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i Abstract
A variation of the revised simplex method 1s proposed for solving

- the standard linear programming problem. The method is derived from

Lo an algorithm recently proposed by Gill snd Murray, and is based upon
the orthogonal factorization

- B =1Q

or, equivalently, upon the Cholesky factorization

- spl = 11”

1 where B 1s the usual square basis, I is lower triangular and Q is
| orthogonal.

¢ We wish to retain the favorable numerical properties of the
‘ orthogonal factorization, while extending the work of Gill and Murray

L to the case of linear programs which are both large and sparse. The

| principal property exploited 1s that the Cholesky factor L depends
only on which variables are in the basis, and not upon the order in

L which they happen to enter. A preliminary ordering of the rows of

the full data matrix therefore promises to ensure that L will remain

L sparse throughout the iterations of the simplex method.

3 An initial (in-core) version of the algorithm has been implemented
| in AlgolW on the IBM 360/91 and testedon several medium-scale

1 problems from industry (up to 930 constraints). While performance has
not been especially good on problems of high density, the method does

L appear to be efficient on problems which are very sparse, and on
L structured problems which have either generalized upper bounding, block-

angular, or staircase form.
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| | Large-scale Linear Programming using the Cholesky Factorization.

] 1. Introduction

| ) The standard linear program 1ng problem 1s

| 5 minimize cx

1 subject to Ax=b, x:>0 (=
RB where A 1s mx n and is usually very sparse. Virtually all
| methods currently in use for solving (1) are variations of the

B Revised Simplex Method (Dantzig [4]). If B is the usual mx m
_ basis, the principal source of variation lies in the method chosen for

| solving two systems of equations of the form

Bs Bly = & , By = a (2)

- at each iteration of the algorithm. This effectively means there are

n two areas in which methods can differ:

- (a) the representation used for pl or its equivalent, for any

| particular initial B ;

= (b) the technique used for updating B when columns of B are

x changed one by one.

| R In both areas there are two problems to be faced:
nN (1) maintaining sparsity

(2) maintaining numerical stability,

- and the aim here 1s to present a method which reaches a compromise

between these requirements. 'The method is derived from an algorithm

5 “or three systems, 1f the current basic solution X is obtained by
solving BX=b directly (see Section J).

“
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recently proposed by Gill and Murray [8], and is based up the orthogonal

factorization

B= Iq (3)

or, equivalently, upon the Cholesky factorization

Bp’ = 11.0 (0)

where L is lower triangular and Q "is orthogonal (qq ” = I) . While

the favorable numerical properties of the factorization (3) are widely

. recognized, the unknown quantity has been how to keep L sparse. We

hope to make some progress in this direction.

In standard methods the conflict between sparsity and stability

X arises in the choice of pivot sequence, as is well known. Stage (a)
above 1s called the reinversion phase, and most reinversion routines

use either the product form of inverse (PFI) or the more recent

elimination form of inverse (EFI) , For example in EFI we have

N P,BP, = LU (5)

. where Ps P, are permutation matrices defining the pivot sequence,
and L, U are respectively lower and upper triangular. Now for some

— choices of Ps P, the LU factorization does not even exist, while

for other choices it can be poorly determined. Therefore the search

- for permutations which lead to sparse factors must always be tempered

_ by the fact that the resulting numerical error could sometimes be

unacceptably high. Without judging the merit of different methods, we

~ note that both extremes have been proposed in the literature: on one

hand the method of Bartels and Golub [1], [2] gives top priority to

= numerical stability in choice of pivot elements, while in contrast the

. new *'preassigned pivot procedure" of Hellerman and Rarick [13], [14]
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~ endeavors to choose an optimal pivot sequence by consideration solely
| of the zero/nonzero structure of B .

~ Again 1n the updating phase, once a change of basis has been

| determined by the rules of the simplex algorithm, the standard methods

} of updating PFI or EFI allow no freedom whatever in choice of pivot

. element. The method of Bartels and Golub (for updating the Hessenberg

form encountered) 1s the only method which retains the possibility of

~ pivoting for numerical stability.

Turning now to the orthogonal factorization, corresponding to (9)

" we have

L P,BP, = IQ (6)
and in contrast to the above, this factorization exists for allpermuta-

— tions Ps P, . This means that we are free to choose permutations from
| sparsity considerations alone, without fear that in so doing we might

- be compromising numerical stability. Furthermore, following Gill and

~ Murray we do not store Q , and therefore we are concerned only with
maintaining sparsity within L .

— Unfortunately it happens that the degrees of freedom in (6) are

| much fewer than in (5) , because P, (being orthogonal) should really

- be incorporated into Q :

: PB = oP. = IA
--. I 2

Thus for a given P., a change of P, will affect only Q , and the

sparsity of IL 1s therefore affected only by the choice of Py .

Nevertheless, we are able to turn this fact to advantage, as described

" in the remainder of this paper. We choose Py not by examining any
particular B but rather by taking a broader view and considering the

1.3
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full matrixA itself. Any a priori knowledge of special. structure

within A can often be put to good usc at this stage.

- An in-core version of the algorithm has been implemented, and

the presentation here remains primarily within that context. Neverthe-

~— less, the algorithm 1s intended to be a practical method for solvirg

a wide range of large, sparse linear" programs, and methods for implement-
.

ing it out-of-core will be the subject of future research.

(—

—

fr

“

|
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. 2. The Cholesky Factorization

If M 1s a symmetric, positive definite matrix, there always

= exists a lower-triangular L such thatM = rn’ . L 1s called the

C Cholesky factor of M , and its elements are uniquely determined,

apart from the sign of each column. In our particular application,

. M = Bp’ , which 1s clearly symmetric and 1s also positive definite

| if B is non-singular. Hence the hi factorization exists for all

= bases B which arise in the simplex method.

g It 1s emphasized now that the product BB. 1s never actually
| computed, but rather L 1s obtained-from a factorization of B

- itself. As is well known there always exists an orthogonal matrix Q

(lq = @@F = I) such that

- QBY -R 7)

| where R 1s upper-triangular and has the same rank as B . It follows
-—

| that

q RR = (Ba7) (QB) — BB’

: and hence the lower-triangular matrix we require 1s simply

— L=gR (8)

| Note that (7) may now be written as in equation(3), B = IQ . In
—

| discussing the modification of L during change of basis, we will find

it convenient to make use of equation (7), but at the same time equations

(4) and (8) (8a’ = rl L = RY) will serve as reminders that OQ

~ 1s neither stored nor updated at any stage of the algorithm.

1 In the context of both linear and nonlinear programming, the use
- of the Cholesky factorization has recently been advocated by Gill and
. Murray[8], [9], [19]. As it happens, the good numerical properties of



3 the factorization constitute only one of several. attractive features.

8 Thus in the linear programming application [8 |, Gill and Murray choose

ne to consider the non-standard problem

- minimize Cc X

3 subject to AX 2>D

T

5 where A" is now mx n , m >n . They are then able to take advantage

. of the fact that the BB" = LL factorization exists even when B

oo 1s not square. Thus B is allowed to have dimensions Pp X g where

SE P<qg<n<m, so that L will be pX p and the work and storage

R per iteration will usually be much reduced. Here p 1s the number of

active inequality constraints, and since it will usually be true that

p <n, the reduction in size can be quite significant:

ep —
b- m A 4 P

n

Note in particular that the reduction in column-dimension to g < n

1s obtained by giving special attention to constraints of the simple

form + X CLE which 1s one very special form of sparsity within A .
Since linear programming problems arise in many different areas

and can be widely varying in dimension and sparsity, 1t 1s unreasonable

to expect that any particular algorithm would be ideal for all problems.

2.2



~ Thus, 1n cases where A 1s very dense except for simple upper and
lower bounds, the algorithm of Gill and Murray will be considerably

— more efficient than standard methods, with regard to storage and computational

requirements. On the other hand, in the area of large-scale linear

oT programming the constraint matrix can be extremely large and in gen~ral

_ will exhibit rather arbitrary sparseness. In such cases, even the

p X p L above would be much too large for efficiency, 1f regarded as

— a dense matrix.

Our aim, then, 1s to extend the application of ne to large-

= scale problems by attempting to maintain sparsity within L . To this

_ end we are forced to restrict ourselves to bases B which are square
(thus treating the standard problem (1) and allowing exchange of columns

as usual, but not allowing exchange of rows). We are then able to

exploit yet another property of the Cholesky factorization, as stated

- in the following (trivial) theorem:

Theorem 1
“ -—

The Cholesky factorof BB. 1s 1ndependent of the ordering of

the columns of B .

Proof

~ Suppose BB. = ho , and let B be the same as B except that

_ its columns may be‘in a different order. ThusB = BP for some
permutation matrix P . Since pp’ = I 1t follows that

“ w' = BppBY = BBL = IL

and hence B is associated with the same factor as B .

= During both "reinversion" and subsequent updating, the storage of

. L will remain explicit (as opposed to product form), with linked lists

2.3
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| being used to represent the non-zero elements of each column. Further,
BS

a prc-processing of' the full matrix A will sclcet a particular row

Lb permutation, to be applied to A at the beginning and not changed

thereafter. Theorem 1 then shows that the density of L for any
L-

particular basis depends only on which columns are in the basis, not

| on the order by which these columns happened to enter the basis during
\- -

the iterations of the simplex method.

-

C

-

L

|.

—

-
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3. Motivation for pre-processing sparse A

| We suppose that A can be stored (compactly) in core and can

- therefore be subjected to an initial inspection of its rows and

columns, as follows. We wish to find =cme row permutation Py and

some column permutation P, such that the matrix PAF, 1s "as

close to lower-triangular form as possible." Pictorially, this is

intended to mean that the constraint matrix should look something like

this:

PAP, = RB (9)
where the lower-trianqular part will still be very sparse. In general,

LN.

any basis B will be made up of a fairly random selection of columns

from A , but if P, 1s the permutation which sorts the columns of

B according to their order of appearance in (9), we can expect the

permuted basis to look something like this:

Thus if Py 1s chosen carefully-, there will always exist a permutation

of the columns of PB (namely, P,) such that Pb BP, has relatively
few of its non-zero elements occurring above the diagonal.

Now it 1s well known that once a column has been selected to enter

| the basis, the simplex method allows no choice whatever about which

column must leave (neglecting degeneracy), so that PB will generally

3.1



.

show no sign of being anything better than an arbitrarily sparse matrix.

Thus it 1s here that we make use of Theorem 1, which tells us that the

“ Cholesky factor L associated with PB 1s independent of the order-
ing of columns within PB . The mere existence of P. in (10) 1s

; all that we need.

In summary, the important points about pre-processing A are as

follows:

- 1. Given a sparse matrix A there must exist permutations Py ;

| P, which arrange A in the form shown in (9). For if not, A

B would necessarily be quite dense.

2. With Py chosen and fixed, the existence of P, in (9) guarantees

the existence of Py in (10).

i. 3. The near-triangularity of FP, BP, gives reasonable justification

for expecting that the associated L might have a density

: not much greater than that of B .

4, In deriving an initial row-ordering from the full matrix A ,

we clearly do not have an optimal ordering for any particular B .

- Instead we hope to obtain an ordering which is reasonably close

to optimal for all B's encountered during the iterations, and we

- thereby justify storing the non-zero elements of eachL explicitly.

_ The density of the L's will fluctuate from one iteration to the

next, but it 1s hoped that the average number of elements will

- remain within a range of say 2 to 5 times as many elements as

in any B . "Reinversion" will never be necessary except for

~ numerical reasons, because we do not wish to alter the row-ordering

ofB , and L 1s otherwise unique.

3.2

L



BN

bk

! 5. The above 1s 1n marked contrast to most existing LP systems,
|

where the reilinversion routine produces an extremely compact

-1 |
“ representation of’ RB for any particular B , but thc updates

during subsequent iterations arc kept in product form so that the

-

number of elements involved between reinversions 1s strictly

increasing. It is this very property which enables conventional
w

systems to operate out-of-core, but it 1s argued that in many

cases (particularly with problems whose special structure 1s reflect-

ed in L ) the average amount of data to be manipulated using
{

~ na might be significantly less than that involved in standard

methods.
C

.

C

-

{
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L
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i 4, Finding the initial row permutation of A

] We assume that the elements of A are already available via
column lists. The row permutation Py 1s then easily found with the

{ help of a (temporary) row-list and a se-t of row-counts giving the
number of non-zero elements in each row of A. The procedure to i:

| :

L used follows one of the steps that 1s performed by existing reinversion

routines for locating the so-called "forward triangle" of a basis (see

L Orchard-Hays [20]). The procedure is readily extended to the full

i matrix A . We will call the process triangularization.
: Initially all rows and columns are considered to be eligible.

| Rows become ineligible as they are moved one by one to the top, and
a column J becomes ineligible as soon as a row 1s chosen which contains

L an element in column j . The steps are:

4 1. Find the smallest row-count among any remaining eligible rows.
Ties can be broken by keeping an unmodified copy of the counts

§

L for the full matrix.

2. Let the above row be number 1 in the original A . Take this

h row to be next-nearest-the-top, and make 1t ineligible.

1 3. Using the row-list, search row 1 and suppose there 1s an element
in column j . Then use the column-list to reduce by 1 the count

| for any row which contains -an element in column j .
4, Make columnj ineligible and repeat step 3 for any further

bh elements in row 1 .

5. Repeat from step 1 if there are still. any eligible rows.

- To illustrate the process, it can be verified that the following
( example 1s already ordered according to the algorithm.
{

L 4.1
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t

~ Rows will be marked off from the top down, and columns become in-

eligible from left to right.

} There 1s one obvious advantage in performing this operation on the

o full matrix A . It will often happen through redundancies in formyla-

tion of the linear program that the first +t columns, say, will be

- strictly lower-triangular after the permutations (t=3 in the above

example). This means that the first t variables are effectively

fixed and can be immediately eliminated from the problem by a partial

. forward-substitution. Thus, the above 6 x 9 problem can be deflated

from the beginning to dimensions 3 X 6 .

- It 1s not at all clear that the triangularization method produces

the best ordering of rows of A , and it has been suggested by

N J. A. George that a simple sorting of rows according to row-count

_ might do just as well. This 1s certainly easy to do, although it

would not allow detection of any strict forward triangle. Also when

ha the "cold start" technique described in section 11 1s used, triangulariza-

tion 1s likely to lead to an initial basis containing fewer artificial

- variables. As a compromise, the procedure currently being used is to

-

ES— ee —

See also the discussion of structured problems in section 12 .
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. move any markedly-dense rows to the bottom (maybe 5 or 10%) and then
to proceed with triangularization of the remainder.

Once the permutation FP has been found, it 1s convenient for

later purposes to permute the elements in each column accordingly.

This 1s easily done within the column-list, one column at a time.

5 The column permutation P, can be discarded (it 1s never necessary
to re-order the columns physically) or else the following refinement

— in "pricing" strategy could be used. As will be seen, the simplex

multipliers are given by Lx = d , so they are computed one by one from

- the bottom up. Clearly the back-substitution process can be stopped

. short at any time. Suppose now that columns are priced-out in groups

of k , where k<<n , and that the grouping 1s the one defined by P,
—

. k k k k

(The best column to enter the basis will be found in one group, an

i iteration performed, and then the next group examined.) Then for all

but the first group the computation of the x, can be stopped short,

= and for the last groups only a fraction of the multipliers need be

| computed. This strategy should lead to a significant saving on large

problems. It 1s one which 1s availlable to any implementation whose

“ representation of Bt is explicit (as L 1s here) rather than in

product form.

_

1
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- 5. Solution of the linear eauations

| Let X > 0 be the current basic feasible solution, satisfying
| Bx =b . Then each iteration o the revised simplex method involves

. the following steps:

1. Solve the system

~ ple = & (11)

for the current simplex multipliers =n .

} 2. Select a column a from A satisfying c, - nag < 0 .
- 3. Solve the system

By = aq (12)
~ 4, Find r such that

- 5 - -L min 1
y, = ¥%°0 Vy;

~ 5, Update x according to

_ x, «- x, - oy (i # r)

x, « 6

6. Exchange columns a a in the basis, and update the factoriza-
| tion of the new B .

Apart from step 6, the main work is in the solution of the linear

oC systems (11), (12).

— Observe that the updating of X in step 5 could involve numerical

cancellation, and 1deally should be replaced by a direct computation of

— : from Bx = Db , after step 6. However this would imply a great'deal

more work, and 1n practice no significant problems have been encountered

5.1
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with updating, given that x is reset by direct solution of B% = b

g following reinversions.

Consider first the solution of (12), Following Gill and Murray

[8] we see that y is given by

AA = as , y = Bu (13)

The first of these equations 1s equivalent to BB u = 3, , so that
Bu is one solution of By = a, r and the non-singularity of B
guarantees 1t 1s the only solution.

Similarly, when the system BX = b is solved after recomputation

of L , the solution 1s given by LL = Db , Xx = Boy . Note that I-3

itself 1s required here, which is why it is convenient to have A

— (or at least, B) 1in-core.

The simplex multipliers are given by (11), Bx = 8 , and the

) non-singularity of B ensures that this is equivalent to BB x = Bo .

Thus nn could be found from

11x = Bd (14)

which is the method originally proposed by Gill and Murray in [8].

However 1t 1s considerably more efficient to transform : as though

} iL were the last row of' Ib. Suppose that the orthogonal factoriza-

. tion (7) gives

0B|8 = @®|al =f] a (15)

- Then (11) 1s equivalent to

Lo = d (16)

] so that just one back-substitution 1s required to find x 1f d is

_ updated along with L from one iteration to the next. *

: this method also.

Dla2



Another important advantage in using (16) arises from error

~ considerations. Here we need a quantity called the condition number,

k(B) , defined as

R «(3) = «(8") = ||8]] [137]

where ||-|| denotes the euclidean norm. Suppose the system Bly = ¢

1s perturbed slightly, by small changes to either B or the right-

- hand side (such as will be incurred by storing the data in a computer's

finite-length word). The exact solution x will be perturbed by some

amount proportional to the perturbations in the data, and 1t can be

_ shown that the constant of proportionality is «(B) . Thus «(B)

provides an estimate of the intrinsic uncertainty 1n gx . Hence 1t 1is

—- reasonable to discuss in terms of «(B) also, the error that can

result from round-off when a particular numerical method 1s used to

i compute n .

_ Returning to (16), it has been shown (e.g. Golub and Wilkinson

[12]) that if i = d is used to solve (11) the relative error in

~- nm can be bounded by a term involving «(B) , whereas if (14) is used

the bound involves «(B'B) = «°(B) . This is the above mentioned

advantage in using (16), from a standpoint of iound-off error.

Unfortunately the situation-is not so favorable when we use

equations (13) to solve By = a, The relative error bound for vy

agaln 1nvolves «¢(B) , and this could be a problem with severely ill=-

Conditioned data. (In some cases the algorithm of this paper could be

applied to the dual linear program, since errors 1n sn are often less

important than errors inx .) We point out that if B = LQ the solution

y 1s given by

2.5



- Lw =a, , oY =W

and the error in vy would be bounded by «(B) . Thus the above

| problem arises only because we are ci-.sing to represent 0 by
-1 T ~1 -

Q =" = ( 1.7)’ = TT

rather than storing and updating Q itself. gince B , and therefore

A , would no longer be required 1n-core, an alternative implementation

~ which maintained @ 1n product form might in some cases be preferable.

A full error analysis of the QR factorization has been given by
.

Wilkinson [24]. The use of plane rotations to solve linear systems as

| in equations (15), (16) has also been analyzed by Van der Sluis [22].

(\

»
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6. Updating L upon change of basis

} A change of basis will be eccomplished in two stages:

_ 1. Column a, is deleted, giving an intermediate IL which is
singular.

he . 2. Column i 1s added and the intermediate L is modified to
produce a new L corresponding to the basis of the next iteration.

a The reason for deleting before adding, rather than vice versa, 1s given

- by the following results. Suppose

nh = BRT and Int = Bp’ + aa"

= so that L is the Cholesky factor obtained by adding column a to

B. |

L- |
Theorem 2

_ The density of L can not be less than the density of L

(neglecting numerical cancellation).

Corollary |

When a column 1s removed from B , the density of the new factor

N can not (significantly) increase.

| The theorem is obtained by considering the effect of the elementary

orthogonal transformations used to update the QR factorization

- of a matrix when a row 1s added to the matrix (see section8 and

recall L = RD). Briefly it 1s due to the fact that if

CE| = 7

. B B

where Z 1s a 2 x 2 orthogonal matrix, then usually

ao, B #£ 0

unless a=0 and B=0.

6.1



The corollary follows because the uniqueness of L with respect

= to column permutations on B implies that removal of a columnis the

exact reverse of the process of adding it back again.

The main point 1s that we wish to ensure that the intermediate

xu L above will 1n general be less dense than its predecessor. We note

here that the factorization

~ Bp’ = pL”

| has also been (successfully) used, where D 1s diagonal and £;. = 1,
ha to take advantage of the fact that no square roots are required during

_ updates, and less divisions are required during back-substitutions.

However for numerical stability it 1s essential with this factoriza-

. tion to avoid singularity by adding before deleting, and consequently

the intermediate L will generally be more dense than 1ts predecessor,

N sometimes markedly so. It 1s now felt that the possible severity of

this fluctuation outweighs the other advantages that pL’ might

have over rt .

- The corollary has a useful practical implication. If the density

of L does increase significantly when a column is deleted, then most

of the new non-zeros must be due to propagation of noise, 1n the form

of very small numbers which should be treated as zero. This can happen

after a large number of modifications and provides one of the several

indicators needed 1n practice to trigger reinversion.

6.2



5 7. Removal of a row from the QR factorization

a In preparation for modifying L when column a, 1s deleted from
B , let us adopt the QR notation com.only used in numerical linear

| algebra. As noted in equation (7), the QR factorization is
- GA = R

| where Q 1s orthogonal, R = rt , and we are temporarily defining

= A = BT . We wish to delete row 2, from A , and we now give a new
| method for accomplishing this using elementary orthogonal matrices

| in a manner which is becoming increasingly well known (cf. Golub [11],

N Gill and Murray [81,[9]). Suppose for notational purposes that A

1s mX n, m>n , although we are mainly interested here in the

special case when A is square. Application of the method to

| rectangular A will be discussed more fully in [10].

| Let Rp =a, and consider the sequence of elementary orthogonal
matrices Zs such that

=u Ps 0

- Zs 5 = : i=n, n-1, . . . , 1
i i-1

; Here, the Z, could be plane rotations of the form

COS 0, —-sin 9.

sin 9, COS 0,
1

] or else 2 X 2 Householder transformations, and the equation serves

g to define 6, 6, ; in terms of p,, 0, . The starting value §_
remains to be chosen.

| The Zs are now inflated with the appropriate parts of the identity

matrix and applied in turn to the matrix

7.1
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ae Pl R

me ———

6, , ©
. - |

As the elements of p are reduced to zero from the bottom up,

he the row below R gets filled up from right to left. R 1s modified

row by row, but retains its triangular structure. Thus we have

.. 5 1 © 1 T
n | O, s 1

| : J

| and the orthogonality of the Z. gives

T | le }
8 IR 0 I §

Co PPh Pb 9 19 7} R
| — = i) Co

T | —R 10 T
. Sa 0 K & On S

- - I. . I -

| so that

| T 2 2
| PP + o, = op

= T
Rp = 9 Ss

| Now the natural choice fbr 5 is clearly the value which gives

6.=1 since this implies Rp = S and therefore

S = a
r

- RR = RR - aa’
rr

as required.
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In general this means setting 5 =v1-plp . For the special
= case m =n , comparing the equations

RQ = B, Rp = a,

shows that p 1s just the r-th column of Q . Hence plp = 1

. and we set 6 = 0 . .

The discussion above brings to light two properties of the up-

) dating method which might be used as a measure of numerical error.

. First, the vector being eliminated from A 1s re—generated as the

vector s , and thus a non-trivial discrepancy between s and a,

- could imply significant numerical error in R .

The second check 1s available only in the special case m = n ,

~ where © = 0 | . = pp . Since > 1s actually computed from p
_ as a by-product of the updating, it is available at no extra cost,

and any significant deviation of oc from1 implies numerical error
: in p and therefore either similar error in R or 1ll-conditioning

of the current B (or both). In practice, the size of |8¢ - 1]
= . can be monitored and it provides us with some sort of numerical check

every 1teration. A continuous numerical check of this kind is gome-

thing which 1s not common in standard linear programming systems.

. (Forrest and Tomlin report a similar check in their new LU implementa-

tion [6]).
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8. Adding a column to the basis

” We will continue to use QR notation here, as 1n the previous

section. The modification of I. when column a 1s added to B

1s the process of modifying R when a row 3 is added to pl
k It 1s well known how to do this using plane rotations, when R 1s

dense (e.g. Golub [11]). In general, with R mx m , we would have

. R R

2m Lome. xx 29 -T

Vv 0

where each zs 1s an elementary orthogonal transformation defined at

- each stage by two elements, namely Lon and the i-th element of v

after modification by the previous transformations Zs Co Zs ;

When R and v are sparse, the algebra is the same but many of

N the Zs will simply be I . To minimize computation time we need a

data structure which indicates directly which transformations are non-

) trivial. To illustrate, let us consider an example with m = 5 .

Suppose R has two off-diagonal elements as shown below, and suppose

that the new row has only two non-zero elements. The steps by which

V is reduced to zero are as follows:

| ~

X

— — —P

8.1



un Circled elements define the transformation each stage. Non-zero elements

are markedby x , and new non-zeros (which were zero in the previous

| stage) are marked by + . We see that

| 1. Rows 1 and 3 of R are unchanged.
| 2. A new element has appeared in each of rows 2 and 4 .

3. A non-zero element was produced'in v at the second stage, and this

element had to be reduced to zero by a non-trivial transformation.

Some of the computed elements could prove to be below some pre~-

| specified tolerance, and should be eliminated from the data structure.

| This will happen occasionally during the addition process, and will
| occur quite frequently during the reverse process of removing a column

i from the basis.

Because of this need to insert and delete elements, we have chosen

for 1n-core implementation to use a linked-list to represent the non-

zero elements in each row of R , as described in the next section. A

simpler kind of list can be used to keep track of the elements in v |

at a slight cost in storage. Suppose the non-zero elements of the

initial v are placed in the appropriate positions of an array V(* of

dimension m . Then an integer array VNEXT(¥*) is used to point to these

elements 1n an obvious way:

12 3 4 5 0 3 10 11 12

+ [XII]
I IY. YN |ES

START
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: Clearly there 1s space available for any new non-zero elements that

- arise during the addition process. It would be possible to set

| V(j) = 0 wherever Ve = 0 initiallyand eliminate VNEXT(*) altogether,

| but note that each non-trivial transformation Zs involves a siguificant

amount of computation. If the essential part of Zs 1s the 2x 2

orthogonal matrix Qy satisfying
ow. —

rr. r..
11 ii

%y | ! B| V. 0
i i

then we must compute

= Qs;

J J

for J =1i+l, . . . , m . (Here, vi) 1s the j-th element of v before
the 1-th transformation.) The list structures for R and v enable

- us to economize on arithmetic when either Lye or vit) 1s zero, and
more importantly allow us to skip directly past any computation for

| which r.. and v1") are both zero (which 1s the most frequent case).
The "ADD" routine for performing the above process 1s employed

in two situations:

~ 1. To add a column to the basis each iteration, following the removal

of a column.

_ T | | |
2. To recompute L = R from scratch whenever a "reinversion" 1s

| required see section 10).
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|_—

In both cases it happens that R 1s singular upon entry tc*he

routine. We wish to emphasize that the process 1s nevertheless well-

defined and numerically stable.
“

Ww

“.

-

-

“

-

.

w

“

“
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9. Storage of sparse L

= As indicated in the previov~ section, we use a linked-list to

CL store the elements of each colv™n of L . In a high-level language,

this can be done with three parallel arrays as follows. An integer

~ array INEXT(¥) serves as a set of pointers into another integer

array LROW(¥) which contains the row index of the next non-zero

element 1n a particular column. The element itself is stored in a

floating-point array L(*) . For example, to store the matrix

| 3

8 1 14

| the arrays might be set up as follows:

B Position INEXT L

| 1 4.0
- :

5 = 1 6.06 Ei 80
~F

; EN. (ee| ~

: HC
Se

| TOP
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The «© sign marks the end of each column, and TOP points to

- the beginning of the linked-list of free storage, also contained in

| LNEXT(*) .
“

If an element 5.0 is inserted into column 2 to give

3 |

~ I, =

6 5 2

. 3 1 1

the arrays would be modified to look like this:
“

Position LNEXT L

ER
-

6.0

: 8.0

7 EE,
- :

; ET A IN 10 |

TOP-

and similarly if the element 6.0 were deleted from column 1, we would

have

_ 6

3

L =

" 5 2

8 1 1
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|

and the arrays would change to the following:

i

Position ILNEXT L

Te
A.

To

CL eo
) 4 oe] TROW 1.0|

; 2 9 [| |
- : =

T=
. : 7 2

9 0 BE
10 FL]

TOP

C

The purpose of lists 1s, of course, to enable elements to be
-

inserted and deleted without having to push existing elements around

to make room. We see that "holes" can appear, which are linked into

the free-storage list, and that the elements of any particular column

— will diffuse through the list as modifications proceed. Since L 1s

accessed column by column during each simplex iteration, if the algorithm
“

1s implemented in a virtual-memory environment it would probably be

_ profitable to group together occasionally the elements in each column,

to alleviate the problem of memory fragmentation.

A.

L

-
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10. Tieilnversion

“

Following convention, we use the term reinversion to mean

C computation of L from a particular bas.sB , despite the fact that

no matrix inversion 1s involved. Orthogonal triangularization would

- be a more accurate description. There are two main parts to the

process, as follows.

|

First, as many columns as possible are taken from the current B

. and placed directly in L . Usually the majority of columns in B
| can be so placed, because the pre-processing of A should ensure that

— all bases are nearly triangular. No arithmetic 1s required at this

; stage and the order of placement 1s irrelevant. Thus in a single

- pass through A each basic column 1s copied into the position defined

. by its first non-zero element, as long as there 1s no column already
in that position.

_ Next, unfilled columns of IL are set to zero (via lists of zero

length) and unplaced columns of B are added one by one, by repeated

= calls to the ADD routine of' section 8 . Again any order will do, so

C a second pass through A is all that is required.

| Reinversion time depends heavily on the growth of non-zero elements

- within IL , and also on the number of columns of L that are modified

by each call to the ADD routine in the second stage. As might be

= expected, triangularization of a relatively dense B can involve a

L great deal of computation, while for very sparse problems the process
can be quite rapid, since there 1s no permutation-finding logic involved,

C and only a small percentage of the columns are affected during the

second stage.

_
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The principal reasons for invoking reinversion are listed below.

— An indication 1s given of tolerances that have been used on the IBM

: 360/91 when computation 1s performed 1n long precision (approximately

= 15D), aiming for about 7D precision in the solution (or better).

N We assume that the data has been scaled as described in section 13.

1. The row and column residuals

“ p=b-Bx, Y =&-8%

are computed at regular intervals (e.g. every25 or 50 iterations).

= Reinversion is called if

LC |p| > 107" or lv] > 106

where p| is the average of |p] .

w. 2 The pivot element Yo in equation (12) should not be too small.

Reinversion 1s performed if Y, < 107°. (This may be too large
“

for some problems.)

_ 3. During deletion of a column from L , reilnversion 1s called

if the quantity | - 1| (section 7) exceeds 1077
~ 4. Also during deletion, 1f the number of new non-zero elements in

1, (which should be negative) exceeds about 54 of the total

- non-zeros, reinversion 1s called to eliminate what must be noise

_ (see section 6).

-

-

\.

. |
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11. Finding an initial basis

The following simple "cold start" procedure can be vsed to find

Co an initial non-singular basis. Ife implcuentation is made easy by

the preliminary triangularization of A . A full identity matrix of

- etherslack or artificial variables could be used, but the aim 1s to

do better and instead we look for a basis which 1s strictly lower-

} triangular (so that B = L ) . This guarantees non-singularity equally

. well, and on a typical sparse problem can usually be done with the help

of only a few artificial columns. )

~ In a single pass through the column-list for A we look at the

position and sign of the first element in each column, and record for

- each 1 (1 =1,2, . . . , m) the "best positive column" and the "best

. negative column." By this we mean the following. Suppose the first

| non-zero element 1n column Jj 1s Bye and suppose aes > 0 . Then
~ column Jj 1s a possible candidate for "best positive column for row

i", depending say on the size of C. relative to the previous best.

” Similarly if 31 < 0 , column j might become the best negative
column for row 1 .

An initial B = L 1s now selected from the above candidates, and

a forward substitution IX = b is-performed inparallel in order to

ensure that the resulting X is feasible (X% > 0) _ At the i-th

stage, the sign of

i-1 \
b. - > Lis x

j=1

determines whether a positive or negative column should be used as the
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i-th column of IL . If there is no acceptable candidate, we must

L introduce an artificial column of appropriate sign Lt e; )

|.

w

“

—

|

|

—

_

0

.

.

11.2
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12. Structured problems

The techniques discussed so far are intended for use on general

- sparse linear programs. Now 1t often haipens that the matrixA in
h—

(1) has special structure, and 1f we have knowledge of this 1t is

w natural to want to exploit such information wherever possible. As

we shall see, the LL factorization does allow us to utilize structural

| information, and it 1s only during the preliminary triangularization

of A (see sections 3, 4) that special care need be taken. No modifica-
“

tion 1s required to the simplex algorithm itself.

— The discussion here bears certain similarities to the compact

basis triangularization proposed by Dantzig [3] for staircase problems,
C

in that we are talking about preserving structure from one iteration

to the next.
|

(a) Block-anqular problems

- In this case, the constraint matrix has the form

-——— mm m= mn

: B |

|
|

|

~~ A=
|

BE
, .

(a 3-block example) where each block Bj is usually sparse, and B,
|5

may have zero row-dimension. Recall that the preliminary triangulariza-

“ tion of A 1s effectively just a row permutation. We wish to restrict

( the permutation now to be one which triangularizes each Bs individually,
}

i. and at the same time moves the coupling constraints C to the bottom,

12.1
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as shown. For some suitable column-ordering P each basis B will

. then possess the same block-angular form, and since the corresponding

Cholesky factor 1s independent of column order, it follows that L

"

has the form shown below:

- = mT —T mmm

EN| |

- BP = | r= |

| | EN I

.
M

- Even if no row permutation were applied toA , L would maintain

_ the Dblock-triangular structure, but the triangularization of each Bs
should ensure that each triangle L, will remain sparse. Similarly,

LC triangularization of sparse C should lead to reasonably sparse M .

This example emphasizes the point already made, that the Cholesky

- factorization automatically takes advantage of useful structure during

1 the simplex iterations, even though it is "unaware" that such structure
is present. Once an appropriate row permutation has been fixed it 1s

w unnecessary to retain information on row or column partitions within A .

(b) Generalized Upper Bounding (GUB)

- This 1s a special case of the block-angular structure, in which

each block has only one row, usually with all elements + 1 (see
4

Dantzig and Van Slyke [5]):

i 11. .1
1 1 * 1

A =

~ CC 11..1

C

w
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'kc number of GUB sets 1s usually very large compared to the

Lo number of coupling constraints in C , so each basis is almost completely

: triangular. The Cholesky factors are of the form

=

| oo D _ 2.
| :

with D diagonal and Ly triangular. If the i-th GUB set has

n, members 1n a particular basis, the corresponding L will have

d, = Since 1t 1s true that most n,=l , efficiency could be
improved by taking this and certain other simplifications into account.

Nevertheless a general implementation of the rt method can derive

high efficiency from the GUB structure automatically, and in contrast

. to standard GUB codes does not require any specialized "housekeeping"

| for monitoring the status of the variables in each set.

(c) Staircase structure

Multi-stage systems give rise to problems 1n which each basis

has the following staircase form:

In this case also, the Cholesky factors preserve the profile of each B

below the diagonal:

12.3
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| The full matrix A has a form similar to the B shown, and an individual
.

triangularization of the rows within each horizontal stair should minimize

. the density of each L within the profile.

(d) Unstructured problems

1 Since 1t 1s often true that structure within a problem reflects
important characteristics of the physical system which the problem 1s

- modeling, 1t would not be unrealistic to recommend that grouping of

constraints into one of the above forms be done during formulation

- of the model (i.e. by human hand). The grouping can then be input to

. a preliminary computer routine for further (more localized) triangulariza-
tion.

- If a given problem has no apparent structure at all, it may be

profitable to adopt as the pre-processing phase, the method of Weil

- and Kettler [23] for rearranging A into block-angular form. Since

. the Cholesky factorization takes best advantage of this particular
structure, 1t 1s conceivable that even the diagonal blocks thus

L obtained should in turn be processed by the Weil and Kettleralgorithm,

to produce structures of the following form:

-

L | }

12.4
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The sub-structure within each block will be preserved in L just as it

1s for the broader partitions. If there are many blocks of this form,

each L will have the following interesting profile:

|

| |
| |

|

|

|

|
)

|

|
'

|

I

| I

|

|

| |

|

' |
i

|

This 1s strongly reminiscent of the profile arising in the work of

J. A. George [7,Ch.4], wherein the Cholesky factorization A = wt

1s considered, where A 1s a given symmetric, positive definite sparse

matrix. Symmetric row/column permutations applied to A lead to L's

Co of varying density, and since the profile of A is preserved in L

the least dense factors are obtained by minimizing the number of elements

within the profile (rather than minimizing bandwidth, say). Thus an
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ordering was found which had a "spike" structure similar to the L

i above. Possibly this observation will throw some light on the problem

of finding an optimal permutation when A is of the form BB .

A further possibility for unstructured problems arises from the

-— work of H. Konno [16], [17]. An algorithm is given in [16] for solving

the so-called bilinear programming problem (BLP) using a sequence of

} linear programs. One of the applications of BLP given in [17]

relates to the triangularization philosophy. The measure of lower-

triangularity used for a square sparse-matrix A 1s the number of non-

- zero elements occurring above the diagonal of A . It 1s shown that

the problem of finding row and column permutations which maximize

' triangularity can be cast as a BLP , and hence in principle can be

_ solved. An extension to rectangular A should be possible. [Unfortunate-
ly this approach would not be practical for large problems unless the

same structure were to be used many times.]

. |
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13. Computational results

- Most of the ideas described here have been implemented in an

Algol W program* on the IBM 360/91 at the Stanford Linear Accelerator

~ Center. Data is input in MPS/360 format (see [18]), including simple

upper and lower bounds on any number of variables. Algol W was chosen
“

as a flexible and convenient programming language for development

a purposes, without which evolution of the algorithm would have been

very much slower. However no direct-access I/0 facilities are

.
avallable and the implementation 1s therefore strictly in-core.

‘ Comparison with other systems 1s difficult in view of the different
-

machines, programming techniques and use of core, but we give

- performance figures where they are available. The run times recorded

below would be reduced by a factor of 3 or 4 if assembly language

—
were used in place of Algol W . Alternatively the times should be

multiplied by a factor somewhere between 1.2 and 1.5 to give
-

equivalent run times of an assembly language implementation on an

— IBM 360/67 (very approximately).

; Four medium-scale problems have been used as test cases. They

= are listed in Table 1, in order of increasing difficulty. Some

LC relevant run-time statistics are given in Table 2, where time 1s
measured in seconds of 360/91 CPUutilization, and the number of

L elements in L refers to non-zeros below the diagonal. optimal

: *¥Algol W was developed for the IBM 360by faculty and students of
- the Computer Science Department at Stanford University, as a refine-

ment and extension of Algol 60. No facilities were used here that
are not available in Algol 60, except for character strings used for
reading the MPS/360 data.

.
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| solutions were found for problems A, B and C , but problem D

= could not be run to completion because there was insufficient storage

available for L.

- The main features of the solution strategy are as follows:

_ 1. The input data was stored in short precision (6 hexadecimal

digits in the mantissa) but all computation and working storage

-- used long precision(14 hexadecimal digits).

2. A row scaling was applied to A to make the largest element in

B each row approximately equal to 1 (to the closest power of

_ 2 ). Then a column scaling was applied to reduce the euclidean

| length of each column to approximately 1 . This 1s an attempt

‘. to improve the condition number of each basis.

| 3. Except on problem C, the procedure of section 4 was used to

i permute the rows of A into approximately lower-triangular form.

~ 4. The cold start procedure of section ll was used to find an initial

triangular basis, with the help of a number of artificial variables.

- 5. For ease of implementation, the usual two phases of the simplex

method were replaced by a single minimization (the "big M" method)

in which artificial variables are given a value G- = M 1n the

cost vector c¢ , where M 1s-sufficiently large that their

value in an optimal solution is zero. UsuallyM = 1000 X max|c,|
1s large enough.

6.- The pricing strategy used was also non-ideal but easy to imple-

or ment. The first k columns are considered for entry into the

basis, where k 1s pre-set to something like 300 or 400 ,

depending on the number of variables and the expense of computing

13.2
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reduced costs relative to the expense of changing basis. An

- iteration 1s performed using the column with most-negative

reduced cost, and then the next ¥ ~2lumns are cunsidered.
-

7. Reinversions were performed only when the error conditions of

w section 10 were encountered.

8. The maximum amount of memory available to the Algol W program

- for work space is approximately 500K bytes (62,500 long words).

This was more than enough for all cases except problem D .

| As Table 2 shows, problems A and B were solved quite easily,

. but the high density of problems C andD caused considerably more

difficulty. We will discuss each problem briefly.

ha Problem A Being a network problem, this example 1s numerically

well-conditioned (all elements +1) and highly triangularizeable.

- With only 3 elements per column 1ts density 1s also very low and

_ it is not surprising that L remained very sparse throughout the

iterations. Figure 1 shows the growth of off-diagonal elements in

~— L (N.) along with the number of artificial variables (NW, ) as

functions of iteration number. It 1s to be expected that L should

” become more dense as unit vectors are replaced by somewhat denser

w columns. If iterations had continued, a levelling off would have

occurred, as exhibited by problem C .

~ This problem was obtained via R. R. Meyer from the Shell Develop-

ment Company, California who also obtained the followlng comparative

= performances:
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- FMPS Univac 1108 4777 81

ILONA Univac 1108 ? 50

L_

The iteration time of 21.3 seconds and total solution time of

-. 30.2 seconds shown in Table 2 (Algol W, 360/91) compare reasonably

well with these figures.

~

Problem B This problem 1s of generalized upper bounding type, with

I. 890 GUB sets and 39 coupling constraints. The triangularization

procedure of section 4 was successful in moving most of the coupling

- constraints to the bottom of A (no special effort was made to do this

exactly). As explained in section 12, the Cholesky factors are

almost triangular, and the number of off-diagonal elements in L

w was virtually constant at around 1500 throughout the 958 iterations.

Starting at 1428 elements, this number never exceeded 1534. Again

= the problem was well-conditioned and only 1 reinversion was called,

N at iteration 555 using |8° -1| as control (see section 7), which
served to avert a slight onset of noise within L .

_ This problem was obtained from the Crown Zellerbach Corporation,

via M. G. Kazatkin, and provides a good example of how the Cholesky

- factorization, together with explicit storage and updating of L ,

can take advantage of structure. R. B. Johnston of Crown Zellerbach

) obtained the following benchmark results on several commercial systems

‘“ (last quarter, 1970):
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. FMPS Univac 1108 1700 15.5
UMPIRE Univac 1108 1852 13.5

ILONA Univac 1108 1491 9.5

= MPS/ 360 IBM 360/65 1885 36.3
OPTIMA CDC 6600 420 2.4

| The first two systems also solved the problem with special

- GUB codes, and returned times of 13.0 and 4.5 minutes respective-

_ ly. It can be seen that the results in Table 2 (95.5 seconds iteration
time, less than 2 minutes total time) compare quite favorably.

— Problem C This 1s a dynamic multi-sector model with staircase

structure, obtained from Professor A. J. Manne and K. W. Kohlhagen

” at Stanford University. There are six main "stairs" or blocks, each

« approximately 50 x 100 . Ideally each block should be triangularized

individually, but this was done only crudely by hand, and further

~ triangularization by program was suppressed. (Triangularization of

A as a whole, destroyed the staircase structure and led to very
1.

dense L's.) Although small in absolute dimensions, this problem

_ was rather difficult to solve for two reasons:

1. The density of 2.3% is moderately high, but since all elements

- are concentrated within the staircase structure, the density of

each block is more like 10% , which is very high.

) 2. Numerically speaking the problem is ill-conditioned, with the

o size of matrix elements ranging from order 101 down to order

107 . (This range was not altered significantly by the row

= and column scaling.)
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All reinversions were called following selection of a column for

- which the pivot element was unususlly small. (Such a column 1s then

temporarily rejected and a diffcrent one chosen for entry into the

) basis.) The relatively high reinversion time of 6 seconds reflects

the strong linkage between variables and indicates that many columns

of L are affected by each basis change. This 1n turn emphasizes

= that with dense problems 1t can be expensive to update L explicitly.

(Correspondingly, standard methods of updating in product form would
-

lead, in PFI for example, to a rapid growth of eta elements and

_ consequently to relatively frequent reinversion.)

As figure 2 shows, the number of elements in L increased steadily

N while artificial variables were being removed from the basis, and then

levelled off at a little over 12000 . This steady state 1s due to

] the fact that the staircase structure 1s being preserved by the

sequence of Cholesky factors. Though the figure of 12000 is large

considering the size of the problem, 1t simply reflects the high

he density of the data and would have been much larger 1f structure were

not preserved.

] Similar difficulties are reflected in the performance of MPS /360
_ on a smaller (316 x 463) unstructured formulation of the same problem.

An initial reinversion, starting from an advanced basis, failed with a

~ row error of 105 . All subsequent reinversions were successful, but

| illustrate well the possible disadvantages of the product form of
—

*This is MPS/360 Ve-M9 , running on an IBM 360/67 at the Stanford =
University Computation Center, Campus Facility.
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| inverse 1n certain cases. The number of eta elements ranged from

= around 24,000 after reinversion, up to nearly 40,000 about 50

iterations later. Reinversion time was between 0.6 and 0.8

" minutes, and total run time from cold start was approximately 21

~ minutes.

ProblemC (modified)

" A more direct comparison with MPS/360 was obtained using the

_ staircase model with many of the variables fixed in value. Resultant
problem size was 357 x 385 , plus 148 slack variables. Only 6

f

of the slacks appeared in the optimal basis.

The performance of each method 1s summarized in Table 3, and it

~ appears that on this test case the Cholesky method has performed

} significantly better than the standard method using product form of
| inverse. The growth of elements in L and PFI are plotted in

. figure 3. We must point out that IL 1s used four times each iteration,

: whereas PFI 1s used only twice. Nevertheless the results are

> interesting from a storage point of view. The jump in density of PFI

1 about 250 iterations before optimum was due to a row check failure,
| followed by a repeated reinversion with a tighter pivot tolerance.

- Problem D

. This 1s the first of three problems used experimentally by
Forrest and Tomlin, called problem A in [6],[21] . It was treated

- as a general sparse linear program. During the run shown in Table 2,

: the number of elements in L increased steadily to 21000 , which

~ represents the maximum storage that could be allocated for this

| 13.7



’ particular problem in the Algol W implementation. The run was

— terminated before an optimum solution was found.

Forrest and Tomlin give comparative figures for two methods,

n both starting from a full basis and an LU factorization stored in

Co product form (EFI). With the standard product form of update, the

number of eta elements increased from 4861 to 35885 after

- fO iterations, whereas with their own method for updating the LU

factors the number grew from 4861 to only 8958 , which is a
-

significant improvement.

= The poor performance of the Cholesky factorization on this example

was partly explained by an inspection of the constraint matrix,

- which proved to be approximately dual-angular in structure (containing

coupling variables rather than coupling constraints), with 6 main

: diagonal blocks of relatively high density, and about 400 coupling

variables. This structure 1s not one which is preserved by the rt

factors. It 1s possible that the Cholesky method would perform better

-~ on the dual problem, since this would have standard block-angular form

(but would be considerably larger in overall dimension).

-
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Structural

|_—

3556 | 15103 3856 11127

0.37% 0.36% 2.31% 0.86%
No

Table 1. Test problem characteristics.

- I ENECEE
Time to

— Time to Rows not

triangularize A 3.4 10.4 | permuted | 8.7
No. of

Initial no. of

elements in I; LOT 1428 2248 2262
i. density 0.28% 0.33% 3.5% 0.67%

Final . of

ements iv Li 1046 1510 12008 21000/ 0

density 0.73% 0.35% 19.4% 6.2%

2 EN EI TI
- Typical

L-

Row and column : B

. residuals, before 1077 1072 [107 107 1H 10719, 10° 2 107 1077
final reinversion

Row and column

residuals, after 10710,107 10] 10717 10718107121o= 1h 10717 107M
final reinversion

C Table 2. Solution statistics using the Cholesky factorization.
All times in seconds of 360/91 CPU utilization.

(¥Optimum not reached for problem D.)
“
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Lit, Algol WwW, 360/91 PFI, MPS/360, 360/67
-

| Cold stafkt 0 iterations Crash 204 iterations

_ 0.02 minutes 0.98 minutes
151 artificial 06 infeasibilities

variables

| Phase 1 212 iterations Phase 1 3 3 4 iterations

. 1.65 minutes 7.42 minutes

} Reinversiof 0.09 minutes Reinversioh 0.22 minutes

- 11923 elements in L 19186 eta elements
before invert

: 11710 eta elements
— after invert

3264 elements in B

| Phase 2 1 8 1 iterations Phase 2 227 iterations

w 2.45 minutes 7.33 minutes

‘ Reinversioh 0.12 minutes Reinversior 0.56 minutes

. at optimum 12401 elements in L at itn 731 39765 eta elements
before invert

23013 eta elements
~ after invert

3533 elements in B

Total 3 9 3 iterations Total 7 6 5 iterations

4.12 minutes 15.73 minutes

! Table 3. Staircase model (problem C) with reduced no. of variables.
- Comparison of Cholesky factors with Product Form of Inverse.

Lo

{
f
-

.
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alta | Ny,

15

4 1000

il

20 1 800

_— N 025

Iteration no.

0 50 100 150 200 250 300 550

Figure 1. Problem A: growth of non-zeros in L with

elimination of unit vectors from basis.

Ny = No. of artificial variables

N. = No. of off-diagonal elements in L

N, | N.
140 1000

120 12

100 | 10

80 8

60 Fil | 6

-40 4

20 J 2

N Iteration no.
0 100 200 300 400 500

Figure 2. Problem C: steady-state density of L.
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{ No. of non-zeros |
C 40 1000

|—-—

LW |

PFI

: 30 |

-

25 | -

L

20 |

-

q Lo
ho

’ d |

A | |

Crash L

“ _.
d

‘“ Iterations from optimal solution
3 : :

600 500 400 300 200 100 0

o Figure 3. Staircase model (problem C, modified).
Growth of non-zeros in Product Form of Inverse

and 1n Cholesky factor.
.~—
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14, Summary and suggestions for out-of-core implementation

= Given a basis B with corresponding Cholesky factor L and

| basic solution X , the main steps to be performed each iteration of
Ye.

the algorithm are as follows (using notation defined in previous sections).

“ 1. Compute the Lagrange multipliers from

| ly = 4

~ 2. Use n to select a column a for entry into the basis, and
compute the rate of change of x from

=

ILtu = a, vr Y = ply -
3. Use y to select an out-going column a and update x.
4, Solve

{

. Lo =
b = a,

N in preparation for modifying L .
5, Modify L 1n two stages, such that

T T T

- (a) th « 1” - a... (using p )
: ob) 10 « MY + aa l |

| S S

-

It can be seen that in steps 1 through 4 above, access to L
i

1s sequential (column by column) and 1s alternately backwards and

| forwards. Thus for these calculations a disk file (for column-wise

- storage of L) would be as convenient as in standard product-form

systems.

Modification of IL (step 5) again requires a backward pass and

L a forward pass, but the main difficulty is that elements must be

inserted into L . A possible solution to this problem is as follows.

- Storage on disk will be in the form of a sequence of fixed length

| records, each large enough to hold about 20 elements of IL . Now
.—
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f consider the modification of a particular column which has been allocated

L r records on disk (containing d = 20r '"disk-elements," say). In

i general this column will have a further c¢ "core-elements", which are
-

held in main memory 1n linked-list form, as described earlier in this

L paper. During modification, the d disk-elements will be read into

core and linked into the appropriate part of the list, giving d+fc

elements in-core for the column in question. The modification can be

| performed conveniently within the list structure, and the first d
(modified) elements will then be written out to disk in place of their

L predecessors and deleted from the list, leaving some small number of

core—elements behind.

L In this way the total core required by the lists for all m
L columns of L should change relatively little at each iteration.

During early iterations while L 1s filling in, periodical re-writes

_ can be performed (e.g. during reinversion) in order to allocate additional
: disk records to the densest columns. Storage requirements should

- stabilize after 100 or 200 iterations.

Note that for small problems we would 1nitially set r = 0 for
-

all columns and operation would be completely in-core. Transition to

L disk would be smoothly accomplished, 1f necessary, by increasing r

for the densest columns.

- Note also that unless a problem 1s very dense, only a small

1 percentage of the columns of L are affected by a basis change.
| This is why fixed length records are specified, so that "seek" operations

_ can be requested in order to skip past columns‘ on disk which are not to
be modified. Drums or fixed-head disks would alleviate this problem to

- some extent.

| 14.2
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Storage of the constraint matrix A remains to be discussed.

~ The recent work of J. E. Kalan on the concept of super-sparseness

_ (see [15]) indicates that even for extremely large problems, in-core
storage of A 1s within the realms of practicality. However we cannot

“ imbed any part of L withinA , in the way that Kalan advocates

| imbedding the product form of p , and as Tomlin points out in[21],

= relying on the extended-core storage of current large machines "can

_ only be a postponement at best."
Fortunately the primal simplex algorithm does not require a scan of

LC all columns of A each iteration, so 1f A has many more columns than

rows the simplest solution 1s to perform a sequence of suboptimizations.

- At each stage the current basis B and as many non-basic columns as

possible are retained in core. (B 1s required in step 2 above, and

a random column from B 1s needed in step 4.) After a number of

C iterations, a pass through A can select the current basis and a new

set of columns for a further suboptimization.

- Although standard systems do not retain B in-core, there are

t some advantages in doing so, 1n particular for checking of row and
column residuals and for reinversion whenever necessary. We assume that

gq Kalan's super-sparseness techniques for compacting B should make this

practical.

“

|

|
| }
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15. Conclusion

- In presenting a new linear programming algorithmwe do not claim

to be able to solve all problems efficiently. Instead we hope to have

" demonstrated that for certain well-defined classes of problem the method

_ does have some useful advantages, in terms of both numerical stability

and preservation of sparseness.

— The problems to which the method 1s immediately applicable are

those for which a preliminary ordering of the rows of A can be

N guaranteed to give a sparse factorization for every basis B arising

u in the simplex method. The uniqueness of the Cholesky factor L

with respect to column permutations on B then makes it profitable

-~ to store and update the non-zero elements of L explicitly rather than

in product form.

In the case of GUB , block-angular and staircase problems it 1s

_ clear what the row-ordering of A should be, and the method then takes

advantage of the structure without further overhead (e.g. problems B,C).

“ For unstructured problems, triangularization of A appears to be

sufficient 1f the density 1s low enough (e.g. problem A). However,

= unless there 1s structure to be preserved there seems to be a threshold

_ density (at about 0.9%) above which the Cholesky factors fill in

significantly, even when triangularization of A 1s carried out

~ (e.g. problem D). In such cases, a structure-finding algorithm such

as-that of Weil and Kettler appears to be necessary.

= An interesting unsolved problem has arisen:

For which permutation P does the factorization

pEBIP’ = nie

give an L which 1s most sparse?

15.1



C

If this question can be answered for square B (and possibly then
i

i. for rectangular B) the algorithm in this paper may find broader

' application. In the meantime, the method 1s already applicable to many
L

problems and 1t 1s felt that the unusual properties of the Cholesky

- factorization deserve further investigation.

“

-

e

-

-

“
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