{

STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-158

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-250

. PROGRAM SCHEMAS WITH EQUALITY
' BY

ASHOK K. CHANDRA

ZOHAR MANNA

SPONSORED BY
ADVANCED RESEARCH PROJECTS AGENCY
ARPA ORDER NO. 457
DECEMBER 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

PROGRAM SCHEMAS WITH EQUALITY

by

Ashok K. Chandra and Zohar Manna
Computer Science Department
Stanford University

Abstract

We discuss the class of program schemas
augmented with equality tests, that is, tests of
equality between terms.

In the first part of the paper we discuss and
illustrate the "power" of equality tests. It
turns out that the class of program schemas with
equality is more powerful than the "maximal"
classes of schemas suggested by other investi-
gators.

In the second part of the paper we discuss
the decision problems of program schemas with
equality. It is shown for example that while the
decision problems normally considered for schemas
(such as halting, divergence, equivalence,
isomorphism and freedom) are solvable for Ianov
schemas, they all become unsolvable if general
equality tests are added. We suggest, however,
limited equality tests which Can be added to
certain subclasses of-program schemas while
preserving their solvable properties.

1. Introduction

In recent years the study of schunas has been
widely pursued in an attempt to understand the
power of programming languages. In the study of
program schemas, the functions and predicates
allowed are usually considered to be uninterpreted
symbols. The reason for this is that very simple
interpreted programs yield all the partial recur-
sive functions, and therefore interpreted programs
do not provide insight into the difficulty in
programming; e.g. the difference between the
essentially iterative nature of Fortran and the
recursive structure of Algol or PL/1.

Earlier works in this area, e.g. Ianov
[1960], Rutledge [1964], Paterson [1967, 1968]
and Luckham, Park and Paterson [1970] essentially
considered flowchart schemas, and emphasized the
decision problems for schemas, viz. halting,
divergence, equivalence, etc. Most of the recent
papers, on the other hand, e.g. Paterson and
Hewitt [1971], Strong [1971a], Constable and
Gries [1971] and Garland and Luckham [1971]
considered more powerful schemas, i.e., flowchart
schemas with additional programming features like
counters, recursion, push-down stacks and arrays;
and were concerened mainly with the problem of
translating program schemas from one class to
another.

Several formalisms have been considered in
the literature for the description of schemas.

We define a flowchart schema as being a program
with the following features: it has a finite
number of program variables denoted by Ypr¥pr o wny

a finite number of uninterpreted function symbols

fl, f2,.,, (which may be ccxnbined with the variables

to form terms) and a finite number of predicate
symbols denoted by PpsPoseee - Some of the func-

tion symbols may be zero-ary. These stand for
individual constants, and are denoted by
815855 ees A statement in the program may be:
(a) an assignment statement of the form

vy =t

where t is any term, (b) a predicate statement
of the form

if pi(tl’t?_” ...,tn) then goto L1 else got0 L,
where tl’ . "’tn are terms and: Ll’LE are labels,

or (c) a terminal statement, i.e., a START
statement, a HALT statement or a LOOP statement.

A schema has a unique START statement as its first
statement. Free use of goto statements is allowed;
and all statements except the START statement may
be labelled. In addition, for convenience and
readability we describe schemas using ALGOL-like
features, e.g. while-statements and block struc-
tures. These clearly do not add any "power" and
every such ALGOL-like program can be translated to
an equivalent program that uses goto-statements
instead.

Certain features can be added to flowchart
schemas, e.g. counters or arrays. A counter is a
special variable that takes nonnegative integer
values. The operations allowed on a counter are
adding one, subtracting one, and testing for zero.
An array is a one-dimensional semi-infinite sequence
of variables that can be referenced by using a
counter to subscript the array.

In addition, we also consider recursive schemas.
A recursive schema is a set of recursive definitions
of functionals Fl’F2’ .+« of the form

Fi(yl, ...,yj) - if p(tl,...,tn) then t else t!
where p 1is an n-ary predicate symbol and
tl,...,tn » t and %' are terms that may consist

of function symbols, functionals and the variables
Vis eV -

The research was supported by the Advanced Research Projects Agency of the Office of the Secretary of
Defense under Contract SD-183. The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the official policies, either expressed
or implied, of the Advanced Research Projects Agency or the U.S. Government. Reproduced in the USA.
Available from the Clearinghouse for Federal Scientific and Technical Information, Springfield, Virginia
22151. Price: Full size copy $3.00; microfiche copy $.95.

R_—

It is quite surprising, though, that people
have so far neglected to mention one of the most
useful features: equality tests between terms,
i.e., statements of the form

if tl = t2 then got0 Ll else got0 L2 ,
l,L2 are labels.

The extension of program schemas to allow
equality is quite natural, much as is the exten-
sion of first order predicate calculus to first
order predicate calculus with equality. The
analogy Can be extended further in that in both
cases equality tests can be treated as just any
other binary predicate but with a partial inter-
pretation which in turn involves all other predi-
cates and functions used in the system. This
tends to be an unnatural approach to the treatment
of equality. Accordingly, we prefer the direct
approach of allowing the equality test to be a
basic operation in the system as is the operation
of assignment to a variable.

The reason for the anission of equality tests
in earlier papers can perhaps be traced to the
following fact. All schemas discussed in the
papers mentioned above have one very important
common property: the behavior of a schema for all
interpretations can be characterized by the
behavior for a subset of all interpretations
viz. the Herbrand interpretations. We therefore
call all these schemas Herbrand schemas. To be
somewhat more precise, 1in a Herbrand schema, for
every interpretation there "corresponds" a Herbrand
interpretation that follows exactly the same path
of computation. Flowchart schemas with equality
tests are in general non-Herbrand schemas, that is,
they may behave quite differently for Herbrand
and non-Herbrand interpretations. Consider, for
example, the simple schema:

START

if a = b then HALT else LOOP
This schema halts for some interpretations and
loops for others. For all Herbrand interpretations,
however, it always loops. It is therefore a non-
Herbrand schema, and further, there can be no
Herbrand schema that is equivalent to it. A non-
Herbrand schema that has no equivalent Herbrand

where tl’t2 are terms and L

schema is said to be an inherently non-Herbrand schema

The use of equality tests does not necessarily
make a schema non-Herbrand. Example 0 in Appendix
A is an interesting instance of a Herbrand program
schema with equality tests that has an equivalent
Herbrand program schema without any equality test
and also an equivalent non-Herbrand program schema
(which does have equality tests).

There are several other features which in
general give rise to non-Herbrand schemas: the
use of quantified tests is one such. Unfortunately,
it 1is not partially decidable if a given schema is
a Herbrand schema. This result follows from the
fact that it is not partially solvable whether or
not any given flowchart schema (without equality
tests) diverges for every interpretation. Given
any flowchart schema T , replace every HALT
statement by the statement

if y=a _then HALT else LoOP ,
where a 1s a new individual constant. Now the

new schema is a Herbrand schema if and only if T
diverges for every interpretation.

In the rest of this paper, we illustrate the
power of equality tests (Section 2) and the decision
problems concerning program schemas that use them
(Section 3). For the sake of clarity we merely
give the "flavor" of the examples in the main part
of the paper, and we state the theorems without
proof. Details of the examples are given in
Appendix A (Section %) and the proofs are sketched
in Appendix B (Section 5). Detailed proofs can be
found in Chandra [1972b].

2. The "Power" of Program Schemas with Equality

The use of equality tests in program schemas
raises an old question that has been asked several
times and never been answered to our complete
satisfaction -- just what is a schema? We do not,
in this paper, propose to answer this question, but
we can indicate that much remains to be studied.

It has been suggested (Constable and Gries [1971],
Strong [1971b]), for example, that the class of
program schemas with arrays might be a "maximal®
class of schemas, i.e., for every schema there
exists an equivalent schema in this class. Now,

it may be that the class of array-schemas is indeed
maximal with respect to the Herbrand schemas, but
nevertheless alischemas in this class are Herbrand
schemas. It has been shown, however, that there
exist certain schemas using equality tests that are
inherently non-Herbrand. This means that the class
of program schemas with arrays and equality tests
is a strictly larger class.

A problem is said to be a Herbrand problem if
it can be solved by a Herbrand schema. anon-
Herbrand problem is one that can only be solved by
inherently non-Herbrand schemas. The class of
program schemas with arrays and equality tests can
solve certain non-Herbrand problems (which by the
definition of a non-Herbrand problem cannot be
solved if only arrays are allowed).

We first illustrate this point with two exam-
ples of non-Herbrand problems.

Example 1: Inverse of a unary function

Consider the following problem: "Given a
unary function symbol f , a finite number of other
n-ary function symbols, n >0, and an input
variable x , write a program schema that under any

interpretation will yield a value of f'l(x) as
output. That is, it finds an element y that can
be expressed in terms of the given function symbols
and the input variable x , such that f(y) = x ;

if no such element exists, the schema loops forever".
This problem, which is essentially one of inverting
a given unary function, is non-Herbrand, the reason
being that if the input x is equal to the zero-ary
function a then it has no inverse in any Herbrand
interpretation, whereas for other interpretations
it may have an inverse. It follows that the task
cannot be performed by any Herbrand schema. The
task cannot be performed by any Herbrand schema.

The task is, however, well within the capability of
flowchart schemas with arrays and equality tests.

A schema in this class that solves this problem is
described in Appendix A.

Example 2: Herbrand-like interpretations

Given a set of function and predicate symbols
of which there is at least one zero-ary function,

we say that an intcrpretation I for this set is
llerbrand-like if Lhere exists some Herbrand inter-
pretation If such that there is a 1-1 homomor-—
phism fras II into I In other words, an

interpretation I is herbrand-like if and only if

for every pair of distinct terms tl and t2

(made up of the given functions) the elements in
I corresponding to tl and t2 are distinct.

Now, consider the following problem: "given
an interpretation for a set of function and
predicate symbols, of which at least one is a
zero-ary f(unction, determine if ihe interprctation
is not Ilcrbrand-like. 1If the intcrpretation is
not Herbrand-like then halt with no output, else
diverge." This problem is inherently non-Herbrand
in nature since a schema that solves this problem
must diverge for every Herbrand interpretation.
But for certain other interpretation6 the schema
should halt. A schema with equality tests that
solve6 the stated problem is presented in
Appendix A. .

The problem presented above is an abstract
model closely related to certain problems in real
life programming. As an illustration, consider a
directed graph (with an identified root node) in
which each node has two identified pointer6 leading
from it. Pointers may lead to a terminal node
"NIL" . The problem is to determine whether or not
the given graph is a tree. This problem may be
modelled by the above problem with two monadic
functions representing the two pointers, and with
the difference that the search for the equality of
two "terms" is conducted not for the entire set of
all terms, but for these terms not representing
NIL. The correspondence is that the interpretation
is Herbrand-like for this set of tem$ if and only
if the corresponding graph is a tree.

Another related problem is that of determining
if a given list is circular. In this problem, too,
the explicit use of equality in a schema model of
the computation represent6 a more natural approach
than the treatment of equality as an interpreted
predicate.

While the main interest in equality tests
stems from the fact that programmers frequently do
use tests of equality between variable6 whose
value6 are data element6 and these test6 are often
of a non-Herbrand nature, equality tests find some
interesting applications in problems that are
really Herbrand in nature. We give two examples
below.

Example 3: Translation of flowchart schemas with

Counters
The recursive schema
F(x) ~ if p(x) then F(F(£(x))) else f(x)

can be translated to an "impure" flowchart schema
by introducing a counter. It can also be trans-
"lated to a rather horrendous flowchart schema
‘without any explicit counter (Plaisted [1972]).
However, the use of equality gives a relatively
simple flowchart schema equivalent to the above
while retaining the advantage of having a "pure"
schema (all functions and predicate6 being left
uninterpreted). Details are presented in
Appendix A.

Example L: Efficient translation of linear

recursive schema6

ol
Consider the recursive schema T

3

F(a) where
F(y) -~ if p(y) then g(F(£(y)),y) else v .

Let I be an interpretation of T for which
there exists ann , n > 0 , such that fn(a) =

FALSE and for all k < n, £(a) = TRUE . The
output of the computation (T,I) is the term

s(e(e(. .. e(£(a), £ Ha)) ..., £%(a)),2(a)),a) .

For usual implementations of recursion the
computation of the interpreted schema (T,I) takes
time (the number of operations on data structures
performed) and space (the number of values stored)
both proportionalto n The recursive schema
T can be translated to an equivalent flowchart
schema using a fixed memory size (number of
variables) and time proportional to n*a . Using
equality tests, however, the time can be brought

. l+e .
down to some constant times n() , where € is

any arbitrarily small positive number. Details of
the construction are given in Appendix A. For
further discussion of this topic, see Chandra
[1972a].

3. Decision Problems

We consider the following decision problems
for classes of schemas:

(a) The halting problem -- to decide whether a
given schema in the class halts on every

interpretation.

(b) The divergence problem -- to decide whether a
given schema in the class diverges on every
interpretation.

(¢) The equivalence problem -- to decide whether

two given schemas in the class are equivalent.

(d) The inclusion problem -- given two schemas A
and B to decide whether A includes B , i.e.,
for every interpretation either both schema6 halt
with the same output or schema B diverges.

(e) The isomorphism problem -- to decide whether
two schema6 are isomorphic to each other. (Two
schemas are said to be isomorphic, or opera-
tionally equivalent, if the sequences of
statement6 executed by both schemas are exactly
alike for every interpretation.)

(f) The freedom problem -- to decide whether a given
schema in the class is free.

(g) The translation problem -- to translate any
schema in the class to an equivalent free
flowchart schema (using any number of
variables).

It should be noted that the translation problem
is not strictly a decision problem. We include it
in this list, however, because it is an interesting
problem closely related to the others.

All thccc questions can be answered in the
affirmetive for the class of lanov schemas which
consists of one-variable flowchart schema6 using
only monadic function and predicate constants
(Ianov [1900], Rutledge [1964]). In view of this
it is somewhat unexpected that the addition of
general equality tests to Ianov schemas renders all
these decision problems unsolvable. On the other
hand, we show that these problems for Ianov
schemas extended even to nonmonadic functions and
resets but with limited equality tests are ~
solvable.

It should be stated that for all "conventional"
schemas, i.e., all schemas mentioned in this paper
and in earlier works, the following problems are
at least partially solvable:

(a') The halting problem -- to decide whether a
given schema in the class halts on every
interpretation.

(b') The non-divergence problem —— to decide
whether a given schema ever halts,

(e') The non-isomorphism problem -- to decide if
two schema6 are not isomorphic to each
other.

(£*) The non-freedom problem -- to decide if a
given schema is not free.

The notable exception6 are the equivalence
and inclusion problems. In general, the equiva-
lence and inclusion problemé6 as well as their
negation6 are all not partially solvable.

3.1 Notation

We use the symbols

(1) 8885 0

(or zero-ary functions, if you will),

to represent individual constants

(2) ¥5¥1s¥ps ++» Lo represent program variables,

(3) f, Tty .
use

(h) P,Plipz) e

to represent functions, and we

to represent predicates.

is defined by the smallest
and closed under the
..,tn are terms,

The set of terms
set containing 8'6 , y's
following operation: if tl’tg"

and fi
fi(tl’ Ce o tn)
We use the notation t(yl,ye,...,yn) to

is an n-ary function symbol, then
is also a term.

represent that Yys¥ps . eaY, are the only variables

that may be present in t. Thus a term t(y)
may or may not contain the variable y , but
containé no other variable. A term t() indicates
therefore a constant term, that is, a term that
has no occurrences of y's at all.

Given a nonconstant term t(y) , i.e., one
containing the variable y , a common subterm
t! of t is one such that if every
occurrence of t, (y) in t(y) is replaced by an
individual constant then +t(y) is reduced to a
constant term. Clearly the terms y itself and
t (y) are common subterms of t(y) Also, if
t'(y) and t"(y) are common subterms of t(y)
then t*(y) is a common sub-term of t"(y) or
vice versa.

The assignment depth [t(y)ll of a term
t(y) is defined to be the number of common sub-
terms in t(y) excluding y itself. By conven-
tion, for a constant term () , |[t()|] = 0

The depth |t(y)] of a term t(y)+ is the
maximum depth of nesting in the term, and is

defined by:

[tO] =0,

|V| =0,

oty @ OORD | H wi) @D e
Note that for monadic terms ||t|| = |t| , and in
general |t|| < |t A few examples illustrate

this point. In-the following table
(a) stands for t(y) ;

(b) stand6 for common subterms of t(y)
(excluding yy .itself);

(c) standé for |[t(¥}}| ;

(d) stands for It(y)| .

(a) (b) () (&)
v 0 0
f(a) - 0 ©
£(y) £(y) 1 1
f(e(n(y))) h(y) sen(y) ;fen(y) 3 3
t(g(a,y),8(ay)) &(ay) ;f(s(ay), elay)) 2 2
£(y, elayy) (y,8(a,¥)) 1 2

3.2 Solvable Classes
Consider the rather general class Sl of

flowchart schemas with one variable. Schemas in

Sl contain the following statement types (L1 and

L2 are arbitrary labels in the definitions below):

START statement: START
y-ay

Final statements: HALT or
LOOP

Assignment statement: y +« t(y)
if P& (¥)s--ent (¥)

then goto Ll
else gotD L2

predicate-test st.:

Equality-test st.: if tl(y) = ’ce(y)
then goto Ll

else goto L2

The equality tests allowed must, however, satisfy
the condition that either t, (y) or t,(y) is a

constant term, or else both [it,(¥)|| and [[t,(¥)]|
are less than or equal to 1

THEOREM 1 (Solvability of Sl) . For the class §;

1(a) the halting problem is solvable
1(b) the divergence problem is solvable

1(c¢) the equivalence problem is solvable
1(d) the inclusion problem is solvable
1(¢) the icomorphism problem is solvable
1(f) the freedom problem is solvable

1(g) any schema can be effectively translated to
an equivalent free schema (with the addition
of ecxtra program variables).

This theorem includes as special cases the
results of Ianov [1960], Rutledge [1964], and also
recent extensions by Pnueli [private communication]
and Garland and Luckham [1971].

As a special case, the problem6 (a)-(g) are
solvable for the class of l-variable monadic
schema6 allowing resets and equality tests of the
forms: -

t,0=t0,y=t0), v= £,(y) , and £,(y) =fj(y)

Consider, next, the class 8, of schernas,

2
similar to the class S1 , but with a change in

the form of equality tests allowed, viz. the
equality test statements allowed are of the form:

if t(¥) = t,(y) then goto L, else goto 1, ,

but this time the restriction is that Htl(y)“ =

e, 1l . ’

THEOREM 2 (Solvability of 32) :

—

Problem6 (a)-— &g¢ solvable for the class

As a special case, the problem6 (a)-(g) are
solvable for the class of l-variable monadic
schemas allowing resets and equality tests of the
form:

t(3) = ty(y) where |t,(y) | = |t (¥) | .

3.3 Unsolvable Classes

It should well be asked why we have the
"strange" restrictions on the form of equality
tests above. The answer is that even slight
generalizations of the restrictions above yield,
astonishingly, classes whose problemé are unsol-
vable. We demonstrate this on two classes.

Consider the class 83 consisting of one

variable y , one constant a , no predicates and
only monadic function constants. Statement6 in
schemas of S3 are of the forms:

START statement: START
3-a

Final statements: HALT or
LOOP

Assignment statement: y «~ fi(y)

if £;(9) = £5(5,(3)
then goto Ll
else goto L2

Equality-test st.:

§; differs fran §, in that noncongtanmt

terms of depth 2 are used'in &quality tests; and

it differs from 52 in that terms tested for

equality do not have the same assignment depth.

THEOREM 3 (Unsolvability of §;) : For the class

S, : —
p)
3(a) the halting problem is unsolvable

3(b) the divergence problem is not partially

solvable ¢

3(c) the equivalence problem is not partially
solvable

3(d) the inclusion problem is not partially
solvable

3(e) the isomorphism problem is not partially
solvable

3(f) the freedom problem is not partially
solvable

3(g) there exists no effective translation to
equivalent free schemas.

For the sake of completeness we should mention
that tne nonequivalence and the noninclusion
problems for this class too are not partially
solvable. Of course, the halting, nondivergence
and nonisomorphism problemé6 are partially solvable,
which follows from the general result mentioned in
the earlier parts of Section 3.

We introduce next the class Sh of l-variable
monadic schemas similar to $, but with the
J

difference that equality tests allowed have the
following form:

if y = t(y)Ithen goto Ll else goto ’

where 1< |t(y)| < 3, i.e., tests may have any of

the forms:
v o= fi(Y) 2
Y = £,(£,5) 5 or

y = £ (505, .

THEOREM 4 (Unsolvability of Sh) :

Problems (a)-(g) for the class Sh are
unsolvable.

A class of schemas is said to be solvable if
its decision problems (a)-(e) are solvable;
similarly, a class is unsolvable if its decision

problems (a)-(e) are unsolvable. Classes Sl and

32 are solvable whereas S3 and Sh are unsol-

vable. On comparing these classes it is clear that
there is a very sharp demarcation between classes
of one-variable schemas that are solvable and those
that are unsolvable, depending on the form of
equality tests allowed. It should perhaps be asked
how many function symbols suffice to render a class
unsolvable. It can be shown, for example, that for

the class 55 , merely 4 functions are sufficient.

It is more interesting to nole, however, that
these function symbols can be "coded" using only 2
function symbols so that cchemas with one variable,
two functions and general cquality tests, i.c.,
Lests of the lomm t.(y) = t,(y)_,_are unsolvable.

So far we have restricted our consideration
to schemas that have only one variable. The reason
is obvious: one-variable schemas provide the most
interesting solvable classes. When more variables
are allowed, even a very few features tend to make
the schcmas unsolvable. For example, schemas with
two variables, two functions and tests only of the
form y; = £(y,) are unsolvable.

It is even more interesting, though probably
not surprising, that schemas with a single function
too are unsolvable; for example, the class of one-
function schemas having tosts only of the form
y; = }:_i is unsolvable (5 variables suffice in

this case) .

The proofs of these secondary results are
also presented in Appendix B.

L. Appendix A -- Detailed Examples

Fxample 0: A Herbrand schema with equality

Not all schemas that use equality tests are
non-Herbrand. Consider, for example, the schema

START
yl - y2 - a3
L: if P(y,) then
if p(y,) then
v, - £yy)s
y2 ~)
goto L;
cnd
else if v, = a then HALT else LOOP
else if ¥y = then HALT else LOOP
This is a Herbrand schema because the equality
test vy =Y must always be true, and the
equality test ¥, = a can never be entered. The

riven schema is hence equivalent to the following
schema, which has no equality test.

START

¥y oa;

L: if p(y) then
ber;m
¥y - £(y)s
goto L

- end

else HALT.

The following schema is also equivalent to the
above schemas, but it is a non-Hderbrand schema
because the LOOP statement in it can never be
entered for any Herbrand interpretation. The
schema is, however, not inherently non-Eerbrand.

START
y + a;
L: if p(y) then
if y = £(y) then LOOP

else begin
¥ - £(¥)s

goto L
end
else HALT .
Example 1: Inverse of a unary function

For simplicity we assume that the only fune-
tions are a single zero-ary function a , the given
unary function f and a binary function g . The
possible terms are therefore:

X, a, f(x), g(x,x) ’ f(a) ’ g(a, a) , g(x,a) ,
gla,x) . £(£(x)) . . o
The schema for any other set of functions is similar

to the one for this particular case.
Symbols ey o c5 stand for counters.

Strictly, the only operations allowed on counters
are adding and subtracting one, and testing for
zero. For convenience, however, we will also allow
other statements such as e, - 0, ci - c.J , and

tests like c, = c.J , as it is clear that these
operations can be performed using only the legal
operations and additional counters.

START

AlO] ~ x;

cl - 03

ey - 1; A[c2] - a;

REPEAT: y = Ale;l;

if f(y) = x then HALT(y);

e,y = cytl; Ale,] - £(y);

ey =etl; Aley] - g(ysv)s

c5 = cy;

while c; £0do
c5 - ci'-l;

e, = c5t1; Aley) = galez,9)5

e, = oytls Ale,] = g(y,ales)s

(5) —— goto REPEAT .
After the initialization phase (lines (1) to
A[O]=x,A[l]=a,cl=0,02=l

After completing one pass through the outer loop of
the program (lines (3) to (5))

A[E] = f(X) ’ A[5] = g(x,x) ’ cl =1 ’ 02 =3 ’
and after a second pass

Alk] = £(a) , AlS] = g(a,2) ,

A[C] = g(x,&) ’ A[7] = g(aix) ’ cl =2 ’ 02 =T

The aigorithu works as follows: two pointers ¢y
and ¢y reference the array.
the "current" value. If the current value is not
the inversc, as determined by line (M), it is
composed with values preceding it in the cnumera-
Lion by function applications, and the new values
obtained arc added to the array.

It can bc shown by induction that the process
of cnumcration gencrates and tests cach possible
term exactly once. 'This means that the inverse
will be found if it exists. The point at which
the test of the inverse is made could be changed
to effect time efficiency but without altering the
main features of the program.

A[cl] represents

Example 2: Herbrand-like interpretations

We assume that the only functions are a sin-
gle zero-ary function a , a wnary function f
and a binary function g . Therefore the set of
terms includes

&, f(a) , g(e,a) , £(f(a)) , &(f(a),f(a)) ,
g(a, £(a)) , ...

The required schema is:

(1) START
—— A[O} * a;
(2) -~ ey = ¢, - 05 _
(3) -— REPEAT: y« Ale,]; :
-———==-=- 1
| Gy 7 G5 :
while ¢, # 0 do :
(4) - begin 1
cd - ch'l; 1

[if Aley,] = y then HALT; ,

] .
L= o
cy + oytly Aley) - £(y)
e, = tlzAle,] = e(y,y);
c5 - ey
while ¢; £ 0 do
begin
CJ; '_cj-l;
ey = egtl; Ale,) = g(Ales]y);
c, = e+l Ale,] - G(V:A[CB]);
end;
+1;

c, - C

174
“(5) - @ REPEAT

This program is quite similar to the previous
one in the manner of enumeration of terms. The
fact that each term is generated exactly once is
used in making the test (4) to check if a value
is repeated.

Bxample 3: Translation of flowchart schemas with

Counters
The recursive schema
F(a) where
F(y) = if p(y) then F(F(£(y))) else £(y) ,

can be translated to a flowchart schema with one
program variable y and one counter c .

START
y < &3
(1) —— c + 0;
while true do
if p(v) -
then begin
vy - 1(y)s
(2) -- c «~ ct+l;
end
else begin
v - £5(y);
(3) if ¢ = 0 then goto DONE;
(4) == c + c-1;
end;

DONE: HALT(y) .

Note that the test " ¢ = 0 " above is not a test of
equality between two data structures but rather
between an interpreted variable, i.e., ¢ , and an
interpreted constant, i.e., 0 .

The corresponding equivalent flowchart schema
with equality tests instead of counters uses three
variables:

y plays the same role as the variable y above,
z effectively simulates a counter, and

w 1is a temporary variable.

The idea behind the method is that the variable z

simulates a counter, where fl(a) stands for the
integer i Therefore, the statement z «~ a
stands for the statement ¢ -0, =z~ f(z) stands
for ¢ + ¢tl , and the statements

[w -~ a; while f(w) # z dow + £(w); z + w] stand
for ¢ « c-1 . Wc have to be careful, however.

The term fn(a) stands for the integer n , n >0,

. only if for no two distinct numbers i,j <n are

the termms f'(a) and f%a) equal. Interpreta-—
tions for which the counter is required to count up
to an integer n where there exist 1i,j <n,

i# 9, such that f£"(a) = f(a) are called looping
interpretations. It can be shown that for looping
interpretations the given recursive schema never
halts. The required program schema is therefore
easy to construct:

HTART
¥y a3
(1) == 2z ~a;
wiiile true do
it p(y)
ihen begin
v - I(¥);
r W e o —1¢heck
whil e w £z do Ifor a
I if w = £(x) | Looping
then ILOP inter-
l clse.w ~ f(w); |preta-
L if w=1(x) then LOOEiltion
(e.) - a = 1(z);
end
clsc begin
y - £(y)s
(3) -- if ¢ = a then gote DONE;
r W o~ a3 R
(b) - I while £(w) £z dow « £(w); |
L. . 2y . - __1
end;

DONE: HALT(y) .

Example 4: Efficient translation of linear

recursive schemas

Consider the recursive schema T :

F(a) where -
E'(y) —if p(y) then g(F(£(y)),y) else y

Let I be an interpretation of T for which
there exists an n , n > 0 , such that

Ma) = FALSE , and f(a) = TRUE for all k<n.

The output of the computation of (T,I) is
salel - . - e(7(a), 7 Ha)) L . L (@), 0(),0)

The computation of (T,I) takes time and
space proportional to n -- for usual implementa-
tions of recursion. The recursive schena can be
translated to an equivalent flowchart schema T!
using a fixed memory size (number of variables)
such that the computation of (T',I) takes tire

proportional to na, aas follows:

START
Y - a;
while p(y) do y ~ £(y);
L e a;
while p(x) do
beiin
x « £(x);
X e X -z
z - a;
while p(xl) do

7 = P(a)

fi(a) i>1

begin
X - f(xl);
ze~ f(2z);
end;

Yy « da;

end

HALT(Y) .

z=f£7"

Ucing equality tests, however, the time can

+ .
be brousht down to nl ¢ where ¢ is an arbi-

trarily small number. We first describe an cquivaer
lent flowchart schema with equality tests with a *7

time bound of nj/a .

Intuitively, the idea is the following. The
carlier fJowchart schema spends most of its time
trying to find the inverse of the function f
(i.c., given f*(a) , to find fl'l(a)) —— though
this operation is somewhat hidden in the program.
We can speed up this 3y planting a value at a
"distance" of about vn from the end
and compute inverses from this planted value.

Time taken to find the square root is of the order

570
of nj/ ,

nl/2 (done n times) and time to reset the

average time to find the inverse is

planted value is of the order of n (done nl/2

times). In general, by planting (k-1) values
(instead of just one) at distances
n1/k) n2/k) n3/k o n(k—l)/k
from the end we get a time bound of nl+ (1/x)
START
Yy < a;
(1) -- while p(y) doy ~ £(y);
(2) -- if y = a then HALT(a);
x « f(a);
(3) -- CHECK: V¢ Ve i
while y, # x do
begin
Y2 - a3
while y, # x do
begin
Yy = £(y,) 3
v3 = £(y5)3
if Y3 =Y then goto FOUND;
end;
v - £y
end;
v« £(x);
(k) -- oto CHECK;
FOUID : oz~ V¥3 "x=i‘m(a)
Xy X

(5) =-- REPEAT: Y
while s, f z do
X, - f(xl) H
X, = f(x2) ;
(6) — end;

(7) -- while z / % do
besin
Ry o X3
while i‘(xj) £z do " f(xi);
v o= elyxg)s

5o X
8 — e ;
TEST: if z = a then HALT(y);
(9) == x, = a;j while (x,(£,2) £ x)

o x, = £(xy);
goto REPEAT .

Line (1) detects if there ex'ists ann >0

such that fn(a) = FAISE and ik(a) = TRUE for
all k<n . If such an n does not exist the
program loops forever which is the desired opera-
tion. If n exists it follows that for all

i, <n, if i # § then £'(a) # £2(a) . At
this point y = £(a) .

If n = 0 the program halts with output a
(line 2). If n > 1 the CHECK loop segment of
the program from lines (3) to (4) finds the
smallest positive integer m such that m¥m > n
This is done by successively trying larger and
larger values i = 1,2,3,.7. for m until one'is
found such that i*i > n . This is the required
value for m . We use the variable x to store

the value of fl(a) and the variable ¥5 to

"count" up to 1i*1 by successively taking values
< xs

.a:f(a)"“:fl 1(3)

"(a) and it remains unchanged for the rest of
the program.

Execution of lines (5) to (f) now causes the
variable x, to be "planted" at P ™x) . The
while statement between lines (7) and (8) consti-
tutes the main part of the program. The variable
y takes on values in the sequence

fn(a) y
a(£"(a), " X)),
s(e(£(a), £71(a)), £22(a))

The final value of x is

slel . eeg(f8), 7)), .« o))

On exit from this while-loop the value of z is

17 (a)

Lin.es (9) and (5) to (6) are then used to

reset the planted value to fn-2m(a) and the
process is repeated. After it, the planted value

is reset to fn-im(a) , and so on. A special case
is encountered when the integer corresponding to

z becomes less than m . In this case, the next
planted value should be simply a , and hence the

use of line (9) instead of simply setting x2 ~x .

5. Appendix B -— Proof of Theorems ¢~

We use the terminology Tl = T2 to mean the
schemas Tl and T2 are equivalent, and _Tl po) T2
to mean Tl includes T2 .

Proof of Theorem 1 (Solvability of sl)

1(a), (), (c): The solvability of the halting,
divergence and equivalence problems follows from
the solvability of inclusion:

(a) Given a schema T of Sl » T halts if and

only if T' oH where H represents the schema
[Starr; HALT (a)] that always halts with output a,
and T* 1is the schema T with all HALT statements
changed to HALT (a)

(b) Given a schema T of S T diverges if

1 B
and only if L o T , where L represents the
schema [START ; LOOP] that always loops,

(c) Given two schemas Tl and T2 of Sl,

T. =T if and only if Tl: T

1T andT2:>T

2 1°
1(d): We give below only the intuitive idea
behind the proof of solvability of the inclusion
problem. Given two schemas Tl and T2 of Sl ’

to decide if Tl o T, , an automaton is constructed

2

that simulates the computations of Tl and T2 in

parallel. The input tape of the autunaton repre-
sents an interpretation for Tl and TE . The

1 and T2 both halt
but with different outputs, or if T;2 halts and‘]:1

input tape is rejected if T

diverges, under the interpretation corresponding
to the input tape; otherwise, the tape is
accepted.

To describe the operation of the automaton we
first introduce the notion of the "specification
state" of a variable y . The specification state
represents the outcomes of all possible tests that
could be performed by a schema without changing the
value of the variable y (and using terms no
"larcer" than the "largest" term used in the schemas

Tl and T2). The automaton simulates the compu-

tations of ’1‘l and T2 not just for the main-line

computation, but for a large number of "instances"
of the variable y . There is one instance for
each assignment statement and each constant term
(no larger than the largest term). The computation
of an instance (for an assignment statement and a
term) represents what the schema would really do if
its main-line variable happened to equal that
constant term after that assigmment statement.

The computation on each instance is kept in
step, and the automaton keeps track of which
instances have equal values at each step. This
enables the automaton to detect whether the input
tape really represents a feasible interpretation.

The reason that this specification state
approach works with limited equality tests is that
the finite specification state carries sufficient
information to allow it to be updated. This is not
true for general equality tests, e.g. in the

classes S3
were to carry all information necessary to update
it, the amount of information would grow without

bound as the computation proceeded.

1(e): The proof of isomorphism is similar to the
proof of inclusion, except that the automaton not
only keeps track of which instances are equal in
value at each step, but also which equal instances
have an isomorphic history. The automaton can
then detect if for any input tape the computations
of the two schemas are not isomorphic.

and 8), » if a specification state

1(£): Freedom or nonfreedom is detected by the
algorithm 1(g) that translates a given schema in
Sl to an equivalent free schema; ‘if ever a test

statement is detected for which some exit is not
feasible the schema is not free, else it is free.

Ug):

We give below a short outline for the
translation of a given schema T in Sl

to an

equivalent free schema T
variables) . 1
A "partial specification state" is like a
specification state but with the possibility that
the values of certain predicate and equality tests

may be unknown. The schema Tl has a (large)

number of variables, one variable for each assign-
ment statement and each constant term (no largér
than the largest term used in T).

The schema T, begins by assigning all vari-

(using several

1
ables their corresponding initial values. The
schema Tl has a (large) number of "chunks" of
statements. Each chunk updates the variables.

This corresponds to one step of the automaton in
the proof of inclusion. This updating can be
performed without introducing any nonfreedom.

Each chunk is associated with the following infor-
mation (line (iii) is unnecessary for this problem,
but it is required to solve the freedom problem) .
(1) The statement in T corresponding to each
variable in Tl .

(ii) Which variables have equal values.
Which pairs of variables have the property
that they both would have tested the same

value if we hadn't explicitly avoided that

(111)

(i.e., 1if both variables are "entered" by
the main-line computation, nonfreedom would
result) .

When updating is performed, no predicate or
equality test is introduced whose outcome is known
from the information corresponding to the chunk.
Loops are detected as before; and some variables
may become "inactive" either by looping or halting.

Proof of Theorem 2 (Solvability of 82)

The proof of Theorem 2 is similar to the proof
of Theorem 1 except that the formal definition of
the specification state reflects the different
kind of equality tests allowed.

Proof of Theorem 3

(Unsolvability of.,%)

3(a), (b): of schemas having

two variables ¥, and ¥, , and whose statements

We define a class 85

consist of the following:

Start statement: START
vy -V -
Final statements: HALT or
LOOP
Test statement: Yy - f(yi);

if p(yi) then goto Lj
else goto Lk;

It was shown by ILuckham, Park and Paterson

[1970] that the halting problem for the class SS

is unsolvable, and that the divergence problem is
not partially solvable.

To show the halting problem for S3 to be
unsolvable we reduce the halting problem for §
to that for S3

that takes any schema T

5 that is, we describe an algorithm
in the class 85 as

input and yields a schema T% in the class S
such that T'3 halts if and only if T5 . halts.

Similarly, to show that the divergence problem for
S5 is not partially solvable we describe an algo-

rithm that takes T5
in the class S3

as input and yields as output

such that TB"

diverges. We will

a schema T‘é
diverges if and only if T5

unify the construction for the two cases by con-
structing for both cases a schema ’g, in the

class S, but augmented with a special final

5
statement called the REJECT statement:
REJECT statement: REJECT
The REJECT statement signifies that the inter-
pretation is unacceptable and is rejected. Loosely
the idea is the following. There exists a map from
interpretations of ’1’5 that are not rejected onto

the interpretations of T5 such that the computa-

tion for T, wunder an interpretation halts if and

3

only if the computation for T5 under the corres-

ponding interpretation halts.
Now it is clear that if we replace all REJECT
statements in T5 by HALT statements to get T, ,

then T'5
only if T5

halts on every interpretation if and
halts on every interpretation.

Similarly, if we replace all REJECT statements by

LOOP statements to get T'B' then T% diverges

on every interpretation if and only if T5

diverges on every interpretation.

Given a schema T5 in S

5
corresponding schema T3 in S5 (with the addi-
tion of REJECT statements) as follows. We use the

we construct the

variable y o ¢ "L‘j Lo rupresent the latest

;ariable tested in 'I5 , 1.€.4, or ¥y, . The

Y1
tunction ' piays the same role in 'I.‘j as in T'5'
Wc usc a new function ;5 called a "test function";
and tests of the form

__i_fp(y) tﬁgn__ .e_l_.kif_._. .
in TS' will take the form
if ¢(y) = e(e(y)) then . . . else .
in 'l‘5 . In addition we use two "control"™ func-

tions f, and T, . Their roles are the following:
if y stands for Vs (of 55) then fl(Y) will
equal the value of f(yl) at that instant in the

computation unless, of course, a REJECT statement
is reached earlier. The role of fe is analogous,

1.e., if y stands for y; then fz(y) will
equal the value of f(y2) .

The schema T3 simulates a computation of
T5 as follows. In the diagram below the elements

a, f(a) , £(f(a)) , f(f(f(a))) are represented
by contiguous squares from left to right. We

superimpose on this diagram the computations of
both T5 and T5 . Suppose, at some instant in

the computation of T5, ¥y is at point A,
and Vo is at C , and suppose vy is being
"read". T3 makes certain that the f2 pointers

from the squares scanned, point to the right of
¥y - Suppose that we continue to "read" from N

until ¥y reaches point B where the schema T5
starts "reading" from v - T5 checks that the
fl pointers from the squares scanned, point to
the right of B .

f’é
TTTTT I
LB o] [Pl
T L
71 y2
push y, —»
(T3 reads yl)
P
f 1
AR THL
|l
"
' Yo

push ¥, —
(T, reads ya)
7

We arc now in a position to describe the cén- &
struction of ’I‘5 . Without loss of generality, we
will ussume that in T5 the first test statement
tests the variable vy - T5 will effectively
contain 2 copies of T5 except there is only

one start statement. We will call these copies A
and B . We will label statements of T_ by

numbers 1,2,3,... . The corresponding statements

in T3 will be labelled 1-A , 1-B , 2-A , 2-B ,

3-A , 3-B ;400 .
(i) The start statement in T5 is
START
Yy = Vp -
goto 1i;
The corresponding statements in T), are:

START

y = a;

if f(y) £ f2(y) then REJECT else goto i-A;
Note that the test f(y) ;éfe(y) is not

strictly an allowed statement. We use this
form for clarity: it can really be
"simulated" by the statements:

if £(y) # £(£(¥)) then REJECT;
if f,(¥) # £,(f,(y)) then REJECT
else goto i-A;

(ii) For any test statement i in T5 , if i is
of the form:
i: ¥y - f(yl)S
if p(yl) then goto j else goto k;
the corresponding statements i-A and i-B are:

i-B: if £,(3) £ £,(£(y)) then REJECT;
y = () s

if ¢(y) = ¢(e(y)) then goto j-A

£
£(

else goto k-A;
and
i-B: if f(y) #fe(fl(y)) then REJECT;
Yy - £,(¥);3
if g(y) = s(s(y)) then goto j-A
else goto k-A;
(§iii) For any test statement 1 in S of the form:
Loy, = £(yy)s
if p(y,) then goto Jj else gote k;

i-A and i-B are similar to the above,
except, one has to interchange fl with f2

and A with B
(iv) HALT and LOOP statements remain unchanged.

This completes the construction.

11

Ine main reason that the schema T, can

s inmlute the computation of 'l,) is that cach 1‘1 B
¢, "puinter" is chiecied at most once from cach

&

square. [pointers were Lo be checked twice and
it turned out that they were required to point to
ditrferent values there might exist no interpreta-

tion satisfying this condition —-- the result would
bc that all interpretations of ¢ would be
rejected. 3

2{e): The non-partial solvability of the cquiva-
lence problem follows directly fran the non-partial
solvability of the divergence problem (Part (b)),
since a program schema in S.5 diverges if and

only if it is equivalent to the schema:
START
Yy~ &3
LOOP .

5(d): The non-partial solvability of the inclu-
sion problem follows immediately from the non-
partial solvability of the equivalence problem

since Tl = T2 if and only if Tl:> T2 and
T2 po) Tl .
-S(e): The non-partial solvability of the isomor-

phism problem also follows directly from the non-
partial solvability of the divergence problem.

Given a schema T in the class S3 , construct a
new schema T! obtained by replacing

each HALT statement in S3

also in S3
by the statements:
Y - £2(y);

HALT

Then T and Tt
T diverges.

are isomorphic if and only if

3(£): The non-partial solvability of the freedom
problem is shown by reduction of Post's Correspon-
dence Problem for nonempty strings (KCP) to the

nonfreedom problem for schemas in 83, The proof

follows along lines similar to a related proof in
Paterson [1967] with the mechanism for effectively
simulating two variables while using only one (as
described in the proof of Z(a), (b)).

3(g): There can exist no effective translation
to a free schema since if there did exist such an
algorithm we could decide whether or not a given
schema of S3 halts since the halting problem for

free schemas is trivially solvable.

Proof of Theorem 4 (Unsolvability of Sh)

The proof goes along lines quite similar to
proof for Theorem 3. We Yirst define a subset
of the class of schemas S 86 , like S5 ,

two variables i and ¥, + one function sym-

’ the
5

has

bol £ , and one predicate symbol p . However,
86 has the constraint that in any path through

a schema of 36 , after each statement that tests
the variable vy there must be either one or two

12

statements that test y, (Lollowed by a final '
statanent or anolher test of y]) —— note the form
ol' the test statement of’ S5 defined in the proof

of 5(a),(b). The halting and divergence problems
of S() can be shown to be unsolvable, and the

halting and divergence problems of SG can be re-
duccd to those of Sh .
bility of problems (a)-(e) and (g) for Sh . The

freedom problem (f) can be shown to be unsolvable
on lines similar to the proof for 3(f), i.e., by
reducing FCP to the non-freedom problem and effec-
tively simulating two variables while actually
using only one.

This implies the unsolva-

Proofs of Secondary Results
In the following results the number of func-
tions does not include the individual constants.

(i) Schemas with One Variable, Two Functions and
General Equality Tests

The class of flowchart schemas with one vari-
able, two functions (no predicates) and general
equality tests is unsolvable.

If completely general equality tests are
allowed it is easy to see that two function con-
&ants suffice to render the class of schemas
unsolvable because more function letters can be
"coded" in terms of two functions. For example,
in %b we could use only two functions f and g

by making in the construction of T from ’I."5 the
following substitutions: for all terms t

simultaneously substitute:

£(£(t)) for f£(t)
f(a(t)) for g(t)
g(£(t)) for £, (t)
a(g(t)) for £,(%)

All the unsolvability results go through on
making this substitution. Similar substitutions
can be made to show the unsolvability of freedom.

(ii) Schemas with Two Variables, Two Functions and
Restricted Equality Tests

The class of flowchart schemas with two vari-
ables and two functions (no predicates) with tests
only of the form v; = f(yj,) are unsolvable.

Consider the class S7 which is the same as
S5 but with the difference that there are two

function constants f, and i‘2 , and no predicate

1
constant.
The computation of any schema T5 in S5 can
be simulated by a corresponding schema T7 in S7,

obtained by replacing every test statement of the form
vy = Tyy) s
if p(y,) then gote L. else goto I
by a test statement of the form
v; - f(y,)s
Af y; = c(y;) then goto L, else goto Ly

It iz eagy to cee that tor any path, finite or
intinite, throuch T5 , i there exists an inter-

prctation for which T, executes statements along

-
J.
this path, then there is an interpretation for

which T7 cxecutes statementis along the corres-

ponding path. This establishes the unsolvability
of (a)-(e) and (g) for the class S7 " {note that

the unsolvability of (c)-(e) (g) follows from
the unsolvability of (b)),

Further, the freedom problem too can be shown
to be unsolvable by reducing FCP to it. The
reduction is related to the corresponding reduction
in Paterson [1907], but to do it with 2 function
symbols we need the additional "cleverness' of
padding each symbol of the PCP with enough "bits"
in order to allow for testing, to effect a non-
deterministic search. .

and

Schemas with One Function, Restricted
Equality Tests

Schemas with one function using tests only
of the form y =y,

(iii)

are unsolvable.

The halting and divergence problems for two-
counter automata are known to be unsolvable
(Hopcroft and Ullman [1969]), and can be reduced
to the halting and divergence problems for one-
function schemas in a rather direct manner. In
the reduction process the only care that has to be
taken is for the operation of incrementing one to
a counter, in which case the schema checks for,a
looping interpretation as in Ekxample 3 of Appendix
A. The unsolvability of the equivalence, inclusion,
and isomorphism problems follows from the unsolva-
bility of the halting and divergence problems.

6. References

Ashcroft, Manna and Pnueli [1971] —— E. Ashcroft,
Z. Manna and A. Pnueli, "Decidable properties
of monadic functional schemas", in Theory of
Machines and Computations (Kohavi and Paz,
Eds.), Academic Press, pp. 3-18.

Chandra [1972a] -- A. K. Chandra, "Efficient com-
pilation of linear recursive programs",
Report, Computer Science Dept., Stanford
Univ. (to appear).

Chandra [1972b] -- A. K. Chandra, "Properties and

applications of program schemas", Ph.D.
Thesis, Computer Science Dept., Stanford
Univ. (to appear).

Constable and Gries [1971] -- R. L. Constable and
D. Cries, "On classes of program schemata",
Report, Computer Science Dept., Cornell Univ.
(August 1771).

Garland and Iuckham [1971] —— S. J. Garland and
D. C. Luckham, "Program schemes, recursion
schemes, and formal languages", UCLA report
(June 1971).

Hewitt [1970] -- C. Hewitt, "More comparative
schematology", A.I. Memo 207, Project MAC,
M.I.T. (August 1970).

Hoperoft and Ullman [1909] —— J. E. Hoperoft and
J. D. Ullman, "Formal languages and their
relation to automata", Addison-Wesley, 1969.

13

Tanov (1960] -- Y. I. Ianov, "The logical schemes
of algorithms". knglish translation in
Problems of Cybernetics, Vol. 1, Pergamon
Press, New York, 1900, pp. 82-1k0.

Luckham, Park and Paterson [1970] —— D. C. Luckham,
D. M. R. Park and M. S. Paterson, "On forma-
lized computer programs", J. of Computer and
System Science, Vol. 4, No. 3 (June 1970),
pp. 220-2h49.

Paterson [1967} —— M. S. Paterson, "Equivalence
problems in a model of computation", Ph.D.
Thesis, University of Cambridge, England
(August 1967). Also A.I. Memo No. 1, M.I.T.
(1970) .

Paterson [1968] -- M. S. Paterson, "Program
schemata", in Machine Intelligence 3 (Michie,
Ed.), Edinburgh Univ. Press, pp. 19-31.

Paterson and Hewitt [1970] -- M. S. Paterson and
C. E. Hewitt, "Comparative schematology", in
Record of Project MAC Conference on concurrent
systems and parallel computation, ACM, New York
(December 1970), pp. 119-128.

Plaisted [1972] -- D. Plaisted, "Program schemas
with counters", Proceedings of the Fourth
Annual ACM Symposium on the Theory of Computing,
Denver, Colorado (May 1972).

Rutledge [1964] -- J. D. Rutledge, "On Ianov's

program schemata", J.ACM, Vol. 11, No. 1
(January 1964), pp. 1-7.
Strong {1971a) -- H. R. Strong, "Translating

recursion equations into flowcharts", J. of
Computer and System Science, Vol. 5 (June 1971),
pp. 254-285.

Strong [1971b] —- H. R. Strong,
languages of maximum power",
Report.

"High level
IBM Research

