
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-158

COMPUTER SCIENCE DEPARTMENT

REPORT NO. CS-250

. PROGRAM SCHEMAS WITH EQUALITY

BY

ASHOK K. CHANDRA

ZOHAR MANNA

SPONSORED BY

| ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457

DECEMBER 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

i

PROGRAM SCHEMAS WITH EQUALITY

by

Ashok K. Chandra and Zohar Manna

Computer Science Department

. Stanford University

Abstract

We discuss the class of program schemas We define a flowchart schema as being a program
Te augmented with equality tests, that 1s, tests of with the following features: it has a finite

equality between terms. | number of program variables denoted by Yr ¥pr + wey
In the first part of the paper we discuss and Co

illustrate the "power" of equality tests. It a finite number of uninterpreted function symbols
: turns out that the class of program schemas with £1»%5y-.. (which may be ccxnbined with the variables

equality is more powerful than the "maximal" to form terms) and a finite number of predicate

. classes of schemas suggested by other investi- symbols denoted bY PysPys ees . Some of the func-
gators. :

In the second part of the paper we discuss tion symbols may be zero-ary. These stand for
the decision problems of program schemas with individual constants, and are denoted by
equality. It is shown for example that while the 2y,85,.+« A statement in the program may be:
decision problems normally considered for schemas (a) an assignment statement of the form
(such as halting, divergence, equivalence,
isomorphism and freedom) are solvable for Ianov Yi ~-t
schemas, they all become unsolvable if general :
equality tests are added. We suggest, however, where t 1s any term, (b) a predicate statement
limited equality tests which Can be added to of the form

. certain subclasses of'-program schemas while if Pp; (ty5t,, court) then goto L else got0 L,
preserving their solvable properties.

where Tyrol are terms and: L,sL, are labels,
1. Introduction or (c) a terminal statement, i.e., a START

statement, a HALT statement or a LOCP statement.

In recent years the study of schunas has been A schema has a unique START statement as its first
widely pursued in an attempt to understand the statement. Free use of goto statements is allowed;
power of programming languages. In the study of and all statements except the START statement may
program schemas, the functions and predicates be labelled. In addition, for convenience and
allowedare usually considered to be uninterpreted readabilitywe describe schemas using ALGOL-like
symbols. The reason for this is that very simple features, e.g. while-statements and block struc-

interpreted programs yield all the partial recur- tures. These clearly do not add any "power" and
sive functions, and therefore interpreted programs every such ALGOL-like program can be translated to :
do not provide insight into the difficulty in an equivalent program that uses goto-statements |
programming; e.g. the difference between the instead. |
essentially iterative nature of Fortran and the Certain features can be added to flowchart

recursive structure of Algol or PL/1. schemas, e.g. counters or arrays. A counter is a
Earlier works in this area, e.g. Ianov special variable that takes nonnegative integer

[1960], Rutledge [1964}, Paterson [1967, 19(8] values. The operations allowed on a counter are
and Luckham, Park and Paterson [1970] essentially adding one, subtracting one, and testing for zero.
considered flowchart schemas, and emphasized the An array is a one-dimensional semi-infinite sequence
decision problems for schemas, viz. halting, of variables that can be referenced by using a
divergence, equivalence, etc. Most of the recent counter to subscript the array.
papers, on the other hand, e.g. Paterson and In addition, we also consider recursive schemas.

Hewitt [1971], Strong [1971a], Constable and A recursive schema is a set of recursive definitions

Gries [1971] and Garland and Luckham [1971] of functionals FFs «++ of the form
considered more powerful schemas, i.e., flowchart

schemas with additional programming features like Fo(¥yreesys) - if D(tysenest } then t else t!
counters, recursion, push-down stacks and arrays; J n
and were concerened mainly with the problem of where Pp is an n-ary predicate symbol and :

translating program schemas from one class to LIERERTAM » t and t' are terms that may consist
: another. . . Cs| Several formalisms have been considered in of function symbols, functionals and the variables
] the literature for the description of schemas. Ypr°0e095 : |

The research was supported by the Advanced Research Projects Agency of the Office of the Secretary of
! Defense under Contract SD-183. The views and conclusions contained in this document are those of the

) authors and should not be interpreted as necessarily representing the official policies, either expressed

1 or implied, of the Advanced Research Projects Agency or the U.S. Government. Reproduced in the USA.
Available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia

: 22151. Price: Full size copy $3.00; microfiche copy $.95.

: 1
.

}
|

It 1s quite surprising, though, that people In the rest of this paper, we illustrate the
have so far neglected to mention one of the most power of equality tests (Section 2) and the decision
useful features: equality tests between terms, problems concerning program schemas that use them
i.e., statements of the form (Section 3). For the sake of clarity we merely

: B give the "flavor" of the examples in the main part
1f t - t then got I glse gotl Ly ! of the paper, and we state the theorems without

proof. Details of the examples are given in
where t),t, are terms and L;»L, are labels. Appendix A (Section lL) and the proofs are sketched

The extension of program schemas to allow in Appendix B (Section 5). Detailed proofs can be
equality 1s quite natural, much as 1s the exten- found in Chandra [1972b].
sion of first order predicate calculus to first
order predicate calculus with equality. The B

analogy Can be extended further in that in both 2. The "Power" of Program Schemas with Equality

thos equality tests ca be treated as Just ig The use of equality tests in program schemasother binary predicate but wi a partial inter- ;

pretation which in turn involves all other predi- coo 2 01d question that has been ere
cares and functions used Ln the Systen. This satisfaction -- just what is a schema? We do not,
ends to be an unnatura approach to the treatment in this paper, propose to answer this question, but

of eTALLEY. Jocoraingly, ve prefer he direct we can indicate that much remains to be studied.approach of allowing the equality test to be a :

basic operation in the system as 1s the operation Strom Cin ber examin rat ne Gries [1971],ignmen vari . ¢ : ro

of Che ronson for fe ion of equality tests program schemas with arrays might be a “maximal”
in earlier papers can perhaps be traced to the class of schemas, L.e., for cvery schema there
following fact. All schemas discussed in the exists an equivalent schema in this class. Now,
papers mentioned above have one very important 1t may be that the class of array-schemas 1s indeed
common property: the behavior of a schema for all maxims] with respect to the Herbrand Schemas, but
interpretations can be characterized by the nevertheless alischemas in this class are Herbrand
behavior for a subset of all interpretations schemas. I has been shown, however, that there
viz. the Herbrand interpretations. We therefore exist certain schemas using equality tests that are
call all these schemas Herbrand schemas . To be inherently non-Herbrand. This means that the class
somewhat more precise, in a Herbrand schema, for of program schemas with arrays and equality tests
every interpretation there "corresponds" a Herbrand 15 4 Strictly larger class. Herbrand bl £
interpretation that follows exactly the same path it can Fe solved by a ATA hiatal 0— De *
of computation. Flowchart schemas with equality Herbrand problem is one that can only be solved by
tests are in general non-Herbrand schemas, that is, Inherently nonkon_Herbrand schemas. The class of
they may behave quite differently for Herbrand program schemas with arrays and equality tests can
and non-Herbrand interpretations. Consider, for solve certain non-Herbrand problems (which by the
example, the simple schema: definition of a non-Herbrand problem cannot be

START solved if only arrays are allowed).

if a = b then HALT else LOOP . We first illustrate this point with two exam-
This schema halts for some interpretations and ples of non-Herbrand problems.

loops for others. For all Herbrand interpretations, Example 1: Inverse of a unary function
however, it always loops. It is therefore a non- EE—
Herbrand schema, and further, there can be no Consider the following problem: "Given a
Herbrand schema that is equivalent to it. A non- unary function symbol f , a finite number of other
Herbrand schema that has no equivalent Herbrand n-ary function symbols, n >0, and an input
schema is said to be an inherently non-Herbrand schema variable x , write a program schema that under any

The use of equality tests does not necessarily interpretation will yield a value of £71 (x) as
make a schema nor-Herbrand. Example 0 in Appendix output. That 1s, it finds an element y that can
A 1s an interesting instance of a Herbrand program be expressed in terms of the given function symbols
schema with equality tests that has an equivalent and the input variable x , such that f(y) = x ;
Herbrand program schema without any equality test if no such element exists, the schema loops forever".
and also an equivalent non-Herbrand program schema This problem, which is essentially one of inverting
(which does have equality tests). a given unary function, is non-Herbrand, the reason

There are several other features which in being that if the input x is equal to the zero-ary
general give rise to non-Herbrand schemas: the function a then it has no inverse in any Herbrand
use of quantified tests is one such. Unfortunately, interpretation, whereas for other interpretations
it is not partially decidable if a given schema is it may have an inverse. It follows that the task
a Herbrand schema. This result follows from the cannot be performed by any Herbrand schema. The
fact that it is not partially solvable whether or task cannot be performed by any Herbrand schema.
not any given flowchart schema (without equality The task is, however, well within the capability of
tests) diverges for every interpretation. Given flowchart schemas with arrays and equality tests.
any flowchart schema T , replace every HALT A schema in this class that solves this problem is
statement by the statement described in Appendix A.

if y=a then HALT else LOOP ,

where a 1s a new individual constant. Now the Example2: Herbrand-like interpretations
new schema is a Herbrand schema if and only if T Given a set of function and predicate symbols
diverges for every interpretation. of which there is at least one zero-ary function,

we say that an interpretation I for this set is Example h: Efficient translation of linear
llerbrand-like if there exists some Herbrand inter-

pretation If such that there is a 1-1 homomor- ecursive schemad
phism fras II into I . In other words, an Consider the recursive schema T :
interpretation I is herbrand-like if and only if

for every pair of distinct terms ty and t, F(a) where ‘
(made up of the given functions) the elements in F(y) « if p(y) then g(F(f(y)),y) else v.
I corresponding to t and ts are distinct.

) Let I be an interpretation of T for which
Now, consider the following problem: "given

an interpretation for a set of function and there exists ann, n > 0 , such that f(a) =
predicate symbols, of which at least one is a FALSE and for all k <n , (a) — TRUE . The

) “ero-ury function, determine if the interpretation output of the computation (T,I) is the term
1s not Ilcrbrand-like. If the interpretation is

not lHerbrand-like then halt with no output, else -1, 0 }
diverge." This problem is inherently non-Herbrand e(e(a(. g(£ (a), (2) ...,f (a)),£(a)),a).
in nature since a schema that solves this problem

: must diverge for every Herbrand interpretation. For usual implementations of recursion the
But for certain other interpretationt the schema computation of the interpreted schema (T,I) takes
should halt. A schema with equality tests that time (the number of operations on data structures
solve6 the stated problem is presented in performed) and space (the number of values stored)
Appendix A. . both proportionalto n . The recursive schema

The problem presented above is an abstract T can be translated to an equivalent flowchart
t model closely related to certain problems in real schema using a fixed memory size (number of

life programming. As an illustration, consider a variables) and time proportional to m*n . Using
directed graph (with an identified root node) in equality tests, however, the time can be brought
which each node has two identified pointer6 leading down to some constant times (1%e) , where ¢ is
from it. Pointers may lead to a terminal node any arbitrarily small positive number. Details of
"NIL" . The problem 1s to determine whether or not the construction are given in Appendix A. For
the given graph is a tree. This problem maybe further discussion of this topic, see Chandra
modelled by the above problem with two monadic [19722].
functions representing the two pointers, and with
the difference that the search for the equality of

. two "terms" 1s conducted not for the entire set of %. Decision Problems
all terms, but for these terms not representing -
NIL. The correspondence 1s that the interpretation : od

is Herbrand-like for this set of tem# if and only for fe consider the following decision problems
if the corresponding graph is a tree.

Another related problem is that of determining (a) The halting problem -- to decide whether a
if a given list is circular. In this problem, too, given schema in the class halts on every
the explicit use of equality in a schema model of interpretation.

the computation represent6 a more natural approach (b) The divergence problem -- to decide whether a
than the treatment of equality as an interpreted given schema in the class diverges on every
predicate. interpretation.

While the main interest in equality tests (¢) The equivalence problem -- to decide whether
stems from the fact that programmers frequently do two given schemas in the class are equivalent.
use tests of equality between variable6 whose (d) The inclusion problem -- given two schemas A
value6 are data element6 and these test6 are often and B to decide whether A includes B , i.e.,
of a non-Herbrand nature, equality tests find some for every interpretation either both schemaé halt
interesting applications in problems that are with the same output or schema B diverges.

really Herbrand in nature. We give two examples (e) The isomorphism problem -- to decide whether
two schema6 are isomorphic to each other. (Two

. : : schemas are said to be isomorphic, or opera-
Example3: Iranslationof flowchart schemas with tionally equivalent, if the sequences of

. Counters statement6 executed by both schemas are exactly
The recursive schema alike for every interpretation.)

F(x) ~ if p(x) then F(F(f(x))) else f(x) (f) The freedom problem - to decide whether a given
- Na - schema 1n the class 1s free.

can be translated to an "impure" flowchart schema (g) The translation problem -- to translate any
by introducing a counter. It can also be trans- schema in the class to an equivalent free

"lated to a rather horrendous flowchart schema flowchart schema (using any number of
"without any explicit counter (Plaisted [1972]). variables).
However, the use of equality gives a relatively

simple flowchart schema equivalent to the above It should be noted that the translation problem
: while retaining the advantage of having a "pure" is not strictly a decision problem. We include it

schema (all functionsand predicate6t being left in this list, however, because it is an interesting
uninterpreted). Details are presented 1in problem closely related to the others.
Appendix A.

3

All thccc questions can be answered in the The assignment depth lit(y)l| of a term
atfirmative for the class of lanov schemas which ty) is defined to be the number of common sub-
consists of one-variable flowchart schema6 using terms in t(y) excluding y itself. By conven-

only monadic function and predicate constants tion, for a constant term %() , |jt()|] = 0 .
(Ianov [1900], Rutledge [19¢k]). In view of this The depth [t(y)]| of a term t(y)+ is the
1t 1s somewhat unexpected that the addition of maximum depth of nesting in the term, and 1is
general equality tests to Ianov schemas renders all defined by:

these decision problems unsolvable. On the other It) | = 0hand, we show that these problems for Ianov - 7?
schemas extended even to nonmonadic functions and lvl =0,
resets but with limited equality tests are -solvable. ty. 4) | ¢ me ty d tI

n 1 n

It should be stated that for all "conventional Note that for monadic terms (t|| = |t| , and in
schemas, 1.e., all schemas mentioned in this paper 1 tll < |] Af 1 1lustratand in earlier works, the following problems are hie | ! the foll Lev conle ©5 iLiustrate
at least partially solvable: tS point. SNTLAS 1OSI0WiNg tab-e

(a') The halting problem —-- to decide whether a (a) stands for t(y) ;
given schema in the class halts on every (b) stand6 for common subterms of t (y)
interpretation. (excluding yy . itself);

(b') The non-divergence problem -- to decide (c) standé for We(¥)| 3
hether a given schema ever halts

i ha v (d) stands for Jt(y)] .
(e') The non-isomorphism problem —— to decide if

two schema6 are not isomorphic to each (2) (o) (¢) (4)
other.

y 0 0
(ft) The non-freedom problem -- to decide if a f(a) - 0 0

given schema is not free. f(y) f(y) 1 1

| | £(g(n(y))) h(y) sen(y) ;fen(y) 5 3
The notable exception6 are the equivalence flgla,y),e(a,y)) gla,y) ;f(gla,y), gla,y)) 2 2

and inclusion problems. In general, the equiva- f(y, g(a,y)) £(y,g(a,y)) 1 2
lence and inclusion problem6 as well as their
negation6 are all not partially solvable.

.1 N
3 lotation 3.2 Solvable Classes

We use the symbols Co Consider the rather general class Sy of
(1) 8845+ +e LO represent individual constants flowchart schemas with one variable. Schemas in

(or zero-ary functions, if you will), 5, contain the following statement types (Ll and

(2) Yo¥qs¥ps eee to represent program variables, L, are arbitrary labels in the definitions below):
(3) £85, . to represent functions, and we

START statement: START

use ya
(4) DsyPysPys+e» tO represent predicates. :

Final statements: HALT or

The set of terms 1s defined by the smallest LOOP

set containing 8'6 , y's and closed under the Assignment statement: -t(y)following operation: if t,,t.,, ..,t are terms, El © Y y
Le 8 predicate-test st.: if P(E, (¥)seeest (¥))

and fs 1s an n-ary function symbol, then "t — 1 n
f(t o mo t) is also a term. then goto I,

We use the notation t(Y sYpseees¥,) to else gotd Ly
represent that Ypo¥ps+. ead, are the only variables Equality-test st.: if t,(¥) = t,(¥)
that may be present in t. Thus a term t(y) then goto L

: ——— 1
may or may not contain the variable y , but else soto I.
containé no other variable. A term t() indicates S8E £00 bp
therefore a constant term, that is, a term that

has no occurrences of y's at all. The equality tests allowed must, however, satisfy
Given a nonconstant term t(y) , i.e., one the condition that either t, (y) or t,(y) is a

containing the variable y , a common subterm

£'(y) of t(y) is one such that ifevery constant term, or else both lft, (ND and [ton]
occurrence of t, (y) in t(y) is replaced by an are less than or equal to 1 .
individual constant then <t(y) 1s reduced to a

constant term. Clearly the terms y itself and THEOREM 1 (Solvability of S$.) . For the class Sy
t (y) are common subterms of t(y) . Also, if —

1 (y) a t"(y) are common subterms of t (y) 1(a) the halting problem is solvablethen t'(y) is a common sub-term of t"(y) or
vice versa. 1(b) the divergence problem 1s solvable

L

1(c) the equivalence problem is solvable Sz differs fran Sy in that noncongtant
1(d) the inclusion problem is solvable terms of depth 2 are usedin &quality tests; and

1(¢) the icomorphism problem is solvable it differs from Sy in that terms tested for
1(f) the freedom problem is solvable equality do not have the same assignment depth.
1(g) any schema can be effectively translated to a. .

an equivalent free schema (with the addition THEOREM J (Unsolvability of §,) : For the class
of extra program variables). 5; :

This theorem includes as special cases the 3(a) the halting problem is unsolvable

results of Ianov [1960], Rutledge [1964], and also b
recent extensions by Pnueli [private communication] 5(b) the vergence problem is not partially
and Garland and ILuckham [1971]. Solvable

As a special case, the problem6 (a)-(g) are 3(c) the equivalence problem is not partially
solvable for the class of l-variable monadic solvable
schema6 allowing resets and equality tests of the
forms: - 3(d) the inclusion problem is not partially

solvable

t,0=t,0,v=t0), v= £.(y) , and £.(y) =£,(y) 5(€) the isomorphism problem is not partiallyJ
solvable

Consider, next, the class 5, of schernas, 3(f) the freedom problem is not partially

similar to the class S 4 , but with a change in solvable
the form of equality tests allowed, viz. the 5(e) there pists Ho effective translation to
equality test statements allowed are of the form: equivalien Lee schemas.

if ty) = t,(y) then goto L, else goto L, , For the sake of completeness we should mention
. that tne nonequivalence and the noninclusion

: : ors : | _ problems for this class too are not partially
but this time the restriction 1s that lit, (91 solvable. Of course, the halting, nondivergence
lito (¥) |. g and nonisomorphism problem6 are partially solvable,

which follows from the general result mentioned in

THEOREM 2 (Solvability of s,) : the earlier parts of Section 3.
—_— We introduce next the class 8), of l-variable

S Problemé (a)~-ég¢ solvable for the class monadic schemas similar to §S, but with the
J

c . difference that equality tests allowed have the
As a special case, the problem6 (a)-(g) are following form:

solvable for the class of l-variable monadic fv = t(v)Ith to L el +schemas allowing resets and equality tests of the Af y = t{y)lthen goto p 2288 E00 4
form:

where 1< \t(y) | <3, 1l.e., tests may have any of

t.(¥) = t,(y) where 15, (¥) | = lt,(3) | the forms:

3.3 Unsolvable CL vom E50), or. nsolvable Classes

Ml y = £££.)
It should well be asked why we have the J

"strange" restrictions on the form of equality

tests above. The answer 1s that even slight THEOREM 4 (Unsolvability of 5,) :
generalizations of the restrictions above yield, —

i astonishingly, classes whose problemé6 are unsol- Problems (a)-(g) for the class 5, are
vable. We demonstrate this on two classes. unsolvable.

Consider the class Sx consisting of one
: A class of schemas 1s sald to be solvable if

variable y , one constant a , no predicates and Co }
nly monadic function constants Statement6 in Lts decision problems (a)-(e) are solvable;
ony 4 : similarly, a class 1s unsolvable if its decision
schemas of S are of the forms:

3 problems (a)-(e) are unsolvable. Classes 5 and

START statement: START 5, are solvable whereas 5; and Sy, are unsol-
3-a vable. On comparing these classes it 1s clear that

Final statements: HALT or there 1s a very sharp demarcation between classes
LOOP of one-variable schemas that are solvable and those

Assionment statement: - f(y) that are unsolvable, depending on the form ofJ FY A equality tests allowed. It should perhaps be asked
CL . _ how many function symbols suffice to render a class

Equality-test st.: if £;,) - £,(£,(¥) unsolvable. It can be shown, for example, that for
then goto L, the class Ss , merely 4 functions are sufficient.
else goto L,

p)

It is more interesting to nole, however, that START
these function symbols can be "coded" using only 2 Y + a3

function symbols so that cchemas with one variable, L: if p(y) then
lwo functions and general cquality tests, i.c., ify-= tly) then LOOP
tests of the form t.(y) = t.(y) , arc unsolvable. else begin——— p\V J 2 SonIeper

LE y « f(y);
So far we have restricted our consideration goto L

to schemas that have only one variable. The reason end
1s obvious: one-variable schemas provide the most else HALT .
interesting solvable classes. When more variables

are allowed, even a very few features tend to make
the schcmas unsolvable. For example, schemas with Example 1: Inverse of a unary function

two variables, two functions and tests only of the For simplicity we assume that the only func-
form y, = f(y;) areunsolvable. tions are a single zero-ary function a , the given

unary function f and a binary function g . The
It is even more interesting, though probably possible terms are therefore:

not surprising, that schemas with a single function
too are unsolvable; for example, the class of one- x, a, f(x), g(x, x) , f(a) , g(a, a) , g(x,a) ,

function schemas having tests only of the form g(a,x) . £(£(x))
y; =¥,; _is unsolvable (5 variables suffice in
this case) . The schema for any other set of functions is similar

to the one for this particular case.
The proofs of these secondary results are Symbols ¢., c,, C stand for counters.

also presented in Appendix B. | vets
Strictly, the only operations allowed on counters
are adding and subtracting one, and testing for

bh. Appendix A —- Detailed Examples zero. For convenience, however, we will also allow
- other statements such as c, + 0, c, - Co , and

Example0: A Herbrand schema with equality tests like ¢, = c. , as it is clear that these
* J

a all schemas that use equality tests are operations can be performed using only the legalnon-lerbrand. Consider, for example, the schema operations and additional counters.

START - (1) —— START

L: 1if p(v,) then ¢, «<0;

begin (3) —— REPEAT: vy = Alcqls
y, - £(y,); (4) —— if f(y) = x then HALT (y) ;

soto Lj ec, —estl; Aley] ~ evs);
end Cz = Cy

else if y, = a then HALT else LOOP while ¢; £ 0 do
else if Yq = V, then HALT else LOOP . begin

: : Cc, « C.=1;
This 1s a Herbrand schema because the equality b - .
test y; = vy, must always be true, and the Cp = Ctl; Ale,] = g(Alez1,7);
equality test y, = a can never be entered. The Cy «= cyt; Ale,] (ys Ales);
riven schema is hence equivalent to the following end;

schema, which has no equality test. cy - c +1;
START (3) —— goto REPEAT .
y= a;

L: if p(y) then msgs :
— begin After the initialization phase (lines (1) to

y= 102) (2)
goto L A[c]l =x, Alll]=a , ¢f = 0, c, = 1 .
end 1 2

else HALT. After completing one pass through the outer loop of
| tae program (lines (3) to (5))

The following schema 1s also equivalent to the .
above schemas, but it is a non-derbrand schema Ale] = £(x) , Al3) = gxx), ¢; =1, ¢=3,
because the LOOP statement in it can never be

entered for any Herbrand interpretation. The and after a second pass

schema 1s, however, not inherently non-Eerbrand. Alb] = f(a) , Als] = g(a,a) ,

ALE] = g(x,a) ’ Al7] = g(a, x) ’ <q = 2 ’ Cs = 7

The aigorithu works as follows: two pointers cy Ixample 3: Translation of flowchart schemas with

and Cy reference the array. Ale, represents Counters .
the "current" value. If the current value is not The recursive schema

the inverse, as determined by line (h), it is F(a) where
composed with values preceding it in the cnumera-
Lion by function applications, and the new values F(y) = if p(y) then F(F(f(y))) else f(y) ,
obtained arc added to the array.

It can bc shown by induction that the process can be translated to a flowchart schema with one
of ecnumecralion gencrates and tests cach possible program variable y and one counter c .

’ term exactly once. 'This means that the inverse

will be found if it exists. The point at which B START
the test of the inverse is made could be changed y ~ aj
to effect time efficiency but without altering the (1) —— c¢ + 0;
main features of the program. while true do

if p(y) -

Example 2: Herbrand-like interpretations : LE. - ’

We assume that the only functions are a sin- (2) -- Cc ~ ctl;
gle zero-ary function a , a unary function f end

and a binary function g . Therefore the set of else begin
terms includes vy ~ £(¥);

3 if¢ = O then goto DONE;

a , f(a) , g(a,a) , f(f(a)) , g(f(a),f(a)) ’ 2) —— 2B, c-1; Then goto DONE;
gla, f(a)) , end;

DONE: HALT(y).
The required schema is:

(1) START Note that the test " ¢ = 0 " above is not a test of
A[O] ~ a; equality between two data structures but rather

oo ! between an interpreted variable, i.e., cc , and an
(2) =~ c, =~ ¢c, ~ 0; interpreted constant, i.e., 0 .1 2 : :

- i The corresponding equivalent flowchart schema
(3) —— REPEAT: vy + Ale, 1s with equality tests instead of counters uses three
F-—— — === _ 4 variables:
Cy © Cys y plays the same role as the variable y above,

| while Cy £0 do : z effectively simulates a counter, and
(4) ~ begin w 1s a temporary variable.

cd ~ ¢),-13 The idea behind the method is that the variable z

if Ale,] = y then HALT; ,
|] h simulates a counter, where £4 (a) stands for the

end; | integer 1 . Therefore, the statement z «~ aL - — —- - —- - - stands for the statement c¢ -0, z ~ f(z) stands
cy + cyt; Ale,] ~- f(y) ; for ¢ + ctl , and the statements

_ [w = a; while f(w)# z do w + £(w); z + w] stand
Cs -cytl; Alec,] e(ysy); for ¢c ~ c¢-1 . Wc have to be careful, however.
3 = C5 The term (a) stands for the integer n , n >0,
while c, #0 do . only if for no two distinct numbers i,j <n are

begin the terms f' (a) and (a) equal. Interpreta-
Cr wool: tions for which the counter is required to count up
J 3 7? to an integer n where there exist i,j <n,

2 = eptls Ale,] i: e(Ales],y); i #3, such that f"(a) = £9 (a) are called looping
Cy + c +1; Alc,] ~- g(y,Alc,1) interpretations. It can be shown that for looping

a: d interpretations the given recursive schema never
res halts. The required program schema is therefore

cy ~ c +1; easy to construct:

(5) -— @ REPEAT .

This program 1s quite similar to the previous
one in the manner of enumeration of terms. The

fact that each term is generated exactly once is
used in making the test (4) to check if a value
1s repeated.

]

START | Using equality tests, however, the time can

(1) -- y _ | be brousht down to nite where € 1s an arbi-
B dile Lrue do trarily small number. We first describe an cquivae

=r p(y) lent flowchart schema with equality tests with a "7
~~ ihen begin time bound of Lk .

vy « (y); Intuitively, the idea is the following. The

r a Tuas - = “heck carlier flowchart schema spends most of its time
whi ag. £2 do | for a trying to find the inverse of the function f
ir w= f(x) | Looping (i.c., given f(a) , to find £7 a)) —— though

then ILOP inter- this operation is somewhat hidden in the program.
| clse.w ~ f(w); | preta- - We can speed up this by planting a value at a
L_ if w=1(x) then LOOP; tion "distance" of about vn from the end

(0) —- - TZ - (2); - = and compute inverses from this planted value.
end ? Time taken to find the square root is of the order

clse begin of 2/2 , average time to find the inverse is
ref 3 : :

(5) == Ye . SZ gota. DONE; nl? (done n times) and time to reset the———— “ = ————— ———— I.

— — — — — — = — — planted value is of the order of n (done nl/2
Wo a; times). In general, by planting (k-1) values

(hy —— while f(w) £2 do we £(w); | (instead of just one) at distances
Z ~~ W; LL _

LL. _ =" _ — ME 2fk 3k (el) fk
end; 1 (1/k)DONE: HALT(y). from the end we get a time bound of n

START

Example 4: Efficient translation of linear y «= a;
: 1) -- while p(y) do y + f(y);h (while p(y) do y vy);

Consider the recursive schema T :
— x « f(a);

F(a) where (5) -- CHECK: SIREN
E'(y) —_if p(y) then g(F(£(y)),y) else y . while y) # x do

begin

Let I be an interpretation of T for which Vp © 8;
there exists an n , n > 0 , such that
n x while y, # x do
(a) = FALSE , and f (a) = TRUE for all k<n. bea!
The output of the computation of (T,I) is Regn

| Yo = £(¥,)-1 2 2 2/7
slelel+ + 8(£7(a),£77 (a) LLL f(a), 1(a))0)

Y3 + £(y2) 3
The computation of (T,I) takes time and if yz = y then goto FOUND;

space proportional to n -- for usual implementa- nds 2
tions of recursion. The recursive scheza can be £na;

translated to an equivalent flowchart schema T! v., « f(y.)
: : 1 177

using a fixed memory size (number of variables) 4:
such that the computation of (T',I) takes tire ass

proportional to n°, ass follows: = L(x);
START (4) -- soto CHECK;
Y © a; : : J —- _

. while p(y) do y « f(y); -—— vy = P(a) FOUND 3 2 «V3 xX = (a)
Xe a; * - Xy

while p(x) do (5) == REPEAT: RY
begin :]

X ~ I(x); : while x, #2 do
X, eX — z=1Ff(a) i>1 begin

z ~ a; Xx + £(x,) ;
© while p(x) go ry - 200) ;

begindose Lt) 6) —- end;
x) = £(x,); (6) Ate
ze f(z);

end; 3
y ~ da; z=
end

HALT(y)

(7) -- while z / % do 5. Appendix B —— Proof of Theorems ‘°
be,sin ‘ “
—— We use the terminology T, = To to mean the
Ky + Xao3

p! 1’ schemas T, and T, are equivalent, and I, 21,
while £(x,) # 2 do x, = f(x.); |
— > — 3 to mean T, includes T, .

. IE 1 2
y= olysxg)
se x: Proof of Theorem 1 (Solvability of 5,)

3 7
(9) —- © J l(a), (b), (c): The solvability of the halting,

CL 3 . divergence and equivalence problems follows from
TEST: if 2 = a then HALT (y); the solvability of inclusion:

—— X,, = a; i : :

(9) Xo ; While (x, (£52) F x) (a) Given a schema T of 51 5 T halts 1f and
do - I f(x) 3 only if T' oH where H represents the schema

goto REPEAT . [StarT; HALT (a)] that always halts with output a,
and T* is the schema T with all HALT statements

Line (1) detects if there exists an n > 0 changed to HALT (a) .
such that (a) — FALSE and (a) _ TRUE for (b) Given a schema T of Sq y T diverges if
all k <n . If such an n does not exist the and only if L o T , where L represents the
program loops forever which is the desired opera- schema [START ; LOOP] that always loops,
tion. If n exists it follows that for all

oo 1 (c) Given two schemas I, and T, of 5
i,j <n, if i # J then f(a) £ f(a) . At
ai T, = 1, if and only if T; oT andT, oT, .this point y = f(a) . 2 e 1

| If n = 0 the program halts with output a 1(d): We give below only the intuitive idea
(line 2). If n > 1 the CHECK loop segment of behind the proof of solvability of the inclusion
the program from lines (3) to (4) finds the problem. Given two schemas T; and T, of §, ,
smallest positive integer m such that m¥m > n . fomat tractedThis is done by successively trying larger and to decide 1£ T, oT, , an automaton 1s constructe

larger values i = 1,2,3,... for m until one'is that simulates the computations of I, and T. in
found such that i*i1 > n . This is the required 2
value for m . We use the variable x to store parallel. | The input tape of the autunaton repre-

N sents an interpretation for I, and I, . The
th 1 f f(a h labl : : :

© vaiue © (a) and the variable V3 to input tape 1s rejected 1f T, and Ts both halt
"count" up to i¥i : : :

P 1% 1 by successively taking values but with different outputs, or if Ty halts and T
a * ee .]] ' ' ' '2, f(a), £7 (a) The final value of x 1s diverges, under the interpretation corresponding
(a) and it remains unchanged for the rest of to the input tape; otherwise, the tape is
the program. accepted.

Execution of lines (5) to (6) nO Canes the To describe the operation of the automaton we
variable xy to be "planted" at id (x) . The first introduce the notion of the "specification

, state" of a variable y . The specification state
while SLAtenent between lines (7) and (8) consti represents the outcomes of all possible tests that
tutes the main part of the program. The variable : :

: could be performed by a schema without changing the
y takes on values in the sequence : :

value of the variable y (and using terms no

(a) "larcer” than the "largest" term used in the schemas
’ T, and 72). The automaton simulates the compu-

(*'(a), £7" H(a)) :
2 a nl ’ ne tations of 7, and T2 not just for the main-lineself (a), (a)),f “(a)) » computation, but for a large number of "instances"

of the variable y . There 1s one instance for

} 1 om each assignment statement and each constant term
gle g(a), (a)), . +.), (a)) (no larger than the largest term). The computation

of an instance (for an assignment statement and a

On exit from this while-loop the value of z is term) represents what the schema would really do if
-m its main-line variable happened to equal that

£1! (a) . constant term after that assigmment statement.
Lines (9) and (5) to (6) are then used to The computation on each instance is kept in

reset the planted value to £7 (a) and the step, and the automaton keeps track of which |
process is repeated. After it, the planted value instances have equal values at each step. This

3m enables the automaton to detect whether the input
is reset to 1 (a) , and so on. A special case tape really represents a feasible interpretation.
1s encountered when the integer corresponding to : Co :
Zz becomes less than m . In this case, the next The reason that this specification state

f 1i 9) instead of simpl tti 2 ~Xx . iduse © ine (9) instead of simply setting x x information to allow it to be updated. This 1s not
true for general equality tests, e.g. in the

9

classes 5, and §) , if a specification state Proof of Theorem 3 (Unsolvability of .§)
were to carry all information necessary to update —

it, the amount of information would grow without 3(a), (b): We define a class 5 of schemas having
bound as the computation proceeded. two variables y; and ¥, , and whose statements
1(e): The proof of isomorphism is similar to the consist of the following:
proof of inclusion, except that the automaton not
only keeps track of which instances are equal in Start statement: START
value at each step, but also which equal instances yp © Yo © 8;
have an isomorphic history. The automaton can h
then detect if for any input tape the computations Final statements: HALT or
of the two schemas are not isomorphic. LOOP

1(f): Freedom or nonfreedom is detected by the Test statement: y ~ £(y,);
algorithm 1(q) that translates a given schema in if p(y.) then goto IL,
51 to an equivalent free schema; if ever a test 1 J

oo else goto Lsstatement 1s detected for which some exit 1s not -

feasible the schema 1s not free, else it 1s free. It was shown by Luckham, Park and Paterson
[1970] that the halting problem for the class §

1(g): We give below a short outline for the 2
translation of a given schemaT in §, to an 1s unsolvable, and that the divergence problem 1s

| | 1 not partially solvable.
equivalent free schema T, (using several To show the halting problem for S, to be
variables). 5

A "partial specification state" is like a unsolvable we reduce the halting problem for 3
specification state but with the possibility that to that for §, ; that is, we describe an algorithm
the values of certain predicate and equality tests 3

may be unknown. The schema 1, has a (large) that takes any schema I, in the class 5. as
number of variables, one variable for each assign- input and yields a schema in the class 5,
ment statement and each constant term (no largér such that T' halts if and only if T_ . halts.
than the largest term used in T). oo 3 J

The schema T, begins by assigning all vari- Similarly, to show that the divergence problem for
1 oT S, 1s not partially solvable we describe an algo-

ables their corresponding initial values. The 2

schema T, has a (large) number of "chunks" of rithm that takes I as input and yields as output
it : "

statements. Each chunk updates the variables. a schema T, in the class 5, such that Tg
This corresponds to one step of the automaton in diverges if and only if T diverges. We will

the proof of inclusion. This updating can be ¢ 5 h b
performed without introducing any nonfreedom. unify the construetion or the to cases y cons
Each chunk is associated with the following infor- structing for both cases a schema I. in the
mation (line (iii) is unnecessary for this problem, class S, but augmented with a special final
but 1t 1s required to solve the freedom problem). 2

statement called the REJECT statement:

(1) The statement in T corresponding to each

variable in Ty . REJECT statement: REJECT .
1] 1 lues. Cen(11) Which variables have equal values The REJECT statement signifies that the inter-

(111) Which pairs of variables have the property pretation is unacceptable and is rejected. Loosely
that they both would have tested the same the idea is the following. There exists a map from

value 1f we hadn't explicitly avoided that interpretations of Ty that are not rejected onto
(i.e., if both variables are "entered" by _

- the main-line computation, nonfreedom would the interpretations of Lp such that the computa
result). tion for I, under an interpretation halts if and

When updating is performed, no predicate or only if the computation for I. under the corres-
equality test 1s introduced whose outcome is known ponding interpretation halts.
from the information corresponding to the chunk. Now it is clear that if we replace all REJECT

Loops are detected as before; and some variables statements in Ty by HALT statements to get Ty ,y LL 1 nw 2 2 2

may become "inactive" either by looping or halting. then i halts on every interpretation if and
Proof of Theorem 2 (Solvability of S,) only if I, halts on every interpretation.

The proof of Theorem 2 is similar to the proof Sptarly, it we replace oh panel Jratenents ov
of Theorem 1 except that the formal definition of LEY 3 3 J
the specification state reflects the different on every interpretation if and only if T
kind of equality tests allowed. 5

diverges on every interpretation.

Given a schema I. in S. we construct the
corresponding schema Tx in Sz (with the addi-
tion of REJECT statements) as follows. We use the

r= oe i

. 10 Coen

¢

Er.

: variable y o T. Lo rupresent the latest We arc now in a position to describe the cén-

| {able bested in : Le y. or y The struction of Ty . Without loss of generality, we
function f el ha - role I. r © in T will assume that in I, the first test statementWC plays e Jame qe oe

2 2 tests the variable T 111 effectivel
| Wc usc a new function t called a "test function"; ‘ M + po tz Wa very

and Lests of the form contain 2 copies of I, except there is only
| 1f p(y) then . . . else . . . one start statement. We will call these copies A
| To and B . We will label statements of I. by

in Too will take the form numbers 1,2,3,... . The corresponding statements

11 0 = ¥ « ee « ee
3-A 7 3-B geese

in Ty . In addition we use two "control" func-
tions £ and f. . Their roles are the following: (1) The start statement in I, tS
if y stands for y, (of §;) then £.(¥) will START
equal the value of £(y;) at that instant in the Yi 7 ¥p © 8s
computation unless, of course, a REJECT statement goto 1;
is reached earlier. The role of £5 is analogous, The corresponding statements in Is are:
1.c., if y stands for y, then £,(¥) will START

Y © és

equal the value of f(y,) . if £(y) #f,(y) then REJECT else goto i-A;
The schema Ts simulates a computation of

f :

Tg as follows. In the diagram below the elements Note that the test f(y) # 2(v) 1s not

by contiguous squares from left to right. We "simulated" by fhe statements:
superimpose on this diagram the computations of }

both T; and T, Suppose, at some instant in if f(y) FE (5) then REJECT;
the computation of T., y, is at point A, if £,(¥) # £,(£;(y)) then REJECT .
and Ys is at C , and suppose Yq 1s being else goto i-A;

"read". Ty makes certain that the £5 pointers (ii) For any test statement i in I, , if i is
from the squares scanned, point to the right of of the form:

¥, + Suppose that we continue to "read" from Vy (7)[ad 1! — f .
until y, reaches point B where the schema T 1 1/2

+ 0 if p(y,) then goto j else goto k;
starts "reading" from Yo Ty checks that the —_— 1
f) pointers from the squares scanned, point to the corresponding statements 1-A and 1i-B are:

the right of B . i-A: if £,(y) # £,(£(y)) then REJECT;
, y = f(y);
2 ; /

if oly) = ¢(e(y)) then goto j-A
TTT] ”

3 T and
) Yq v2 i-B: if f(y) fF (5,(¥) then REJECT;

push y, —» Y + £,(v);
(T, reads vy) if gy) = g(e(y)) then goto j-A

else goto k-Aj;
~ —_—

2 (iii) For any test statement 1 in § of the form:

: fr yy = £(y,)3

A RIONT EECRIE if p(v,) then goto j else goto k;1

’ £ i-A and i-B are similar to the above,
except, one has to interchange £5 with £,

yy NR and A with B .

push vy, — (iv) HALT and LOOP statements remain unchanged.

(T, reads Yp) This completes the construction.

11

Tne main reason thal the schema T, can statements that Lest os (followed by a final p

g inulule the computation of 1, is that cach ro statement or another test of y,) —- note the form
t, "pointer" is checked at most once from cach of the test statement OF 5 defined in the proof
square. [I pointers were Lo be checked twice and of 5(a),(b). The halting and divergence problems
it turned out that they were required to point to of S¢, can be shown to be unsolvable, and the
diferent values there might exist no interpreta- halt i 1 f .
Lion satisfying this condition -- the result would alting and divergence problems o 5 can be re
bc that all interpretations of r, would be duccd to those of 8), . This implies the unsolva-
rejected. bility of problems (a)-(e) and (g) for §, . The
2{c): The non-partial solvability of the equiva- freedom problem (f) can be shown to be unsolvable
lence problem follows directly fran the non-partial on lines similar to the proof for 3(f), i1i.e., by
solvability of the divergence problem (Part (b)), reducing FCP to the non-freedom problem and effec-

since a program schema in Seg diverges if and tively simulating two variables while actually
only if it is equivalent to the schema: using only one.

START Proofs of Secondary Results
- a: In the following results the number of func-

LOOP tions does not include the individual constants.

5(d): The non-partial solvability of the inclu- (1) Schemas with One Variable, Two Functions and
sion problem follows immediately from the non- General Equality Tests
partial solvability of the equivalence problem The class of flowchart schemas with one vari-

since Ty = T, if and only if I, > T, and able, two functions (nopredicates)and general
T oT equality tests is unsolvable.
2 1°

If completely general equality tests are

-S(e): The non-partial solvability of the isomor- allowed es cay eo see that two Junerion con
phism problem also follows directly from the non- an L i be 0 ren - Ce 27 or SC J
partial solvability of the divergence problem. unso vad © because fa one ton letters can oe
Given a schema T in the class § construct a ‘coded in terms of two unctions. For example,

~ 37 in 3b we could use only two functions ff and g

new schema T' also in S3 obtained by replacing by making in the construction of I, from I, the
each HALT statement in 34 by the statements: following substitutions: for all terms t

simultaneously substitute:
- f(y) :

EALT) 4 £(£(t)) for F(t)
Then T and T' are isomorphic if and only if £g(t)) for g(t)
T diverges. g(£(t)) for f(t)

3(f): The non-partial solvability of the freedom a(s(t)) for £5(t)
problem is shown by reduction of Post's Correspon- a
dence Problem for nonempty strings (FCP) to the ALL the unsolvability results 90 through on
nonfreedom problem for schemas in § The proof making this substitution. Similar substitutions

3° can be made to show the unsolvability of freedom.
follows along lines similar to a related proof in
Paterson [1967] with the mechanism for effectively (11) Schemas with Two Variables, Two Functions and
simulating two variables while using only one (as Restricted Equality Tests

described in the proof of Z(a), (b)). The class of flowchart schemas with two vari-

3() : There can exist no effective translation ables and two functions (no predicates) with tests
to a free schema since if there did exist such an onlyof the form y, = f(y,) areunsolvable.
algorithm we could decide whether or not a given

° schema of S halts since the halting problem for Consider the class 5 which 1s the same as
free schemas is trivially solvable Sg but with the difference that there are two

function constants £] and f, , and no predicate
a a constant.

Proofof Theorem .. (Unsolvabilityof 5),) The computation of any schema I in 5 can
] The proof goes along lines quite similar to be simulated by a corresponding schema Tq in S_,the proof for Theorem 3. We Yirst define a subset 7

S. of the class of schemas & 3 like S obtained by replacing every test statement of the form
£ 5) 6 ’ p) ’ ~ £() 3

has two variables ¥ and Y, + one function sym- Yi © Wy
bol f , and one predicate symbol p . However, if p(y;) then goto L., else goto Ly
S¢ has the constraint that 1n any path through by a test statement of the form

a schema of S¢ , after each statement that tests vy. - £(y,)3
the variable y, there must be either one or two Ce _

1 if y; = ey) then goto L, else goto L, .

12

It iz cacy to see that Cor any path, finite or Ianov [1960] —— Y. I. Ianov, "The logical schemes
int'inite, through T_. , it there exists an inter- of algorithms". English translation in

lation for which LC cecutes stat ‘ 1 Problems of Cybernetics, Vol. 1, Pergamon
pretatio ; executes statements along Press, New York, 1900, pp. 82-1L0.
ttiic path, then there is an interpretation for

. Co ~ Luckham, Park and Paterson [1970] -- D. C. Luckham,
which I, executes statements along the corres D. M. R. Park and M. S. Paterson, "On forma-
ponding path. This establishes the unsolvability lized computer programs", J. of Computer and

of (a)-(e) and (g) for the class So " {note that System Science, Vol. 4, No. 3 (June 1970),
the unsolvability of (c)-(e) and (g) follows from pp. 220-249.
the unsolvability of (b)), Paterson [1967] —— M. S. Paterson, "Equivalence

Further, the freedom problem too can be shown problems in a model of computation", Ph.D.
to be unsolvable by reducing FCP to it. The y Thesis, University of Cambridge, England
reduction is related to the corresponding reduction (August 1967). Also A.I. Memo No. 1, M.I.T.
in Paterson [1967], but to do it with 2 function (1970).
symbols we need the additional "cleverness' of "

padding each symbol of the BCP with enough "bits" Paterson | 1900) > paterson JA hi
in order to allow for testing, to effect a non- Ed.) Edi burl U tne on © FASRSTNS tehie,deterministic search. . nh 1ObULgh Univ. Fress, pp. '

Paterson and Hewitt [1970] —— M. S. Paterson and
(111) Schemas with One Function, Restricted C. E. Hewitt, "Comparative schematology", in

Equality Tests Record of Project MAC Conference on concurrent

Schemas with one function using tests only FAYcy oop ACM, New York
of the form y =vy _are unsolvable. » PP.)

—_— Plaisted [1972] -- D. Plaisted, "Program schemas
The halting and divergence problems for two- with counters", Proceedings of the Fourth

counter automata are known to be unsolvable Annual ACM Symposium on the Theory of Computing,

(Hopcroft and Ullman [1969]), and can be reduced Denver, Colorado (May 1972).

to the halting and divergence problems for one- Rutledge [196%] -- J. D. Rutledge, "On Ianov's
function schemas 1n a rather direct manner. In "

: program schemata", J.ACM, Vol. 11, No. 1

the reduction process the only care that has to be (January 1964) 1-7taken 1s for the operation of incrementing one to Y » PP. |
a counter, in which case the schema checks for,a Strong {1971a] -- H. R. Strong, "Translating
looping interpretation as in Example 3 of Appendix recursion equations into flowcharts", J. of
A. The unsolvability of the equivalence, inclusion, Computer and System Science, Vol. 5 (June 1971),
and isomorphism problems follows from the unsolva- pp. 254-285.

bility of the halting and divergence problems. Strong [1971b] — IH. R. Strong, "High level
languages of maximum power", IBM Research

6. References Report.

Ashcroft, Manna and Pnueli [1971] —— E. Ashcroft,
Z. Manna and A. Pnueli, "Decidable properties
of monadic functional schemas", in Theory of
Machines and Computations (Kohavi and Paz,
Eds.), Academic Press, pp. 3-18.

Chandra {1972a] -- A. K. Chandra, "Efficient com=-

pilation of linear recursive programs”,
Report, Computer Science Dept., Stanford
Univ. (to appear).

Chandra [1972b] -- A. Kk. Chandra, "Properties and
applications of program schemas", Ph.D.

Thesis, Computer Science Dept., Stanford
. Univ. (to appear).

Constable and Gries [1971] -- R. L. Constable and
D. Cries, "On classes of program schemata",

Report, Computer Science Dept., Cornell Univ.
(August 1771).

Garland and Luckham [1971] —— S. J. Garland and
D. C. Luckham, "Program schemes, recursion
schemes, and formal languages", UCLA report
(June 1971).

Hewitt [1970] -- C. Hewitt, "More comparative
schematology'", A.I. Memo 207, Project MAC,
M.I.T. (August 1970).

Hoperoft and Ullman [1909] —— J. E. Hopcroft and
J. D. Ullman, "Formal languages and their

relation to automata", Addison-Wesley, 1969.

13

