false and true are represented by the numbers

0 and 1 respectively.

The operations A and Vv are implemented by the Boolean AND and

OR instruction, namely

BX1 x1*x2 and

BX1 x1+x2

Negation 1s performed by

MXO 59
BX1 -X0-X1

If a relation has to be assigned to a Boolean variable, e.g.

b :=x<y

| then a sequence of instructions 1s necessary to obtain a 0 or 1

value. Agaln every effort 1s made to avoid the use of jumps. The

following code 1s used in the above assignment; leaving a Boolean value

| in X1 .

FX1 X1-X2 X—y
Mxo 1

BX1 XO¥X1 Extract sign bit

IX1 1 move 1t to correct position

Analogous code 1s generated for the relations > , <, and > . But

unfortunately the equality relations cannot be reasonably implemented

without a jump; in the assignment

_ b (=X =Yy

the following instructions are generated:

18

FXO X1-X2

BX1 X0-XO

NZ X1,I
SX1 1

Boolean comparisons, although occurring rather infrequently, are treated

as special cases, because a simpler and shorter code 1s applicable:

Pp <a BX1 =-X1*¥X2

Pp <q BX1 -X2%X1

MXO 59 }BX1 _X0-X1 negation

Pp £q BX1 X1-X2

The remaining three relations are compiled analogously.

19

5. Powerset Operations

PASCAL 6000 restricts powerset types to be built only on base sets

with less than 59 components. This allows a powerset value S to be

represented by one "word", in which the i-th bit indicates the presence

(1) or absence (0) of the element 1 1n S .

5.1 Generation of the Singleton Set [1]

Assume that 1 1s loaded into register X1, then

SBY X1
SX1 1

LX1 B7,X1

Notice that the numbering of bits starts with 0 at the low order end.

This choice was made in order to be able to load powerset constants

with small valued components (less than 18) by a single 8Xi instruction.

5.2 Set Intersection, Union, and Difference

These three operations are implemented by a single instruction

intersection BXl x1*x2

union BX1 x1+x2

difference BX1 -X2¥X1

5.5 Set Membership (in)

The relation 1 in S is implementedby shifting the bit representing

1 1nto the sign position which can be tested:

SBT X1 i

AX1 BT7,X2 S
IX1 29

If the expression 1 1s in the form of a constant <c¢ , then the compiler

generates of course only the single instruction

IX1 50-c

20

5.4 Set Comparison

Sets can be compared for equality and inclusion. Equality is

tested by a Boolean subtraction

BXO X1-X2

and a subsequent zero test. Note that the peculiar property of the

zero test to recognize a word with either 60 zero-bits or 60 one-bits

as a zero 1s responsible for the restriction that powersets may contain

at most 59 instead of 60 elements. If sets with 60 components were

allowed, then a full set and an empty set would not be distinguishable

by a single subtraction followed by a zero-test.

Inclusion expressed as x < y and meaning Xx C y , 1s 1mplemented

by the single instruction

BXO ~X1*X2

which is followed by a zero-test instruction. The same instruction 1s

used for the relation x > y , whereas strict inclusion (xc y) is not

implemented.

21

| Some Exercises Addressed to the CDC 6000 Expert

1. Is the following code to represent the function trunc(X1)

acceptable? If not, why?

| BXO0 XO0-XO
! PXO XO

FX1 X1+XO

UxXl B7,X1
NZ B7, overflow

2. Is the following code for Xl mod X2 acceptable? If so, prove it.

; PX1 X1

: Px2 x2

NX6 x2

FX6 X1/X6
Bxo XO

FX6 X6+XO

DX6 X6¥X2

FX6 X1-X6
UX1 X6

5. Why can the instructions

BXO X1-X2

ZR X0, equal

not be used to represent a comparison Xl = X2 ? Prove that

1x0 X1-X2

ZR X0, equal

always yields the correct action.

22

0. Irnplemcntution of Recursive Procedures

The language PASCAL has been carefully designed so that dynamic

storage allocation is not required, with the following two exceptions:

1. Variables local to procedures may be allocated storage only

when the procedure 1s called, and

2. Components of class variables are allocated storage by calling

the standard procedure "alloc". An area of store is allocated

to the entire class variable as soon as the procedure 1s

called to which the class 1s local.

In this section we will briefly review the well-known techniques for

handling recursive procedure calls and of allocating storage to their

local quantities, and discuss the code selected to represent the

procedure call mechanism.

Due to the first-in last-out nature of the hierarchy of activated

procedures a stack may be used to allocate local variables. This 1s of

great advantage, since storage retrieval 1s trivial in the case of

stacks, resulting in low storage management overhead. We consider the

set of local variables of each activated procedure as a record (often

called "data segment") in the stack. Since their lengths may all be

different, the most convenient method to thread the way back through

such a stack 1s by constructing a chain of pointers linking the records.

Every record then contains a "header" containing

1. the link to the previous record, and

2. the (frozen) program status (counter) of the calling procedure.

Variables are addressed relative to the origin of the record of

which they are a part. The origin address is unknown at compile-time,

25

and must be determined at run-time. This can be done by descending

through the link chain, until the desired record 1s reached. But how

1s the desired record recognized'? The most straight-forward method

which interprets the scope rules of an ALGOL block structure correctly

1s probably the following:

Method I:

1. Define the level of an object to be 1 greater than the

B level of the procedure to which it 1s local. The level of

the main program is 0 .

2. Indicate the level of each record (equal to the level of its

components) in its heading.

3. Whenever an object on level 1 has to be accessed, the record

containing 1t 1s found by descending down the chain of links

until the first occurrence of a level indicator with value 1

1s found.

This accessing method has the obvious drawback of inefficiency (and of

not being applicable in the case of parametric procedures). A slight

} modification, however, improves efficiency and generalizes to parametric

procedures.

Method II:

Instead of indicating levels explicitly 1n the record headings,

a second link chain is constructed connnecting each record A with its

static ancestor, 1.e., with the record B of the procedure in which A

was declared locally. In order to distinguish the two link chains, the

former is called the "dynamic link" and the latter the "static link".

An example of a state of computation 1s shown below for a given --

admittedly not very realistic -- program.

2h

var vO; . stack
1

rocedure QO rocedure X);

procedure.UO procedure Hi of
var wl;

procedure Ql;

var w2; \
begin w2 := Wltv0; Xx TC.
end; \

| rocedure PO; i

rocedure Pl;

so wo|
begin v2 := v1+v0; QO(PO)
”.

end; TE
begin vl := vo; Pl

end; ENbegin {main program) VO := 0; PO

end. dynamic static
— link link

Method III:

Although the use of a high-speed index register to represent the

origin of the link chains improves access speed significantly, the

process of descending down the static chain to the record (data segment)

with the desired level is relatively time-consuming. An ingenious

device to reduce access time was introduced by Dijkstra [4] and is now

widely used in compilers for block-structured languages. Ihe device

25

1s an array of base addresses, called the Display D , which 1s at any

- time a copy of the static chain. If an object at level 1 1s to be

accessed, the origin address of its data segment is quickly obtained

as Ds + The method 1s particularly attractive for computers with a

set of high-speed index registers which can be used as the Display.

The price for this increase in access speed -- apart from the reservation

of registers -- 1s the setting and updating of the Display each time a

procedure is called and terminated. To be more specific, the necessary

actions are as follows:

1. if an actual procedure of level i 1s called, D, has to be

set;

| 2. 1f control 1s returned from a procedure at level 1 to one

at level 7 , (7 > i) , Ds +++ Dy have to be reassigned;
3. if a formal procedure at level i 1s called from a procedure

at level 7 , D. . +o Dy have to be reassigned, where k 1s

the level on which the static link emerging from the calling

and the called procedures merge. Since k 1s not known at

the time the procedure declaration is compiled, Kk can be

chosen as zero without significant loss in efficiency.

This scheme was used in the implementation of PASCAL 6000. It is

described in Reference 4. Registers Bl...B) are used as the Display,

B5 is the origin of the link chains, and B6 is the pointer to the top

of the stack. The compiled instructions are the following:

26

Procedure call of P :

oX'(L save return address
FQ, P and jump

L SBJ B5
SA1 B5

BOT 1 update the display, if j > i

SAL X1 |SBi X1

Procedure entry:

Pn SBi X1 prolog, entry for calls

SAL X1 | of formal proceduresSB(i-1) X1

SA1 X1 update display

SB1 X1 |

PP. SAY B5+2 save return address 1n header

A oxt B(i-1)
SAT BE save static link
SX BS

SAT RGH1] save dynamic link
SBi B6 new display entry
SBS B6 T
SB6 B6+L top of stack, L = data segment length

Procedure exit:

SB6 B5 reset top of stack

SAL B5+1 }SBS x1 reset T
SAL B5+2

SBY X1 fetch return address and jump
JP B7+0

Notice that global variables in the main program are assigned absolute

addresses. Since BO = 0 , they can be considered as based on BO .

27

In the first half of 1971, Prof. C. A. R. Hoare and his collaborators

modified and bootstrapped the PASCAL compiler for the ICL 1966 computer [6].

One of the more significant alterations concerned the elimination of |

the Display, due to the fact that the ICL computer has no set of index

registers that are available for a Display, and since the use of a

Display was not considered to be an advantage, 1n this case. During

a visit of Prof. Hoare in July 1971, he suggested that maybe even with

a register set available for the Display, the benefits gained should be

investigated. His suggestion was certainly valid, since variables

either global or local to the most recently called procedure could be

accessed with the same speed even without a Display. Thus the gain from

a Display 1s limited to faster access of objects at intermediate levels,

while the price 1s the updating at every call regardless of whether such

objects are accessed or not. A superficial look at the PASCAL compiler

itself showed that accesses to such intermediate level objects were

indeed relatively rare, and it was decided to generate a version that

would not use a Display (Method II). This version still uses the address

register B5 as origin of the link chains (and base address of the most

local data segment) and B6 as pointer to the top of the stack. The

generated code 1s:

Procedure call P

* X6 := base of environment of P

SX L

EQ P
L ces

28

Procedure entry:

SXO Bb

IX0o 18 pack and store

BX7 X77+XO dynamic link and
SB5 B6 return address

SAT B5+1

SB6 BT+L stack pointer
* SA6 BS static link

Procedure exit:

SA1 BS5+1

SBE B5 fetch and unpack

SB7 Xl dynamic link and
IX1 42 return address

SB5 Xl1

JP B7+0

Fetching an object x at level J from code at level 1 :

1) j = 0: SA1l BOtx

3) 0<j<i: SAl BS
SA1 X1 repeated 1-3-1 times
SAl X1tx

A comparison of the codes generated by the two compilers shows that gains

and losses of execution speed should be measured, but also those of code

1

length. The shorter codes for procedure entry (2 mer words vs.

h - 6 words), procedure exit (2 vs. J words), and procedure calls

(no updating of display) are very attractive, particularly in a compiler

where space is more on a premium than time. (It should be noted that

the instructions marked with an asterisk can be omitted in the call or

the entry code of procedures declared on the first level). Of course

it must be kept in mind that the decision about which compiler 1s to be

preferred depends not only on the weighting of space vs. time, but even

more on the programs to be processed. But it 1s obvious that if the

29

| majority of these programs rarely use nested procedure declarations,

: and often call procedures on the same level, then the compiler without

| Display 1s to be preferred. The compiler itself, although featuring

| nested procedure declarations, but seldom accessing intermediate level
| variables, belongs to this class. Comparisons of code generated by the

two compiler versions produced the following results:

1. The efficiency of codes not using a Display 1s 1n the average

slightly higher (the compiler itself runs about 1.5% faster).

2. The size of codes not using a Display 1s smaller (by about

Le, measured on 25 sample programs, about & in the case of

the compiler's code).

De The compiler program itself 1s slightly less complex without

3 Display.
This episode where a more sophisticated method was abandoned in favor

of a simpler and more direct technique could well be added to the list

of D. Knuth's examples of adverse influences of "computer science" on

"computer usage" [5]. Their common characteristic is that improved

methods are adopted without closer inspection of the nature and direction

of the improvement, and without analysis of the circumstances to be

improved. An interesting fact 1s that the Burroughs B5500 computer -—-

specifically designed for ALGOL implementation —-- did contain exactly

the two base registers required to efficiently address objects at

levels0 andi . Unfortunately, addressing of intermediate level

— objects was impossible due to the software; this deficiency was

justifiably criticized. The remedy adopted in the successor B6500 was,
however, not a correction of the deficient software, but the inclusion

of a full set of high-speed registers to serve as Display.

20

7. Summary of the Main Trouble Spots of the CDC 6000 Architecture

1. Use of one's complement arithmetic. In order to keep comparisons

simple and efficient, the occurrence of negative zeroes must be

| prohibited. (Note that PL and NG test the sign bit only.) Various

optimizations are more cumbersome and less effective, because

negative zeroes must be suppressed by additional instructions.

| Some instructions are themselves unsafe against the generation

| of -0 !
2. No overflow check on fixed-point arithmetic. This lack 1s very

serious and may cause wrong restuls in totally unexpected

situations. Overflow check by software 1s prohibitive.

3. No compare instructions. The use of subtraction may cause wrong

results, unless expensive precautions are taken.

4, Use of 48-bit multiplier and divider for fixed-point 60-bit numbers

| without warning of possible "overflow" of operands.

| 5. Floating-point addition and subtraction without automatic post-

normalization.

0. Floating-point arithmetic with rounding of operands instead of

rounding postnormalized results.

Te No subroutine jump instruction depositing the program counter P

in an operand register, and no return jump loading P from a general

operand register. This defect requires the use of J instructions

each to jump and deposit a return address, and to retrieve it and

return, whereas many other computers need only a single instruction

for these purposes.

31

Conclusions

When considering these complaints, the reader should bear in mind

that this computer's architecture was conceived in the very early 1960's.

The CDC 6600 machine was a very advanced design for a special purpose:

fast number crunching. The design relied heavily on the use of several

arithmetic units working simultaneously ("in parallel"). Integer

arithmetic was considered as 2lmost dispensible, and overflow interrupts

as undesirable, because of the impossibility to mirror the present state

of the entire machine by a simple program counter and of resuming compu-

tation. The use of simultaneously operating units 1s apparently also

made responsible for the otherwise incomprehensible absence of post-

normalization, namely because the unit for floaint-point addition does

not contain a left-shift circuitry. A few years later, the CDC 6400

(and 6500) computers were announced; they were to have the same instruction

set as the 6600, but only one conventional integrated arithmetic-logical

unit. Although the "reasons" for the absence of interrupts and post-

normalization had vanished, these "features" were retained in the name

of compatibility. It was apparently considered most important that

pitfall loaded programs could be transported to the new machines at no

extra cost. This policy of staying "upward compatible with all previous

mistakes" was sternly maintained when the successor to the 6000 series

was announced in 1971.

This attitude, which 1s by no means atypical among computer

manufacturers, makes it doubtful whether any progress toward more

reliable and more efficient computing will ever be achievable. It

does not seem so, until the computer consumers' attitudes will no longer

justify the present manufacturers' policies. They, in turn, will not

32

change before they are made aware of the hidden cost involved in using

the present equipment. I am convinced that the cost incurred by the

programmers having to discover bugs the hard way by reprogramming

repeatedly, and having to reexecute programs many times until they

were believed to be correct, 1s 1ncomparably higher than the reduction

in cost due to staying compatible with outdated architectures. The

project to develop the PASCAL compiler for the CDC 6000 computer

unfortunately provided ample support for this conviction.

Acknowledgments

I am grateful to W. Kahan for pointing out some additional problems

with the CDC floating-point arithmetic as well as the method for obtaining

correct rounding.

55

References

| [1] N. Wirth, "The programming language PASCAL", ACTA INFORMATICA,

| Vol. 1, 35-68 (1971).

[2] D. S. Lindsay, "A rounded arithmetic FORTRAN compiler for CDC 6000

machines", U. of California, Berkeley, Dec. 1971.

| [3] B. Randell and L. Russell, "ALGOL 60 implementation", Acad. Press,

| 196k.

[4] N. Wirth, "The design of a PASCAL compiler", Software - Practice

and Experience, Vol. 1, (1971) .

| [5] D. E. Knuth, "The dangers of computer-science theory", unpublished

| paper, August 1971.

| [6] J. Welsh and C. Quinn, "A PASCAL compiler for ICL 1900 series

| computers", Dept. of Computer Science, Queen's University,

| Belfast, Sept. 1971.

3h

005001 {(%$C+ Tit EXPRESSIONS AND ASSIGNMEWS 1}

005001 VAR I,J,K8 INTEGER;

005007 NE 00.9999)

005010 P,Q% BOOLEAN,
005012 BEGIN { REAL ARITHMETIC 3

005076 Xx 8= 1.0; Y $= x + 3.14159; Z 3= X*Y + X/Y;,
005105 X 8= X + (Y + (Z + (1.0 + X)))3
005112 X a= ABS(+Y)3; Y 8= SQR{(X)3 Z 3= =X;

005117 {3R+ ROUNDED REAL ARITHMETIC}
005117 X 8= YY + 2% X t= ¥Y*23 X 8a=Y/2;
005127 { INTEGER ARITHMETIC })

005127 I 8= 1; J¢= I + 100; Ks= 1 *# Js Ks= TI DIV Jj
005140 K t= (=J) MOD Ky J a= SARGJ)I

005145 I 8= TRUNC(X); Z 8= I; X 8= 1/4;
005154 { BOOLEAN ARITHMETIC 3

005154 P t= TRUE; Qt=P a (QvP);
005160 P t= x=Y; P s=1= J; Qt= P = Q;
005171 P1= X<Y; P t=1¢<J;Qstt=P< Q
005200 P a= x <Y; Pt= IT <€ J; Q t=P< Q;
005210 Q $= 00D(I);
005212 { OPTIMIZATION OF INTEGER ARITHMETIC }

005212 I a= I*8+ J*10;
005216 J t= TIT DIV E88 = NOV 2; K s= I MID 16;
005223 N ¢= T + 100

005223 END

005103

005074 SA3 B0+005005
SA7 85+80 FX2 X2/X3

SX? 85+B0 FX1 X1+X2

SA7 B0+005000 005104

005075 NX6 B80,X1
S86 854000001 SA6 B0+305006

SA1 804005225 NO

005076 005105 ~—/—7/—/—/—7—"—

BX6 Xi SA1 80+005004%
SA6 B0+005004 SA2 80+005005

NO 005106

005077 ————————— SA3 804005006
SAi B0+005004 S A4 B0+005225

SA2 B0+005226 005107
005100 SAS BO0+005004

FX1 Xi+X2 FX4 x4 +x5

NX6 80,X1 NX& BO, X4&
SA6 80+005005 005110

Co 005108 ———77/ FX3 x3+x4
SAI B0+005004 NX3 BOyX3
SA2 B0+005005 FX2 X2+X3

005102 NX2 B0yX2
FX1 X1*X2 005111

SA2 B0+005004 FX1 X1+X2
NO NXb6 BOyX1

SA6 B0O+005004

35

|

SA1 80+005001 --

0oos112 ——————————— 005130

SAI 80+005005 SX0 B0+000144

BXO X 1 I X6 X1i+X0

AXO 73 NO

005113 005131

BX6 X0-X1 SA6 B0+005002

SA6 B0+00500 4 SA1 B0+005001

NO 005132

005114 -_— SA? BP+005002
SA1 804005004 DX1 X1%X2

FX6 X1*X1 0x0 X0=X0

NO 005133

005115 1X6 X14+X0

SAS BO+005005 SA6 BO0+005003

SA1 80+005004& NO
005116 005134 ——————————————

8X0 X0-X0 SA1 B0+005001

I X6 X0-X1 SA2 B0+005002

SA6 B0+005006 005135

005117 -— PX2 B0,X2
SA1 B80+00500%5 NX2 BOyX2
SA2 B0+005006 PX1 BOy,X1

005120 FXT X1/7X2

FX0 X1i+X2 005136

NXO B80, X0 UXxi B74 X1
DX1 X1+X2 LX1 B7,X1
RX1 X0+X 1 0x0 X0=X0

005121 I X6 Xi+X 0

NX6 80, X1 005137

SA6 B0O+005004 SA6 B0+005003
NO SAT 80+005002

005122 - 005140

SA1 80+005005 8X0 X0=X0

SA2 B0+005006 IX1 X0=-X 1

005123 SA? B0+005003

FXO X1#X2 005141

DX1 X1*X2 PX6 B80,X2

RX6 XD+X1 NX56 80,X6
NO PX0 B0,y,X1

005124 FX6 X0/X€

SA6 804005004 005142
SA1 B80+0050 05 UX6 B7,X6

005125 LX6 87,Xb
SA? 804005006 DX6 X2*X6

RX6 X1/X2 I X6 Xi-X6

NO 065143

- 005126 SAH 80+005003

SAG 80+005004 SA1 804005002
SX6 80+000001 005144

005127 DX6 X1*¥X1

SA6 80¢005001 SA6 B0+0 C5002
NO

36

005145 — NO

| SAL 804005004 005163

| Uxi B7,X1 SAb 80+005010
; 1x1 B7,X1 SAL 804005001
: 005146 005164

0x0 X0=X0 SA2 B0+005002

| I X6 X1+X0 1x0 X1=-X2| S A6 80+005001 MX6 00
| 0054147 ——MM 005165

SAi 80+005001 NZ X0,005166

8X6 Xi SX6 B0+000001
P X6 80,X6 005166

005150 S A6 804005010

NX6 BOs X6 SA1 80+005010
SA6 80+305006 005167

NO SA2 B0+005011

005151 EEE BX1 X1=X2
SA1 B0+¢005001 MXO 73
SA2 80+005002 005170

| - 005152 BX6 “X1-X0
: PX2 B0,yX2 SA6 BO+005011

| NX2 B0,X2 NOro PX1i BO,X1 g0s172. —
| NX1 BO0,X1 SAL B0+005004

005153 SA2 B0+005005

RX6 X1/X%X2 005172
S A6 B0+005004 FXi X1=X2

NO MX0 01

005154 —/—/—/—— %X6 XfaX1
SX6 80+000001 LX6 01
S A6 804005010 005173

005155 -_— SAb 80+005010
SA1 B0+305010 SA1 80+00500 1
SA2 80+005011 005174

005156 SA2 BO+005002
SA3 80+005010 1x1 X1=X2
0x2 X2vX3 HXO 01

MXO0 73 005175
005157 BX6 XgaXx1

0x2 “X2=X0 LX6 01
8X6 X1aX2 SASH 80+005010
SA6 B0+005011 005176 —————————

005160 ——————— SA1 B80+005010
SA1 80+005004 SA2 80+005011

SAZ2 B0+005005 005177
005161 BX6 ~X1AaX2

IX0 X1i-X2 SA6 80+005011
MX6 00 NO

NZ X0,005163
005162

SX6 B80+000001

NO

37

005200 —/—/— SA1 80+005001

SAL BO+005004 005216

SA2 80+005005 AX1 03

005201 8X0 X0-X0

FX1 X2=X1 IX1 X14+X0

HXO 01 NO

BX6 “X1aX0 005217

LX6 01 SAZ2 804005007
005202 AX2 01

SAH B0+005010 I X6 X1=X2

SA1 004005001 005220

005203 SA6 804005002

SA?2 B0+005002 SA1 80+005001
1x1 x2-x 1 005221

MX0 01 BX0 Xi

005204 AX0 04

BX6 “X1iaX0 LX0 0&4
LX6 01 I X6 Xi=-X0

SAb 80+005010 005222

005205 - SA6 804005003
SA1 80+005010 SA1 B80+005001

SAZ2 804005011 005223
005206 SX6 x14000144

BX1 “X2a Xi SA6 B0+005007

MXO 73 005224 —m—m™
BX6 ~X1i-X0 SAL BS5+B0
NO S87 X1+840

005207 JP B7+000000

SA6 B0+305011 005225 17204000000000000000

SA1 80+005001 005226 17216220771740156064

005210

8x0 X1

LX0 73

8X1 X1i=-X0

MXO 01

005211

BX6 X0aX1

L Xo 01

SAG 804005011

005212—

SA1 B0+005001

LX1 03

NO

005213

SA? 80+005002

LX2 01

8X0 x2

005214

LX2 02

IX2 X2+X0

I X6 X1+¢X2

NO

- 005215

SA6 80+005004

38

