STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-159

STAN-CS-253-72

TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS

BY

J. A. FELDMAN
P. C. SHIELDS

SUPPORTED BY
NATIONAL SCIENCE FOUNDATION

AND
ADVANCED RESEARCH PROJECTS AGENCY

ARPA ORDER NO. 459
APRIL 1972

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

A —

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-159

APRIL 1972
'COMPUTER SCIENCE DEPARTMENT
REPORT CS-253

TOTAL COMPLEXITY AND THE INFERENCE OF BEST PROGRAMS

by

J. A. Feldman and P. C. Shields

ABSTRACT: Axioms for a total complexity measure for abstract programs
are presented. Essentially, they require that total complexity
be an unbounded increasing function of the Blum time and size
measures. Algorithms for finding the best program on a finite
domain are presented, and their limiting behaviour for
infinite domains described. For total complexity, there are
important senses in which a machine can find the best program
for a large class of functions. -

This research was supported in part by the National Science Foundation
and the Advanced Research Projects Agency.

The views and conclusions contained in this document are those of the
author and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the Advanced Research Projects
Agency or the National Science Foundation.

Reproduced in the USA. Available from the National %echnical Informa-
tion Service, Springfield, Virginia 22151. Price: Full size copy
$3.00; microfiche copy $0.95.

We are primarily concerned, in this paper, with the question of
when a machine can learn a program from samples of its input-output
pairs. This problem of program inference is closely related to the
problem of grammatical inference, which has received a fair amount of
consideration [2]. There are, in the grammatical inference literature,
many results and discussions which can be carried over to program
inference. This paper arose out of an attempt to carry out what we
believed to be a trivial reworking of some of the results of [7]
for programs. In fact, the results on programs turn out to be significant-
ly different; we will discuss this issue further below.

We are interested in modelling the following situation. A
machine M receives at each time t , an input-output pair (x,y)
from an unknown program P in a known class & of programs. At
each time, the machine is to guess some Pjgz as the best program
for the finite number of input-output pairs seen so far. We show that
there are reasonable conditions under which M can guess the best
program at each finite time and also have good behaviour in the limit.
To do this, we need a formal notion of "best" program.

The key to our development is the combined complexity measure
including both program size and running time. Many of the difficulties
arising in other axiomatic treatments of complexity are elided in the
combined complexity approach.

More formally, our results will be formulated for programs. A
program can be taken to be any formal computational scheme for
evaluating a recursive function , such as a Turing machine descrip-
tion. To simplify the discussion it is assumed that the input and

output of a program are both positive integers. The graph &(P)

of a program P is the set of all pairs (x,y) such that P is

defined for x and the output of P given the input x is y

A sample S of a program P is a finite nonempty subset of &(P) .
The class @ denotes a class of programs which can be effectively

enumerated by an admissible [17] enumeration, such as the class of all

Turing machines, the class of FORTRAN programs, or the class of loop

programs [19]. An inference machine M = %3 is any formal effective

procedure for inferring programs from finite samples, that is, M
is defined on the set of samples ({8} of programs in @ and M(S)
is a program in ¢ . We will always require that S is a sample of

M(8) , that is
(1) 2(M(S)) o s

Various complexity measures have been discussed, in particular
program running time and program size (see [12] for a discussion of
recent results). We wish to discuss measures of program complexity
which take into account both the size and running time of programs.
The simplest such measure is the product of size and running time.
Other measures are also useful. 1In order to obtain general results
we shall describe a complexity measure as any function satisfying a
simple set of axioms. The axioms for size and running time'are the
same as those discussed in [12], while the axioms for a combined
complexity measure are equivalent to those in [7].

First we assume that the program size or length L = %3

satisfies the conditions

(2) There is an effective admissible enumeration {Pn} such

such that

(a) r(n) = L(Pn) is a recursive positive integer valued
total function
(b) For each n , the set K = {m|r(m) = n} is finite
(c) The function ;(n) = cardinality of Kn is a recursive
function.
The running time T(x,y,P) is a positive effectively computable
rational function and is defined if and only if (x,y) is in the

graph of P . There is a related recursive function

d(x,y,P,m) = }O if T(x,y,P) <m

1 otherwise
We also assume that the combined running time T(S,P) is of the form

(3) T(S’P) =0 (¥ {T(x’y,P)})
(X,Y)ES

where ¢ 1s a recursive function. The related function

D(S,P,m) = YO if T(S,P) < m

1 otherwise

is then recursive.
Let ¢ be a positive recursive rational valued function of two non-
negative rationalvariables which is increasing and unbounded in each

variable. The complexity measure C = QZ is then given by

C(S’P) = C(L(P):T(S’P))) S_C_-&(P)

Examples The size L(P) might be the number of symbols used to write
the program in some alphabet or the number of symbols on the tape of

a universal Turing machine needed to describe a simulation of the

program. Some plausible L (P) are excluded because of the require-
ment that there be only a finite number of programs of each size.
For example, the number of statements in a FORTRAN program or the
nesting depth of loop programs would not, as normally defined,
satisfy (Zb% Size measures which take structure into account are
discussed in [2, 6] for grammars.

For a given pair (X,y) the running time T(x,y,P) could be
the time the program P uses to derive output y from input x
(possibly also including the time for reading x and printing vy).
Other possibilities are the number of moves or number of tape cells
scanned by a Turing machine, the number of instructions executed by
the program. One can also normalize by some function of x and y ,
for example, T(x,y,P) could be actual running time divided by
Xy .

The general function T(S,P) can be obtained from T(x,y,P)

in many ways, for example we could take T(S,P) as

max T(x,¥,P) s O g T(x,y,P)
(x,y)€S (x,y)€S

or as an average of T(x,y,P) , (x,y7)€s
The possibilities for the function ¢(L,T) are very large, for

example each of the following satisfy the hypotheses for c

(L)(+1) , T, (1) (L)

Notice that the simple product LT doesn't satisfy the hypotheses for
it is not unbounded in L when T=0 . We impose this requirement so
as to simplify some later arguments. The very general nature of the

function ¢ precludes the possibility that all complexity measures are

recursively related, a result which is true both for the length

L(P) and time T(x,y,P) . (See [12])

Remark 1

Although the results below are quite general, some care must be
used in applying them to actual inference situations. A major considera-
tion is to choose measures which do not degenerate into strictly time

or strictly size in the limit. For example, :E: T(x,y,P)
) (X,Y)GS

may be unbounded is S gets large or the average of (time/length)
may go to zero with large S . Depending on the choice of
c(L(P), T(S,P)) either situation could lead to degeneracy. One
must also choose complexity functions which reflect the intuitive
meaning of the problem.

Our later proofs make use of the fact that the programs can be

ordered in terms of increasing size. An Occam's enumeration of ¢

relative to L,is an admissible enumeration {Pi} satisfying

(&

(%) L(P;) < L(Py) if i <3

It is obvious from (2) (b), (c) that a machine can find an Occanm's
enumeration relative to L . One consequence of this is the following

simple result:

Lemma 1 Given a complexity measure C = ¢(L,T) on the infinite class
¢ - and an Occam's enumeration of ¢ relative to L then for any
sample S of some P € ¢ , there is an index k such that if

j > k then either

(5)(3) C(SsPJ-) > C(S:P)

(b) S isnotasampleof Pj'

Proof This is a consequence of the assumption that c is increasing
and unbounded in each variable. We merely choose k as the first

index for which
c(L(Pk), 0) > c¢(s,P)

If J >k and S 1is a sample of Pb then (4) guarantees that
L(PJ.) > L(Pk)

and hence

C(S,PJ.) e(L(P,), T(S,PJ-)

v

c(L(PJ.), 0) > ¢(s,P)

This proves the lemma.

Now we prove the following general theorem.

Theorem 1 Given a complexity measure C(S,P) on a class @ there
is an inference machine M = %} which infers programs of minimum
complexity, that is, if S is a sample of some program in & ,

then S is a sample of M(S) and for all P2 for which S is a

sample of (P)

(6) c(s,M(s)) < c(s,P)

Proof The intuitive idea for the proof is as follows: Run Pl,P2 .. By
on S for time t , successively incrementing t until some Pi , 1<%
runs successfully in time t . Then one need look at no programs
whose total complexity exceeds C(Pi,S) , hence one need examine only
a finite set of programs (cf. Lemma 1) and pick the best one.

To formally construct M we first assume an Occam's enumeration

for @ relative to length L . Then

Step 1 Calculate D(S,Pi,t) , 1<i <t . If D(S,Pi,t)=l for
1 <i<+t, increment t by 1 and repeat Step 1. Otherwise let
to be the first t for which D(S,Pi,t)=0 for some 1 < i <t

and let* i

0 be the first i , 1 <i <t

o for which D(S,Pi,to)-—"O

and proceed to Step 2.

Step 2 Use Lemma 1 to calculate k so that if j > k and S is a

sample of PU then

C(S,PJ.) > c(s,PiO)

Step 3 Compute the first integer m > to such that

c(s,p;) < ¢(0,m)
0

Step 4% Let G(S) denote the set of those j, 1 < j < k for which

D(S,Pj,m)=0

Stephp ut e c(s,PJ.) , J € G(8)

Step 6 Let il be the first i € G(S) such that
c(s,P;) = min {C(8,Py) | 5 € G(s)}

and put M(S) = P,
1

Let us show that M(S) has the desired properties. M- need

choose no program with complexity greater than C(S,Pi) . Step 2
0
rules out programs which are too long while Step 3 rules out programs

which take too long to run on S , hence if j € G(S) then either

S is not a sample of JP. or C(S,PJ.) > C(S,Pi) so (6) holds for
0

M(S) . This proves the Theorem.
The machine M constructed in the proof of Theorem 1 will in
certain cases have reasonable convergence properties as the sample

size increases. An information sequence J(P) is a sequence whose

range is %(P) . An initial segment S 1is the sample
s, =M@((@);|1<i<n)

Given an information sequence 4(P) , P& , the machine M will

eventually be correct on any input for which P is defined, that is

(7) If (x,y)e%(P), then there is an N such that (x,y)€$(M(Sn))

for n 2 N .

This follows easily from the fact that Sc & (M(S)) and that (X,Y)Gsn
for large enough n

It may not be possible to obtain ,&(P)c_,&(M(Sn)) for n
large. If f is a recursive total function then it may happen that
any program for f has such rapidly growing running time that M(Sn)

will be merely a table for Sn . In other words, if the running times

for programs for

f are all unbounded then size becomes irrelevant

in the complexity measure. If the running time is bounded then the

machine of Theorem 1 will eventually pick only programs which agree

with f wherever f is defined.

Theorem 2 Suppose g(P) is an information sequence for some program

PE® and that C(Sn,P) is bounded as m» . Then for the machine

M of Theorem 1, we will have

.&(M(Sn))g.&(P) for n large enough.

Proof Let io denote the first index i for which .&(Pi) 2 &(P)

and C(Sn, Pi) is bounded as M . Put b = 1yb C(Sn, P,) and

choose K so that
C(L(PK),O) > b

The programs P, for k > K will never be M(Sn) for their complexity

must be larger than that of P. on S
0
and .&(Pk)é,&(P) , we can choose n_ so that S

Furthermore if k < K

will not be a

sample of .&(Pk) . Thus if n is large enough, M(Sn) must be one

of the programs P, for which i < K and .&(Pi) > 4(P) . This proves
the theorem.
Notice that if P is total, M(S) will eventually be only p,

such that ,&(PJ.) = %(P) . This behaviour is called matching in the

literature on grammatical inference [7].

Corollary Suppose that for all information sequences J(P) 'of a
given P € C , the limit

v(®) = 1m c(s,F)
exists for all P such that &(F) 2 4(P) . Let y be the minimum of

these y(P) . Then for n sufficiently large, y(M(Sn) = v .

Proof As the proof of Theorem 2 indicates, there is a K such that
for all n , M(Sn) is one of the programs P, , 1< i <k, and for

n large enough
u(s,)) 2 5(p)
Suppose i < K and .&(Pi)g.&(P) , y(Pi) =y . If j <K,
.&(P_.J) > %(P) and y(PJ.) >y then for n large enough
C(8,5P;) >(v(By) + v)/2

SO M(Sn) will not be P-;| . This proves the Corollary.
Theorem 2 can be applied in any case where the program has
bounded running times. A slight modification enables one to use this

result in the case when a bounding function for the running time is

known. To simplify our discussion we shall assume that
(8) T(S,P) = max T(x,y,P) .
(x,y)€s

We could extend our results (Theorem 3) to more general ¢ , but the

extensions do not seem to warrant the additional complexity of proof.

We continue to search the right generalization of Theorem 3. A
recursive total function b of two variables, which is increasing

~ in both is called a bounding function. The running time of P € C

10

is bounded by b if there is an o > 0 such that

T(x,y, P) <ab(x,y) , (x,y) € &(P)

We will call the least such ¢ the bounding constant of P . A

bounding function gives rise to a new running time Tb defined for

(x,y) € &(P) by
Tb (x,y, P) = T(X:y’ P)/b<X3Y)
and for Sc &(P) by

T (S,P) = max T (x,y, P) .
° (x,y)€8 b

This in turn gives rise to the complexity measure Cb defined by

Cb(S,P) = C(L(P)9 Tb(S’P)>

Thus if samples S are drawn from a program P which is known

to have its times bounded by a bounding function b , then one can
choose programs Mb(S) ofminimal Cb complexity and know that
20 (5)) 2 &(P)

if the sample S is large enough.

Remark 2 There are a number of classes of computations with known

bounding functions in terms of various types of programs or machines

[13]. The complexity measure Cb will be more sensitive if the

bounding function chosen is a tight one. Thus, if we know a computa-
tion has polynomial bounds we should try to find the particular

polynomial rather than just choose some b that grows faster than any

polynomial. A bounding function that is too large may give rise to

degenerate measures, of Remark 1.

11

r—

M will use a sequence {cvn] ;o

It may even be possible to infer a good bounding function as

part of the general procedure for program inference., Here we describe

one method for doing this. Suppose {bk} is a sequence of bounding

functions satisfying b, =1, bk(x,y) <_bk+l(x,y) and

(9) lim Pk(x = lim “k(x ¥) <0
o bk+l Xy - P bk+l X,y

We will now show how to infer both a bounding function and then good

programs which run on the sample in that bound.

Theorem 3 Let @ be a class with complexity measure C (where

T(S,P) is given by (8)) and let {bk} be a sequence of bounding

functions (satisfying (9)). There is an inference machine M which

will, for any information sequence J(P) , P € ¢ , infer both a

sequence of positive integers {En] and programs M(Sn) such that

(a) M(Sn) is a program in ¢ of least Cy complexity
k

n
whose graph contains Sn .

If, furthermore, there is some program P such that &(P)< &(F) and

P has its running times bounded by some bk , then for n large enough

(b) kn = k , a constant

() 2(u(s)) 2 &(P)

Broof Let {Pi} e an Occam's enumeration for @ relative to L

b being the current guess as to a

bounding constant. Initially @) = 1 The machine proceeds as

1'

follows to obtain En and M(Sn) .

12

—

-

—

Step 1 For each i , 1 <i <n and k | 1 < k < n,M computes

(10) 6 (i,k) = max a(x,y,P, & b_(
n 2 ¥ s s X,¥))
(x,)€s 1ok
n
If ﬁn(i,k) =1 for 1 <i, k < n then M sets k =1 and goes

to Step 3. Otherwise M goes to Step 2

Step 2 M selects kn as the first index k such that 6n(iﬂd =0
for some i <k . M then selects in as the first index such that

6n(i’kn) =0 . M then selects k as the least integer such that

Bn(ln,kn) = 0 and goes to Step 3

Step 3 If Gn(i,k) = 0 for some i and k1 <i<n, 1<k<n
and if %] =im for some m < n then M sets an+l==“n . Other~
wise M sets o =1+ .

n

n+l

Step 4 M selects M(%J as the best program using the algorithm of

Theorem 1 with the measure Cb

k
n

Let us now show that (a), (b), (c) hold. Condition (a) follows
directly from that fact that Step 4 uses the algorithm of Theorem 1 .

Consider the set R of pairs (i,k) such that b, bounds the
running time of P. and &(P;) 2 &(P) . We will show that if g
is not empty then (b), (c) hold. Towards this end let (ﬁ,ﬁ) be
the pair in @£ which minimize the maximum of i and k for

(i,k)G? . (In case of ties we choose the one which comes first in

the lexicographic ordering of pairs).

13

r—

— r—

We let ag be the least constant such that

d(x,7,P4,a4 bp(x,¥)) = 0, for all (x,y) € &(P)

and consider two cases

Case 1 The machine M makes at least o different guesses of j

n .

In this case for n large we always have 6n(3,ﬁ) =0 . If
g is not in it is because there is an (i,k) pair found first. In
particular we have in < kn < ;muc{ﬁ,ﬁ} so that @, must be eventually
constant. By our choice of (a,ﬁ) any pair (i,k) of lower max{i,k}
will eventually be rejected because j(Pi) doesn't contain &(P)
or because Gn(i,k) = 1 for all k such that max{i,k} < max{g,ﬁ} .
Thus in Case 1, in will eventually be ﬁ and kn will eventually

be ﬁ .

Case 2 The machine M makes a different guesses of ;
n

and
a'<3ai .
In this case we consider the class § of pairs (i,k) with the
following properties
i) 4(p;) 2 &(P)
1) a(x,y,P;5a b (x,y) = 0, for all (x,y)es(P)
If ® were empty M would make more than o guesses. It is easy

that if n is large enough we will have in =T and k,n =X where

(I,¥) = min max{i,k}
(1,k)e®

where ties are again broken by taking the least number in the lexicographic

order. This completes the proof of Theorem 3

14

-

One might think that Theorem 3 can be formulated so that M

can actually infer the least integer &k such that some program whose
graph contains %(P) has its running time bounded by bk . We

suspect that this cannot in general be done.

Example Suppose fi, f2 are recursive functions such that there are

programs P(fl),IKfz) which compute each argument in time..D. and b2

respectively, and that no program does better for infinitely many

arguments. Let

fl(k) s 2k=-1 [/

f(n) =
fz(k) , n =2k

and consider the sequence of programs P(l) such that

o(1)

uses P(fl) to compute for n odd, is undefined for

n=2k, k>1i, and computes f£(2k) , k <i by a table.

Thus the program length L(P(i)) will be unbounded, yet the running
time of P(i) will be bounded by bl . If an inference scheme considers
only a bounded number of programs one may be able to infer that f
can be computed in bk time for some k > 2 . If, however, the
scheme considers more and more programs, one eventually encounters
the IP(i) which would cause the erroneous guess of time bound bl .
We have not been able to convert examples of this sort into a
proof that no machine can always find the lowest k for which there

is a Pj with Z(P) g&(Pj) and T(s, P) < b, (s.) . However, we do

g - k(n
know that any machine that attemps to always find the lowest possible
k will have to look at arbitrarily many Pi for some functions.

This can be forced by taking some function of class k and replacing

15

it on a finite number of arguments with a function of class k+l .

This suggests the following modification to Theorem 3.

We supply the machine M with an auxiliary function A(%,k)
which maps a size and a bounding index into a size. This tradeoff
function A(f,k) determines the size of program to be considered in
searching for an improvement to an answer Pj of size 4 and complex-
ity index k . Intuitively, A(g,k) says that the user of the inference
machine M prefers a program of class k-1 and size A(4,k) to a
program of size 4 and class k

There is a "natural" A function derived from the complexity

function, namely

A(f,k) = first size m such that

c(8,T, (5,7)) > e(m,0) .
k

The construction for Theorem 3 can easily be modified to include
A(4,k) . This still does not guarantee the minimum value for k ,

but seems to be a natural model of inference processes.

Remark 3 There has been a considerable amount of work [12] on
complexity classes of functions. To remain consistent with this work,

we would have to restrict the choice of w@JUKx,y,P)]) to ones

ax

,¥€8) (Tb(x,Y9PJ-) .

which give the same complexity classes as ¢ = ?
X

A good choice would be

T (s,P,) = max Ty (6y,P0) + 1 % Ty (%,7,P5) .
DT ,y)es P 37 T8T (xyy)es 0774

This (max + average) measure gives the same classes as max, and also

distinguishes among programs with the same maximum time. Since the ratio

of this measure with the max measure is bounded away from (and o ,

16

Theorem 3 holds for it also. Furthermore, it is also bounded away from
zero, avoiding the degeneracy problem for the usual choices of C(L,T) .

The results derived here for programs have a significantly
different flavor from those developed [7] for grammars. A central
issue in grammatical inference is the presence or absence of negative
information, i.e., strings in a sample marked as not belonging to the
language being learned. This problem does not arise in program inference
for two reasons. With grammars, an answer which generates too many
strings is normally considered wrong, but our constructions allowing
answers whose graph includes that of the hidden function seem quite
natural. This arises from the single-valuedness of functions -
if (x,y) appears in a sample then no (x,y”) with y # y' can
appear. When &(M(S)) 2 &(P) , M has simply chosen a program which
may be defined for some arguments where P is not. If one attempted
to extend our results to relations, the problems associated with negative
information would reappear.

The results of this paper should be viewed in the context of a
renewed interest in inductive and scientific (hypothetico-deductive)
inference. In addition to the theoretical work on programs and grammars,
there is work on predicate calculus [16] and real chemistry [5] .

All of these efforts have‘applied as well as theoretical components.
Some of our work on program inference is discussed in [8]and [1]
and there is a fairly ambitious effort underway to infer loop programs
from sample traces. Thus far, there has been surprisingly little
carryover from one domain to the other and from theoretical results

to programs, but a common understanding of the issues seems to be

17

emerging. There are also proposed applications of inference-techniques
to pattern recognition [9] and natural language description [1k]

which provide constant reminders of the weakness of existing results.

18

3 References

o [1] Biermann, A., "On the inference of Turing Machines from sample
computations," C82kl, Stanford Computer Science Department,
October 1971.

[2) Biermann, A. and J. Feldman, "a Survey of Grammatical Inference,"
in S. Watanabe, (Ed.), Frontiers of Pattern Recognition.

1N
(3] Blum, M., "A Machine-independent Theory of the Complexity of
Recursive Functions," Jg. ACM 1%, No. 2, April 1967, pp.
322-336.
141 Blum, M., "On the Size of Machines," Information and Control 11,
o (1967), pp. 257-265.

[5]. Buchanan, B., E. Feigenbaum, and J. Lederberg, " A Heuristic
Programming Study of Theory-Formation in Science,"

Proc. 2nd ICJAI, London, 1971.

C (6] Feldman, J. A., J. Gips, J. J. Horning and S. Reder, "Grammatical
Inference and Complexity," (g 125, Stanford University,
June 1969,
(7] Feldman, J. A., "Some Decidability Results on Grammatical Inference
and Complexity," 1Information and Control, 1972.
C
(8] Feldman, J. A., "Automatic Programming," CS255, Stanford University,
February 1972.
(9] Fu, K. S., "On Syntactic Pattern Recognition and Stochastic
languages," TR-EE71-21, Purdue University, 1971.
r
@

[10] Gold, M., "Limiting Recursion," J. Symb. Logic 30, (1965),
Pp. 28-48.

g (11} Gold, M., "Language Identification in the Limit," Information
and Control 10, (1967), pp. 447-474.

r-

[12] Hartmanis, J. and J. Hopcroft, "an Overview of Computational
Complexity," J. ACM 18,3 (July 1971), pp. 444-475.

[13] Hopcroft, J. E., and J. D. Ullman, Formal Languages and Their
Relation to Automata, Addison-Wesley, Reading, Mass., 1969.

o r—-

[l)"‘] Klein, S., et al, "The Autoling System, " TR 43,Computer
Science, University of Wisconsin, September 1968.

!

(151 ©Pager, D., "On the Efficiency of Algorithms," J. ACM 17, 4
(October 1970), pp. 708-715.

R

— r-

—

(16] Plotkin, G. D., "automatic Methods of Inductive Inference, "
Ph.D. Thesis, Machine Intelligence Dept., University of
Edinburgh, 1971.

[17] Rogers, H., Jr., Recursive Functions and Effective Computability,
McGraw-Hill,”New York, 1960/.

(18] Simon, H., "Experiments with a Heuristic Compiler," Journal ACM,
October 1963, pp. 482-506.

[19] Meyer, A. R. and D. M. Ritchie, The Complexity of loop programs,
Proe. ACM 22nd Nat. Conf., Pp. 4065-9.

