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Abstract

A variation of the revised simplex method is proposed for solving
the standard linear programming problem. The method is derived from
an algorithm recently proposed by Gill snd Murray, and is based upon
the orthogonal factorization

B = 1R
or, equivalently, upon the Cholesky factorization

B’ = 117
where B is the usual square basis, I is lower triangular and Q 1is
orthogonal.

We wish to retain the favorable numerical properties of the
orthogonal factorization, while extending the work of Gill and Murray
to the case of linear programs which are both large and sparse. The
principal property exploited is that the Cholesky factor L depends
only on which variables are in the basis, and not upon the order in
which they happen to enter. A preliminary ordering of the rows of
the full data matrix therefore promises to ensure that L will remain
sparse throughout the iterations of the simplex method.

An initial (in-core) version of the algorithm has been implemented
in Algol W on the IBM 360/91 and tested on several medium-scale
problems from industry (up to 930 constraints). While performance has
not been especially good on problems of high density, the method does
appear to be efficient on problems which are very sparse, and on
structured problems which have either generalized upper bounding, block-

angular, or staircase form.
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Large-scale Linear Programming using the Cholesky Factorization.

1. Introduction

The standard linear program ing problem is
S T
minimize c'x
ey
subject to Ax=b, x>0
where A is mx n and is usually very sparse. Virtually all

methods currently in use for solving (1) are variations of the

Revised Simplex Method (Dantzig [4]). If B is the usual mx m

.basis, the principal source of variation lies in the method chosen for

solving two systems of equations* of the form
Bl = & , By = a (2)
at each iteration of the algorithm. This effectively means there are
two areas in which methods can differ:
(a) the representation used for B_1 or its equivalent, for any
particular initial B ;
(b) the technique used for updating B-l when columns of B are
changed one by one.
In both areas there are two problems to be faced:
(1) maintaining sparsity
(2) maintaining numerical stability,
and the aim here is to present a method which reaches a compromise

between these requirements. 'The method is derived from an algorithm

¥
Or three systems, if the current basic solution % is obtained by

solving B=b directly (see Section D).
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recently proposed by Gill and Murray [8], and is based up the orthogonal
factorization

B =1Q (3)

or, equivalently, upon the Cholesky factorization

BT = 1] &

where L is lower triangular and Q' is orthogonal (QQT = I) . While
the favorable numerical properties of the factorization (3) are widely
recognized, the unknown quantity has been how to keep L sparse. We
hope to make some progress in this direction.

In standard methods the conflict between sparsity and stability
arises in the choice of pivot sequence, as is well known. Stage (a)
above is called the reinversion phase, and most reinversion routines
use either the product form of inverse (PFI) orthe more recent
elimination form of inverse (EFI) ., For example in EFI we have

P BP, = LU (5)
where Pl’ P2 are permutation matrices defining the pivot sequence,
and L, U are respectively lower and upper triangular. Now for some
1 Pz the LU factorization does not even exist, while

for other choices it can be poorly determined. Therefore the search

choices of P

for permutations which lead to sparse factors must always be tempered
by the fact that the resulting numerical error could sometimes be
unacceptably high. Without judging the merit of different methods, we
note that both extremes have been proposed in the literature: on one
hand the method of Bartels and Golub [1], [2] gives top priority to
numerical stability in choice of pivot elements, while in contrast the

new *'preassigned pivot procedure" of Hellerman and Rarick [13], [1}4]
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endeavors to choose an optimal pivot sequence by consideration solely
of the zero/nonzero structure of B .

Again in the updating phase, once a change of basis has been
determined by the rules of the simplex algorithm, the standard methods
of updating PFI or EFI allow no freedom whatever in choice of pivot
element. The method of Bartels and Golub (for updating the Hessenberg
form encountered) is the only method which retains the possibility of
pivoting for numerical stability.

Turning now to the orthogonal factorization, corresponding to ()
we have

P BP, = IQ (6)
and in contrast to the above, this factorization exists for all permuta-
tions Pi, P2 . This means that we are free to choose permutations from
sparsity considerations alone, without fear that in so doing we might
be compromising numerical stability. Furthermore, following Gill and
Murray we do not store Q , and therefore we are concerned only with
maintaining sparsity within L .

Unfortunately it happens that the degrees of freedom in (6) are
much fewer than in (5) , because PZ (being orthogonal) should really
be incorporated into Q

Pp = WP, = 1
Thus for a given Pl’ a change of P2 will affect only Q , and the
sparsity of L is therefore affected only by the choice of Pl .
Nevertheless, we are able to turn this fact to advantage, as described
in the remainder of this paper. We choose Pl not by examining any

particular B but rather by taking a broader view and considering the
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full matrix A itself. Any a priori knowledge of special. structure
within A can often be put to good usc at this stage.

An in-core version of the algorithm has been implemented, and
the presentation here remains primarily within that context. Neverthe-

less, the algorithm is intended to be a practical method for solvirg

a wide range of large, sparse linear" programs, and methods for implement-

ing it out-of-core will be the subject of future research.
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2.  The Cholesky Factorization

If M is a symmetric, positive definite matrix, there always
exists a lower-triangular L such that M = LLT . L is called the
Cholesky factor of M , and its elements are uniquely determined,
apart from the sign of each column. »}n our particular application,
M = BBT , which is clearly symmetric and is also positive definite
if B is non-singular. Hence the LLT factorization exists for all
bases B which arise in the simplex method.

It is emphasized now that the product BBT is never actually

computed, but rather L is obtained-from a factorization of B

itself. As is well known there always exists an orthogonal matrix Q

(QqQ = QQT = I) such that
T
QB~ = R (7)
where R is upper-triangular and has the same rank as B . It follows

that

R'R = (3a7)(eB") = BB’
and hence the lower-triangular matrix we require is simply

L =g (8)
Note that (7) may now be written as in equation (3), B = 1Q . In
discussing the modification of L during change of basis, we will find
it convenient to make use of equation (7), but at the same time equations

(4) and (8) (BBT = LLT , L = RT)

will serve as reminders that Q
is neither stored nor updated at any stage of the algorithm.
In the context of both linear and nonlinear programming, the use

of the Chalesky factorization has recently been advocated by Gill and

Murray [8], [9], [19]. As it happens, the good numerical properties of
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the factorization constitute only one of several. attractive features.
Thus in the linear programming application [8 |, Gill and Murray choosc
to consider the non-standard problem
T
minimize cx
. T
subject to A'x>D

where AF is now mx n , m >n . They are then able to take advantage
of the fact that the BBT -t factorization exists even when B

is not square. Thus B is allowed to have dimensions p X g where
P<qag<n<m, so that L will be pX p and the work and storage
per iteration will usually be much reduced. Here p is the number of

active inequality constraints, and since it will usually be true that

p << n , the reduction in size can be quite significant:

S |
' I N\
PR
m A q P
n

Note in particular that the reduction in column-dimension to g < n

is obtained by giving special attention to constraints of the simple

form + xj %_bJ., which is one very special form of sparsity within A
Since linear programming problems arise in many different areas

and can be widely varying in dimension and sparsity, it is unreasonable

to expect that any particular algorithm would be ideal for all problems.
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Thus, in cases where A is very dense except for simple upper and

lower bounds, the algorithm of Gill and Murray will be considerably

more efficient than standard methods, with regard to storage and computational
requirements. On the other hand, in the area of large-scale linear
programming the constraint matrix can be extremely large and in gen~ral

will exhibit rather arbitrary sparseness. In such cases, even the

p X p L above would be much too large for efficiency, if regarded as

a dense matrix.

Our aim, then, is to extend the application of LLT to large-
scale problems by attempting to maintain sparsity within L . To this
end we are forced to restrict ourselves to bases B which are square
(thus treating the standard problem (1) and allowing exchange of columns
as usual, but not allowing exchange of rows). We are then able to
exploit yet another property of the Cholesky factorization, as stated
in the following (trivial) theorem:

Theorem 1

The Cholesky factor of BBT is independent of the ordering of

the columns of B
Proof

Suppose BT — 1’ , and let B be the same as B except that

its columns may be‘in a different order. Thus B = BP for some

permutation matrix P . Since PPT = I it follows that
w' - ppep's’ = BB’ = 1Lt
and hence B is associated with the same factor as B
During both "reinversion" and subsequent updating, the storage of

L will remain explicit (as opposed to product form), with linked lists
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being used to represent the non-zero elements of each column. Further,
a4 prc-processing of' the full matrix A will scleet a particular row
permutation, to be applied to A at the beginning and not changed

thereafter. Theorem 1 then shows that the density of L for any

particular basis depends only on which columns are in the basis, not

on the order by which these columns happened to enter the basis during

the iterations of the simplex method.
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3. Motivation for pre-processing sparse A

We suppose that A can be stored (compactly) in core and can

therefore be subjected to an initial inspection of its rows and

columns, as follows. We wish to find =cme row permutation P, and

1
some column permutation P2 such that the matrix PlAP2 is "as
close to lower-trianqular form as possible." Pictorially, this is

intended to mean that the constraint matrix should look something like

this:

P_AP = (9)

where the lower-triangular part will still be very sparse. 1In general,
any basis B will be made up of a fairly random selection of columns
from A , but if P3 is the permutation which sorts the columns of

B according to their order of appearance in (9), we can expect the

permuted basis to look something like this:

Thus if Pl is chosen carefully-, there will always exist a permutation

of the columns of PlB (namely, PS) such that PlBP3 has relatively
few of its non-zero elements occurring above the diagonal.
Now it is well known that once a column has been selected to enter

the basis, the simplex method allows no choice whatever about which

column must leave (neglecting degeneracy), so that PlB will generally

3.1
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show no sign of being anything better than an arbitrarily sparse matrix.
Thus it is here that we make use of Theorem 1, which tells us that the
Cholesky factor L associated with PlB is independent of the order-
ing of columns within PlB . The mere existence of P3 in (10) is
all that we need.

In summary, the important points about pre-processing A are as
follows:
1. Given a sparse matrix A there must exist permutations P, ,

P2 which arrange A in the form shown in (9). For if not, A

would necessarily be quite dense.

2. With P chosen and fixed, the existence of P in (9) guarantees

1 2
the existence of P3 in (10).
3. The near-triangularity of ©P,BP, gives reasonable justification

173

for expecting that the associated L might have a density
not much greater than that of B

4, In deriving an initial row-ordering from the full matrix A ,
we clearly do not have an optimal ordering for any particular B
Instead we hope to obtain an ordering which is reasonably close
to optimal for all B's encountered during the iterations, and we
thereby justify storing the non-zero elements of each L explicitly.
The density of the L's will fluctuate from one iteration to the
next, but it is hoped that the average number of elements will
remain within a range of say 2 to 5 times as many elements as
in any B . "Reinversion" will never be necessary except for
numerical reasons, because we do not wish to alter the row-ordering

of B , and L is otherwise unique.

3.2
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The above is in marked contrast to most existing LP systems,

where the reinversion routine produces an extremely compact
representation of’ R for any particular B , but the updates
during subsequent iterations arc kept in product form so that the
number of elements involved between reinversions is strictly
increasing. It is this very property which enables conventional
systems to operate out-of-core, but it is argued that in many

cases (particularly with problems whose special structure is reflect-
ed in L ) the average amount of data to be manipulated using

LLT might be significantly less than that involved in standard

methods.

3.3
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4, Finding the initial row permutation of A

We assume that the elements of A are already available via
column lists. The row permutation Pl is then easily found with the
help of a (temporary) row-list and a se-t of row-counts giving the

-

number of non-zero elements in each row of A . The procedure to i:
used follows one of the steps that is performed by existing reinversion
routines for locating the so-called "forward triangle" of a basis (see

Orchard-Hays [20]). The procedure is readily extended to the full

matrix A . We will call the process triangularization.

Initially all rows and columns are considered to be eligible.
Rows become ineligible as they are moved one by one to the top, and
a column J becomes ineligible as soon as a row is chosen which contains
an element in column j . The steps are:
1. Find the smallest row-count among any remaining eligible rows.
Ties can be broken by keeping an unmodified copy of the counts
for the full matrix.
2. Let the above row be number i in the original A . Take this
row to be next-nearest-the-top, and make it ineligible.
3. Using the row-list, search row i and suppose there is an element
in column j . Then use the column-list to reduce by 1 the count
for any row which contains -an element in column j
4, Make column j 1ineligible and repeat step 3 for any further
elements in row i

Repeat from step 1 if there are still. any eligible rows.

Ui

To illustrate the process, it can be verified that the following

example 1is already ordered according to the algorithm.

4.1



Rows will be marked off from the top down, and columns become in-
eligible from left to right.

There is one obvious advantage in performing this operation on the
full matrix A . It will often happen through redundancies in formyla-
tion of the linear program that the first t columns, say, will be
strictly lower-triangular after the permutations (t=3 in the above
example). This means that the first t variables are effectively
fixed and can be immediately eliminated from the problem by a partial
forward-substitution. Thus, the above 6 x 9 problem can be deflated
from the beginning to dimensions 3 X 6 .

It is not at all clear that the triangularization method produces
the best ordering of rows of A , and it has been suggested by
J. A. George that a simple sorting of rows according to row-count
might do just as well.* This 1is certainly easy to do, although it

would not allow detection of any strict forward triangle. Also when

the "cold start" technique described in section 11 is used, triangulariza-

tion is likely to lead to an initial basis containing fewer artificial

variables. As a compromise, the procedure currently being used is to

*
See also the discussion of structured problems in section 12
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move any markedly-dense rows to the bottom (maybe 5 or 10%) and then
to proceed with triangularization of the remainder.

Once the permutation Pl has been found, it is convenient for
later purposes to permute the elements in each column accordingly.
This is easily done within the column-list, one column at a time.

The column permutation P, can be discarded (it is never necessary

2
to re-order the columns physically) or else the following refinement

in "pricing" strategy could be used. As will be seen, the simplex
multipliers are given by LTn = d , so they are computed one by one from
the bottom up. Clearly the back-substitution process can be stopped

short at any time. Suppose now that columns are priced-out in groups

of k , where k<n , and that the grouping is the one defined by P2

k k k k

(The best column to enter the basis will be found in one group, an
iteration performed, and then the next group examined.) Then for all
but the first group the computation of the n, can be stopped short,
and for the last groups only a fraction of the multipliers need be
computed. This strategy should lead to a significant saving on large
problems. It is one which is available to any implementation whose
representation of B_1 is explicit (as L is here) rather than in

product form.
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5. Solution of the linear eauations

Let % > 0 be the current basic feasible solution, satisfying
Bx =b . Then each iteration o the revised simplex method involves
the following steps:

1. Solve the system

for the current simplex multipliers =x .
. . T
2. Select a column ag from A satisfying cy - Ay <0

3. Solve the system

By = &g (12)

4, Find r such that

A A
x . X,
5 - L min i
yI‘ = yi>o yi
5. Update & according to
A A N
- By. r
x.l « Xi Ys (i # )
Qc « 0
T
6. Exchange columns %:, as in the basis, and update the factoriza-

tion of the new B .
Apart from step 6, the main work is in the solution of the linear
systems (11), (12).

Observe that the updating of %X in step 5 could involve numerical

cancellation, and ideally should be replaced by a direct computation of

% from BX = b , after step 6. However this would imply a great'deal

more work, and in practice no significant problems have been encountered

5.1
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. . . A
with updating, given that x 1is reset by direct solution of BY = b
following reinversions.

Consider first the solution of (12). Following Gill and Murray
[8] we see that y is given by
T
LLu=as,y=Bu (13)
The first of these equations is equivalent to BBTu = a , so that

s

T . .
Bu is one solution of By = a  , and the non-singularity of B
guarantees it is the only solution.

Similarly, when the system BX = b is solved after recomputation

m n

of L, the solution is given by LLLV =D, - Blv . Note that I-3
itself is required here, which is why it is convenient to have A
(or at least, B) in-core.

The simplex multipliers are given by (ll),BTn =&, and the
non-singularity of B ensures that this is equivalent to BBTﬂ = Bé .
Thus = could be found from

1.0 - Bé (1)
which is the method originally proposed by Gill and Murray in [8].
However it is considerably more efficient to transform 3 as though

il were the last row of' I . {upposc that the orthogonal factoriza-

tion (7) gives

0B |8 =(&|a = '] a (15)
Then (11) is equivalent to
T
Lx= d (16)

so that just one back-substitution is required to find x if d is

*
updated along with L from one iteration to the next.

*Since publication of [8], Gill and Murray have independently adopted
this method also.



Another important advantage in using (16) arises from error
considerations. Here we need a quantity called the condition number,
k(B) , defined as

k) =« = (Bl {1
where ||-]| denotes the euclidean norm. Suppose the system BTn = ¢
is perturbed slightly, by small changes to either B or the right-
hand side (such as will be incurred by storing the data in a computer's
finite-length word). The exact solution n will be perturbed by some
amount proportional to the perturbations in the data, and it can be
shown that the constant of proportionality is «(B) . Thus «(B)
provides an estimate of the intrinsic uncertainty in g . Hence it is
reasonable to discuss in terms of «(B) also, the error that can
result from round-off when a particular numerical method is used to
compute & .

Returning to (16), it has been shown (e.g. Golub and Wilkinson
[12]) that if Lw = d is used to solve (11) the relative error in
n can be bounded by a term involving «(B) , whereas if (14) is used
the bound involves K(BTB)==K2(B) .  This is the above mentioned
advantage in using (16), from a standpoint of round-off error.

Unfortunately the situation-is not so favorable when we use
equations (13) to solve By = ag . The relative error bound for y
again involves KZ(B) , and this could be a problem with severely ill-
Conditioned data. (In some cases the algorithm of this paper could be

applied to the dual linear program, since errors in n are often less

important than errors in x .) We point out that if B = LQ the solution

y is given by

\J1
.
¢



Iw =a_, QoY =w

and the error in vy would be bounded by k(B) . Thus the above
problem arises only because we are ci-using to represent Q-l by

ot =’ = (1T o T
rather than storing and updating Q itself. gSince B , and therefore
A , would no longer be required in-core, an alternative implementation

which maintained @ in product form might in some cases be preferable.
A full error analysis of the QR factorization has been given by
Wilkinson [2k]. The use of plane rotations to solve linear systems as

in equations (15),(16) has also been analyzed by Van der Sluis [22].
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6. Updating L upon change of basis

A change of basis will be cccomplished in two stages:

1. Column ar is deleted, giving an intermediate L which is
singular.
2. Column as is added and the intermediate L is modified to

produce a new L corresponding to the basis of the next iteration.
The reason for deleting before adding, rather than vice versa, is given
by the following results. Suppose
LLT = BBT and EET = BBT + aaT

so that L is the Cholesky factor obtained by adding column a to

B.

Theorem 2
The density of L can not be less than the density of L
(neglecting numerical cancellation).

Corollary

When a column is removed from B , the density of the new factor
can not (significantly) increase.
The theorem is obtained by considering the effect of the elementary
orthogonal transformations used to update the QR factorization
of a matrix-When a row is added fo the matrix (see section 8and
recall L = RT). Briefly it is due to the fact that if

a a

R

B

where Z is a 2 x 2 orthogonal matrix, then usually
ato, B#0

unless a=0 and B=0.

6.1
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The corollary follows because the uniqueness of L with resvect
to column permutations on B implies that removal of a column is the
exact reverse of the process of adding it back again.

The main point is that we wish to ensure that the intermediate
L above will in general be less dense than its predecessor. We note

1

here that the factorization
BBT = LDLT

has also been (successfully) used, where D is diagonal and,lii =1,
to take advantage of the fact that no square roots are required during
updates, and less divisions are required during back-substitutions.
However for numerical stability it is essential with this factoriza-
tion to avoid singularity by adding before deleting, and consequently
the intermediate L will generally be more dense than its predecessor,
sometimes markedly so. It is now felt that the possible severity of
this fluctuation outweighs the other advantages that LDLT might
have over LLT

The corollary has a useful practical implication. If the density
of L does increase significantly when a column is deleted, then most
of the new non-zeros must be due to propagation of noise, in the form
of very small numbers which should be treated as zero. This can happen

after a large number of modifications and provides one of the several

indicators needed in practice to trigger reinversion.
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7. Removal of a row from the QR factorization

In preparation for modifying L when column a, is deleted from
B, let us adopt the QR notation comuonly used in numerical linear

algebra. As noted in equation (7), the QR factorization is

QA = R
where Q is orthogonal, R = LT , and we are temporarily defining
T .
A =B . We wish to delete row arT from A , and we now give a new

method for accomplishing this using elementary orthogonal matrices
in a manner which is becoming increasingly well known (cf. Golub [11],
Gill and Murray [81,[9]). Suppose for notational purposes that A
is mX n, m>n, although we are mainly interested here in the
special case when A is square. Application of the method to
rectangular A will be discussed more fully in [10].
Let RTp =a, and consider the sequence of elementary orthogonal

matrices Zi such that

Z. = i=n, n-1, . . ., 1
i i-1
Here, the Z, could be plane rotations of the form
cos 0, -sin 6,

1 1
sin 6, cos 0,

1 1

1
or else 2 X 2 Householder transformations, and the equation serves

to define 6., 8 in terms of pi,éi . The starting value 8_

il
remains to be chosen.
The Zi are now inflated with the appropriate parts of the identity

matrix and applied in turn to the matrix

7.1
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As the elements of p are reduced to zero from the bottom up,

the row below R gets filled up from right to left. R is modified

row by row, but retains its triangular structure. Thys we have

'
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so that
T 2 _ 2
PP + én = 60
T .
Rp = 60 s
RTR = RIR + ssT

Now the natural choice fbr 6n is clearly the value which gives

5O=l since this implies RTp = s and therefore

as required.



In general this means setting 6n_=:¢1;- pr . For the special

- case m=n , comparing the equations
RTQ = B, Rlp = a,
shows that p is just the r-th column of Q . Hence pr = 1
. and we set 6n =0 .

The discussion above brings to light two properties of the up-
dating method which might be used as a measure of numerical error.
First, the vector being eliminated from A is re-generated as the
vector s , and thus a non-trivial discrepancy between s and a,
N could imply significant numerical error in R .
The second check is available only in the special case m = n ,
- where 6n =0 | 63 = pr . Since 63 is actually computed from p
as a by-product of the updating, it is available at no extra cost,

and any significant deviation of 55 from 1 implies numerical error

in p and therefore either similar error in R or ill-conditioning

of the current B (or both). 1In practice, the size of lég -JJ
= can be monitored and it provides us with some sort of numerical check
every iteration. A continuous numerical check of this kind is some-
thing which is not common in standard linear programming systems.
. (Forrest and Tomlin report a similar check in their new LU implementa-

tion [61).
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8. Adding a column to the basis

We will continue to use QR notation here, as in the previous
section. The modification of I. when column ag is added to B
is the process of modifying R when a row ag is added to BT_
It is well known how to do this using plane rotations, when R is

dense (e.g. Golub [11]). In general, with R mx m , we would have

R R

Zm Zm—l.** Zl T =

v 0

where each Zi is an elementary orthogonal transformation defined at
each stage by two elements, namely r'l'l and the i-th element of v
after modification by the previous transformations Zl’
When R and v are sparse, the algebra is the same but many of
the Zi will simply be I . To minimize computation time we need a
data structure which indicates directly which transformations are non-
trivial. To illustrate, let us consider an example with m = 5
Suppose R has two off-diagonal elements as shown below, and suppose

that the new row has only two non-zero elements. The steps by which

V  is reduced to zero are as follows:

BRI A

[(® x [ @& [ ® |

8.1



Circled elements define the transformation each stage. Non-zero elements

are marked by x , and new non-zeros (which were zero in the previous

stage) are marked by + . We see that

1. Rows 1 and 3 of R are unchanged.

2. A new element has appeared in each of rows 2 and 4 .

3. A non-zero element was produced'in v at the second stage, gand this

element had to be reduced to zero by a non-trivial transformation.

Some of the computed elements could prove to be below some pre-
specified tolerance, and should be eliminated from the data structure.
This will happen occasionally during the addition process, and will
occur quite frequently during the reverse process of removing a column
from the basis.

Because of this need to insert and delete elements, we have chosen
for in-core implementation to use a linked-list to represent the non~-
zero elements in each row of R , as described in the next section. A
simpler kind of list can be used to keep track of the elements in v |
at a slight cost in storage. Suppose the non-zero elements of the
initial v are placed in the appropriate positions of an array V(* of
dimension m . Then an integer array VNEXT(¥) is used to point to these

elements in an obvious way:

12 3 4 5 6 7 8 9 10 11 12

VNEXT 7 11 ©

START II____J"
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Clearly there is space available for any new non-zero elements that

arise during the addition process. It would be possible to set

V(j) = 0 wherever v = 0 initially and eliminate VNEXT(*) altogether,
but note that each non-trivial transformation Zi involves a siguilficant
amount of computation. If the essential part of Zi is the 2x 2

orthogonal matrix Qi satisfying

T, r..
ii ii
ol )
V. 0
1
then we must compute
— 7 — n
r,. r..
13 ij
= Q‘i
NEES J1)
J dJ
J - J
for j =i+, . . . , m . (Here, v§1) is the j-th element of v before

the i-th transformation.) The list structures for R and v enable

(1)

us to economize on arithmetic when either Ej' or VJ is zero, and
more importantly allow us to skip directly past any computation for
(1) are both zero (which is the most frequent case).

which r.. and v.
1J J
The "ADD" routine for performing the above process is employed
in two situations:
1. To add a column to the basis each iteration, following the removal
of a column.

T . . .
2. To recompute L = R from scratch whenever a "reinversion" 1is

required see section 10).
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In both cases it happens that R is singular upon entry toc*he
routine. We wish to emphasize that the process is nevertheless well-

defined and numerically stable.
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9. Storage of sparse L

As indicated in the previovr~ section, we use a linked-list to

store the elements of each colir™n of L

In a high-level language,

this can be done with three parallel arrays as follows. An integer

array LNEXT(*)

serves as a set of pointers into another integer

array LROW(¥*) which contains the row index of the next non-zero

element in a particular column.

floating-point array L (*)

the arrays might be set up as follows:

Position

1

© oo N O U1 & N

—
(@]

INEXT

The element itself is stored in a

. For example, to store the matrix

>

7

«©

11

-

LROW

- 9

10

TOP

J JmE

9.1

4.0

3.0

2.0

1.0

6.0

8.0

1.0

1\ diagonals

free
storage



The o sign marks the end of each column, and TOP points to
the beginning of the linked-list of free storage, also contained in
LNEXT(*) .

If an element 5.0 1is inserted into column 2 to give

F‘h n
3
L =
6 5 2
. 8 1 1]

the arrays would be modified to look like this:

Position LNEXT L
1 5 4.0
2 8 3.0
3 | 2.0
4 ® LROW 1.0
5 6 2 6.0
6 . 3 8.0
7 f] 3 1.0
8 2. 5.0
9 10 :] ‘ '

10 ®

TOP-
9

and similarly if the element 6.0 were deleted from column 1, we would

have
-
6
3
L =
5 2
8 1 1

9.2



and the arrays would change to the following:

Position INEXT L
1 6 4,0
2 8 3.0
3 © 2.0
4 © IROW 1.0
5 2 9
6 " 3 8.0
7 o 3 1.0
8 7 2 5.0
9 ~ 10 -

10 ® I;
TOP
LT 5

The purpose of lists is, of course, to enable elements to be
inserted and deleted without having to push existing elements around
to make room. We see that "holes" can appear, which are linked into
the free-storage list, and that the elements of any particular column
will diffuse through the list as modifications proceed. Since L 1is
accessed column by column during each simplex iteration, if the algorithm
is implemented in a virtual-memory environment it would probably be
profitable to group together occasionally the elements in each column,

to alleviate the problem of memory fragmentation.
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10. Tieinversion

Following convention, we use the term reinversion to mean
computation of L from a particular bas.s B , despite the fact that
no matrix inversion is involved. Orthogonal triangularization would
be a more accurate description. There are two main parts to the
process, as follows.

First, as many columns as possible are taken from the current B
and placed directly in L . Usually the majority of columns in B
can be so placed, because the pre-processing of A should ensure that
all bases are nearly triangular. No arithmetic is required at this
stage and the order of placement is irrelevant. Thus in a single
pass through A each basic column is copied into the position defined
by its first non-zero element, as long as there is no column already
in that position.

Next, unfilled columns of L are set to zero (via lists of zero
length) and unplaced columns of B are added one by one, by repeated
calls to the ADD routine of' section 8 . Again any order will do, so
a second pass through A is all that is required.

Reinversion time depends heavily on the growth of non-zero elements
within L , and also on the number of columns of L that are modified
by each call to the ADD routine in the second stage. As might be
expected, triangularization of a relatively dense B can involve a
great deal of computation, while for very sparse problems the process
can be quite rapid, since there is no permutation-finding logic involved,
and only a small percentage of the columns are affected during the

second stage.
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The principal reasons for invoking reinversion are listed below.

An indication is given of tolerances that have been used on the IBM

360/91 when computation is performed in leng precision (approximately

15D), aiming for about 7D precision in the solution (or better).

We assume that the data has been scaled as described in section 13.

1.

The row and column residuals

p=b - BX , Y = & - BTﬂ

are computed at regular intervals (e.g. every 25 or 50 iterations).
Reinversion is called if

le] > 1077 or |v| > 10

6

where p| is the average oflpi\.

The pivot element Y, in equation (12) should not be too small.
Reinversion is performed if Y, < 10_3. (This may be too large
for some problems.)

During deletion of a column from L , reinversion is called

if the quantity|6g - 1| (section 7)exceeds 1077

Also during deletion, 1if the number of new non-zero elements in
1, (which should be negative) exceeds about 54 of the total

non-zeros, reinversion is called to eliminate what must be noise

(see section 6).
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11. Finding an initial basis

The following simple "cold start" procedure can be vsed to find
an initial non-singular basis. Ite implcuentation is made easy by
the preliminary triangularization of A . A full identity matrix of
ettherslack or artificial variables could;be used, but the aim is to
do better and instead we look for a basis which is strictly lower-
triangular (so that B = L ) . This guarantees non-singularity equally
well, and on a typical sparse problem can usually be done with the help
of only a few artificial columns. i

In a single pass through the column-list for A we look at the

position and sign of the first element in each column, and record for

each 1 (i =1,2, . . . , m) the "best positive column" and the "best
negative column." By this we mean the following. Suppose the first
non-zero element in column j is a13 and suppose a.l.J > 0 . Then

column j 1is a possible candidate for "best positive column for row
i", depending say on the size of c.J relative to the previous best.
Similarly if aij < 0, column j might become the best negative
column for row i

An initial B = L is now selected from the above candidates, and

. . A . . .
a forward substitution Ix = b is-performed in parallel in order to

ensure that the resulting X is feasible (% > 0) . At the i-th

stage, the sign of
i-1 R
LTI M
j=1

determines whether a positive or negative column should be used as the
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i-th column of L . If there is no acccptable candidate, we must

introduce an artificial column of appropriate sign .y ei) ’
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12. Structured problems

The techniques discussed so far are intended for use on general
sparse linear programs. Now it often ha pens that the matrix A in
(1) has special structure, and if we have knowledge of this it is
natural to want to exploit such information wherever possible. As
we shall see, the LLT factorization does allow us to utilize structural
information, and it is only during the preliminary triangularization
of A (see sections 3, 4) that special care need be taken. No modifica-
tion is required to the simplex algorithm itself.

The discussion here bears certain similarities to the compact
basis triangularization proposed by Dantzig [3] for staircase problems,
in that we are talking about preserving structure from one iteration
to the next.

(a) Block—-angular problems

In this case, the constraint matrix has the form

—_— - - -
Q

(a 3-block example) where each block B, is usually sparse, and B,

may have zero row-dimension. Recall that the preliminary triangulariza-
tion of A is effectively just a rowpermutation. We wish to restrict
the permutation now to be one which triangularizes each Bi individually,

and at the same time moves the coupling constraints C to the bottom,
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as shown. For some suitable column-ordering P each basis B will
then possess the same block-angular form, and since the corresponding
Cholesky factor is independent of column order, it follows that L

has the form shown below:

BP

|
|

|

[}

|

—_—d

l

[ I

!

|

|

|

I
————

Ny

Even if no row permutation were applied to A , L would maintain

the block-triangular structure, but the triangularization of each Bi
should ensure that each triangle Ly will remain sparse. Similarly,
triangularization of sparse C should lead to reasonably sparse M .
This example emphasizes the point already made, that the Cholesky
factorization automatically takes advantage of useful structure during
the simplex iterations, even though it is "unaware" that such structure
is present. Once an appropriate row permutation has been fixed it 1is
unnecessary to retain information on row or column partitions within A .

(b) Generalized Upper Bounding (GUB)

This is a special case of the block-angular structure, in which
each block has only one row, usually with all elements * 1 (see

Dantzig and Van Slyke [5]):

11. .1
11..1

11..1
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'kc number of CGUB sets is usually very large compared to the
number of coupling constraints in C , so each basis is almost completely

triangular. The Cholesky factors are of the form

M LO

with D diagonal and LO triangular. If the i-th GUB set has

nq members in a particular basis, the corresponding I will have
di =/ny - Since it is true that most ni=l , efficiency could be
improved by taking this and certain other simplifications into account.
. Nevertheless a general implementation of the LLT method can derive
high efficiency from the GUB structure automatically, and in contrast
to standard GUB codes does not require any specialized "housekeeping"

for monitoring the status of the variables in each set.

(c) Staircase structure

Multi-stage systems give rise to problems in which each basis

has the following staircase form:

In this case also, the Cholesky factors preserve the profile of each B

below the diagonal:
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The full matrix A has a form similar to the B shown, and an individual

triangularization of the rows within each horizontal stair should minimize

the density of each L within the profile.

(d) Unstructured problems

Since it is often true that structure within a problem reflects
important characteristics of the physical system which the problem is
modeling, it would not be unrealistic to recommend that grouping of
constraints into one of the above forms be done during formulation
of the model (i.e. by human hand). The grouping can then be input to
a preliminary computer routine for further (more localized) triangulariza-
tion.

If a given problem has no apparent structure at all, it may be
profitable to adopt as the pre-processing phase, the method of Weil
and Kettler [23] for rearranging A into block-angular form. Since
the Cholesky factorization takes best advantage of this particular
structure, 1t is conceivable that even the diagonal blocks thus
obtained should in turn be processed by the Weil and Kettleralgorithm,

to produce structures of the following form:
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The sub-structure within each block will be preserved in L just as it
is for the broader partitions. If there are many blocks of this form,

each L will have the following interesting profile:

—D
AN

This is strongly reminiscent of the profile arising in the work of

J. A. George [7,Ch.4], wherein the Cholesky factorization A = LI

is considered, where A 1is a given symmetric, positive definite sparse
matrix. Symmetric row/column permutations applied to A lead to IL's

of varying density, and since the profile of A 1is preserved in L

the least dense factors are obtained by minimizing the number of elements

within the profile (rather than minimizing bandwidth, say). Thus an
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ordering was found which had a "spike" structure similar to the L
above. Possibly this observation will throw some light on the problem
of finding an optimal permutation when A is of the form BBT

A further possibility for unstructured problems arises from the
work of H. Konno [16], [17]. An algorithm is given in [16] for solving
the so-called bilinear programming problem (BLP) using a sequence of
linear programs. One of the applications of BLP given in [1T7]
relates to the triangularization philosophy. The measure of lower-
triangularity used for a square sparse-matrix A is the number of non-
zero elements occurring above the diagonal of A . It is shown that
the problem of finding row and column permutations which maximize
triangularity can be cast as a BLP , and hence in principle can be
solved. An extension to rectangular A should be possible. [Unfortunate-
ly this approach would not be practical for large problems unless the

same structure were to be used many times.]
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13. Computational results

Most of the ideas described here have been implemented in an
Algol W program* on the IBM 360/91 at the Stanford Linear Accelerator
Center. Data is input in MPS/360 format (see [18]), including simple
upper and lower bounds on any number of variables. Algol W was chosen
as a flexible and convenient programming language for development
purposes, without which evolution of the algorithm would have been
very much slower. However no direct-access I/0 facilities are
available and the implementation is therefore strictly in-core.
Comparison with other systems is difficult in view of the different
machines, programming techniques and use of core, but we give
performance figures where they are available. The run times recorded
below would be reduced by a factor of 3 or 4 if assembly language
were used in place of Algol W . Alternatively the times should be
multiplied by a factor somewhere between 1.2 and 1.5 to give
equivalent run times of an assembly language implementation on an

IBM 360/67 (very approximately).

Four medium-scale problems have been used as test cases. They
are listed in Table 1, in order of increasing difficulty. Some
relevant run-time statistics are given in Table 2, where time is
measured in seconds of 360/91 CPU utilization, and the number of

elements in L refers to non-zeros below the diagonal. optimal

*A1lgol W was developed for the IBM 360 by faculty and students of
the Computer Science Department at Stanford University, as a refine-
ment and extension of Algol 60. No facilities were used here that
are not available in Algol 60, except for character strings used for
reading the MPS/360 data.
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solutions were found for problems A, B and C , but problem D

could not be run to completion because there was insufficient storage

available for L.
The main features of the solution strategy are as follows:

1. The input data was stored in short precision (6 hexadecimal
digits in the mantissa) but all computation and working storage
used long precision (14 hexadecimal digits).

2. A row scaling was applied to A to make the largest element in
each row approximately equal to 1 (to the closest power of
2 ). Then a column scaling was applied to reduce the euclidean
length of each column to approximately 1 . This is an attempt
to improve the condition number of each basis.

3. Except on problem C, the procedure of section 4 was used to
permute the rows of A into approximately lower-triangular form.

4, The cold start procedure of section 11 was used to find an initial
triangular basis, with the help of a number of artificial variables.

5. For ease of implementation, the usual two phases of the simplex
method were replaced by a single minimization (the "big M" method)
in which artificial variables are given a value G- = M in the
cost vector ¢ , where M is-sufficiently large that their
value in an optimal solution is zero. Usually M = 1000 X max‘cj‘
is large enough.

6.- The pricing strategy used was also non-ideal but easy to imple-
ment. The first k columns are considered for entry into the
basis, where k is pre-set to something like 300 or 400 ,

depending on the number of variables and the expense of computing

13.2



b
'
A
-

reduced costs relative to the expense of changing basis. An
iteration is performed using the column with most-negative
reduced cost, and then the next ¥ ~olumns are cunsidered.
7. Reinversions were performed only when the error conditions of
section 10 were encountered.
8. The maximum amount of memory available to the Algol W program
for work space is approximately 500K bytes (62,500 long words).
This was more than enough for all cases except problem D
As Table 2 shows, problems A and B were solved quite easily,
but the high density of problems C and D caused considerably more
difficulty. We will discuss each problem briefly.
Problem A Being a network problem, this example is numerically
well-conditioned (all elements i}) and highly triangularizeable.
With only 3 elements per column its density is also very low and
it is not surprising that L remained very sparse throughout the
iterations. Figure 1 shows the growth of off-diagonal elements in
L (NL) along with the number of artificial variables (NA) as
functions of iteration number. It is to be expected that L should
become more dense as unit vectors are replaced by somewhat denser
columns. If iterations had continued, a levelling off would have
occurred, as exhibited by problem C
This problem was obtained via R. R. Meyer from the Shell Develop-
ment Company, California who also obtained the following comparative

performances:
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Code Machine Iterations Time (seconds)
FMPS Univac 1108 477 81
IIONA Univac 1108 ? 50

The iteration time of 21.3 seconds and total solution time of
30.2 seconds shown in Table 2 (Algol W, 360/91) compare reasonably

well with these figures.

Problem B This problem is of generalized upper bounding type, with
890 GUB sets and 39 coupling constraints. The triangularization
procedure of section 4 was successful in moving most of the coupling
constraints to the bottom of A (no special effort was made to do this
exactly). As explained in section 12, the Cholesky factors are
almost triangular, and the number of off-diagonal elements in L
was virtually constant at around 1500 throughout the 958 iterations.
Starting at 1428 elements, this number never exceeded 1534. Again
the problem was well-conditioned and only 1 reinversion was called,
at iteration 555 using \65 -1| as control (see section T), which
served to avert a slight onset of noise within L

This problem was obtained from the Crown Zellerbach Corporation,
via M. G. Kazatkin, and provides a good example of how the Cholesky
factorization, together with explicit storage and updating of L ,
can take advantage of structure. R. B. Johnston of Crown Zellerbach
obtained the following benchmark results on several commercial systems

(last quarter, 1970):
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Code Machine Iterations Time (minutes)
FMPS Univac 1108 1700 13.5
UMPIRE Univac 1108 1852 13.5
ILONA Univac 1108 1491 9.5
MPS/ 360 IBM 360/65 1885 36.3
OPTIMA CDC 6600 420 2.4

The first two systems also solved the problem with special
GUB codes, and returned times of 13.0 and 4.5 minutes respective-
ly. It can be seen that the results in Table 2 (95.5 seconds iteration

time, less than 2 minutes total time) compare quite favorably.

Problem C This is a dynamic multi-sector model with staircase
structure, obtained from Professor A. §. Manne and K. W. Kohlhagen
at Stanford University. There are six main "stairs" or blocks, each
approximately 50 x 100 . Ideally each block should be triangularized
individually, but this was done only crudely by hand, and further
triangularization by program was suppressed. (Triangularization of
A as a whole, destroyed the staircase structure and led to very
dense L's.) Although small in absolute dimensions, this problem
was rather difficult to solve for two reasons:

1. The density of 2.3% is moderately high, but since all elements
are concentrated within the staircase structure, the density of
each block is more like 10% , which is very high.

2. Numerically speaking the problem is ill-conditioned, with the
size of matrix elements ranging from order 101 down to order
lO-5 . (This range was not altered significantly by the row

and column scaling.)
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All reinversions were called following selection of a column for
which the pivot element was unususlly small. (Such a column is then
temporarily rejected and a diffcrent one chosen for entry into the
basis.) The relatively high reinversion time of 6 seconds reflects
the strong linkage between variables and indicates that many columns
of L are affected by each basis change. This in turn emphasizes
that with dense problems it can be expensive to update L explicitly.
(Correspondingly, standard methods of updating in product form would
lead, in PFI for example, to a rapid growth of eta elements and
consequently to relatively frequent reinversion.)

As figure 2 shows, the number of elements in L increased steadily
while artificial variables were being removed from the basis, and then
levelled off at a little over 12000 . This steady state is due to
the fact that the staircase structure is being preserved by the
sequence of Cholesky factors. Though the figure of 12000 is large
considering the size of the problem, it simply reflects the high
density of the data and would have been much larger if structure were
not preserved.

Similar difficulties are reflected in the performance of MPS/360*
on a smaller (316 x 463) unstructured formulation of the same problem.
An initial reinversion, starting from an advanced basis, failed with a
row error of 105 . All subsequent reinversions were successful, but

illustrate well the possible disadvantages of the product form of

*This is MPS/360 V2-M9 , running on an IBM 360/67 at the Stanford
University Computation Center, Campus Facility.
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inverse in certain cases. The number of eta elements ranged from
around 24,000 after reinversion, up to nearly 40,000 about 50
iterations later. Reinversion time was between 0.6 and 0.8
minutes, and total run time from cold start was approximately 21

minutes.

Problem C (modified)

A more direct comparison with MPS/360 was obtained using the
staircase model with many of the variables fixed in value. Resultant
problem size was 357 x 385 , plus 148 slack variables. Only 6
of the slacks appeared in the optimal basis.

The performance of each method is summarized in Table 3, and it
appears that on this test case the Cholesky method has performed
significantly better than the standard method using product form of
inverse. The growth of elements in L and PFI are plotted in
figure 3. We must point out that L is used four times each iteration,
whereas PFI is used only twice. Nevertheless the results are
interesting from a storage point of view. The jump in density of PFI
about 250 iterations before optimum was due to a row check failure,

followed by a repeated reinversion with a tighter pivot tolerance.

Problem D

This is the first of three problems used experimentally by
Forrest and Tomlin, called problem A in [6], [21] . It was treated
as a general sparse linear program. During the run shown in Table 2,
the number of elements in L increased steadily to 21000 , which

represents the maximum storage that could be allocated for this
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particular problem in the Algol W implementation. The run was
terminated before an optimum solution was found.

Forrest and Tomlin give comparative figures for two methods,
both starting from a full basis and an LU factorization stored in
product form (EFI). With the standard product form of update, the
number of eta elements increased from 4861 to 35885 after
70 iterations, whereas with their own method for updating the LU
factors the number grew from 4861 to only 8958 , which is a
significant improvement.

The poor performance of the Cholesky factorization on this example
was partly explained by an inspection of the constraint matrix,

which proved to be approximately dual-angular in structure (containing

coupling variables rather than coupling constraints), with 6 main
diagonal blocks of relatively high density, and about 400 coupling
variables. This structure is not one which is preserved by the LLT
factors. It is possible that the Cholesky method would perform better
on the dual problem, since this would have standard block-angular form

(but would be considerably larger in overall dimension).
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Problem A B C D

Structure Network GUB Staircase General

Rows 537 930 357 822

Structural

columns 1775 3562 467 1571

Elements 3556 15103 3856 11127

Density 0.37% 0.36% 2.31% 0.864

Bounds Yes Yes Yes No

Table 1. Test problem characteristics.
A B C D
Time to ,
input data 5.5 il1.0 3.5 10.5
Time to Rows not
triangularize A 3.4 I 10.4 [ permuted 8.7
No. of
artificial vars. 82 I 6 I 137 I 168 i
Initial . of
slements in L Loy 1428 2248 2262
density 0.28% 0.33% 3.5% 0.67%
£inal no. of | 1046 1510 12028 21000
! 0

density 0'75% 0'55/ 19.4/0 6-2%
No. of reinversions 0 1 8 14
Typical
reinversion time 3.18 0.23 6.0 5.0
No. of iterations 343 958 488 28L¥*
Time for iterations 21.3 I 95.5 1 311 I 199% |
Row and column - N
residuals, before J.O-l7,lO-JL5 10_lu,10—lu 10—10’10—15 lO_:Ll,lO_9
final reinversion
Row and column
residuals, after 10'16,10-16 10-17,10-18 lO-lE,lO—lh 10—12,10_11
final reinversion

Table 2.

All times in seconds of 360/91 CPU utilization.

(¥Optimum not reached for problem D.)
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11, Algol w, 360/91 PFI, MPS/360, 360/67
Cold staft 0 iterations Crash 204 iterations
0.02 minutes 0.98 minutes
151 artificial 66 infeasibilities
variables
Phase 1 212 iterations Phase 1 3 3 4 iterations
1.65 minutes 7.42 minutes
Reinversiof 0.09 minutes Reinversiof 0.22 minutes
11923 elements in L 19186 eta elements
before invert
11710 eta elements
after invert
3264 elements in B
Phase 2 1 8 1 iterations Phase 2 227 iterations
2.45 minutes 7.33 minutes
Reinversiof 0.12 minutes Reinversior] 0.56 minutes
at optimum 12401 elements in L at itn 731 39765 eta elements
before invert
23013 eta elements
after invert
3533 elements in B
Total 3 9 3 iterations Total 7 ©6 5 iterations
4,12 minutes 15.73 minutes
Table 3. Staircase model (problem C) with reduced no. of variables.

Comparison of Cholesky factors with Product Form of Inverse.
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Figure 3. Staircase model (problem C, modified).
Growth of non-zeros in Product Form of Inverse

and in Cholesky factor.
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14. Summary and suggestions for out-of-core implementation

Given a basis B with corresponding Cholesky factor L and

pasic solution X , the main steps to be performed each iteration of

the algorithm are as follows (using notation defined in previous sections).

1. Compute the Lagrange multipliers from
LTn = d
2. Use n to select a column ag for entry into the basis, and

compute the rate of change of % from

LLTu = as ;Y = BTu—
3. Use y to select an out-going column a, and update %
4, Solve

Ip = a

in preparation for modifying L
5. Modify L in two stages, such that
(a) T < T - ararT (using p )
by I « MY 4+ 2ol
S s
It can be seen that in steps 1 through 4 above, access to L
is sequential (column by column) and is alternately backwards and
forwards. Thus for these calculations a disk file (for column-wise
storage of L) would be as convenient as in standard product-form
Systems.
Modification of L (step 5) again requires a backward pass and
a forward pass, but the main difficulty is that elements must be
inserted into L . A possible solution to this problem is as follows.

Storage on disk will be in the form of a sequence of fixed length

records, each large enough to hold about 20 elements of L . Now
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consider the modification of a particular column which has been allocated
r records on disk (containing d = 20r "disk-elements," say). In
general this column will have a further c¢ "core-elements", which are
held in main memory in linked-list form, as described earlier in this
paper. During modification, the d disk-elements will be read into
core and linked into the appropriate part of the list, giving dtc
elements in-core for the column in question. The modification can be
performed conveniently within the list structure, and the first d
(modified) elements will then be written out to disk in place of their
predecessors and deleted from the list, leaving some small number of
core-elements behind.

In this way the total core required by the lists for all m
columns of L should change relatively little at each iteration.
During early iterations while L is filling in, periodical re-writes
can be performed (e.g. during reinversion) in order to allocate additional
disk records to the densest columns. Storage requirements should
stabilize after 100 or 200 iterations.

Note that for small problems we would initially set r = 0 for
all columns and operation would be completely in-core. Iransition to
disk would be smoothly accomplished, if necessary, by increasing r
for the densest columns.

Note also that unless a problem is very dense, only a small
percentage of the columns of L are affected by a basis change.
This is why fixed length records are specified, so that "seek" operations
can be requested in order to skip past columns' on disk which are not to
be modified. Drums or fixed-head disks would alleviate this problem to

some extent.
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Storage of the constraint matrix A remains to be discussed.
The recent work of J. E. Kalan on the concept of super-sparseness
(see [15]) indicates that even for extremely large problems, in-core
storage of A is within the realms of practicality. However we cannot
imbed any part of L within A , in the way that Kalan advocates
imbedding the product form of p! , and as Tomlin points out in [21],
relying on the extended-core storage of current large machines "can
only be a postponement at best."

Fortunately the primal simplex algorithm does not require a scan of
all columns of A each iteration, so if A has many more columns than
rows the simplest solution is to perform a sequence of suboptimizations.
At each stage the current basis B and as many non-basic columns as
possible are retained in core. (B 1is required in step 2 above, and
a random column from B is needed in step 4.) After a number of
iterations, a pass through A can select the current basis and a new
set of columns for a further suboptimization.

Although standard systems do not retain B in-core, there are
some advantages in doing so, 1in particular for checking of row and
column residuals and for reinversion whenever necessary. We assume that
Kalan's super-sparseness techniques for compacting B should make this

practical.
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15. Conclusion

In presenting a new linear programming algorithm we do not claim
to be able to solve all problems efficiently. Instead we hope to have
demonstrated that for certain well-defined classes of problem the method
does have some useful advantages, in terms of both numerical stability
and preservation of sparseness.

The problems to which the method is immediately applicable are
those for which a preliminary ordering of the rows of A can be
guaranteed to give a sparse factorization for every basis B arising
in the simplex method. The uniqueness of the Cholesky factor L
with respect to column permutations on B then makes it profitable
to store and update the non-zero elements of L explicitly rather than
in product form.

In the case of GUB , block-angular and staircase problems it is
clear what the row-ordering of A should be, and the method then takes
advantage of the structure without further overhead (e.g. problems B,C).
For unstructured problems, triangularization of A appears to be
sufficient if the density is low enough (e.g. problem A). However,
unless there is structure to be preserved there seems to be a threshold
density (at about 0.5%) above which the Cholesky factors fill in
significantly, even when triangularization of A is carried out
(e.g. problem D). In such cases, a structure-finding algorithm such
as-that of Weil and Kettler appears to be necessary.

An interesting unsolved problem has arisen:

For which permutation P does the factorization
PBBTPT = LLT
give an L which is most sparse?
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If this question can be answered for square B (and possibly then
for rectangular B) the algorithm in this paper may find broader
application. In the meantime, the method is already applicable to many
problems and it is felt that the unusual properties of the Cholesky

factorization deserve further investigation.
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