VON NEUMANN'S COMPARISON METHOD FOR RANDOM SAMPLING FROM
THE NORMAL AND OTHER DISTRIBUTIONS

'BY

GEORGE E. FORSYTHE

STAN-CS-72-254
JANUARY, 1972

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERS ITY

Von Neumann's Comparison Method for Random Sampling

from the Normal and Other Distributions

George E. Forsythe

Computer Science Department

Stanford University

Abstract

The author presents a generalization he worked out in 1950 of
von Neumann's method of generating random samples from the exponential
distribution by comparisons of uniform random numbers on (0,1) . It
is shown how to generate samples from any distribution whose probability
density function is piecewise both absolutely continuous and monotonic
on (o,w) . A special case delivers normal deviates at an average
cost of only 4.036 uniform deviates each. This seems more efficient
than the Center-Tail method of Dieter and Ahrens, which uses a related,
but different, method of generalizing the von Neumann idea to the

normal distribution.

This research was supported in part by the Office of Naval Research
under Contracts N-00014-67-A-0112-0057 (NR OLk-L02) and
N-00014-67-A-0112-0029 (NR O4k-211), and by the National Science
Foundation under Grant GJ- 992. Reproduction in whole or in part
is permitted for any purpose of the United States Government.

Von Neumann's Comparison Method for Random Sampling

from the Normal and Other Distributions

George E. Forsythe
Computer Science Department

Stanford University

1. Introduction. In the summer of 1949, at the Institute for

Numerical Analysis on the campus of the University of California, Los
Angeles, John von Neumann [3] lectured on various aspects of generating
pseudorandom numbers and variables. At the end he presented an ingenious
method for generating a sample from an exponential distribution, based
solely on comparisons of uniform deviates. In his last snetence he
commented that his "method could be modified to yield a distribution
satisfying any first-order differential equation".

In 1949 or 1950 I wrote some notes about what I assumed von
Neumann had in mind, but I do not recall ever discussing the matter
with him. This belated polishing and publication of those notes is

stimulated by papers by Ahrens and Dieter [1, 2] in which several

related algorithms are studied, and by a personal discussion vith the
authors on how the von Neumann dea can be extended.

In Section 2 the general method is presented, and in Section 3
its efficiency is analyzed. 1In Sections 4 and 5 it is shown how the
exponential and normal distributions show up as special cases. In
Section 6 the method for a normal distribution is compared vith the
Center-Tail method of [1] and [2]. 1In Section 7 possible generalirations
are mentioned.

Although this introduction has emphasized historical matters,
the method of Section 6 is a good one,.and is competitive with the
best known methods for generating normal deviates.

I thank both Professors Ahrens and Dieter for their careful
criticism of a first draft of this paper.

2. The general algorithm. Let f(x) > O be defined for all

x > 0 and satisfy the first-order linear differential equation
(1) £f/(x) + b(x) f(x) = 0 (0 < x < =),

where b(x) > 0. Let

X
(2) B(x) = f b(t) dt ,
0
and assume that
(3) C =f B(x) dx < o
0
Then
() f(x) = ¢ te"B(X)
@D
is the unique solution of (1) with f f(x) d&x = 1, and hence f is
0

2

the probability density distribution of a nonnegative random variable.

Suppose we have a supply of independent random variables u wi th
a unitorm distribution on [0, 1), and that we wish to generate a random
variable y with the density distribution f(x). Here is one way to
proceed.

We first prepare three tables of constants {qk} , {rk}) {dk}
fork =0,1,..., K, as follows. (K is defined below.) Let agy = O.
For each k =1, 2, . .. , K, picqu as large as possible, subject

to the two constraints

(5) Qe - U < L
(6) Bg) - Bla.y) < 1

Next, compute
9
(1) r, =£ f(x) dx (k =0,1, ..., K).

Here K is chosen as the least index such that rK exceeds the largest

representable number less thah 1. (K may be chosen smaller, if one sets

rK = 1, and i{ one is willing to truncate the generated variable by

reducing any value above to the interval [qK-l’ qK).)

9%
Finally, compute

(8) dk = qk - qk-l (k = l) 2, ’ K)
For simplicity we define the functions
— - = 1 2 o e K).

Now we present the algorithm. Steps 1 to 3 determine vhich

interval) the variable y +ill belong to. Steps 4 to 11

[qk_l’ qk

determine the value of y within that interval.

1. [Begin choice of interval.] Set k €= 1. Generate a uniform
deviate u.

2. [Test.] If u < r, > g0 to step 4,

3. [Increase interval.] If u > Ty set k €=k + 1 and go back
to step 2.

L. [Begin computation of y in the selected interval.] Generate
another uniform devigte u and set w (—-—udk.

5. Set t €—Gy(w).

0. Generate another uniform deviate u*.

7. [Test.] If u¥ > t, go to step 11.

8. [Trial continues.] If u* < t, generate another uniform deviate u.

9. [Test.] If u < u*, set t&——u and go back to step 6.

10. [Reject the trial.] If u > u*, go back to step k.

11. [Finish.] Return yé——qk 1 tow oas the sample variable.

We now show that the above algorithm works as claimed. Since we
assume that each u < 1, the test in step 2 must be passed when k = K,
if not sooner. Hence an interval [qk-l’ qk) is selected, and the values
of r, were chosen to make the probabilities of choosing the various

intervals correct.

Fix k. The remainder of the algorithm can be described as follows:

First, a random number w 1is selected uniformly from the interval 0 < w < 4_.

k

Then the algorithm continues to generate independent uniform deviates

u, from [0, 1) until the least n 1is found with

u, > Gk(w) (n = 1), or

\Y%
no

U Zou, < owog <L < ug < u, < Gk(w) (n

With probability 1 such an n will be found, as will be shown. TIf n
is odd, we return y(-—-qk_l + w. If n is even, we reject w and
all the u, choose a new w, and repeat.

We now determine the probability P(k, w) that one w determined
in step 4 will be accepted without returning to step 4. Tet :El(k’ W)
be the universe of all events. For n = 2, 3, . .., let En(k, w) be
the event

< < L. <
u, w ug < u, < Gk(w).

Then the probability of En(k, w) is given by

I
£
n
—~
n
I
n
~

Prob fEn(k, w)}

0
Gy (W) P Xn-1
f dng dxg dx (n > 3)
0 0 0
) Gk()n-l
(n-1) ! (all n).

The occurrence of (10) 1is the conjunction of En(k’ w) and not -
En+l(k’ w). Since En+l(k’ w) implies E gk, w), the probability
that (10) occurs for a given n and w is

)n-l

Gk(w Gk(w)n

(11) Prob (En (k, w) and not-En+l(k, w)} =
(n-1) ! no .

Summing over all odd n, we see that

n-1 n
(12) P(x, w) = Z EL _ ﬂ= e =Gy (w)

(n-1) ! n !
odd n

Since w < dk, we have
Gw) < a(q) = Blg) — B(g_;) < 1,
whence

-\ —f \ -]_
o) Pk, w) > e > for all k and w.

Jd

—~

-1 . P
Now d, "dg is the probability that w is selected in the interval

E < w < g + dg . C(Combining this vith (12), ve see that the

probability that g < w < g + 4 and that w is accepted is given

by
(w) 28
(1) Prob {g < w < g+ dg and w is accepted}] = e (W) _>
dk

Corresponding to an accepted w, we return y = + w as the

.1
sample variable. Hence, from (14), the probability that y is in

the range x < y < x + dx, for given k, is

1 Gy (x = a_q)
e ax
dy
1 -B(x) + B(g,)
- e e by (9)
dye
1 B(g,) -
_ ce k-1 1 B(x) ax
dy
1
= — f(x) dx, by (4).
d,f (q_;)

That is, -

fx) dx

(15) Prob f x < y < x + dx and y 1is accepted} =

Since this is proportional to f(x) dx, we see that any accepted y
has the desired probability density distribution within the interval
[qk-l' qk)' Since, from (13), the probability of an infinite loop
back to step 4 is zero, the second half of the algorithm terminates
with probability 1. This concludes the demonstration that the algorithm

works as claimed.

3. Dfficiency of the algorithm. For a general function b , I

shall derive a representation for the expected number of uniformly dis-
tributed random variables u that must be used to generate one variable
y “with the probability density proportional to f(x). A similar deriv-

ation is given in [2].

The preliminary game to select k -- steps 1 to 3 of the

algor thm -- requires one u.

The rest of the algorithm is different for each k, and we shall
first determine the expected number N(k) of steps to determine y.
To do this, we shall first assume that k is fixed and that w has
been picked in the interval O < w < d,. Define En(k, w) as in Section

2, and introduce the abbrevigtions

(16) e = en(k, w) = Prob {En(k’ w)} (n=1,2,...)
and
(17) g = G (v

Then, as in Section 2, we have the following expression for the

probability P(k, w) of accepting w without returning to step L:
P(k., w) = (el - e2) + (e5 - eh) + (e5 - e6) + ...

Moreover, given k and w and given that w is accepted, the expected

number of uniform deviates u needed will be

m (k, w) = P(k, W)t [2(el -) + h(e3 -ey) + 6(e5 -e) + .0

(18) 1 gt g”

S — (n+1).
P(k, w) odd n | (n-1) ! n!

Similarly, the probability 1 - P(k, w) that w is rejected is given by

1 - P(k, w) = (e2 - e5) + (el\L - es) + (e6 - e7) + ...

Moreover, given k and w and that w is rejected, the expected number

of uniform deviates u needed is

n, (6, w) = [1 - Bk, W™ [3(e,mep) + 5(e,-e;) + T(egme) + - ..]

(19) n-1 n
1 £ g

= —_— _ (n + 1) .
1-P(kx, w) evem n | (n-1)! n!

n>2

Now, if a w is rejected, the algorithm returns to step 4, a
new w 1is picked, and the process repeats. Let M(k, w) be the
expected number of uniform deviates selected until a y 1is finally
selected, given a fixed k and an initially chosen w. Then N(k)
is the average of M(k, w) over all w uniformly distributed on
0 < w < dk .

We have
(20) M(k, w) = P(k, wIm_(k, w) + [1 - P(k, w)] [m_(k, w) + N(K)]

since, in case w 1s rejected, the whole process is repeated. Using
the expressions (18) and (19) for ma(k, w) and mr(k, w), we get

from (20) that

M(k, w) (n+1) + [1 - P(k, w)] N(k)

M
|

~ (n-1)!

1+ e® + [1 - Pk, w)] N(k),
or
(21) M(x, w) = 1 + e Gk(w) + [1 - P(k, w)] N(k)

Averaging (21) for 0 < w <—d"k and using (12) , we find that
a

1 k W 1 A ¢ (w)
N(k) = 1 + f eGk(: dw + N(x) |1 - f e i dw
d Yo 4G Yo

Solving for N(k), we get

Finally, the expected number N of uniform deviates drawn in the
main game until a y is returned is the average of WN(k) over the

intervals, weighted by the probagbilities of selecting the various intervals.

That is,

(25) N = Z N(K) [r, - 7,]

If we make use of (4), (7), and (9) to express N in terms of B(x),

we obtain the ugly representation

q.
-B(q,) q, ko
) dk + e k-1 j k eB(X) dx f e B(x) dx
- Ik-1 9g-1
N o= X =
B(q,) q - -
e k-1 koo B(x) dx e B(x) dx
k =1
k-1
(k)
© A
1
= d e-B(qk-l) + e-eB(qk-l) f eB(x) a
[+]

10

L. Special case: exponential distribution. If b(x) = 1

in (1), then B(x) = x and y(x) = e, corresponding to the exponential
distribution treated in [3]. For the algorithm of Section 2 we have
=k, 4 =1, r =1 - ek , and Gk(x) = x, for all k. Since d
and Gk(x) are independent of k, steps 4 to 10 of the algorithm are
the same for all k. They can therefore be carried out independently of
steps 1 to 5. By (12), the probability that a chosen w is not accepted

is 1 - P(k, w) =1 -e " (for all k), and the average value of 1 - e "

over 0 < w < 1 is e-l.

If the preliminary game of steps 1 to 3 were played, the interval
[k -1, k) would be selected with probability ro-T = ek -e-(k+l) =
e_k(l - e'l), for k=1,2,.... Thus the interval [0, 1) would be
accepted with probability 1 - e-l, and rejected with probability él.
For k=1,2,..., it [k-1, k) is rejected, then [k, k+1) would be
accepted with probability 1 - e"l, and rejected with probability .
Since the rejection ratio for each interval has the same value él,
which is the a priori probability of rejecting in the main game any w
selected in step 4, von Neumann could use the rejection of w as the
signal to change the interval from [k-1, k) to [k, k+1). Thus the
preliminary game of steps 1-3 is unnecessary for the exponential distri-
bution. This made von Neumann's game very elegant. I know of no com-
parable trick for general b(x).

From (22) and (23), since N(k) = N, we see that for the expon-

ential distribution

(25) W = 1+ (ez]) = —° 3 4.30026

LRI

as stated in [1l]. There was an error in [3].

0. Special case: normal distribution. If b(x) = x in (1),

. 2
then B(x) = x2/2 and f(x) = 2/ & /2 » corresponding to the
positive half of the normal distribution. For the algorithm of Section

2 we have

=O’ql:l:"':qk=\/2k-l (x > 2).

90
Hence
d) = 1,4, = 5-1,...,dk_=,/2k-1 -}2k-5 (k > 2).
Also,
2
X
Gk(x) = ; Q71X (k > 1)

The values of r. must be computed from the probability integral. The
table below gives 1l5-decimal values of g, &, Ty, and N(k) for k - 1,
2,..., 36, as computed in Fortran on Stanford's IBM 360/67 computer

in double precision.

To generate normaldeviates, one selects K and prestores the

values of Tys Gy and dk for k =1, 2, . . . , K. Then set qo4$—-0 and
dKi--]ﬂ (The limit K = 12 Permits normal deviates up to + 5.0 to

be generated, and the deviates will be truncated less than once in a
million trials. A higher limit will decrease the probability of trun-
cation.)

L. As suggested in [2], one should start the algorithm with a pre-

liminary determination of the sign of the normal deviate. We do this

12

in steps N1-N3 of the following algorithm. At entry to Step N4k, u is

a uniform deviate on the interval [0, 1). The rest is the algorithm

ol' Section 2, with the sign appended in the last step.

Nl1. [Begin choice of sign and interval.] Set k €= 1. Generate a
unitorm deviate u on [0, 1). Set u € 2u.

N2. [Test for sign.] If u < 1, set s €= 1 and go to step Ni.

N3. If u > 1, set s€— -1, and set ue—u - 1.

Ni. [Test for interval.] If u < r , go to step Nb.

X’

N5. [Increase interval.] If u > L set k €=k + 1 and go back
to step N4.

N6. [Begin generation of |y| in the selected interval.] Generate
another uniform deviate u on [0, 1) and set we——udk .

NT. Set t €=G,(v).

N8. Generate another uniform deviate u* on [0, 1).

N9. [Test.] If u¥ > t, go to step N13.

N10. [Trial continues.] If u* < t, generate another uniform deviate
u on [0, 1).

N1l. [Test.] If u < u¥, set t €=—u and go back to step N8.

N12. [Reject the trial.] Ifu >u¥, go back to step NE.

N15. [lI'inish.] Return y €= s (+ w) as the sample normal variable.

g1

As in Section 3, we let N(k) be the expected number of selections
of uniform deviates in steps N4-N13, as a function of k. We have

from (22):

13

1 + e dw
N(1) = 0)
1 2
f e_w /2 dw
0
q
k
3 2
dk + e/2-k f ew/2 dw
q
‘ B k-1
N(k) = (k > 2).
3 ®, B
k- -
o /2 f o W /2 dw
9.1

Numerical values of N(k) are given in the table. Using the asymptotic

formula

2
, +
£t°/0 | S 1
dt A~ 1+ 5 5> 85 X=——Po ,

one can show that

(26) lim N(k) =
kK — 1l -ce

el

L. 30006 .

Cf. (25). The equality (26) was written to me by U. Dieter.

I have used the same computer to establish that

@

T- 2 N(k) (r, - r,) T 5.03585 ,
k =1

so that the expected pumber of uniform deviates chosen in order to

4.03585 .

NIB

gelicrate one normgl deviate is 1 + N

14

The correctness of this alporithm for generating normal deviates,

as well as the value of' N, have been confirmed in unpublished experi-
ments by A, I. Forsythe and independently by J. H. Ahrens.

6. Comparison with the Center-Tail method of Dieter and Ahrens.

In [1], Dieter and Ahrens give a related but different modification of
the von Neumann idea for the generation of normal deviates. There are
only two intervals, the center and the tail, and the algorithms are
quite different for the two. The expected number of uniform deviates
needed is near 6.321, and computation of-a square root is required in
approximately 16 per cent of the cases.

The algorithm of Section 5 above requires no function call, but .
its main advantage over the Center-Tail method lies in requiring about
two-thirds the number of uniform deviates. ' This should be reflected
in a shorter average time of execution.

The Dieter-Ahrens algorithm for the center interval closely resembles
my algorithm for each interval, and the proofs are very close to those
given above. The big difference is that in [1] all variables u, have
the cumulative distribution function v (0 < x < 1), and the com-

parisons are of the form

u > u < u < < <
ntl — Yp n-1 Un-o Uy S ou, < ouy .

In contrast, in this paper all variables u; have uniform distributions

and the comparisons take the form (for the principal case k = 1):

15

Changing the distribution function in [1] costs an extra uniform deviate
and a comparison for each u,, whereas forming u12/2 = Gl(w) in

Section 5 is done only once for each chain of ui S. Moreover, the
fact that ul£/2 is usually small means that most of the time

u, > u12/2 and hence u, 1is accepted immediately. This contributes

2 1
to keeping N low in my algorithm. Finally, the use of Gk(w) makes
it possible to use the von Neumann technique in any interval in which
Gk(w) can be evaluated.

In a more recent manuscript [2] Dieter and Ahrens have improved
their Center-Tail method so that the comparisons are simpler and the
expected number of uniform deviates needed is reduced to near 5.236.
According to the authors, the improved Center-Tail method is still some-

what slower than my algorithm.

7. Further generglizations. Let f(x) (- < x < o) be the

probability density function of a random variable F. Under what con-
ditions on f could the von Neumann idea be applied to pick a sample
from F? It is sufficient that the interval (-~ , ®) be the union
of a set of abutting intervals I, = [qk-l’ qk] (k = ...y, =2, -1,

0,1, 2, ...) such that in cach closed interval 1, either f(x) 0

or the following three conditions all hold: f(x) > O, f is absolutely
continuous, and f is monotonic.
Then a preliminary game can be played to select an interval Ik'

If b(x) =- f'(x)/f(x) > 0 in I the algorithm of Section 2 can

k,

be adapted to select a value in I, with a density distribution propor-

k

tional to f(x). (It may be necessary to subdivide I, so that (5)

k
and (6) hold.)

16

If b(x) < 0 in I, change x to -x and follow an analogous
algorithm.

The main practical difficultiecs of the algorithm are these:

(a) One must evaluate various integrals like ~/; " £(t) dt,
in order to determine the parameters needed to pick the
intervals Ik during execution, and to evaluate the needed
Tys Qs and dk' These computations have to be done only
once in designing the algorithm.

(b) One must evaluate Gk(w) for arbitrary w in [O, dk]

during each execution of the algorithm. Note that

Gk(W) = B(qk_l + W) - B(qk l)
q,_, tw q -1 W
= b(t) dt = — —— 4t
£(t)
9k-1 9%-1
£(q, ;)
= 2n k-1 .
£q_; + W)
cince only (b)) iu done on-line, the success of an alporithmwould

seem Lo depend only on the ability to evaluate 4n f(x) rapidly. We
thus see that having f(x) = C exp (¢ (x)) (and hence a solution of
an equation of type (1)) is of great practical advantage, but it is

not essential in principle to the use of von Neumann's idea.

17

Reflerences.
1. J. I, Ahrens and U. Dicter, "Computer methods for sampling

1"

Irom the exponential and normal distributions,” Comm. Assoc. Computing
Mach. , vol. 15 (1972), pp. 000-000,

2. U. Dieter and J. Ahrens, "A combinatorial method for the
generation of normally distributed random numbers," to appear.

3. John von Neumann, 'Various techniques used in connection
with random digits" (summary written by George E. Forsythe), pp. 36-38
of Monte Carlo Method, [U. S.] National Bureau of Standards, Applied

Mathematics Series, vol. 12 (1951). Reprinted in John von Neumann,

Collected Works, vol. 5, pp. 768-770, Pergamon Press, 1963.

February 9, 1972.

18

66096 6€0L%0262° %
%L 680%06L 508162
871683 1686%5162°%
e £2052L6LL2162°%
¢L90050L9886062°%%
65020E ¥686L9062°Y
€29C52T159664%E062° Y
688ILLYIYI66682°Y
8966%1228919682°%
9696618008068 %
BEGGE5624994882"
GLO6EESHZBBLEE Y
1662 1€SBILLGC Y
L5S%T15¢€26102L82°%%
Q1 ¢BH¥L 889086962 %
SEe0CcILoLLbBSEBL Y
S6H923121eH1682°
0s8eis11L%0e¥82"Y
166698608L9¢€€82° %
ol1e129eL6e1c282°%
Y321t L%8611182°Y
73 6EL01H96L6L2% Y
e ellyH1v1818LC+
£36916e96G9%E9L2%Y
11851 SL79LTvL2Y
O 16%568E9L6T122°%%
%510%291166€892%%
C561LI68%¢7992°Y
GCHYGHIGG99T¢E662°Y
tyEBE%205211926¢8° Y
SBE1LZ26GG686C%2°Y
92 H%9L1902€6982C" ¥
71 19e26%2828%02°%
¢G6LT1FL0LH699G1 ¥
UCBOETOYLHYBTECO0OY
2 165182982€656°¢

{MIN

BHOELOHOOELEHELS56666°0
EO66666666666666°0
L566566560666£66°0
6H66666666666666°0
6LO66H6666666666°0
CHHEBEH6EE66665666°0
C786666666666666°0
€FG6 666666666666 °0
76L8666666666566°0
7999666666666666 °0
£7LC666566666566°0
LOYHL66666666666°0
c106200€£66065866€°0
S9620866666H56666°0
00926%6666666666°0
LOLLLYBEEESHEKEE *C
79619L6666666666 °0
SLOLBIBROEE6ELHOL66 °C
LI9%620L966666665°0
9211%8L066656566 °0
0LG1L61%L6066565566°C
1T0L1291L2€666Hh66°0
YBEGHHGCO6L 666666 °0
296595992 %06656506°0
YL1C98661€866666°0C
Z8BCG9TLUYSH65666 °0
1ee9% 418269865006 °Q
2R6GIBTI0ZE9C96606°0
YOLZEZ28B88%68L66 0
G2ele206058R83666°0
29%8221188880666 °0
Lo€l9e5¢0200eL606°0
tL6H90%8206%8166°0
L1£G622€189249%L6°0
MAAAAA AR R ATHLNEE

65&0LLT26wHB9CR89°0

(™) 3

C1TIwlE

5€8Z2BC20T65255T11°0
6H296H(THA0TL2TZ2T D
£006€L49€20550€21°0
6LLLH0TSTIREDCOS2T 0O
YLT112002L62%20L21°D
29%0=¢0RZEEDTIS2T 0
8868L6G62TCTIETET O
L9806 TI8%5GE9¢CET °0
Ly% 1518212668303 ¢€T1°0
£R99LLL0O9HTgI3¢T D
00GR2HS3IHBIHTHT1°0
6GGHEHG66EGRERLT D
06L3106L9G06%LHT1°0
989¢LHTIROHCILOST®D
0261698982%1¢HGT*0
GOGHH e 06€792T86T
$RLT10GTIROHGE 22T
Fe09261L%1.233331

2IRG19GI9€TLISTLIT "
L900&0VLEBIBHLILT "
“L16669666G665528T1 °
12L8L27%73¢72106%1°
61990 22H241951°
COEZLB9LH35TH0OLC"
36l8SGE323G63c¢12°
499 G 141691322 "
OelCedhLlcEsLGEZ
LeEH20Tr6lec210G6e "
GLZ%e w0l 0levLac
26HBCROT 989975382 °
H6beGGeO6IYZ2%091E "
700%4G 6569”2 S
Joom¢onmmmmnbao¢.
22160(HATLTIND
nrrax»nwuuaxrwmﬁ O
9030 6GGLO0D307220° 1

DCoocoLOO

O cOoOCcCoCcuouooCcoCco

()3

heegese s =

ey

RGEGLICLLEDTISIY *K
£L0B167298¢2990¢°1
6vHZL3TLLeceGHT F
6686 28YLLG2200 8
Tl1e61¢€e6¢8elleel
2G9906CL96%2CTR" L
BO9BORLHLIGHTIRG *2
BRLOLZ2SEYYEEERG L
2396504898519 L
9160876801032 L
CSRZW3BZIHEIHTIHT *L
0000000N70000220 %L
YYL10%009%CGG64Q °9
693¢€66%2¢6¢020R0L"9
CO02IELH2GREHLGCG 9
EHRCEVLEZH1E0h *9
FHEREEROBLELEYHZ 9
1286208629 L72D°9
F19€660¢R764051
S20RECIHQLAGGH) *G
T1200€R29¢%9.L196°¢G
*OGHE1L08HITCRE G
1€0900L272% 51961 %G
00000907C032C00 %S
61L21€€2GT1CRCEL Y
6LEQGEHYHEAGLGIPG Y
mh@OdmmtamTrwmm.J
QaQLTI9679C01¢e ¢
c_¢~0\3¢mmr:mmm.,
6REEGHGLZTIS5C0UY 8
raﬂmﬁrCfN¢\0®dm.m
0COCOO02CC2000D ¢
06C%9011e 1G6.G+H9°¢
?us}o:N\JNJJomm
»naﬂchQDC vl
CoOnCee dh<v TS

— I\J

1

{>)0

3DVHIAY

J¢
G ¢
e
133
143
1¢
(839
ol
R4
L
- N
q7
w7
£¢
72
127
07

v
-1

o)

LT
01

19

