
x STANFORD ARTIFICIAL INTELLIGENCE PROJECT
© MEMO AIM-159

_.
STAN-CS-253-72

Ny

: TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS
) BY

| J. A. FELDMAN

P. C. SHIELDS

|
| SUPPORTED BY
|

4 NATIONAL SCIENCE FOUNDATION

) AND

|) ADVANCED RESEARCH PROJECTS AGENCY
yg ARPA ORDER NO. 459

APRIL 1972

| COMPUTER SCIENCE DEPARTMENT
| | School of Humanities and Sciences

EB STANFORD UN IVERS ITY
| - FROIN,

STANFORD ARTIFICIAL INTELLIGENCE PROJECT APRIL 1972
x MEMO AIM-159

A.

"COMPUTER SCIENCE DEPARTMENT

REPORT CS-253

«

TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS

C

by

0 J. A. Feldman and P. C. Shields

d

ABSTRACT: Axioms for a total complexity measure for abstract programs

| are presented. Essentially, they require that total complexity
be an unbounded increasing function of the Blum time and size

measures. Algorithms for finding the best program on a finite

| domain are presented, and their limiting behaviour for
infinite domains described. For total complexity, there are
important senses in which a machine can find the best program

for a large class of functions.
[_-

This research was supported in part by the National Science Foundation
and the Advanced Research Projects Agency.

The views and conclusions contained 1n this document are those of the

: author and should not be interpreted as necessarily representing the official

policies, either expressed or implied, of the Advanced Research Projects
| Agency or the National Science Foundation.

Reproduced in the USA. Available from the National %echnical Informa-
tion Service, Springfield, Virginia 22151. Price: Full size copy
$3.00; microfiche copy $0.95.

—————————————EEEEEEEEEE

We are primarily concerned, 1n this paper, with the question of

| when a machine can learn a program from samples of its input-output

| pairs. This problem of program inference is closely related to the

problem of grammatical inference, which has received a fair amount of

consideration [2]. There are, in the grammatical inference literature,

< many results and discussions which can be carried over to program

inference. This paper arose out of an attempt to carry out what we

believed to be a trivial reworking of some of the results of [7]

« for programs. In fact, the results on programs turn out to be significant-

ly ‘different; we will discuss this issue further below.

We are interested in modelling the following situation. A

¢ machine M recelves at each time t , an input-output pair (x,y)

from an unknown program P in a known class ¢ of programs. At

) each time, the machine 1s to guess some P&C as the best program
L for the finite number of input-output pairs seen so far. We show that

there are reasonable conditions under which M can guess the best

program at each finite time and also have good behaviour in the limit.

8 To do this, we need a formal notion of "best" program.

" The key to our development 1s the combined complexity measure

Lo including both program size and running time. Many of the difficulties

y arising in other axiomatic treatments of complexity are elided 1n the

L combined complexity approach.

| More formally, our results will be formulated for programs. A
! program can be taken to be any formal computational scheme for

| evaluating a recursive function , such as a Turing machine descrip-
tion. To simplify the discussion it 1s assumed that the input and

- output of a program are both positive integers. The graph .&(P)

of a program P is the set of all pairs (x,y) such that P is

3 defined for x and the output of P given the input x is vy .

LC A sample S of a program P is a finite nonempty subset of %(P).

| The class @denotes a class of programs which can be effectively

| enumerated by an admissible [17] enumeration, such as the class of all
| ’ Turing machines, the class of FORTRAN programs, or the class of loop

| programs [19]. An inference machine M = M, 1s any formal effective
| procedure for inferring programs from finite samples, that 1s, M

= is defined on the set of samples {8} of programs in¢ and M(S)

1s a program 1n @ . We will always require that S is a sample of

M(S) , that is

8 (1) 2(M(8)) 2 8

| Various complexity measures have been discussed, 1n particular

A program running time and program size (see [12] for a discussion of

| recent results). We wish to discuss measures of program complexity

: which take into account both the size and running time of programs.

The simplest such measure 1s the product of size and running time.

a Other measures are also useful. In order to obtain general results

| we shall describe a complexity measure as any function satisfying a

N simple set of axioms. The axioms for size and running time'are the

same as those discussed in [12], while the axioms for a combined

complexity measure are equivalent to those in [7].

: First we assume that the program size or length L = La
satisfies the conditions

(2) There 1s an effective admissible enumeration (®,} such
~ such that

| yi

.

E (a) r(n) = L(P_) is a recursive positive integer valued

] total function

(b) For each n , the set K = {m|r(m)= n} is finite

(c) The function r(n)= cardinality of K 1s a recursive

i function.

The running time T(x,y,P) is a positive effectively computable

rational function and is defined if and only if (x,y) is in the

{ graph of P . There 1s a related recursive function

a(x,y,P,m) = }O if T(x,y,P) <m

1 otherwise

: We also assume that the combined running time T(S,P) 1s of the form

where¢ 1s a recursive function. The related function

D(S,P,m) = YO if T(S,P) < m

1 otherwise

1s then recursive.

Let ¢ be a positive recursive rational valued function of two non-

| negative rationalvariables which 1s increasing and unbounded in each

: variable. The complexity measure C = Ca, is then given by

c(s,P) = c(n(P),T(s,P)) , sc &(P)

; Examples The size L(P) might be the number of symbols used to write

; the program in some alphabet or the number of symbols on the tape of

a universal Turing machine needed to describe a simulation of the

program. Some plausible L(P) are excluded because of the require-

: ment that there be only a finite number of programs of each size.
For example, the number of statements in a FORTRAN program or the

; nesting depth of loop programs would not, as normally defined,

| satisfy (2b). Size measures which take structure into account are
| discussed in [2,6] for grammars.

| For a given pair (x,y) the running time P(x,y,P) could be

| the time the program P uses to derive output y from input x
; (possibly also including the time for reading x and printing vy).

Other possibilities are the number of moves or number of tape cells

scanned by a Turing machine, the number of instructions executed by

the program. One can also normalize by some function of x and y ,

| for example, T(x,y,P) could be actual running time divided by

| The general function T(S,P) can be obtainedfrom T(x,y,P)
| in many ways, for example we could take T(S,P) as

| max M(x,y,P) or & T(x,y,P)
| (x,y)€S (x,y)€S

| or as an average of T(x,y,P) , (x,y)€S

| The possibilities for the function ¢(L,T) are very large, for

example each of the following satisfy the hypotheses for c :

(Le)(+1) , mo, (ze) (TFL)

Notice that the simple product LT doesn't satisfy the hypotheses for

it 1s not unbounded 1n L when T=0 . We impose this requirement so

as to simplify some later arguments. The very general nature of the

function c¢ precludes the possibility that all complexity measures are

4

“

recursively related, a result which is true both for the length

L(P) and time T(x,y,P) . (See [12])

| Remark 1

| Although the results below are quite general, some care must be

used in applying them to actual inference situations. A major considera-

| tion 1s to choose measures which do not degenerate into strictly time

| or strictly size in the limit. For example, S T(x,y,P)
| (x,¥)€ES

may be unbounded is S gets large or the average of (time/length)

| may go to zero with large S . Depending on the choice of

c(L(P), T(S,P)) either situation could lead to degeneracy. One

| must also choose complexity functions which reflect the intuitive

meaning of the problem.

Our later proofs make use of the fact that the programs can be

| ordered in terms of increasing size. An Occam's enumeration ofC

| relative to Linls an admissible enumeration (P;} satisfying

(4) L(P,) < L(P,) if i <3 .°

It is obvious from (2) (b), (c) that a machine can find an Occam's

| enumeration relative to L . One consequence of this 1s the following

| simple result:

Lemma 1 Given a complexity measure C = ¢(L,T) on the infinite class

| ¢- and an Occam's enumeration of @ relative to L then for any

sample S of some P € ¢C , there is an index k such that if

| J > k then either

;

_

(5)(a) ~~ c(s,P;) > C(S,P)

| or
L

(b) S isnotasampleof P..
J

" Proof This 1s a consequence of the assumption that c¢ 1s 1ncreasing

and unbounded in each variable. We merely choose k as the first

index for which

-

c(L(P,), 0) > C(S,P)

If J >k and S 1s a sample of P. then (4) guarantees that
| P.) > L(PC L(Ps) 2 L(R)

and hence

= T(S,P.c(s,P;) e(L(P,), (8, 5)

N > e(L(P,), 0) > c(s,P)
This proves the lemma.

Now we prove the following general theorem.
.

Theorem 1 Given a complexity measure C(S,P) on a class @there

C 1s an inference machine M = My which infers programs of minimum
complexity, that 1s, if S is a sample of some program in ¢ ,

then S 1s a sample of M(S) and for all P& for which S is a

sample of (P)
L

(6) c(s,M(s)) < c(s,Pp)

LE

6

L

| Proof The intuitive idea for the proof 1s as follows: Run Ps By co. Py

3 on S for time t , successively incrementing t until some Ps , 1 <%
runs successfully in time t . Then one need look at no programs

whose total complexity exceeds C(P,,8) , hence one need examine only

8 a finite set of programs (cf. Lemma 1) and pick the best one.

To formally construct M we first assume an Occam's enumeration

for @relative to length L . Then

nN

Step 1 Calculate D(S,P;,t) , 1<i<t. If D(8,P;,t)=1 for

1 <i<t, increment t by 1 and repeat Step 1. Otherwise let

| ty be the first t for which D(S,P;,t)=0 for some 1 <1 <t%

and let" i, be the first i , 1 <i £ ty for which D(8,P;5t4)=0

and proceed to Step 2.

Step 2 Use Lemma 1 to calculate k so that if j > k and S is a

sample of Po then

« C(S,P;) > C(8,P;)
0

_ Step 3 Compute the first integer m > ty such that

¢(s,P,) < c(0O,m)
i

0)

~ Step 4 Let G(S) denote the set of those j, 1 < j < k for which

D(8,P4,m)=0

~ Steph p u t e C(8,P;) , J € G(8)

/

“

——<eEEEEEEEEE

| Step6 Let i be the first i € G(S) such that

- C(s,P;) = min {C(8,P,) | J € G(8)}

| and put M(S) = P.
| 1

1

Let us show that M(S) has the desired properties. M* need

choose no program with complexity greater than c(s,P,;) Step 2
| 0

rules out programs which are too long while Step 3 rules out programs

o which take too long to run on S , hence 1f j ¢ G(S) then either

S is not a sample of P. or C(S,P) > c(s,p;) so (6) holds forJ 0

M(S) . This proves the Theorem.

\ - The machine M constructed in the proof of Theorem 1 will 1n

certaln cases have reasonable convergence properties as the sample

size increases. An information sequence J(P) is a sequence whose

LS range is &(P) . An initial segment S is the sample

s, =); |1<i<n)

‘ Given an information sequence J(P) , Pg , the machine M will
eventually be correct on any input for which P 1s defined, that is

(7) If (x,y)e4(P), then there is an N such that (x,y)e8(M(s,))
L for n > N .

- This follows easily from the fact that Sc & (M(S)) and that (x,y)es
n

for large enough n .

It may not be possible to obtain &(P) c &(M(8))) for n
| large. If f 1s a recursive total function then it may happen that

any program for f has such rapidly growing running time that M(s,)

ge will be merely a table for Sh . In other words, if the running times

8

3 for programs for ff are all unbounded then size becomes irrelevant

3 in the complexity measure. If the running time 1s bounded then the

| machine of Theorem 1 will eventually pick only programs which agree
with f wherever f is defined.

Theorem 2 Suppose g(P) 1s an 1nformation sequence for some program

PEC and that c(s,sP) is bounded as me . Then for the machine

M of Theorem 1, we will have
L

Z(M(s)) > 4(P) for n large enough.

L- Proof Let i, denote the first index i for which &(P,) > 4(P)

and c(s, > P.) is bounded as mw . Put b = lub c(s, By) and
choose K so that

I
C(L(P,),0) > b

. The programs P_ for k > K will never be M(s,) for their complexity

I must be larger than that of "1, on 5S, . Furthermore if k < K
| and &(P,) 4 &%(P) , we can choose n_ so that On will not be a
- sample of &(P,) . Thus if n is large enough, M(s) must be one

of the programs P., for which i <K and 4(P,) > &(P) . This proves
" the theorem.

Notice that if P 1s total, M(S) will eventually be only P

such that &(P,) = %(P) . This behaviour is called matching in the
literature on grammatical inference [7].

| Corollary Suppose that for all information sequences J(P) 'of a

B given P € C , the limit

v(P) = lim c(s_,P)

exists for all P such that %(P) > 4%(P) . Let yv be the minimum of

| . these y(P) . Then for n sufficiently large, v (M(s,) =v .

| Proof As the proof of Theorem 2 indicates, there is a K such that

ns for all n , M(S) 1s one of the programs Pp, , 1 <1 < k , and for
n large enough

3(4(s,)) 2 3(P)

i Suppose i < K and &(P,) 2 4(P) , v(P;) =v . If § <K,

| HP.) > 4(P) and v(P;) >y then for n large enough

| c(s_,P.) >(y(P. 2N (5,52,) >(R) + v)/

SO M(s,) will not be 2. - This proves the Corollary.
Theorem 2 can be applied in any case where the program has

B bounded running times. A slight modification enables one to use this

| | result in the case when a bounding function for the running time is

| known. To simplify our discussion we shall assume that

(8) T(S,P) = max T(x,y,P) .
(Xx,)€S

We could extend our results (Theorem 3) to more general ¢ , but the

~ extensions do not seem to warrant the additional complexity of proof.

We continue to search the right generalization of Theorem 3. A

recursive total function b of two variables, which 1s increasing

~ in both 1s called a bounding function. The running time of P € C

10

“

| is bounded by b if there is an a >» 0 such that

T(x,¥, P) <ab(x,y) ’ (x,y) € &(P)

We will call the least such «o the bounding constant of P . A

bounding function gives rise to a new running time Ty defined for

(x,y) € &(P) by

I (x,¥, P) = T(x,¥, P)/b(x,y)

O and for Sc &(P) by

I, (S,P) = max I (%,¥, P) .
(x,y)€s

This in turn gives rise to the complexity measure C defined by
C

C, (8,P) = c(L(P), T, (S,P))

Thus 1f samples S are drawn from a program P which is known

[to have 1ts times bounded by a bounding function b , then one can

choose programs M, (s) ofminimal Cy complexity and know that

(1 (5)) 2 4(P)

| 1f the sample S is large enough.

| Remark 2 There are a number of classes of computations with known
| bounding functions in terms of various types of programs or machines

= [13]. The complexity measure C, will be more sensitive if the
bounding function chosen 1s a tight one. Thus, 1f we know a computa-

tion has polynomial bounds we should try to find the particular

. polynomial rather than just choose some b that grows faster than any

| polynomial. A bounding function that is too large may give rise to
degenerate measures, of Remark 1.

11

: It may even be possible to infer a good bounding function as

a part of the general procedure for program inference. Here we describe

one method for doing this. Suppose (b,} is a sequence of bounding

functions satisfying b, = 1, b, (x,¥) <b (5y) and
.. Db

XH bq Xo Yeo b,. (57)
We will now show how to infer both a bounding function and then good

programs which run on the sample in that bound.

Theorem 3 Let @ be a class with complexity measure C (where

i T(S,P) is given by (8)) and let {b, } be a sequence of boundingbw

functions (satisfying (9)). There is an inference machine M which
|

will, for any information sequence J(P) , P € ¢ , infer both a

4 sequence of positive integers (k and programs M(s,) such that
| (a) M(s_) is a program in ¢ of least C,. complexity

| k
| n

~ whose graph contains SH .

If, furthermore, there 1s some program P such that &(P) © &(P) and

P has its running times bounded by some by , then for n large gpough

; (b) k_ =k , a constant

(e) &(M(s_)) 2 &(P)

Broof Let (P,) e an Occam's enumeration for ¢ relative to L .

M will use a sequence lo} / @ being the current guess as to a

follows to obtain k and M(S) :

12

: Step 1 For each 1 , 1 <i <n and k | 1 <k< n,M computes

2 (10) 6,(1k) = max A(%,y,P 50 b, (x,5))
| (x,¥)€8

n

1f 8 (i,k) =1 for 1 <i, k <n then M sets k = 1 and goes
to Step 3. Otherwise M goes to Step 2 .

Step 2 M selects kK as the first index k such that 6 (4k) = 0

for some 1 < k . M then selects i as the first index such thatYay

8 (ik) = 0 . M then selects k_ as the least integer such that

6, (1, 5k) = 0 and goes to Step 3 .

C.

Step 3 If 8 ,(1,k) = 0 for some 1 and k 1 <i<n, 1<k<n
. and if 1 =i < —

“ 1 for some m n then M sets Ai =a, Other~

C wise M sets Aq = 1 ta .

Step4 M selects M(s,) as the best program using the algorithm of

4 Theorem 1 with the measure Cy .
k

- n

i Let us now show that (a), (b), (¢) hold. Condition (a) follows
. directly from that fact that Step 4 uses the algorithm of Theorem 1 .

| Consider the set R of pairs (i,k) such that b, bounds the
running time of Py and &(P;) 2 4(P) . We will show that if R

. 1s not empty then (b), (c) hold. Towards this end let (1,5) be

| the palr in R which minimize the maximum of 1 and k for
u

(i,k)ep . (In case of ties we choose the one which comes first in

the lexicographic ordering of pairs).

13

: We let ah be the least constant such that

| d(x,7,Pasas bp(x,y)) = 0, for all (x,y) € &(P)

: and consider two cases

Case1 The machine M makes at least ah different guesses of i)
In this case for n large we always have 5, (1,%) = 0 . If

3 1s not oh it 1s because there 1s an (i,k) pair found first. In
« particular we have i < ko < max 4.4 so that «, must be eventually

constant. By our choice of (1,4) any pair (i,k) of lower max{i,k}

will eventually be rejected because &(P,) doesn't contain %(P)

C or because 8, (1,k) = 1 for all k such that max{i,k} < max (1,1) .

Thus 1n Case 1, 1, will eventually be 4 and k will eventually
be k .

L

Case2 The machine M makes a different guesses of i and
a <a .

fl In this case we consider the class R of pairs (i,k) with the
following properties

L 1) 8(2,) 24(2)

] ii) a(x,y,P, a b, (%,¥) = 0 , for all (x,y)ex(P)
If ® were empty M would make more than a guesses. It 1s easy

5 that 1f n 1s large enough we will have i =71 and k = Kk where

(1,X¥) = min max {i,k}
_ (1,k)&8

where tiles are again broken by taking the least number in the lexicographic

order. This completes the proof of Theorem 3 .

1h

———————————

| One might think that Theorem 3 can be formulated so that M
3 can actually infer the least integer k such that some program whose

~ graph contains %(P) has its running time bounded by bo . We
suspect that this cannot in general be done.

'\

Example Suppose £5 r, are recursive functions such that there are

programs P(f), P(f,) which compute each argument in time...b. sand b,,
respectively, and that no program does better for infinitely many

C

arguments. Let

| rn) = fi (k) , n= 2k-1f
f,(k) , h=2k

and consider the sequence of programs p(1) such that

B p(1) uses P(f)) to compute for n odd, is undefined for
C n=2k, k>1i, and computes f£(2k) , k <i by a table.

Thus the program length Lei) will be unbounded, yet the running

time of pli) will be bounded by b, . If an inference scheme considers
only a bounded number of programs one may be able to infer that f

“

| can be computed in by time for some k > 2 . If, however, the
| scheme considers more and more programs, one eventually encounters

[the p(1) which would cause the erroneous guess of time bound by .
We have not been able to convert examples of this sort into a

| proof that no machine can always find the lowest k for which there
| is a Ps with Z(P) < £(P;) and T(S_, P,) < b, (8) However, we do
| know that any machine that attemps to always find the lowest possible

k will have to look at arbitrarily many Ps for some functions.

~ This can be forced by taking some function of class k and replacing

- 15

it on a finite number of arguments with a function of class k+1 .

5 This suggests the following modification to Theorem 3.

: We supply the machine M with an auxiliary function A(%,k)

which maps a size and a bounding index into a size. This tradeoff

3 function Ag,k) determines the size of program to be considered in
o

searching for an improvement to an answer P, of size 4 and complex-
ity index k . Intuitively, A(g,k) says that the user of the inference

C machine M prefers a program of class k-1 and size A(4,k) to a
program of size £4 and class k .

There 1s a "natural" A function derived from the complexity

4 function, namely

A(2 ,k) = first size m such that

C.

c(£,T, (5,P)) > ¢(m,0) .
k

1 The construction for Theorem 3 can easily be modified to include

i A(f,k) . This still does not guarantee the minimum value for k ,
but seems to be a natural model of inference processes.

f
(

Remark 3 There has been a considerable amount of work [12] on

complexity classes of functions. To remain consistent with this work,

we would have to restrict the choice of o(U(T(x,y,P)}) to ones
max

which give the same complexity classes as =? (x,y€S) (Ty, (x3, P,) .
A good choice would be

(x57)€S [8] (x,y)es
This (max + average) measure gives the same classes as max, and also

distinguishes among programs with the same maximum time. Since the ratio

of this measure with the max measure is bounded away from (0 and ,

16

C

Theorem 3 holds for it also. Furthermore, it 1s also bounded away from

EK zero, avoiding the degeneracy problem for the usual choices of C(L,T) .

A The results derived here for programs have a significantly

different flavor from those developed [7] for grammars. A central

1ssue 1n grammatical inference 1s the presence or absence of negative

~ information, 1.e., strings 1n a sample marked as not belonging to the

language being learned. This problem does not arise 1n program inference

for two reasons. With grammars, an answer which generates too many

= strings 1s normally considered wrong, but our constructions allowing

answers whose graph includes that of the hidden function seem quite

natural. This arises from the single-valuedness of functions -

- if (x,y) appears in a sample then no (x,y°) with y # y' can
appear. When &(M(S)) » &(P) , M has simply chosen a program which

may be defined for some arguments where P 1s not. If one attempted

N to extend our results to relations, the problems associated with negative

information would reappear.

The results of this paper should be viewed in the context of a

renewed interest in inductive and scientific (hypothetico-deductive)

inference. In addition to the theoretical work on programs and grammars,

: there is work on predicate calculus [16] and real chemistry [5] .
“

All of these efforts have‘applied as well as theoretical components.

Some of our work on program inference 1s discussed 1n [8] and [1]

and there 1s a fairly ambitious effort underway to infer loop programs
«

from sample traces. Thus far, there has been surprisingly little

carryover from one domain to the other and from theoretical results

C to programs, but a common understanding of the issues seems to be

17

.

j emerging. There are also proposed applications of inference-techniques

2 to pattern recognition [9] and natural language description [1h]

f which provide constant reminders of the weakness of existing results.

~

i ~

N

~

E ~

| 18

1 References

LL [1] Biermann, A., "On the inference of Turing Machines from sample
| computations," C8241, Stanford Computer Science Department,

October 1971.

[2] Biermann, A. and J. Feldman, "a Survey of Grammatical Inference,"
in S. Watanabe, (Ed.), Frontiers of Pattern Recognition.

«

[3] Blum, M., "A Machine-independent Theory of the Complexity of
Recursive Functions," J, ACM 14, No. 2, April 1967, pp.
322-336.

14] Blum, M., "On the Size of Machines," Information and Control 11,
« (1967), pp. 257-265. -

[5] Buchanan, B., E. Feigenbaum, and J. Lederberg, " A Heuristic
Programming Study of Theory-Formation in Science,”

Proc. 2nd ICJAI, London, 1971.

[6] Feldman, J. A., J. Gips, J. J. Horning and S. Reder, "Grammatical
Inference and Complexity," cs 125, Stanford University,
June 1969.

[7] Feldman, J. A., "Some Decidability Results on Grammatical Inference
and Complexity," Information and Control, 1972.

L

[8] Feldman, J. A., "Automatic Programming," (S255, Stanford University,
February 1972.

[9] Fu, K. S., "On Syntactic Pattern Recognition and Stochastic
languages," TR-EE71-21, Purdue University, 1971.

4

b

[10] Gold, M., "Limiting Recursion," J. Symb. Logic 30, (1965),

| [11] Gold, M., "Language Identification in the Limit," Information
L and Control 10, (1967), pp. 447-474.

[12] Hartmanis, J. and J. Hopcroft, "an Overview of Computational
| Complexity," J. ACM 18,3 (July 1971), pp. 444-475.

[13] Hopcroft, J. E., and J. D. Ullman, Formal Languages and Their
Relation to Automata, Addison-Wesley, Reading, Mass., 1969.

[14] Klein, S., et al, "The Autoling System," TR 43, Computer

i Science, University of Wisconsin, September 1968.
[15] Pager, D., "On the Efficiency of Algorithms," J. ACM 17, 4

| (October 1970), pp. 708-715.

[16] Plotkin, G. D., "Automatic Methods of Inductive Inference,"
Ph.D. Thesis, Machine Intelligence Dept., University of

3 Edinburgh, 1971.

[17] Rogers, H., Jr., Recursive Functions and Effective Computability,
McGraw-Hill,” Néw York, 1907.

[18] Simon, H., "Experiments with a Heuristic Compiler," Journal ACM,

. October 1963, pp. 482-506.
[19] Meyer, A. R. and D. M. Ritchie, The Complexity of loop programs,

Proc. ACM 22nd Nat. Conf., Dp. 465-9.

‘

bo -

L

|

|
"

