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Automatic Programming

Introduction

The term "automatic programming" was used by some of the early
designers of compilers to describe the fruits of their efforts. There
is reason to believe that they were overly sanguine, but they did
succeed in automating much of what programmers did at that time.

The problem of parsing arithmetic expressions was a serious intellectual
issue and its solution led to important theoretical and practical
advances. There is currently a revival of the term "Automatic Programm-
ing" and a certain amount of work directed toward automating what

programmers do at this time. This coincides with an increased amount of

work on how people should write programs, discussed by Hansen in this issue.

Almost anything in computer science can be made relevant to the
problem of helping to automate programming. We will supress discussion
of work on editors, file systems, numerical methods, etc., and try to
point out the basic results and problems in the field. Even so, a
paper of this size cannot deal adequately with the many important
questions.

We begin by making a rough division of the work on automatic
programming into two types. Type 1 1s concerned with automating the
production of programs in a particular domain of discourse. A system
of this type will have considerable knowledge of the domain built in
and will often be asked to produce particular answers rather than
general routines. I claim that important practical advances in this

area are possible with our current knowledge. Efforts of the second



type are concerned with the fundamental problems underlying the notion
of automatic program synthesis. These are general and are normally

restricted to generating demonstrably correct programs. Systems con-

structed along these lines should not be expected to be practical in the

near future and are thus relegated to Section 2 of this paper.

1. Direct approaches

Even within Type 1, there are a variety of ways of viewing the
v&o lem. In its simplest form, automatic programming is just an atavistic
proliferation of special purpose languages. To an extent that does not
seem to be understood, special purpose languages are not only easier to
use, but can be much more efficiently compiled. [13] There has been
widespread use of special purpose languages in some fields [33] but
subroutine packages are much more common. One reason for this is that
there has not been enough additional benefit to warrant putting a
special purpose language around a package of routines. If the compiler
puts together the routines in an obvious way, the user might just as
well do it himself. One can view Type 1 work on automatic programming
as attempting to provide languages in which it will be much easier to
write good programs involving large packages of routines.

A major problem one faces when trying to automate the writing of
programs is this: How 1is one to say what is required without writing
some kind of program? Workers in Artificial Intelligence have long

faced this problem of process description and_state descriptions. A

state description for the function squareroot might be:

(1) The X such that X*X = 7Z
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A process description for the same function might be an ALGOL program

to carry out Newton's method for the solution. Two remarks are in order.
The state description above is much simpler than any process

description -- this is not always the case. It is easier to describe

how to take the derivative of a polynomial than to specify a set of

properties that a derivative must have. Similarly, the syntax of a

b

programming language is given more clearly by a grammar than by a setk\r [
of conditions for well-formedness. The ease of giving either a state

or process description clearly depends on the language used for descrip-
tion.

Secondly, in writing a squareroot procedure one is forced to
consider many details which are left out of (1). For example, what
precision is required, are temporary cells available, etc.. Any
translator which works from state descriptions will (like people)
require a specification of the side conditions which constrain its
choice of solutions. ©Notice that this virtually requires an automatic
programming system to be interactive. The program will not know what
values to give to side conditions and the user will not know what
conditions need to be specified. We will deemphasize the question of
side conditions for the remainder of this paper, but it will be an
important issue in any particular design.

Now let us consider how one might design a translator for state-
ments like (1). Many systems have a general Newton's method root finder
and it would not be hard to write a compiler which recognized that (1)
fit the conditions for applying this routine. One would also require

a symbolic differentiation routine, but they are available. If the



function to be inverted could not be differentiated, a numerical
solution could be attempted. The range of this class of compiler is
impressive -- there is a vast collection of algorithms in numerical
analysis and mathematical programming which could be employed. The
problems of designing a syntax which allowed for the recognition of
appropriate solution methods do not seem insurmountable. Rudimentary
systems of this sort have been completed by Fikes [15] and Elcock
et al [8]. ;' . <~._"f*~"\!§.” ,‘\"Wl Qu\‘

There is a closely related line of work which has been done in
the continuous simulation languages. These often provide fixed routines
for solving various boundary value, optimization, etc., problems. The
SIANG [36] effort is a very promising attempt to place these features
in the setting of a general purpose language. There have also been a
number of widely used high level procedural and non-procedural statements
in general purpose languages. An example of a very sophisticated language
primitive is the COBOL SORT verb. A typical statement might be:

SORT FACULTY ON ASCENDING RANK;
ON DESCENDING AGE;

One can also specify additional keys, and procedures and files for
input and output. The description of a file is written in the DATA
division of COBOL and a description of the equipment available for
sorting is described in the ENVIRONMENT division. The COBOL compiler
selects a sorting method based on all this information. The business
oriented languages also have powerful constructs for file handling and
report generation [33]. None of these has been designed with all the
generality and consistency one could desire, but they have proved very

useful to business programmers.



We anticipate that Type 1 automatic programming research will
<>
succeed in producing systems which make programming in specific fomains

much easier. There are two lines of research to be pursued --, | “i

foe ! .
A

prototype domain languages and tools for building such languages.

The domain for automated programming that has received the most
attention is the management information area. The goal has been to
permit non-programmers to specify fairly complex calculations on large
data bases. The low success/effort ratio should serve to warn us of
ultimate difficulty of the task, but shouldn't prevent work on more
circumscribed domains. Management information systems immediately
encounter the problem of natural language communication [7] which can
be avoided in many instances. There are many large groups of computer
users (e.g. organic chemists, payroll programmers) who would be willing
to use an artificial language if it met their needs. There are even
tightly restricted domains like the Brookings model of the economy or
the NCAR weather model which might justify an automatic programming
effort. The idea is to combine some of the techniques discussed below
with domain-specific knowledge to produce systems which will help
people describe what they want the machine to do. Inevitably, such
specific projects will feed back ideas to the technique-oriented
research described here and the theoretical efforts discussed in Section 2.

There is a common name for a program which translates a high level
description of a process into machine language -- a compiler.
Compilers are among the best understood of programs and this under-

standing is one of the cornerstones of automatic programming research.
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A modern compiler incorporates a large set of ideas for parsing and
understanding programs and for producing output which efficiently
carries out the computation specified [21]. The work on global code
optimization [1] has been particularly important in providing ideas on
how to represent and manipulate computations. There is at least one
automatic programming effort [5] which is primarily concerned with
optimization of high-level procedural problem statements.

The introduction of complex data structures and their operators
in this generation of standard languages (PLT,AlgOl 68) and the extensible
language efforts are also important steps towards higher level programm-
ing. The other relevant topic from systems programming is Translator
Writing Systems (TWS) [11]. The concentrated effort on ™S a few years
back can be viewed as an attempt to provide tools for building special
purpose languages. The problem may have been that they were not sufficient-
ly ambitious —-- the languages constructible did not have enough
advantages to make their construction attractive. The addition of domain-
specific knowledge and some techniques from Artificial Intelligence to
the ideas developed in TWS research should provide the basis for systems
support for Type 1 automatic programming efforts.

Artificial Intelligence laboratories, especially those with robot
projects, have been conducting research of great relevance to automatic
programming. The root problem is that a robot (even if it is only a
hand-eye) will have to plan and carry out courses of action (strategies).
The automatic strategy generation problem is the analog of the automatic
programming problem. These are various doctrines on how to attack this

problem, the most developed of which is STRIPS [16]. The existing



efforts have all been quite primitive giving rise to strategies that

do not have loops and that normally do not have even conditional state-
ments in them. The strategy and program-writing efforts will probably
diverge. The strategy efforts will have to cope with incomplete informa-
tion, error recovery and the other vagaries of the physical world at

a much earlier stage than automatic programming ones. Perhaps more
importantly, there are languages (Planner [24], POP-2, [39], QA4 [32],
SAIL [14]) at the Artificial Intelligence laboratories which are continuous-
ly evolving to meet the needs of the strategy problem. Currently
considered important are varied data structures, associative memory,
pattern matching, automatic back-tracking, concurrent processes and the
procedural representation of knowledge. I suspect that these same
concepts will prove to be crucial in producing automatic programming
systems. These artificial intelligence languages are also considered to be
alternatives to the more abstract theorem-proving systems discussed in
Section 2 for a wide range of tasks. One can view these languages as a
special purpose languages for writing automatic programming systems.

The following example QA4 [32] statement is illustrative. It is the
recursive definition of a function SORT, which sorts a linear list

(bag):

(a) SORT = CASES(M[ ], ()3

AN X - Bt MIN (X,B) , X .SORT(B))

There are two cases. The first one (up to the ";") specifies that if
the argument is empty then the empty bag is the value of SORT. The

general case is written in terms of the pattern matching facilities of



QA4 . The goal is to find a decomposition of the bag into an element
X and a bag B such that (t) X is not larger than any element of

B . Then the value of the function is the bag formed by prefixing

X to the sorted version of B . The use of pattern matching frees
the user from deciding how to find the smallest element, but normally
gives rise to an inefficient algorithm. .QAY will allow one to write
a faster program by specifying more details. A better (and much more
difficult to achieve) solution is to have the system compile efficient
programs from statements like (a) . This question of code optimiza-
tion will arise yet again in Section 2.

More broadly, much of the artificial intelligence work in automatic
problem solving is pertinent to the specific problem of automatic pro-
gramming. This was understood by Simon [34] who made an early study of
the automatic program generation problem. The article by Feigenbaum in
this issue provides a good entry into the current artificial intelligence
literature.

There are many other ideas which will also be useful to builders
of automatic programming systems. In addition to computer science
developments, the problem as here defined can exploit any systematic
advance within a subject -domain. One of the best examples of this kind
of achievement is the MATHIAB [30]]system for symbolic mathematics.

There are a number of issues which cut across the somewhat artificial
distinction we have made between the systems of the first type and the
systems of the second type. The most important of these is the issue
of process description versus state description. A second common

thread is the idea of user interaction. Neither of the systems of the
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first type or of the second type seem possible today without on-line
interaction. It is simply impossible for the program-writing program

to know what the user wants nor for the user to anticipate all of the

questions that the program-writing system may ask about his task specifica-

tion. A third common theme is the idea of attaching extra information
tothe statement of the problem so that side conditions or predicates
that must be satisfied can be added to a program. This idea was
present in the frequency statements to help optimization of early
compilers. More recently, Lowry [27] has suggested using range state-
ments (e.g. this variable takes only values from 1 to 4 ) to aid in
both error detection and optimization. Assertions in addition to or in
place of procedural statements play a central role in theoretical

studies of automatic programming.

II. Theoretical Studies

Much of the impetetus for the renewed interest in automatic
programming came from the demonstrations by Waldinger [38] and Green
[20] that theorem proving programs were capable of producing simple
programs. There has been a great deal of attention devoted to solving
problems of the general form:

(2) Find F(x) such that R(x,F(x))
where R 1s some fixed relation. For example, we could specify that
we wanted a square root routine by saying
(3) Find F(x) such that F(x)*F(x) = x
Although statement (1) treated in most general form is equivalent

to statement (3) the Type 2 approach to the problem would be quite



different. To solve the Type 2 problem, a system would have to have
axioms for computer arithmetic and be able to constructively prove that

there was a program which converged (presumably with an assumed accuracy)

to the square root for all possible input values. This problem is much
more complex than anything that has been actually attempted with a Type 2
approach. More typically the programs attempted are in a domain with
simple axioms, although the logic of the program produced may be in-
volved. A typical example is the following one from Green [20].

The problem is to construct a LISP program to sort a list. The
theorem proving program must be given the properties of wvarious LISP
functions in terms of axioms. These axioms describe the effects of
the functions when applied to lists. We also provide a statement of
the desired result in terms of a theorem. The theorem prover then
attempts to prove the theorem through a sequence of applications of the
axioms. If a proof is found, the sequence of proof steps can be mapped
into a sequence of function applications which constitutes the desired
program.

We will consider in detail only the simpler problem of constructing
a program for arranging a pair of atoms in increasing order. Green

uses ten axioms for LISP, typical ones being

L) 1. x = car(cons(x,y))
L2. y = cdr(cons(x,y))
16. x = nil o cond(x,y,z) = z
7. x # nil > cond(x,y,z) =y

One must then state the condition which the program is to satisfy. In

this simple case we define a predicate R(x,y) which applies to two

10



pairs x,y andistrue iff y is a sorted version of x (this is an
instance of (2) above).

(5) R(x,y) = [[car (x) < cdr(x) D>y =x]A

[car (x) £ cdr(x) D car(y) = edr(x) A cdr(y) = car(x)]]

Finally, we must specify the theorem whose proof will result in
the desired program. It is:

(6) (¥x) (Ey)R(x,¥)

Given the axioms in (4), the definition (5) and a definition of <,
the program was able to prove the theorem (6) by supplying the answer:
(7) y = cond(car(x) < cdr(x),x,cons(cdr(x),car(x)))
or in more familiar notation:

y = if car(x) < cdr(x) then x else cons(cdr(x),car(x))

After deriving this function for sorting a pair of numbers, Green goes
on to show how a program for sorting arbitrary lists can be constructed.
For this purpose we need a predicate Rl (x,y) testing if y

is a sorted version of x for arbitrary lists. The important step
is to add an induction axiom [29] which enables the program to prove
correctness for arbitrary length lists. In Greens system the user was
required to specify the particular induction axiom, viz.
(b) [R1(nil,SORT(nil)) A (VX) [~ATOM(x)
A Rl(edr(x), SORT(cdr(x))) 2 R1(x,SORT(x))]]

> (Vy)RL(y,SORT(y))

This states that if the desired function sort has the property that it

sorts the empty list, i.e. R1(nil,SORT(nil) and if Rl holds for the

11



cdr (tail) of a list it holds for the whole list, then sort is the
function which makes Rl hold for arbitrary lists. Given this axiom
the program was able to come up with a sort program for lists. The
problem is much more involved than we have indieated and he had to use
great care in breaking the problem into pieces his program could
handle.
The current state theorem proving approach to program synthesis
is found in Manna and Waldinger [29]. They concentrate on a very
difficult problem which is central to-automatic programming --
repetition. All interesting programs have iterations or recursions,
usually of dynamically determined length. The choice of which form of
repetition to use and how to use it is (with the related question of
data structures) among the most important parts of program synthesis
(by humans or machines). Manna and Waldinger point out how certain
problems give rise naturally to certain repetitive structures and how
these structures are naturally represented by different induction axioms.
The proper choice of induction axiom is crucial for a program of this
type. Demonstration programs are constructed using the counting up and
counting down version of Peano's axioms for the integers and for list
axioms like (b) above. No program has yet been constructed which can
choose among a large set of induction axioms, but there is work in
progress on this problem.
The theorem proving approach is obviously closely related to the

work on program verification which is discussed by Manna [ ] in this
issue. If we are to have an automatic program checker, it will have to

be told what the program is supposed to do. This description must itself

12



specify the desired result, so one might hope to have the program
generated automatically. In fact, the program verification problem is
easier than the synthesis problem and is much further along. Floyd
[19] has suggested using the state-of-the-art in both areas in an
interactive system to help people construct demonstrably correct
probrams., A related issue is the formal translation of programs into
more efficient ones. The translation of recursion to iteration is the
primary concern [35].

The general program-writing problem as stated in (2) is clearly
recursively unsolvable. Even when it is solvable, the program required
may be arbitrarily large [6]. There is another line of theoretical
work which provides partial solutions to these difficulties, while
encountering several of its own. This is based on the notion of learn-
ing (inferring) a program from examples of its behavior.

This is theoretically feasible because of an apparently paradoxical
result on the inference of programs. Although it is undecidable whether
a given program produces some output, a machine can find the best program
which does so. The formal development is beyond the scope of this paper
[10], but we will outline the basic idea. Suppose we say that the
complexity of a program on an input-output pair is the product of its
size and the time it takes to compute the value of the output given the
input. Suppose we have all the programs enumerated by size. Then the
machine proceeds as follows. Let Pl (the first program) run for one

second on the input, then let P, , P2 both run two seconds and so on.

Eventually some program will halt with the right answer. This establishes

13



an upper bound, K on the complexity of the best program. Any program
of size greater than K can not be the best one. For the finite
number of smaller programs, the machine simply lets each one run until
its space-time product (complexity) exceeds K and then choses the
best value of complexity. This algorithm, while proving the claim, is
so inefficient as to defy even contemplating its implementation. There
are attempts to develop reasonable algorithms for inferring programs
as has been done for grammars [4]. If these work out, the inference
'method has several advantages.

First, the method will always yield the best program over a
finite domain, and the same method can be shown to have good properties
in the limit for countable domains [10]. If a direct method for solving
(3) for F fails the following strategy could be applied. Use the
inference method to compute a program P which works for the specific
values known to obey R(x,y). Given a new value x' compute
R(x’ , P(x")) . 1If it is true then P also works for x' . If
not, solve explicitly for a value y' such that R(x' , y') by
numerical or search techniques, infer a new program P' which has
P'(x ) =y and continue. This entire procedure will work in many
cases where theorem proving techniques would not and has at least
theoretical interest. Inference techniques also have the obvious
advantage that they can be used when only examples of the input-output
pairs are given. Other inferential methods are being considered by
Amarel [2].

The abstract work is meant to uncover basic principles which underly
the problem. The people who work in this area fully realize that for
practical solutions, their ideas will have to be combined with

14



a—n

those of the first type, incorporating specific knowledge of the domain
begin treated. In fact, the system of King [25] and the proposed system
of Floyd [19] are based on the use of domain-specific rules of inference
and most Type 2 efforts are becoming concerned with efficient strategies
for proofs in restricted domains. This brings them in close contact
with the artificial intelligence languages designed to be used for
searching solution spaces. The pattern matching, backup, etc. of these
languages is well suited for writing directed proof procedures. The
central problem is the representation of specific knowledge in a way
that will be simple enough for programs to manipulate, but rich enough
to efficiently direct the problem solving program.

There will never be a "solution" to the automatic programming
problem. Consider the following simple statement over the positive
integers:

(8) Find A, B, C, N such that N > 2 and AV g N

There are, however, specific lines of work which promise to yield
practical benefits or insights into the nature of programs. One can
hope that this spurt of interest in automatic programming will be as

fruitful as the last.
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