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distribution by comparisons of uniform random numbers on (0,1) . It

1s shown how to generate samples from any distribution whose probability

; density function 1s piecewise both absolutely continuous and monotonic

| on (-o,w) . A special case delivers normal deviates at an average

| cost of only 4.036 uniform deviates each. This seems more efficient
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normal distribution.
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B Von Neumann's Comparison Method for Random Sampling

| -- from the Normal and Other Distributions

oo George E. Forsythe

FE Computer Science Department

| Stanford University

| 1. Introduction. In the summer of 1949,at the Institute for

| Numerical Analysis on the campus of the University of California, Los

Angeles, John von Neumann[3] lectured on various aspects of generating

| : pseudorandom numbers and variables. At the end he presented an ingenious
| method for generating a sample from an exponential distribution, based

| solely on comparisons of uniform deviates. In his last snetence he

commented that his "method could be modified to yield a distribution

| satisfying any first-order differential equation".

In 1949 or 1950 I wrote some notes about what I assumed von

Neumann had in mind, but I do not recall ever discussing the matter

with him. This belated polishing and publication of those notes 1s

2 stimulated by papers by Ahrens and Dieter [1,2] in which several



related algorithms are studied, and by a personal discussion vith the

authors on how the von Neumann dea can be extended.

In Section 2 the general method is presented, and in Section 3

its efficiency is analyzed. In Sections 4 and 5 it is shown how the

exponential and normal distributions show up as special cases. In

Section 6 the method for a normal distribution is compared vith the

Center-Tail method of [1] and [2]. In Section 7 possible generalizations

are mentioned.

Although this introduction has emphasized historical matters,

the method of Section 6 is a good one,.and is competitive with the

best known methods for generating normal deviates.

I thank both Professors Ahrens and Dieter for their careful

criticism of a first draft of this paper.

2. The general algorithm. Let f(x) > O be defined for all

x > 0 and satisfy the first-order linear differential equation

(1) f(x) + b(x) f(x) = 0 (0 < x < =),

where b(x) > 0. Let
X

(2) B(x) = [ o(t) at
0

and assume that

(3) | B(x) dx < ©
0

Then

(4) r(x) = cle BX)
Low)

is the unique solution of (1) with A f(x) &x = 1, and hence f is0
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the probability density distribution of a nonnegative random variable.

Suppose we have a supply of independent random variables u wi th

a uniform distribution on [0, 1), and that we wish to generate a random

variable y with the density distribution f(x). Here is one way to

proceed.

We first prepare three tables of constants {a} , {r,} , {d,}

for k =0,1,..., K, as follows. (K is defined below.) Let 9g = O-

For each k = 1, 2, . . . , K, pick gy as large as possible, subject

to the two constraints

(5) A = %.; SL;

- < 1 .
(6) B(q,) Bq,,) =

Next, compute

9%

7) T. | f(x) dx (kx = 0,1, ..., K).
Here K is chosen as the least index such that Ty exceeds the largest

representable number less thah 1. (K may be chosen smaller, if one sets

Ty = 1, and il" one is willing to truncate the generated variableby

reducing any value above gq, to the interval [ag _q> Age) +)
Finally, compute

(8) dy, = Gq - 9 (k =1,2,..., K).

For simplicity we define the functions

— - k = 1 2 «ee K).(9) Gy (x) Ba, _, + X) Bq, _1) ( s ’ > )
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Now we present the algorithm. Steps 1 to 3 determine vhich

3 interval [ay _q> a.) the variable y will belong to. Steps 4 to 11
determine the value of' y within that interval.

1. [Begin choice of interval.] Set k €&=— 1. Generate a uniform

| deviate wu.

2. [Test.] If u < ry 80 to step 4.

3. [Increase interval.] If u > ry set kK €—%k + 1 and go back
to step 2.

4. [Begin computation of y in the selected interval.] Generate

another uniform deviate uu and set w &€— ud, .

5. Set t €—G, (vw).
6. Generate another uniform deviate u*.

7. [Test.] If u¥ > t, go to step 11.

8. [Trial continues.] If u* < t, generate another uniform deviate u.

9. [Test.] If u < u*, set t&——u and go back to step 6.

10. [Reject the trial.] If u > u¥, go back to step kL.

11. [Finish.] Return y €—gq, , * w as the sample variable.

i We now show that the above algorithm works as claimed. Since we
assume that each u < 1, the test in step 2 must be passed when k = Kg,

| if not sooner. Hence an interval [ay_1> a, ) is selected, and the values
of r, were chosen to make the probabilities of choosing the various

intervals correct.

Fix k. The remainder of the algorithm can be described as follows:

First, a random number w is selected uniformly from the interval 0 < w < dy -



| Then the algorithm continues to generate independent uniform deviates

u. trom [0O, 1) until the least n is found with

| uy 2 Gylw) (n = 1), or

| (10)

i <
| uo, ZU u <0 < Uy < u, < Gy (w) (n > 2).

With probability 1 such ann will be found, as will be shown. Tf np

1s odd, we return ya 4 + w. If n 1s even, we reject w and

all the wu, choose a new w, and repeat.

| We now determine the probability P(k, w) that one w determined

| in step 4 will be accepted without returning to step 4. [et E(k, w)
be the universe of all events. For n = 2, 3, . .., let E (k, Ww) be

i the event

| u uo u < u, < Gy (Ww)

Then the probability of E(k, w) is given by

1 (n = 1)

| Gy (w)

J dx, (n = 2)| Prob fe (k, w)} = 0

| Gy (W) Pa *n-1

| [ x, / x, | ax (n > 3): 0 0 0

n-1

| ] Gy (W)
(n-1) (all n).

| 5
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The occurrence of (10) is the conjunction of E(k, w) and not-

E 1% w). Since E(k, w) implies E (k, w), the probability
that (10) occurs for a given n gnd w is

n-1 n
G, (w) G, (w

(11) Prob fE (k, w) and not-k .(k, w)po = xX0 x)
(n-1) no!

summing over all odd n, we see that

n-1 n

| > Gy (Ww) Gy (W)(12) P(k, w) = x IS e “Gy (vw)
(n-1) ! no

odd n

Since Ww < d,s we have

1 1 - a <G(Ww) <6 (4) B(q,) B(g,_,) < 1,

whence

fa > \ —~— f- \ . -1
\Lo) Pk, w) > e for all k and w.

-1 : Co

Now d, dg is the probability that w is selected in the interval

E < w < g + dg . (Combining this vith (12), ve see that the

probability that g < w < g + d€ and that w is accepted is given

by

~G. (w) dg(14) Prob {g < w <g+ de and w is accepted} = e UR\W/ 2
dy

Corresponding to an accepted w, we return y = aq, + W as the
sample variable. Hence, from (14), the probability that y is in

N the range x < y < x + dx, for given k, is
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| 1 ~G, (x - qq)
dx

hk

| 1 -B(x) + B(q, .)
: k-1

“x

| 1 B(ay_-)k-1 -1 -B

| = —— Ce C e (x) dx
dy

1

= —f(x) dx, by (4).

iL (ayy)

| That is, ~

| fx) dx
| (15) Prob f x < y < x + dx and y is accepted} =—
| af (a_q) |

Since this is proportional to f(x) dx, we see that any accepted y

has the desired probability density distribution within the interval

[ay _- a) - Since, from (13), the probability of an infinite loop

| back to step 4 is zero, the second half of the algorithm terminates

| with probability 1. This concludes the demonstration that the algorithm

| works as claimed.

5. Efficiency of the algorithm. For a general function b , I

shall derive a representation for the expected number of uniformly dis-

| tributed random variables u that must be used to generate one variable

y “with the probability density proportional to f(x). A similar deriv-

ation is given in [2].

The preliminary game to select k -- steps 1 to 3 of the

algor thm -- requires one u.



The rest of the algorithm is different for each k, and we shall

first determine the expected number N(k) of steps to determine vy.

To do this, we shall first assume that k 1s fixed and that w has

been picked in the interval 0 < w < d,. Define E(k, w) as in Section

2, and introduce the abbreviations

(16) e = e (k, w) = Prob {E_(k, w)} (n=1,2,...)

and

Then, as in Section 2, we have the following expression for the

probability P(k, w) of accepting w without returning to step L:

= ~- — + -— +...p(k, w) = (eg = ey) + (eg = ¢,) + (es = ef)

Moreover, given k and w and given that w is accepted, the expected

number of uniform deviates u needed will be

| -1 6= ~ - -em_(k, Ww) P(k, w) [2(c, e,) + k(e, e),) + (es 6) +. 0
| (18) 1 gt g"

P(k, w) odd n } (n-1) ! n!

Similarly, the probability1 - P(k, w) that w is rejected is given by

| - = - + - + - + ..1 - Pk, w) = (e, = &;) + (eg es) + (eg e) ee

Moreover, given k and w and that w is rejected, the expected number

of uniform deviates u needed is

3



_ -1

mw) = [1 = P(e, WITT [3(ey-eg)+ S(e-eg) + T(egmer) +...)

(19) n-1 n

= — et — (n + 1) .
1-P(k, w) evem nn | {(n-1)! n!

n> 2

Now, if a w is rejected, the algorithm returns to step 4, a

new w is picked, and the process repeats. Let M(k, w) be the

expected number of uniform deviates selected until a y is finally

selected, given a fixed k and an initially chosen w. Then N(k)

is the average of M(k, w) over all w uniformly distributed on

0 < w < dy. .

We have

(20)  M(k, w) = P(k, wim (k, w) + [1 -P(k, w)] [m_(k, w) + N(x),

since, in case w 1s rejected, the whole process is repeated. Using

the expressions (18) and (19) for m_(k, w) and m (k, w), we get
from (20) that

Jo Nel n
g g

M(k, w) = — — (n+l) + [1 - P(k, w)] N(k)
— (n-1)! nl_

= 1+ e® + [1 - p(k, w)] Nk),

or

G, (w)
(21) M(x, w) = 1 + e k + [1 - P(x, w)] N(k) .

Averaging (21) for 0 < w <_d 4 and using (12) , we find that

1 Ay Gy (Ww) 1 dy ~Gy (w)
w0 =1+ — f e dw + N(k) nn — aw | .

dy 0 4 0



Solving for N(k), we get

dy G, (WwW)
d + e K dw
k

0

(22) Nk)=7""" °

%  -q, (w)

[ e k dw
0

Finally, the expected number N of uniform deviates drawn in the

main game until a y is returned is the average of N(k) over the

intervals, weighted by the probabilities of selecting the various intervals.

That is,

0

(25) N = > N(k) [r, - 7,1 .
k =1

If we make use of (4), (7), and (9) to express N in terms of B(x),

we obtain the ugly represcaration q-B(q q ko

oo dy + e k-1 J K B(x) dx J. e B(x) dx- Ay-1 9k-1

N= Ba) a x -Bla q - -
.  k-1 ko B(x) In . B(x) dx

k = 1

k-1 0

(2h)

© 9k -]

= d .~Bla, _) + «28a, _1) | B(x) y© > k
k=1

0

10
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4. Special case: exponential distribution. If b(x) = 1

| in (1), then B(x) = x and y(x) = e +, corresponding to the exponential

distribution treated in [3]. For the algorithm of Section 2 we have

dy = k, d, = 1, ry = 1 - e™F , and Gy (x) = x, for all k. Since dy
and Gy (x) are independent of k, steps 4 to 10 of the algorithm are
the same for all k. They can therefore be carried out independently of

steps 1 to 3. By (12), the probability that a chosenw is not accepted

is 1 -Plk, w)=1-¢e " (for all k), and the average value of 1 - e "

over 0 < w < 1 1s et.

If the preliminary game of steps 1 to 3 were played, the interval

[k - 1, k) would be selected with probability ry = Ty 5 = e Lo (td) =
e~5(1 - e hy, for k=1,2,.... Thus the interval [O, 1) would be

accepted with probability 1 = et and rejected with probability at

tor k =1,2,..., if [k-1, k) is rejected, then [k, k+l) would be

accepted with probability 1 - et, and rejected with probability ot.

Since the rejection ratio for each interval has the same value at,

which is the a priori probability of rejecting in the main game any w

selected in step 4, von Neumann could use the rejection of w as the

signal to change the interval from [k-1, k) to [k, k+l). Thus the

preliminary game of steps 1-3 is unnecessary for the exponential distri-

bution. This made von Neumann's game very elegant. I know of no com-

parable trick for general b(x).

From (22) and (23), since N(k) = N, we see that for the expon-

ential distribution

(25) N = lee) Ley = 4.30026
l - e 1 -e

11



3

: as stated in [1]. There was an error in [3].

>. Special case: normal distribution. If b(x) = x in (1),
N 2 -

3 then B(x) = x /2 and f(x) = Vv 2/ e™ /2 , corresponding to the

| positive half of the normal distribution. For the algorithm of Section

2 we have

dg = 05a; = 1, + ves q = (Jk- 1 (k> 2).

Hence

a; =1,d,=J35-1,...,4a = ex -1 - Jox - 3 (k > 2).

Also,

2
X

2

The values of r= must be computed from the probability integral. The

table below gives l5-decimal values of gq, &, r,, and N(k) for k =

2, .+., 30, as computed in Fortran on Stanford's IBM 360/67 computer

in double precision.

To generate normaldeviates, one selects XK and prestores the

values of Lys Gyo and dy for k = 1, 2, . .. , K. Then set q, €—0 and

a, €=1. (The limit K = 12 permits normal deviates up to + 5.0 to

be generated, and the deviates will be truncated less than once in a

million trials. A higher limit will decrease the probability of trun-
q

cation.)

i As suggestedin [2], one should start the algorithm with a pre-
liminary determination of the sign of the normal deviate. We do this

12



in steps N1-N3 of the following algorithm. At entry to Step Ni, u is

| a uniform deviate on the interval [O, 1). The rest is the algorithm

ol" Section 2, with the sign appended in the last step.

Nl. [Begin choice of sign and interval.] Set k €=— 1, Generate a

uniform deviate u on [0, 1). Set u © 2u.

N2. [Test for sign.] If u < 1, set s €= 1 and go to step Ni.

N5. If u > 1, set sé -1, and set u€=—u - 1.

Niu. [Test for interval.] If u <_rys go to step Nb.

N5. [Increase interval.] If u > ry set k €=—%k + 1 and go back

to step N4.

N6. [Begin generation of |y| in the selected interval.] Generate

another uniform deviate u on [0, 1) and set w€— ud, .

NY . Set © €a, (v).
N8. Generate another uniform deviate u¥*¥ on [0, 1).

N9. [Test.] If u¥ > t, go to step N13.

| N10. [Trial continues.] If u¥ < +t, generate another uniform deviate

u on [0, 1).

N1l. [Test.}] If u < u¥, set t &u and go back to step NS.

N12. [Reject the trial.] Ifu >u*, go back to step NO.

Nis. [I'inish.] Return y €=— s( Gq V w) as the sample normal variable.

As in Section 3, we let N(k) be the expected number of selections

of uniform deviates in steps N4-N13, as a function of k. We have

from (22):

13



: 1 + / e” /2 dw
0

Nr) = vv 00000000 )
1 2

| eV /2 dw
0

9
3 2

dy + o /2 -k / VW /2 dwa.
: k-1

Nk) = 0000vK-L000000 (k > 2).
ye —

5 2
k-"/2 -

e / / e v /2 dw
U-1

Numerical values of N(k) are given in the table. Using the asymptotic
formulas

Xx + h X + h
- 2

+70 e /2 1
e —- at ~ |——m———— 1 + 5 5 85 X=——do ,

X X

X -

X

one can show that

© [

L k —> o 1 -e

cf. (25). The equality (26) was written to me by U. Dieter.

I have used the same computer to establish that
©

N = 2 Nk) (r, = v1) FT 3.03585 ,
k = 1

= so that the expected number of uniform deviates chosen in order to

gelicrate one normal deviate is 1 + N = 4.03585 .

14
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3 The correctness of this algorithm for generating normal deviates,

as well as the value of N, have been confirmed in unpublished experi-

ments by A. I. Forsythe and independently by J. H. Ahrens.

6. Comparison with the Center-Tail method of Dieter and Ahrens.

In [1], Dieter and Ahrens give a related but different modification of

the von Neumann idea for the generation of normal deviates. There are

only two intervals, the center and the tail, and the algorithms are

quite different for the two. The expected number of uniform deviates

needed is near 6.321, and computation of-a square root is required in

approximately 16 per cent of the cases.

The algorithm of Section 5 above requires no function call, but .

its main advantage over the Center-Tail method lies in requiring about

| two-thirds the number of uniform deviates. ' This should be reflected

| in a shorter average time of execution.
| The Dieter-Ahrens algorithm for the center interval closely resembles

_ my algorithm for each interval, and the proofs are very close to those

given above. The big difference is that in [1] all variables us have

the cumulative distribution function x° (0 < x < 1), and the com-
parisons are of the form

“nel = Un Up SoH SLL SW Sw <u

In contrast, in this paper all variables u, have uniform distributions

and the comparisons take the form (for the principal case k = 1):

uw,
Uo,q > u < ug < wos < +... < ug < u, < — \

15



Changing the distribution function in [1] costs an extra uniform deviate

and a comparison for each wu,, whereas forming u,/2 = G(w) in

section 5 is done only once for each chain of u's. Moreover, the

fact that u,~/2 is usually small means that most of the time

u, > u,/2 and hence uy is accepted immediately. This contributes

to keeping N low in my algorithm. Finally, the use of Gy (w) makes

it possible to use the von Neumann technique in any interval in which

Gy (w) can be evaluated.
In a more recent manuscript [2] Dieter and Ahrens have improved

their Center-Tail method sO that the comparisons are simpler and the

expected number of uniform deviates needed is reduced to near 5.236.

According to the authors, the improved Center-Tail method is still some-

what slower than my algorithm.

7. Further generalizations. Let f(x) (= < x < oo) be the

probability density function of a random variable F. Under what con-

ditions on f could the von Neumann idea be applied to pick a sample

from F? It is sufficient that the interval (~o , ©) be the union

of a set of abutting intervals IN [ay _1> a] (k = ..., 2, -1,

0, 1, 2, . ..) such that in each closed interval I, either f(x) = O

or the following three conditions all hold: f(x) > 0, f is absolutely

continuous, and f 1s monotonic.

Then a preliminary game can be played to select an interval I

If b(x) =- f'(x)/f(x) > 0 in I, the algorithm of Section 2 can

be adapted to select a value in I with a density distribution propor-

tional to f(x). (It may be necessary to subdivide I, so that (5)
and (6) hold.)

| | 16
|
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If b(x) < 0 in I change x to -x and follow an analogous
algorithm.

The niain practical difficulties of the algorithm are these:

(a) One must evaluate various integrals like J. f(t) dt,
in order to determine the parameters needed to pick the

intervals Ty during execution, and to evaluate the needed

ys Gyo and d, - These computations have to be done only

once in designing the algorithm.

(b) One must evaluate Gy (w) for arbitrary w in [O, d, |

during each execution of the algorithm. Note that

Gy (w) = Blay_y + w) - B(qy ,)

Ea Hel pn)
= b(t) dt = = — dt| | rt)

9-1 Ik-1

= An [er] .fla,_, + w)

cinee only (b) iu done on-line, the success of an algorithm would

seem Lo depend only on the ability to evaluate 4n f(x) rapidly. We

thus cee that having f(x) = C exp ( © (x)) (and hence a solution of

an equation of type (1)) is of great practical advantage, but it is

not essential in principle to the use of von Neumann's idea.

17
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