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Automatic Programming

“ Introduction

_ The term "automatic programming" was used by some of the early

designers of compilers to describe the fruits of their efforts. There

- 1s reason to believe that they were overly sanguine, but they did

succeed in automating much of what programmers did at that time.

The problem of parsing arithmetic expressions was a serious intellectual

o issue and 1ts solution led to important theoretical and practical

advances. There 1s currently a revival of the term "Automatic Programm-

= ing" and a certain amount of work directed toward automating what

programmers do at this time. This coincides with an increased amount of
—.

work on how people should write programs, discussed by Hansen in this issue.

o Almost anything in computer science can be made relevant to the

problem of helping to automate programming. We willl supress discussion

of work on editors, file systems, numerical methods, etc., and try to

point out the basic results and problems in the field. Even so, a

paper of this size cannot deal adequately with the many important

) questions.

We begin by making a rough division of the work on automatic

- programming into two types. Type 1 1s concerned with automating the

production of programs 1n a particular domain of discourse. A system

i of this type will have considerable knowledge of the domain built in

_ and will often be asked to produce particular answers rather than

| general routines. I claim that important practical advances in this

- area are possible with our current knowledge. Efforts of the second
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aa type are concerned with the fundamental problems underlying the notion
| of automatic program synthesis. These are general and are normally

| restricted to generating demonstrably correct programs. Systems con-

a. structed along these lines should not be expected to be practical in the

near future and are thus relegated to Section 2 of this paper.

1. Direct approaches

x pe" within Type 1, there are a variety of ways of viewing the
| iro lem. In its simplest form, automatic programming 1s Just an atavistic

) proliferation of special purpose languages. To an extent that does not

| . seem to be understood, special purpose languages are not only easier to
| use, but can be much more efficiently compiled. [13] There has been

| - widespread use of special purpose languages in some fields [33] buta subroutine packages are much more common. One reason for this 1s that

” there has not been enough additional benefit to warrant putting a

special purpose language around a package of routines. If the compiler

5 puts together the routines in an obvious way, the user might just as
. well do it himself. One can view Type 1 work on automatic programming

| | as attempting to provide languages in which 1t will be much easier to
- write good programs involving large packages of routines.

. A major problem one faces when trying to automate the writing of

programs is this: How 1s one to say what 1s required without writing

| = some kind of program? Workers in Artificial Intelligence have long
| faced this problem of process description and_state descriptions. A

- state description for the function sgquareroot might be:
| (1) The X such that X*X = Z
=



= A process description for the same function might be an ALGOL program

| to carry out Newton's method for the solution. Two remarks are in order.

B The state description above 1s much simpler than any process

- description -- this is not always the case. It is easier to describe

| how to take the derivative of a polynomial than to specify a set of

[~ properties that a derivative must have. Similarly, the syntax of a )

| programming language 1s given more clearly by a grammar than by a set +
of conditions for well-formedness. The ease of giving either a state

u or process description clearly depends on the language used for descrip-

| tion.

| = Secondly, 1n writing a squareroot procedure one 1s forced to

= consider many details which are left out of (1). For example, what

B precision 1s required, are temporary cells available, etc.. Any

ou translator which works from state descriptions will (like people)

require a specification of the side conditions which constrain its

| = choice of solutions. Notice that this virtually requires an automatic

3 programming system to be interactive. The program will not know what
| values to give to side conditions and the user will not know what

| _ conditions need to be specified. We will deemphasize the question of

| side conditions for the remainder of this paper, but it will be an

FT important issue in any particular design.

| Now let us consider how one might design a translator for state-

a ments like (1). Many systems have a general Newton's method root finder

N and 1t would not be hard to write a compiler which recognized that (1)

fit the conditions for applying this routine. One would also require

~ a symbolic differentiation routine, but they are available. If the
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- function to be inverted could not be differentiated, a numerical

solution could be attempted. The range of this class of compiler 1is

= impressive —- there 1s a vast collection of algorithms in numerical

Be analysis and mathematical programming which could be employed. The

problems of designing a syntax which allowed for the recognition of

appropriate solution methods do not seem insurmountable. Rudimentary

- systems of this sort have been completed by Fikes [15] and Elcock

BE There 1s a closely related line of work which has been done in
| the continuous simulation languages. These often provide fixed routines

= for solving various boundary value, optimization, etc., problems. The

LL SLANG [36] effort is a very promising attempt to place these features

| in the setting of a general purpose language. There have also been a

Sh number of widely used high level procedural and non-procedural statements

in general purpose languages. An example of a very sophisticated language

| B primitive is the COBOL SORT verb. A typical statement might be:

SORT FACULTY ON ASCENDING RANK;

| ON DESCENDING AGE;

= One can also specify additional keys, and procedures and files for

input and output. The description of a file is written in the DATA

) division of COBOL and a description of the equipment available for

_ sorting 1s described in the ENVIRONMENT division. The COBOL compiler

| selects a sorting method based on all this information. The business

E oriented languages also have powerful constructs for file handling and
| report generation [33]. None of these has been designed with all the
a generality and consistency one could desire, but they have proved very

useful to business programmers.



We anticipate that Type 1 automatic programming research will

N succeed 1n producing systems which make programming in specific fomains ,
much easier. There are two lines of research to be pursued --,| “- -

Le

TT prototype domain languages and tools for building such languages.

| The domain for automated programming that has received the most

un attention is the management information area. The goal has been to
LL permit non-programmers to specify fairly complex calculations on large

data bases. The low success/effort ratio should serve to warn us of

B ultimate difficulty of the task, but shouldn't prevent work on more

| circumscribed domains. Management information systems immediately
a encounter the problem of natural language communication [7] which can

3 be avoided in many instances. There are many large groups of computer
| users (e.g. organic chemists, payroll programmers) who would be willing

i. to use an artificial language if it met their needs. There are even
tightly restricted domains like the Brookings model of the economy or

] the NCAR weather model which might justify an automatic programming

oo effort. The 1dea 1s to combine some of the techniques discussed below
with domain-specific knowledge to produce systems which will help

- people describe what they want the machine to do. Inevitably, such

| specific projects will feed back ideas to the technique-oriented
” research described here and the theoretical efforts discussed in Section 2.

: _ There 1s a common name for a program which translates a high level

description of a process into machine language —-- a compiler.

| Compllers are among the best understood of programs and this under-
| standing 1s one of the cornerstones of automatic programming research.
|

>
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= A modern compiller incorporates a large set of ideas for parsing and

| _ understanding programs and for producing output which efficiently
carries out the computation specified [21]. The work on global code

| optimization [1] has been particularly important in providing ideas on

| how to represent and manipulate computations. There is at least one

automatic programming effort[5] which is primarily concerned with

| optimization of high-level procedural problem statements.

The introduction of complex data structures and their operators

| in this generation of standard languages (PIA, Algol 68) and the extensible

| language efforts are also important steps towards higher level programm-

| ing. The other relevant topic from systems programming 1s Translator

| Writing Systems (IWS) [11]. The concentrated effort on T™S a few years

| back can be viewed as an attempt to provide tools for building special

| purpose languages. The problem may have been that they were not sufficient-
ly ambitious -- the languages constructible did not have enough

advantages to make their construction attractive. The addition of domain-

specific knowledge and some techniques from Artificial Intelligence to

the ideas developed in TS research should provide the basis for systems

. support for Type 1 automatic programming efforts.

Artificial Intelligence laboratories, especially those with robot

oC projects, have been conducting research of great relevance to automatic

. programming. The root problem 1s that a robot (even 1f 1t 1s only a

. hand-eye) will have to plan and carry out courses of action (strategies).
— The automatic strategy generation problem is the analog of the automatic

programming problem. These are various doctrines on how to attack this

problem, the most developed of which is STRIPS [16]. The existing
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efforts have all been quite primitive giving rise to strategies that

. do not have loops and that normally do not have even conditional state-

ments 1n them. The strategy and program-writing efforts will probably

~ diverge. The strategy efforts will have to cope with incomplete informa-

tion, error recovery and the other vagaries of the physical world at

a much earlier stage than automatic programming ones. Perhaps more

_ importantly, there are languages (Planner [24], POP-2, [39], QA4 [32],
SAIL [14]) at the Artificial Intelligence laboratories which are continuous-

“ ly evolving to meet the needs of the strategy problem. Currently

| considered important are varied data structures, associative memory,

- pattern matching, automatic back-tracking, concurrent processes and the

| procedural representation of knowledge. I suspect that these same
u concepts will prove to be crucial in producing automatic programming

. systems. These artificial intelligence languages are also considered to be

alternatives to the more abstract theorem-proving systems discussed in

. Section 2 for a wide range of tasks. One can view these languages as a

_ special purpose languages for writing automatic programming systems.
| The following example QAL [32] statement is illustrative. It is the

“ recursive definition of a function SORT, which sorts a linear list

(bag):

. (a) SORT = CASES(N[ 1, ( );

AX + Bt MIN (X,B) , X .SORT(B))

There are two cases. The first one (up to the ";") specifies that if

f— the argument 1s empty then the empty bag is the value of SORT. The

| general case 1s written in terms of the pattern matching facilities of

|



QALY . The goal is to find a decomposition of the bag into an element

nN X and a bag B such that (t+) X is not larger than any element of
B . Then the value of the function 1s the bag formed by prefixing

= X to the sorted version ofB . The use of pattern matching frees

the user from deciding how to find the smallest element, but normally

gives rise to an inefficient algorithm. .QAk will allow one to write

Nn a faster program by specifying more details. A better (and much more

| difficult to achieve) solution 1s to have the system compile efficient

ae programs from statements like (a) . This question of code optimiza-

| tion will arise yet again in Section 2.

u More broadly, much of the artificial intelligence work in automatic
LL problem solving 1s pertinent to the specific problem of automatic pro-

| gramming. This was understood by Simon [34] who made an early study of

| = the automatic program generation problem. The article by Feigenbaum in
this issue provides a good entry into the current artificial intelligence

a literature.

| There are many other ideas which will also be useful to builders

| of automatic programming systems. In addition to computer science

| developments, the problem as here defined can exploit any systematic

advance within a subject -domain. One of the best examples of this kind

| - of achievement is the MATHIAB[30] ]system for symbolic mathematics.
There are a number of issues which cut across the somewhat artificial

| distinction we have made between the systems of the first type and the

~~ systems of the second type. The most important of these is the issue

| of process description versus state description. A second common
.

| thread is the idea of user interaction. Neither of the systems of the
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= first type or of the second type seem possible today without on-line

N interaction. It 1s simply impossible for the program-writing program

to know what the user wants nor for the user to anticipate all of the

re questions that the program-writing system may ask about his task specifica-

tion. A third common theme 1s the 1dea of attaching extra information

Bb the statement of the problem so that side conditions or predicates

_ that must be satisfied can be added to a program. This idea was

| present in the frequency statements to help optimization of early

| ~- compilers. More recently, Lowry [27] has suggested using range state-

| ments (e.g. this variable takes only values from 1 to 4) to aid in

both error detection and optimization. Assertions in addition to or in

uN place of procedural statements play a central role in theoretical
| studies of automatic programming.

= II. Theoretical Studies

k Much of the impetetus for the renewed interest in automatic

| programming came from the demonstrations by Waldinger [38] and Green

zs [20] that theorem proving programs were capable of producing simple
| programs. There has been a great deal of attention devoted to solving

- problems of the general form:

(2) Find F(x) such that R(x,F(x))

| where R 1s some fixed relation. For example, we could specify that

ne we wanted a square root routine by saying

| (3) Find F(x) such that F(x)*F(x) = x .

- Although statement (1) treated in most general form 1s equivalent
5 to statement (3) the Type 2 approach to the problem would be quite

- ;
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| different. To solve the Type 2 problem, a system would have to have

axioms for computer arithmetic and be able to constructively prove that

there was a program which converged (presumably with an assumed accuracy)

to the square root for all possible input values. This problem is much

| more complex than anything that has been actually attempted with a Type 2

approach. More typically the programs attempted are in a domain with

| simple axioms, although the logic of the program produced may be in-
volved. A typical example is the following one from Green [20].

The problem is to construct a LISP program to sort a list. The

theorem proving program must be given the properties of various LISP

functions in terms of axioms. These axioms describe the effects of

the functions when applied to lists. We also provide a statement of

| the desired result in terms of a theorem. The theorem prover then

attempts to prove the theorem through a sequence of applications of the

axioms. If a proof is found, the sequence of proof steps can be mapped

| into a sequence of function applications which constitutes the desired

| program.

| We will consider in detail only the simpler problem of constructing

| a program for arranging a pair of atoms in increasing order. Green

uses ten axioms for LISP, typical ones being

| I) Il. x = car (cons (x,y))

| L2. y = cdr(cons(x,y))

Ib. x= nil5 cond(x,y,z) = =z

Lr. X # nil© cond (x,y,z) = vy

One must then state the condition which the program is to satisfy. In

this simple case we define a predicate R(x,y) which applies to two

1
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pairs x,y andistrue iff y is a sorted version of x (this is an

instance of (2) above).

(5) R(%,¥) = [[car (x) <cdr(x)Dy =x]A

[car (x) £ edr(x) Do car(y) = cdr(x) A cdr(y) = car(x)1] .

Finally, we must specify the theorem whose proof will result in

the desired program. It 1is:

: (6) (vx) (Ey)R(x,¥)
Given the axioms in (4), the definition (5) and a definition of <,

CL the program was able to prove the theorem (6) by supplying the answer:

(7) y = cond (car (x) < cdr (x),x,cons(cdr (x),car(x)))

~— or in more familiar notation:

y = if car (x) < ecdr(x) thenx else cons (cdr (x),car(x)) .

~ After deriving this function for sorting a pair of numbers, Green goes

= on to show how a program for sorting arbitrary lists can be constructed.

For this purpose we need a predicate Rl (x,y) testing if y

~ is a sorted version of x for arbitrary lists. The important step

is to add an induction axiom [29] which enables the program to prove

" correctness for arbitrary length lists. In Greens system the user was

. required to specify the particular induction axiom, Viz.

(b) [R1(nil,SORT(nil)) A (VX) [~ATOM(x)

~ A Rl(edr(x), SORT(cdr(x))) © RL(x,SORT(x))]]

> (Vy)RL(y,SORT(y)) .

~ This states that 1f the desired function sort has the property that it

o sorts the empty list, i.e. R1(nil,SORT(nil) and if Rl holds for the

N
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cdr (tail) of a list it holds for the whole list, then sort 1s the

function which makes Rl hold for arbitrary lists. Given this axiom

the program was able to come up with a sort program for lists. The

problem 1s much more involved than we have 1ndieated and he had to use

great care in breaking the problem into pieces his program could

handle.

The current state theorem proving approach to program synthesis

is found in Manna and Waldinger [29]. They concentrate on a very

difficult problem which 1s central to-automatic programming --

repetition. All interesting programs have iterations or recursions,

usually of dynamically determined length. The choice of which form of

repetition to use and how to use it 1s (with the related question of

data structures) among the most important parts of program synthesis

(by humans or machines). Manna and Waldinger point out how certain

problems give rise naturally to certain repetitive structures and how

these structures are naturally represented by different induction axioms.

. The proper choice of induction axiom 1s crucial for a program of this

type. Demonstration programs are constructed using the counting up and

counting down version of Peano's axioms for the integers and for list

axioms like (b) above. No program has yet been constructed which can

choose among a large set of induction axioms, but there 1s work in

progress on this problem.

The theorem proving approach is obviously closely related to the

~ work on program verification which is discussed by Manna [ ] in this

issue. If we are to have an automatic program checker, 1t will have to

be told what the program is supposed to do. This description must itself

12
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specify the desired result, so one might hope to have the program

generated automatically. In fact, the program verification problem 1is

easier than the synthesis problem and is much further along. Floyd

[19] has suggested using the state-of-the-art in both areas in an

interactive system to help people construct demonstrably correct

probrams. A related issue 1s the formal translation of programs into

wo more efficient ones. The translation of recursion to iteration 1s the

primary concern [35].

L. The general program-writing problemas stated in (2) 1s clearly

recursively unsolvable. Even when it is solvable, the program required

- may be arbitrarily large [6]. There is another line of theoretical

_ work which provides partial solutions to these difficulties, while

encountering several of its own. This 1s based on the notion of learn-

-. ing (inferring) a program from examples of 1ts behavior.

This 1s theoretically feasible because of an apparently paradoxical

~ result on the inference of programs. Although it 1s undecidable whether

g a given program produces some output, a machine can find the best program

which does so. The formal development 1s beyond the scope of this paper

[10], but we will outline the basic idea. Suppose we say that the

complexity of a program on an input-output pair 1s the product of its

- size and the time 1t takes to compute the value of the output given the

_ input. Suppose we have all the programs enumerated by size. Then the

machine proceeds as follows. Let Py (the first program) run for one

~~ second on the input, then let Py , P, both run two seconds and so on.

Eventually some program will halt with the right answer. This establishes
—

13
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an upper bound, K on the complexity of the best program. Any program To

: of size greater than K can not be the best one. For the finite
| number of smaller programs, the machine simply lets each one run until

. its space-time product (complexity) exceeds K and then choses the

| best value of complexity. This algorithm, while proving the claim, is

| ) so inefficient as to defy even contemplating its implementation. There

| are attempts to develop reasonable algorithms for inferring programs

| as has been done for grammars [4]. If these work out, the inference

_ 'method has several advantages.

- First, the method will always yield the best program over a

- finite domain, and the same method can be shown to have good properties
3 in the limit for countable domains [10]. If a direct method for solving

| | (3) for F falls the following strategy could be applied. Use the

=n inference method to compute a program P which works for the specific

| values known to obey R(x,v). Given a new value x' compute

R(x" , P(x")) . If it is true then P also works for x' . If

not, solve explicitly for a value y' such that R(x’, y') by

| | numerical or search techniques, infer a new program P' which has

. P(x") = y’ and continue. This entire procedure will work in many
| cases where theorem proving techniques would not and has at least

~ theoretical interest. Inference techniques also have the obvious

| advantage that they can be used when only examples of the input-output

| B pairs are given. Other inferential methods are being considered by
Amarel [2].

The abstract work 1s meant to uncover basic principles which underly

the problem. The people who work in this area fully realize that for

practical solutions, their ideas will have to be combined with

14
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- those of the first type, incorporating specific knowledge of the domain
| begin treated. In fact, the system of King [25] and the proposed system

B of Floyd [19] are based on the use of domain-specific rules of inference
_ and most Type 2 efforts are becoming concerned with efficient strategies

| for proofs in restricted domains. This brings them in close contact

~ with the artificial intelligence languages designed to be used for

searching solution spaces. The pattern matching, backup, etc. of these
~

languages is well suited for writing directed proof procedures. The

a central problem 1s the representation of specific knowledge 1n a way

that will be simple enough for programs to manipulate, but rich enough

= to efficiently direct the problem solving program.

: There will never be a "solution" to the automatic programming
-

problem. Consider the following simple statement over the positive

— integers:

| (8) Find A, B, C, N such that N > 2 and A" + B® ="

= There are, however, specific lines of work which promise to yield

practical benefits or insights into the nature of programs. One can
.~

hope that this spurt of interest in automatic programming will be as

o fruitful as the last.

“-
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