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for various choices of a , p , and g{(n) . In a large number of

cases it is possible to prove that M(n) is a convex function

whose values can be computed much more efficiently than would be

suggested by the defining recurrence. The asymptotic behavior of

M(n) can be deduced using combinatorial methods in conjunction

with analytic techniques. In some cases there are strong connections

between M(n) and the function H(x) defined by

H(x) =1 for x <1, H(x) =H((x-1)/a)+H((x-1)/8) for x>1.
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Recurrence Relations Based on Minimization

let a and A be positive real constants, and let g(n) be a

real-valued function over the nonnegative integers. Consider the new

function Maop'™) over the nonnegative integers, defined as follows:

M (ntl) = g(n+tl)+ min (aM___(k)+gM__ (n-k)) . (0.1)

We shall occasionally write M(n) instead of Mop?) . Functions of
this type occur in discrete dynamic programming situations, where it is

important to study the behavior of Map?) for large n .
The purpose of this paper is to introduce some techniques which are

useful in the investigation of Mop?) , and in some cases to obtain

ways of computing Mme with much less work than the above definition
implies. Particular attention is paid to the cases g(n) = 8 0 3 |

g(n) =1, g(n) =n, and g(n) = n° , where asymptotic formulas are

derived.

l. A convexity theorem

A real valued function g(n) over the nonnegative integers is

called convex if its second difference is nonnegative, i.e., if

g(n+2) -g(n+1) > g(n+l)-g(n) for all n > 0 . The following theorem

shows that a large class of M0p functions is convex, and it characterizes
the function D n) =M n+l) -M n) in this class.© gop(®) = Mpg (n+1) Mpg (n) y
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Theorem 1. Let g(n) be a function which satisfies the following

conditions:

a) g(m2)-g(n+tl) > g(ntl)-g(n) for all n >1 ;

b) g(2)-g(1)+min(ad,pd) >a , where

d = g(1) - g(0)+ (g)g(0) . (1.1)

There is a unique function D(n) satisfying the following three properties:

(1)  D(0) <D(1) ;

(11) D(0) =a (cf. (1.1));

(iii) D(n) = g(n+l)-g(n)+F(n) , for n > 1 , where the infinite

sequence (F(1),F(2),F(3),...) is the result of sorting

the sequence (oD(0),BD(0),0D(1),pD(1),...) into nondecreasing

order.

(Sometimes the infinite sequence (F(1),¥(2),...) fails to

include all the elements of (aD(0),AD(0)y...) , e.g. when

ab(n) < D(0) for all n .)

This function D is nondecreasing, and we have

Moan) = 80) + L D3) . (1.2)
0<Jj<n

Thus, M is convex.
—_—r op — ——

Proof: Consider the function D(n) defined by the rules

D(0) = 4d

D (n) m g(n+l)-g(n)+F » for n>1, (1.3)

where (F.q Fo eee oF on? is the sequence obtained when
» * * *

(a®@ (0),8D (0); ..s,00 (n-1),BD (n-1)) is sorted into nondecreasing

order. We shall prove by induction on n > 1 that D (n) >D (n-1)

and that Fel, n+l 2 Fn . When n =1, we have
* *

D (1) = g(2)-g(1) +min(ad,pd) > D (0) by condition (b). Hence
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Foo > Fly = min(ad,fd) . For n > 2 , the relation Fo.2 Fo-1,n-1 together
* *

with condition(a) shows that D (n) >D (n-1) . Consequently the first

n elements of Fre1,1°Fne1, 2? .+.) are the same as those of

(Fy2Fpor eee) , and we have Frel,m1 2 Fn,n .

This argument shows that F =F for all m >n , hence
n,n m,n =

(F115Fp0sFyzs eee) is the result of sorting the sequence
. * * * ">

(od (0),8D (0),aD (1),8D (1),...) into nondecreasing order. Hence D

satisfies the conditions (i), (ii), (iii). Conversely if D dis any

function satisfying (i), (ii), (iii) we have D(0) <D(1) <D(2) < ...

by (i) and condition (a), hence D must satisfy the recurrence relations
»

defining D (n) . This proves the existerce and uniqueness of D(n) .

| Finally we need to prove (1.2), for n >1 . By the definition of

(F(1),F(2),F(3)y..+) , we have

L rs)<a L p@+e L 0,
1<j<n 0<j<k 0<Jj<n-k

for all 0<k<n, and equality holds for some k . Thus,

g0)+ L DJ) = ane) + (#p)e(@) + L FJ)
0<j<n 1<ign

= g(n+l) + min [ateco +L D(J)+e(e(0)+ x 2(3) .0<k<n 0<Ji<k 0<Jj<n-k

0

It is interesting to note that condition (1), or something similar,

is necessary for the validity of this theorem. For example, assume that

@=p=1 and that g(n) =1 for all n . Then the two functicus

D4 (n) =2 and D,(n) = 28 , both satisfy conditions (ii) and (iii)!
This accounts for the somewhat complicated formula in condition (b).

3



Note that we can compute the M function using the following simple

algorithm, whenever g(n) satisfies the hypotheses of Theorem 1:

begin

integer j,k,nj

real M,F;

array D{O:N];

J := k := 0; D[O] := g(1)-g(0)+(x+B)xg(0);

forn :=1 step 1 until N do

begin if axD[j] < BxD[k] then

begin F :=axD[J]; J := J+1 end

else begin F := Bx D{k]; k := ktl end;

Dln] := g{n+1)-g(n)+F;

end computation of D;

M := g(0);

forn :=0 step 1 untilN do

begin print (‘n="', n, *; D[nl=*, D[n], *; M[n)=", M);
M := M+D[n];

end printing the table of D and M.

This algorithm takes only O(N) steps to compute M[O],M[1],...,M[N] ,

instead of the 0(N°) steps which are implied by the original definition
of M n) in (0.1).op in (0.1)

Theorem 1 also has a useful corollary when @ and B are equal:

Corollary. Let a =p and let g(n) be as in Theorem 1. Then

M __(n) =g(n+aiM 22 | +M [22] for all n >1 . (1.4)fo od [0 0 2 0 0 2 =

(Here |x| , x1 respectively denote the greatest integer < x

and the least integer > x .)
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Proof: By Theorem l with 8 -a, M is convex. It is easy to prove

for any convex function M that the minimum value of M(k) + M(n-k)

| occurs for k = | n/2} . (Note further that (F(1),F(2),F(3),F(4)y...) =

(a®(0),a(0),a0(1),aD(1),...) in this case.)
0

2. The case g(n) =n : "optimal trees"

When g(n) =n, so that D(0) = 1 and D(n) = 1+F(n) in

Theorem 1, we are soon led to an interpretation of Maos (7) in terms
of binary trees. In this section we shall develop this tree relationship

in an independent manner, without explicitly using the result of Theorem 1l.

Our general plan is to define a weighting function for the nodes of a

binary tree; Mcop ®) will turn cut to be the minimum total weight of
any binary tree with n nodes. (See [11] for an introduction to the

well-known properties of binary trees.)

A binery tree T is, by definition, either empty or it consists

of a left subtree 2£(T) , a right subtree r{T) , and an apex or root

node a(T) 3; ¢(T) and r(T) are themselves binary trees. Let A

denote the empty binary tree, and let |T| be the number of nodes

of T . Thus, |

(; y 1f T =A;IT| = (2.1)
1+ (D+ |r), 32 T £A.

Now consider the function

( y If T =A 3nT) = (2.2)
[T|+ome(T))+B Mx(T)) , if ThA ,

p



and let

M(n) = min wT) . (2.3)
T: |T|=n

We shall say T is "optimal" if (T) = M(|T|) . It is easy to see

that the "principle of optimality" of dynamic programming 1s satisfied,

in the sense that all subtrees of an optimal tree must be optimal.

Consequently for n > 0 we have

M(n) = n+ min (aM(k) + @M(n-1-k)) ,
0<k<n

i.esy M(n) = M n) .) Mn) = Mon(n)
Another way to view the situation is to consider finite strings

(i.e., sequences) of the letters 1L and R . If o is such a string, |

define w{o) by the following rules:

w(e) =1 ; w(Lo) =1+ow(oc) ; w(Ro) = 1+pw(a) . (2.4)

Here € denctes the empty string. As an example cf this definition,

w(LRRLL) = 1+ 0+ 0p + Ope + GPB° + ACB” 3

Any node in a binary tree may be uniquely identified by a sequence

of 1's and R's [7]: we denote a(T) by ¢€ , and dencte the nodes

of 2(T) and r(T) by placing an L or R respectively before the

denoctations in £(T) , r(T) . Thus if AT) is the set of all such

strings, we have

S(T) =
[e} UL AE(T)) URMAX(T)) 5» if T £A.

It is easy to see that a set of strings S is equal to XT) for some

T if and only if

oleS or OReS implies o0eS . (2.5)
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Furthermore ‘Mm is a "total weight" function, in the sense that

m1) = L_ wo) (2.6)
ocT)

This is the basic relation we shall use; it is easily verified by

induction.

Now consider & sequence of strings (oy, 0,5 Ogs ee) such that,

for each n, w( 0) has minimum weight among all strings not in

{07500050 4] . Thus, 0, =€; 0, = L if a<p, 0, =R if a>g.
(For some choices of a and Bp, e.g. Qa = 1/3 and B = 2/3 , there

are infinitely me:ay strings which will never appear in the sequence.)

For each n , the set 8 = {0)5000s0,] defines an optimal binary tree;
this follows from (2.5), because w(olL) and w(oR) are always greater

than w(o) . Consequently

Mon) = 2 wie) . (2.7)
gap 1<k<n ©

This explicit interpretation of M0B is essentially that of Theorem l1,
since (D(0),D(1);...) is precisely the sequence (w(0y),w(05) 5000) .

As a simple application of these ideas, we can derive an asymptotic

formula.

Theorem 2. let g(n) =n, 0<a<p, and a<1l. Then

n

Proof: If o is a string of length >m , w(o0) > w(L") = 1+Q+ ...+0d"

= (1-a""1 /(1-a) . There are only finitely many strings of length <m,

hence lim inf M(n)/n > (1-0™1)/(1<a) for all m . On the other hand,

1im sup M(n)/n < 1/(1-a) , since the sequence of strings ¢,L,1°,1°, cos
gives an upper bound.

.|
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3. The case g(n) =n : asymptotic results when min(q,B) = 1

Theorem 2 shows how M grows vhen min(a,B) <1 . When a=8=1

we have w(o) = mtl for all strings o of length m , hence we can

obtain the well-known explicit formula

[ log, (n+1) 1
Mypq(n) = L log (1) = (n+l) Mlogy(a+])7 - 2 +1

1<k<n

When @=1 and 8 > 1, the problem of estimating Mop (?) is
considerably more difficult. In this case the weight function w(c) is

related to partitions into powers of p ; for example,

W(LRRLL) = 1+ 1+p+p°+p°+p° .

The weights take the form of polynomials with nonnegative coefficients,

a. +a.p+a 24 +a BF (3.2)pt 8 Brel +...rab .

such that there are no "gaps":

a; >0 = a, ,>0. (3.3)

An expression of the form (3.2) may be called a partition into

powers of Pf ; if condition (3.3) is also satisfied we shall call it a

gapless partition. It is convenient to regard the case 8, =8 = ..0 = 0

as a gapless partition, even though it is not the weight of any string o ;

the nonzero gapless pertitions are in one-to-one correspondence with

strings of L's and R's , since (3.2) is the weight of

L RL R...RL .

Let P(x) denote the number of partitions into powers of fg whose

value i8 < x , and let H(x) be the corresponding number of gapless

8



partitions. Thus, H(x) is the number of strings of weight <x ,

plus one. We have P(x) =H(x) =1 for 0 <x <1, and it is not

difficult to deduce the following recurrence relations for x > 1 :

| P(x) = P(x-1) +P(x/B) (3.4)

H(x) = H(x-1)+H((x-1)/8) . (3.5)

As a consequence, we have the following relation between partitions

and gapless partitions:

Lemma 3.1. eT P(x + 1/(B-1)) <H(x) < ¢; P(x + 1/(g-1)) , where
c, = P(1+1/(g-1) ~0) and c, = P(1/(p-1)) -

Proof: Let H, (x) = P(x+1/(B-1)) . For x >1 we have

Hy(x) = B(x-1+1/(8-1)) +P((x-1)/B+1/(B-1)) = Hy (x-1) +H((x-1)/8)

and for 0 <x <1 we have c, <H,(x) <c, . Thus

elu (x) < H(x) < clk (x) for all x , by induction on |x| .
171 - - "271 =

When B = 2 , we have cq =C, = 2 , 80 the above lemma shows that

the number of gapless partitions of n into powers of 2 is exactly

half the number of ordinary partitions of ntl into powers of 2 , for

all positive integers n . A combinatorial proof of this result is alsc

possible: The number of ordinary partitions (3.2) of n in which a, =1

| is the same as the number with a, > 1 , under the correspondence

(8,58y5c0058, 151) - (aps8y5«-0s8, +2) . The number of ordinary

pertitions of n in which a, = 1 is the same as the number of gapless

partitions of n-1 , under the correspondence (8p28q5c-s8 51) -

(ay+1, a,t1y.. -yBy _q+1) .

9



The H function has a comparatively simple relation to M,

namely

xX x
M(H(x)-1) = [ tdH(t) = xi(x) -[ H(t)at , (3.6)

0 0

since M(H(x)-1) is the sum of all gapless partitions whose value

is <x (cf. (2.7)). Therefore we can use known results about partitions

into powers of 8 in order to deduce the asymptotic behavior of M :

Theorem 3. When B >1 and g(n) =n , we have

1 FT _1+42 In 8/1n n
M ~ ———- NNap ~ eV PIF (3-7)

Proof: N. G. de Bruijn [ 3] has proved that

x 3 (30glog x)
Inp(x) =np\F+y) + 57g -3)nx+p(¥)+0 Tog x ’

(5.8)

where y = logy X= Logg logy x , and where p is a rather horrible-
looking function of period 1 , namely

l 2 l 2 1 1

p(y) = (7, -57°+55%)/1np+znf - 5 In 2x

2xik 2xik 2x1

kfO

2

where z{(z+l) = 1+7yz2+7,2 +... .
X

Now we wish to show that the integral { H(t)dt in (3.6) is
0

small with respect to the other term =xH(x) . We have

10



X X

[" u(t)at = [ (u(pt+l) -H(pt))at
0 0

-1 Ax+1 1
=p" ([  H(uau-[ H(wau) = o(H(px)) -

| 8x Q

| By (3.8) and Lemma L.1, In(H(Bx)/H(x)) =y In g + 0(1) , hence

H(px) = O(xH(x)/log x) . (3.10)

f£(n)
If ve set n = H(x)-1 and M(n) = ne , We now have

M(n) = xn+0(xm/log x) (3.11)

f(n) = In x+0(1/log x) (3.12)

and it remains to express ln x in terms of n .

We have 1n x = y 1n g+ 1n y+ 0(log log x/log x) ; hence by

(3.8) and Lemma L.1,

_ npg 2 in p IPSU

Consequently

y = 2 10g, hn - : Ta yo(Ro820emy[log n

and (3.7) follows immediately for those values of n having the special

form H(x)-1 . In general suppose that H(x-0)-1 = ng <n<m = H(x)-1 .

Then n,-ng, < H(x) - H(x-1) = H((x-1)/B) = O(H(x) log x/x) = o(n,) ,
hence n/n, -1 &s n —a3 by(3.11), M(n Y/M(n.) -1.0’ 1 0 1 N

The above proof can be extended to obtain slightly more information

than is stated in Theorem 3; we could evaluate f(n) to within

o(1 / 10g n). But the complicated form of (3.9) shows that it is

{nherently very difficult to go any further than this.

11



Before moving to the next topic, let us digress for a moment to

summarize the interesting history of the present case. Euler gave the

generating function for partitions into powers of 2 in his famous paper

on partitions [5]. A. Cayley [1] proved that the number of sequences

8785 ces By such that a, = 1 and 1X< Bs.q S C84 is equal to the

number of partitions of o%_q into powers of 2 ; he proved this using

the corresponding generating function. Binary partitions were independently

studied by Tanturri [16]. The behavor of the generating function in the

neighborhood of unity was investigated about 1925 by C. L. Siegel, in

unpuvlished work. P. ErdSs [4] found the leading term of (3.8), and

K. Mahler [13] found the other terms except with 0(1) instead of the

periodic function p(y) , when PB is an integer. N. G. de Bruijn [3]

obtained (3.8) for all pf > 1, and his work was further generalized by

W. B. Pennington [14]. The connection between binary partitions and the

Mg12 function was pointed out by Knuth [10], who gave an elementary
derivation of the leading tem in (3.8) when B = 2 . Heller [8] found

the leading terms of (3.8) using a different approach. Arithmetic properties

of B-ary partitions have been studied by Churchhouse [2] and Roaseth [15].

4. The case g(n) =u : asymptotic results when min(a,g) >1 .

When QO = B , the weight of any string o is simply

l+Qa+ ...+alol ; 80 it is easy to obtain an "explicit" formula for

Mom when g(n) =n and a =8:

M_ (FP 4k-1) = (Lrat... +d) - (1420+... +20 PL
(240®

+ k(1+a+...+d") , for 0<k<2". (4.1)

12
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It follows that for 0 <@ <1 and a >1,

Im

wT dhe (4-2)
me od” } - -

Replacing (1+6)2" by n , it follows that

1+ log, &
Moa?) ~c(8) n

(log, n) mod 1 .
where © =2 -1 and

-(1+ log, Q)ea 1 &>
(6) = (G1 - mp (2+)

is a periodic function of log, n . For example, when a =f8=2,

| the asymptotic form of Mgoon) varies between L n° (when n= om )
and gn’ (when ne om ).3

We shall see that such behavior is typical of the case

min(a,B) > 1 . If we define the constant 7 by the relation

al +p’ =1 , (4.3)

: | 1+1/y
we will find that Map) grows approximately as n . When
log @/log 8 is irrational, it turns out that MAL)Int 17 actually
approaches a limit as n —-e . On the other hand in many cases when

log flog 8 is rational, M200?) fat? Y7 oscillates between two
different limits, as in the case ax =8

We shall begin our analysis of the general case g(n) =n,

min(a,B) > 1 by generalizing the H function used in Section 5. Let

n(x) be the number of strings o whose weight w(o) is <x , and let

H(x) = h(x) +1 . (Lok)

We have H(x) =1 for 0 <x <1, and for x >1 the rule for defining

13



weights implies that

H(x) = H((x-1)/a) +H((x-1)/B) . (4.5)

| The basic relation (3.6) between H and M , namely

X X

| M(h(x)) = x(x) - [| H(t)at = xh(x) - [ h(t)at (4.6)
0 0

is still valid for this generalized H function. Indeed, by separating

the strings o which begin with L from those which begin with R

(cf. (2.4)) we obtain the formula

M(h(x)) = h(x) +oM(h((x-1)/a)) + eM(h((x-1)/B)) . (4.7)

| Therefore if we can determine the asymptotic behavior of h (or H ),

we will be able to see how M grows, and to see how the value of k

for which the minimum occurs in (0.1) depends on n .

Now that the problem has been set up in this way, it is comparatively

easy to deduce the order of growth of M :

Lemma 4.1. Let 7 be the positive constant defined by (4.3). There

exist positive constants C11 Crs Cy ’ Cs » such that

4 4 in¢ x < H(x) < CX (4.8)

cpt 7 cn) < cpt (1.9)

for all sufficiently large x .

Proof: Choose ¢, so that H(x) < cx for 1<x<2.

Then we can prove by induction on n that H(x) < ex for |
1 <x<n, since H(x) = H((x-1)/a) + H((x-1)/B) , which (by induction)

is <ecy((x-1)/0)7+c ((x-1)/8) = c,(x-1)7 < ex .
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The lower bound is a little trickier: If we assume that there is

a positive constant a such that H(x) > ax’"® for x < X, » then we
have H(x,) > a(x,-1)7"* K, where

| € 3
k=2% +B 5 nmin(e%p%) > 1 . (14.10)
a a’

For sufficiently large x, we will have a(x,-1)" "°K > ax] for
Xx, <x < X,t1 « Indeed we can clearly extend this to all x > Xs .

Since such an a exists for arbitrarily small ¢ , we must have

H(x)/x~¢ ~® 88 X -® ,

Let c¢ be a constant such that x? =(x-1)7 < ex? ™L for all

large x ; and let R be a constant such that RK > Rtc , where

K = 7 + al™? >1 as in (4.10). For sufficiently large X, ve will
have (x,-1)7 "RK > x] (rec) and H(x) >Rx’"! for all «x > x,
Thus there will be a positive constant ey, =< 1 such that

H(x) > cx” + Rd for x, <x< max(a, B) x +1 ‘ (L.11)

We will show that this relation holds for all x > Xy Let

x = max (Qa, B)x,+n ; we will show by induction on n that (4.11) holds

for Xx SX<X 1 and this will establish (4.8). The calculation

is not difficult, and it reveals why we have been foresighted enough

to choose ¢ and R in such a mysterious way:

H(x) = H((x-1)/a) +H((x-1)/B)

-1, r-1 -1, 7-1

> e, ((x-1)7/a”) + (x-1)7/87)) + R((x-1)" "7/7 "+ (x-1)" "7/877

= c,(x-1)7 + RK(x-1)7 "%

>cx -coex le (R+ ¢)x’d= "1 1

sex’ + KL.
= "1
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Now to obtain bounds on M(x) , we may use (2.7). By the definition

of H we have

w(o ) <x if and only if H(x) >n , (L.12)
| hence by (k.8)

eM 2/7 < w(o) < ei? (1)? (4.13)

for all large n . It follows that M(n) , the sum cf the first n

weights, satisfies

M(n y_ =1/7 M(n y=]lim inf as > c y lim sup Sh < c NUS LYn -® alt 1/7 +l 2 no nt 7 y+1l 1

The desired relation (4.9) is an immediate consequence.
i.

The latter part of this proof suggests the following result.

Lemma 4.2. Let 7 be as in Lemma k.1. Then lim H(x)/x’ exists
X +o

if and only if lim M(n)/n*7 exists.
n-mn

7 1+1/y
Proof: If lim __ H(x)/x’ =c then by (k.14), lim, LM(n)/n =

(y/ (r+1))e™Y7 . Conversely if M(n) ~ cnt” we must have
w(o) ~ (1+ 1/7)cn” since w(o ) js a nondecreasing function of n .
(This follows from a straightforward "rauberian™ argument: We have

M(1(1+¢€)n]) -M(n) > (L(1+¢€)n) -n)o(w_) , hence lim sup w(o )/n7 <
cele )FY7 1) for all e>0 . Similarly,

lim inf w(a )/n? > ce™1(a -(1- ey 11/7) .) Relation (4.12) completes
the proof.

OC
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Now let us investigate whether or not the limits do exist, for

various a and f . We have seen thet the limit does not exist when

a = 8 ; similarly we can construct a large number of further examples,

including all cases where a and pf are integers and lcg o/log B is

rational:

Theorem 4.1. Let min(a,p) > 1 , and let 7 be defined by (k.3).

If log &flog B is rational, and if 7 <1 (i.e., if atept <1)
then lim_ M(n) [nt does not exist.

Proof: We have Q = oF sy B= 02 where p and q are relatively

prime positive integers and € > 1 . Without loss of generality we may

assume that p <q . We will show that large "gaps" exist between

| weights, in the sense that there are positive real numbers x <Y such

that no string weights lie between "x and eo y-1 for any m . This

is enough to prove the theorem, since existence of the limit would imply

that H(6™x)/H(8"y-1) -x'/y’ # 1 = H(e"x)/H(8"y-1) .

The weight of every string is a polynomial in © , namely

a a a a

obsg tly ig tsg? ’ (4.15)

where a, =0 and a, .-a, =p or gq for 0 <i <t . We may think
of (4.15) as a number written with radix 6 and digits O or 1,

subject to the requirement that exactly p-1 or q-1 O's occur between

adjacent 1's . For convenience, we shall call (4.15) a weight of

order a, .
Py bp Hp

Let S be the set of all infinite expansions © +0 +0 +...

where Db, = 0 and bir =P =p or q forall i1>0. Thus S is
a set of real numbers which satisfies

s=(1+0%) 1 (1+0 Fs) . (4.16)

17
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The largest element of S is 1/ (1-6) . This set contains large

gaps, tince the largest element of 14028 is 1+6 3/(1-07P)

and this is smaller than the smallest element 1+6 P/(1-0"%) of

1+ Ps. (We have 07%/(1-07P) <8P/(1-0"%) since this relation

is equivalent to 63-621 <9 P.o%P jee. (672-8P)(1-072-8"P) <0 .)

: Equation (4.16) now shows that there are many further gaps.

1+0%+67%5 <1+6™+0 Ps <c1+0P+0 5 <1+06P+67Ps,

etc., and we see that S is contained in something like a “Cantor

ternary set": Every point not in S lies in an interval that is not

in S , and S has measure zero.

Since every element of 03PS is greater than every element of §S ,

we can find positive numbers x < y such that the interval (x,y)

contains no points of

Sy = ee. Uesyelsusuyuesues Uy... . (4.17)

If w is the weight of a string such that @ x <w <@"y-1, then

Ww) = w+ 0~%/(1-67 €8, , hence 0”, is an element of §, N (x,y) .
This contradic‘.s the choice of x and y , so there are no string

weights between © x and ©y-1 .
m]

The next theorem shows why the hypothesis ¥ <1 1s necessary in

Theorem 4.1, since there are infinitely many examples when M(n)nit?

approaches a limit even though log &/log @ is rational.

Theorem b.2. Let a +8 1 =1. If log a/log p is rational and

a #8 then

M(n) ~ ep Tee (@t 10g a+pt 10g B)n° (4.18)

18



Proof: We have QQ = or sy B= ed where Pp and q are relatively

prime positive integers and © is the unique real root > 1 of the

equation 1-67-01 -0. Since a fp we may assurc that p<gq -

To prove this thcorem we shall refine the observations made in the

proof of Theorem L.l by studying the weights of order m more closely.

Since p and q are relatively prime, there will be weights of order m |

for all large m . |

The weights of order m have the form ©+Ww , where W is a weight

of order m-p or m-q . For large m , the largest weight of order mn-q is |

aTsa I Be dF Re |

| - CT , 02-1
oP -1 6-1

where

(u+l)g =m (modwlop) , 0<u<p , and

(4.19)

a = 04ePT1.0%F) oP

Similarly the smallest weight of order m-p is om + b sy Where

(Wl)p =m (moduloq) , 0<v <q, and

(4.20)

We have

- - q-p - -qQ — h,2a <8, =-01P<c-Pd-p <p, (4.21)

hence the weights of order m appear in increasing order if we read

their radix © representations in lexicographic order.
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Let r =q-p and let 0 <s <r . We shall divide the weights

into r disjoint classes, where the weights of class 8s consist of

all weights of order s , 8+r, s+2r, ..., stkr, ... . From the

argument in the preceding paragraph we see that the weights of class =

| appear in increasing order if we treat their radix © representations

: as binary numbers; and furthermore the difference between consecutive

weights of class & is bounded. (The set of all such differences

contains pq elements {o,-2a |]o <u<p, 0<v <a}, plus perhaps
a finite ruiber of other differences which might appear for small m .)

Let f be the number of weights of order m , so that £f,=1,

f =0 for m<Q, and £ = frp” In-q for m >0 . (In the special
| case p=1, q=2, fn is a Fibonacci number and © = (1+/5)/2 .)

| Let g = f +f +f +... be the number of weights of order <mm “mer “m-2r -—

belonging to class m mod r ; and finally let hy =1 and ho = & pn" Bn-r-q
for m >0 . We shall prove that if

a a a a.

w=0C +o ls +0145 "° (k.22)

is the n-th smallest weight of class s , we have |

n=h +h + .eoth +h . (Le23)
8 %-1 81 %

The proof is by induction on m =a, ; since n=1=h, when m = 0 ,

we may assume that m > 0 . Let (4.22) be the k-th smallest weight of

order m. Then n=g -1f +k, where 1 <k <f . If a ,=28,-9

then w-6" is the k-th smallest weight of order m-q , hence by

induction (4.23) holds if and only if n-h = Bq foeq * K . The

latter is true by the definition of ho and k . Similarly if
m

8 1 =8 =P) w-08 is the (k=fpg) - th smallest weight of order
m-p , hence by induction (4.23) holds if and only if

20



n-h = €n-p - fnp? k - fm-q ; since Epp - fp = fn-q , the proof of
~ (h.23) is complete.

N.te that the generating function for the h's is

r rq (1 - 2)

(1-25)(1-2F - 2%) (1L-27)(1-2°-2%)

This can be written

m c 1-072
Yu = ThE RE oem ims (2)(1-677)(pe “+q0 °)

where R(z) has no singularities in Iz | < ol+e y 8ince o~t is the
smallest root of 1-z8-z1=0. (If 1 = 2P+2z% then 1 < |z [P+ |z 2 ’

hence |z| > 071, with equality iff z = ot .) Consequently

h = EETC (4.26)

Let H (x) be the number of weights of class 8s that are <x,
so that we have

H(x) = Hq (x) + H, (x) + eenNY +1 (4.27)

For fixed s , we will show that lim_ Ho (x)/x =c. Let w be

the largest weight of class s that is < x ; we have observed that

x-w is bounded. If w is given by (4.22), hi (x) is given by (4.23),

which equals cw+ o(w) = ex+o(x) . It follows that

H(x) ~TCX , (4.28)

and the theorem is obtained by applying Lemma 4.2, since we have

log p - log &
rc = “1 -1 .

(B-a)(a™" log a+p ~ log B)
|
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A more detailed examination of the simplest case of Theorem L.2,

vhen a =@ = (1+/5)/2 and B = §° , actually yields an explicit |

formula for the n-th weight:

-1 -1

wie) =@ "Lop" +n . (4.29)

(cf. [11], exercise 1.2.8-36, p. 493.) We also have

1 2n=-1 n-1 n. -nt+2
MF) = z= (¢ -opT-(-L) (2-9 TT)HF (4.30)

in this case, when F_ = 8"- (- #)™™//5 is a Fibonacci mumber.
A completely different approaci. seems to be necessary when

log &/log B is irrational. The following discussion is based on

Dirichlet integrals.

Theorem 4.3. Assure that min(a,B) >1 and log aflog f is irrational,
: 14+and let 7 be defined by (4.3 ). Then lim__ M(n)/n 1/7 exists.

Proof: We shall make use of the following result fram the analytic

theory of numbers:

Lemma 4.3: Let f(t) be a nondecreasing function of the real variable t,

with f(t) >0 . Assume that G(s) = [ £(t)at/+"" 1s an analytic
1

function of the camplex variable s when Re(s) >7 >0 , except for a

first-order pole at s = 7 with positive residue C . Then f£(%) ~Ct’ .

A proof of +his lemma appears in the appendix below. Let us apply

this lemma to the function f(t) = h(t) = H(t)-1 . By Lemma L.1,

the integral

. stl
G(s) =| h(t)dt / t (4.31)

1
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diverges when & = 7 ; but it converges absolutely and uniformly in any

bounded region such that Re(s) > ry+¢ , for all fixed €¢ >0 . It follows

that G(s) is analytic in the half-plane Re(s) > 7 .

We will now show that G(s) has a simple pole at s =y , by

analytically continuing G to the left of the line Re(s) =7 .

Consider the function G, (s) = (1-a° -8 %)G(s) ; when Re(s) >7 ,
we have

G, (8) = h(t+1)at / (t+1) tta h(t/d)at / +57 - i h(t/g)dt / 5+
0 a =

a LJ

= [ (1 +n(t/a) +n(t/B))at/ (++2)5" = [ (n(t/a) + n(t/p))at / t=
0 0

=2+ I (n(t/a) + n(t/p))at((t+1) 31-751) | (4.32)
min(Q,B)

(This derivation uses (4.5) together with the fact that h(t) = 0 for

t <1.) Since (t+1) 51-2751 _ o((s+1)t™®%) , the latter integral

converges whenever Re(s) > 7-1 . Therefore we can analytically continue

G(s) into this region, by using the formula

G(s) = Gy(s)/(1-a"-p"%) , (4.33)

and letting G,(s) be defined by (4.32). The only singularities of

G(s) in this region are the poles at s =0 (if 7 <1) and possibly

at the zeroes of 1-a °-p°° . For s = 7 , we have a simple pole

since we know this is a singularity of G(s) ; the corresponding residue

G,(7)/ (an a-a’+mp- 87) must be positive, since G(s)(s-y) is
positive when s approaches 7 from the right. Furthermore this is

the only singularity of G(s) when Re(s) > 7 , for if we write

gs =o+it we have [a%+p°| <a’ 948% <a’ +87 = 1, where equality
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nolds iff aS =a? and gp ° =p’ . This condition implies that

T = 2mp/Ina and Tt = 2mq/fn B for some integers p and q ; if 7

is nonzero, this contradicts the fact that log aflog 8 is irrational.

We have now shown that G(s) satisfies the hypotheses of Lemma 4.3,

so h(t) ~ Ct’ . This completes the proof (cf. Lemma 4.2). a
Incidentally if we attempt to apply this same method of proof

when log a/log p is rational, we find that 1-a% -p~% has infinitely

many zeroes on the line Re(s) = 7 . But by an amazing coincidence,

when 7 =1 and xX £8, G, (8) happens to be zero at all but one of

these points.

It is possible to evaluate the residue C , when 7 = l ; in fact,

(4.18) holds also when log flog B is irrational, since the residue

is a continuous function of « .

The reader will note that Theorems L.l -L4.3 do not cover all cases.

If y >1 and log aflog p is rational, we conjecture that

lim M(n)Int does not exist. Tt can be shown that this conjecture
holds "almost always", with at most countably many counterexamples

(see Fredman [6]).

5. The case g(n) = 1.

Another interesting cese of the general problem we are considering

occurs when g(n) =1 for all n . The problem breaks into two subcases:

Theorem 5.1. Assume that g(n) =1 for all n , and that min(c,8) > 1 .

Let 7 be defined by (4.3). Then there exist positive constants

C, » C, such that cnt? < M(n) < cnt for all n . Furthermore
14m M(n) fn? exists if and only if log @/log @ is irrational.
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Proof: Theorem 1 applies to Mp s in this case D(n) = F(n) for
n>1, and it is easy to see that again we obtain a tree interpretation

as in Section 2 above. This time we have D(n) = (a+ g)w(o_,,) , where
the weights are defined by the rules

wie) =1 , w(lo) =aw(s) , w(Ro) = pw(o) (5.1)

The new rule is simpler than (2.4 ); the new weights are given by the

final term of the previous weights, e.g. W({LRRLL) = ope « The

weight op? occurs 19) times, since this is the number of strings
containing i L's and j R's .

To deduce the asymptotic behavior of Mop) , We proceed as above,
letting h(x) be the number of weights <x , and H(x) = h(x)+1 . This

time H(x) =1 for 0 <x <1, and

H(x) = H(x/a) +H(x/B) , for x >1 , (5.2)

a relation simpler than (4.5). It is uv easy to prove Lemma 4.1 for

the new H and M functions, and Lemna 4.2 follows as before. Now

we use the idea in the proof of Theorem 4.5: Let G(s) be defined

by (4.31), and G, (8) = (L-a"%-8"%)(s) . When Re(s) >7,

- s*1 po +1
Gy(s) = [ (n(t) -n(t/a) -n(t/p))at/t™ = = [ at/t7~ =1/s . (5.5)

1 1

Thus, G(s) can be analytically extended to the entire plane by using

the formula G(s) =1/ s(L-a © -p”%) . When log aflog p is irrational,

: we argue as in Theorem 4.3 that Lemma 4.3 applies; hence h(x) oY

and M(n) ~ (a+ g)c~1/7 7 (#1) , where C = 1/(¢"” Ino” +8”7 1m pg’) .

When log aflog 8 is rational, on the other hand, there is no analog

to Theorem 4.2; the limit h(x) [x7 doesn't ever exist. The reason is
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that a = oF y B= 6? for same © , and all weights are powers of 9 .

Thus h(e") = n(e™d -0) , i.e., there are large gaps between the

weights, as in Theorem L.l. a

Theorem 5.2. If g(n) =1 forall n andif a <p, a <1, then

M_.(n) = 1+ (a+) (L+a+...+dPY) (5.4)£08

Proof: For this case, Theorem 1 does not apply, and in fact the

function M208 turns out to be concave! We will prove (5.4) by
induction. For k <n/2 we have M(k) < M(n-k) , hence

oM(k) + M(n-k) > aM(n-k) +BM(k) . For k > n/2 we have
-k -

ot(k) +pM(n=k) - (Q(k-1)+ BM(n-k+1)) = (a +8) (o - Ba" Ky < (a+ B) (oF - F*17Ey
<0 . Hence M(n+l) = 1+aM(n) + AM(0) , and the proof by induction is

complete.

O

6. The Case g(n) = 80

When ¢(0) =1 and g(n) =0 for all n >0 , we obtain a case

strongly related to the previous one. Let M (n) =M_— -1/(a+p) ;
then

*

M (0) =1-1/(a+p) ,

¥* * *
M (ntl) = min (0M (k)+a/(a+g) + BM (n-k) + B/(a+B)) - 1/ (a+B)

0<k<n

¥* *
=1-1/(a+p)+ min (oM (k)+pM (n-k)) .

O0<k<n

In other words M (n) = Mag (R) , where g'(n) = l-1/(a+B) . If
a+pg >1, M (n) is therefore just 1-1/(a+p) times the function
in Theorem 5.1 or 5.2.
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If a+8 =1, M(n) is trivially equal to 1 for all n . The

remain’ng case has a new twist:

| Theorem6: Let g(n) =8 , and a+B <1, and let 7 be defined
by (4.3). (Note that 7 is negative, between -l and 0.) If

| log aflog @ is irrational, Moa) ~ (+p - 1ycY? m7 (y+1) ,
where C = 1/(a”7 in of +77 1n a’) . On the other hand if log a/log B

is rational, = > lim sup om) nH > lim inf 4 og)/0 >0 .

Proof: Theorem 1 applies to this case, since D(0) =a+p-1 is

negative. It follows that the D's are all negative (we have M(n) > M(ntl) ,
but M is still convex); in fact, D(n) = (a + -1)/w(c1) , where the

| weights w(g) are defined now by the inverse rules

W(e) = 1, w(Io) = a(Ee) , w(R) =p w(0) (6-2)

The function H(x) of Theorem 5.1 applies, but with @, B, 7 replaced

respectively by at, gt , -y ; and we have cx’ < H(x) < ex’ .
Therefore (cf. (L4.13)) we have

(a+p-1e;Y? nt? < D(n) < (a+ 8 - eT m1)? .
The theorem now follows as in Lemma 4,2 and Theorem 5.1, provided

we can prove that M(n) -0 as n -w , since M(n) = 1+D(0) + ... +D(n-1) .

By definition, M(n+l) < aM(k) + aM(n-k) for all k ; and since the D's

are negative, M(n) < M(n-1) . Hence

| M(n+1) <oM( Ln/2))+pM( n/21)

<aM( Lnf2))+pM(Ln/2]) .

But +p <1, hence M(n)-0 . 0
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7. The case g(n) = n° .

We shall conclude this study of the M functions by considering

a function g(n) which grows more rapidly than those considered so far.

Theorem 7. If g(n) = n° for all n and if atepts then
2

Mp(n) ~ (G+ 6)n [(a+p-0B) . (7.1)

Proof: We may apply Theorem l; and we note that j+k = N-1 , whenever

the "if" test occurs in the algorithm following that theorem. Therefore

F(n+1l) = min(aD(k),BD(n~k)) for some k . If F(n+l) = oD(k) then

ad(J) < F(n+l) < gD(n-j) for all j <k , and BD (n-j) < F(n+l) < ap(J)

for all J > k ; similarly if F(n+l) = pD(n-k) we have

oD(j) < F(n+l) <pD(n-j) for all j <k and 8D(n-j) < F(n+l) < ad(J)

for all j > k . Thus in all cases

min(aD(J),BD(n-3)) < F(n+l) < max(a®(J),pD(n-J)) (7.2)

forall j, 0<Jj<n. In particular, (7.2) holds when

j = Lpn/(x+B)} . If we now write D(n+l) = E(n) +n , for

Cc = (a+p)/(a+p-aB) , we have D(n+l) = g(n+2) - g(n+l1) + F(n+l) , hence

min(aD( ( n/(a+B)| ),BD( Lan/(a+B)1) < E(n) + Xn - (2043)

< max(ad( LBn/(a+B)| ),BD( fom/(a+B)1)) (7.3)

Now 2Ca|pn/(a+B)| = 2n-2n+0(1) , so there is a constant A such

that

|E(n)| < max(a|E( LBn/(a+B)})]|,BIE(Tan/(a+p)] D+A (7.4)
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From these relations we can prove that |E(n)| does not grow too

rapidly. Since of/(a+p) <1 , there is a constant AN <1 such that

max(x(8/ (x + 8), B(af (a+ 8M) <1 ; let this maximum be p . There is
N

a constant n, such that p(n+a+ 8) + A <n for all n > n, and
we can find C, > 1 with |E(n)| < cn’ for all n <n, - By induction,

A

(7.4) shows that |E(n)| <C,n~ for all n .

We have proved that D(n) = 2Cn +0(n™) ; consequently

M(n) =cnS+0(n™Y
a

When a+8 =08 , 1i.e., a t+ gL = 1, we can use the same technique

| to show that Mca grows as n° log n . Assume that a <p . If we
write D(n+l) = E,(n) +2n log nflog @ , we find

E(n) < max(oE( Ln/a] ),BE,( [n/p1))+0(log n) ;

this implies that E,(n) <Cp for some Cy - Similarly if we write |

D(n+l) = Eg(n) +2n log n/log Bp , we find

Eg(n) > min(aBy( Ln/oj ),BEg( Mn/B1)) + O(log n) , |

SO Eg(n) > ~Cgn . Therefore Map (1) lies between n° log n/log B+ 0(n°)
and n° log n/log a+ (n°) . It would be interesting to discover if

lim Mon) /n° log n exists. In the case a =p =2 our derivation
proves that

M_,,(n) = n° log, n +0(n°) (7-5)
g22 > ’ .

a formula analogous to (3.1).
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Incidentally when a =f =~ 2 it is possible to give "explicit"

formulas for M(n) , in terms of the binary representation of n . Let

a, a, a
ntl =2 "+2 "+...42" , where a, >8, >... >a >0. Then

% 8 yr
D(n) = 1+2(a, 2 + (agtl) +2 +...4 (a1) 2 ) and

a,+a.
M(n) = ) 2 ‘(max(a a.) +1-28, ,)1<i,j<r J

a.+1 a 28

21 fn? h-Se 1 1)+on-1. (7.6)

In particular, M(2%-1) = (a - 2) al=k :
When a+B <0f we have (a-1)(g-1) >1, so min(ag) > 1 .

Now g(n) = n >n , so we know fram the results of Section 4 that

Map) > cnt? for some C, , where a? +g”? =1 (hence y <1,
and 1+1/7y >2 ). It can be shown that Moon (1) is also < cat?
in this case; in fact, whenever min(a,g) > 1 , the general upper bound

Mop?) = o(n2* 1/7) holds for all functions g(n) that are o(n" 7-8) .
This result will appear in a future paper [6].
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Appendix. A Tauberian theorem

Now let us return to Lemma 4.3, on which we based our proofs of

Theorems 4.3, 5.1 and 6. Results of this type were originally given

by N. Wiener [17, 18] and S. Ikehara [9], in a rather complicated

form somewhat more general than we need. Landau [12] simplified the

jdeas and used them to give a new proof of the prime number theorem; but

he gave a slightly less general result than Lemma 4,3. The following

proof is based on that of Landau, with minor modifications in order to

prove what we need. (At this point, the reader should refer back to the

statement of Lemma 4.3.)

Let g(s) = G(s) -C/(s-7) , a function which is analytic for

Re(s) > 7 . We now introduce two parameters, Vy and A , which will

eventually approach infinity. By the Riemann-Lebesgue lemma and the

fact that g is analytic,

2 .

| [ (2 - Le) g(r + cre < 2X) y for 0<e <1, (A.1)-2

where K(\) depends only on AM . Let

B(x) = £(5MTN) (A.2)

then for fxd 0<e<1l and for n~® we have
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AMn-y) -
[7 pryetyx/M ela? 4
“Ay

A(n-y) 2
1 ~e(y+x/A t -ixt= 5] p(x)e (rx/A) (:- Ll). at dx

| 2 Mn-y)

1p ( ) Le) on ; £(FHEIMGPF ERIN) (P/N) go
-2 “Ny

nL itl it -(y+etiNt+l)= 5 J 1-5) J f(u)u du dt
-2 0

oS ARTEL,
= 5] 1-5 )e G(y + e+ iAt)dt+ o(1) ,

-~2

as n -® . (The parameter n was introduced in order to justify

the change in order of integration.) Note that in the special "ideal®

case fu) = cu’ we have P(x) =C and G{s) = C/(s-y) ; subtracting

this particular case from the general case and combining the result

with (A.1l) yields

® ®»
- i 2 - 2

[poe S/NERX gy oo gme(3+x/M) (sinx, of < BM. as)
~Ny -Ny

Now we can let € = 0 , because if € is extremely small the integrals

clearly approach their value when £ = 0 . Therefore we have proved

| - sin x,° * sin x,2 K(N) |
[ (x)=) ax -c [ (=) ax| < . (A.}4)x X - y

Ay -Ny

(This is the key inequality which gives us a handle on the problem: When

y is very large and |x| is bounded, @(x) must be very nearly equal

to C .)
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From the monotonicity of f we now have the following inequalities

when -/A <x </A:

eV (Y/N) ("HN < p(x) < p( YM 7 (Y-LVN) . (A.S5)

Hence

1 IN JN£(e¥ sin X,° Nr VN sin x2
He xd | (=) & < e [ px) (=) ax
© -/A -/A

» 2

¢ “ino { (24m X) dx + 1) ,Ay

| for all fixed A and y >1. If we let y - eo we obtain

£(u) sin x2 2y//N oo ,8in X\2lim sup [ (5)ax <e ¢c[ (5°)& ,7 x - x
VU ~~ ® u -/A -

and if we now let A -® we have lim sup £(u) fu” =C . A similar

argument, using the other half of (A.S), proves that lim inf f(u)/w’ =C .
a
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