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by
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Abstract: This paper investigates solutions of the general recurrence

M(0) = g(0) , M(n+l) = g(n+l) +min (aM(k) + BM(n-k))

0<k<n
for various choices of &, B, and g(n) . In a large number of
cases it is possible to prove that M(n) is a convex function
whose values can be computed much more efficiently than would be
tuggested by the defining recurrence. The asymptotic behavior of
M(n) can be deduced using combinatorial methods in conjunction
with analytic techniques. 1In some cases there are strong connections
between M(n) and the function H(x) defined by
H(x) =1 for x <1, H(x) =H((x-1)/a) +H((x-1)/8) for x>1.
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Recurrence Relations Based on Minimization

Let @ and B be positive real constants, and let g(n) be a

real-valued function over the nonmnegative integers. Consider the new

function M m(n) over the nonnegative integers, defined as follows:
Mgog() = &(0)
M__(n*tl) = g(n*tl)+ min (oM __(k)+gM___(n-k)) . (0.1)
&P O<k<n ©F gap

We shall occasionally write M(n) instead of M Functions of

m(n) .
this type occur in discrete dynamic programming situations, where it is
important to study the behavior of M g]‘B(n) for large n .

The purpose of this paper is to introduce some techniques which are
useful in the investigation of Mw(n) , and in some cases to obtain
ways of computing M gm(n) with much less work than the above definition
implies. Particular attention is paid to the cases g(n) = bno s
g(n) =1, g(n) =n, and g(n) = e , where asymptotic formulas are

derived.

1. A convexity theorem

A real valued function g(n) over the nonnegative integers is
called convex if its second difference is nonnegative, i.e., if
g(n+2) -g(n+1) > g(n+1l)-g(n) for all n >0 . The following theorem

shows that a large class of M functions is con'ex, and it characterizes

eop
the function Dgoa(n) = Mma(ml)-mw(n) in this class.



Theorem 1. Let g(n) be a function which satisfies the following

conditions:

a) g(nm2)-g(n+tl) > g(n+l)-g(n) for all n>1 ;

b) g(2)-g(1) +min(ad,pd) >4d , where
d = g(1) - g(0) + (#g)g(0) . (1.1)

There is a unique function D(n) satisfying the following threre properties:
(i) p(0) <p(1) ;

(i1) D(0) =4 (ef. (1.1));

(ii1) D(n) = g(n+l)-g(n)+F(n) , for n > 1, where the infinite

sequence (F(1),F(2),F(3),...) 4is the result of sorting

the sequence (aD(0),pD(0),aD(1),pD(1),...) into nondecreasing

order.

(Sometimes the infinite sequence (F(1),¥(2),...) fails to
include all the elements of (aD(0),BD(0),...) , €.g. when
ad(n) < pD(0) for all n .)

This function D is nondecreasing, and we have

Mgp(n) = &(0) + 05§<nn(d) : (1.2)

Thus, M is convex.
= op — ———

*
Proof: Consider the function D (n) defined by the rules

D*(o) =d

D*(n) = g(n+1)-g(n)+an s for n>1, (1.3)

where (Fnl’Fna’ ’Fn,2n> is the sequence obtained when
» * * *
(w (0),5D (0), c'u,w (n-l),ﬁD (n‘l)) iB BO!'ted into nondecreuing
order. We shall prove by induction on n > 1 that D*(n) ZD*(n-l)
and that Fn+1,n+1 an,n . When n =1, we have
* *
D (1) = g(2)-g(1) +min(ad,pd) > D (0) by condition (b). Hence

2




Fop 2Fpy = min(ad,pd) . For n >2, the relation F >F

22 n-l,n-1
*
with condition (a) shows that D*(n) >D (n-1) . Consequently the first

together

n elements of (Fn+l,l’le,2’ .++) are the same as those of

yese) , and we have F F

(Frpy2Fn2 n+l,ntl = 'n,n

This argument shows that Fn,n = Fm,n for all m >n , hence
<F11’F22’F33"”) is the result of sorting the sequence
(w*(o),an*(o),cm*(l),an*(l),...) into nondecreasing order. Hence D
satisfies the conditions (1), (ii), (iii). Conversely if D is any
function satisfying (1), (ii), (iii) we have D(0) <D(1) <D(2) < ...
by (i) and condition (a), hence D must satisfy the recurrence relations
defining D*(n) . This proves the existerce and uniqueness of D(n) .

Finally we need to prove (1.2), for n > 1 . By the definition of

(F(1),F(2),F(3),.0.) , we have

L r<a L o+e L 03,
1<j<n

0<j<k 0<j<n-k

for all 0 <k <n, and equality holds for some k . Thus,

g0)+ L DU = eln+l) + (#+p)g(0)+ L F(J)

0<ign 1<ign

= g(n+l) + min (a(g(o)+ L o) +se@+ L D(J)))-

0<k<n 0<j<k 0<j<n-k

m

It is interesting to note that condition (i), or something similar,

is necessary for the validity of this theorem. For example, assume that

a=p =1 and that g(n) =1 for all n . Then the two functicus

Dl(n) =2 and De(n) =28,

This accounts for the somewhat camplicated formula in condition (b).

both satisfy conditions (ii) and (iii)t




Note that we can compute the M function using the following simple

algorithm, whenever g(n) satisfies the hypotheses of Theorem 1:

begin
integer j,k,nj
real M,F;

array D{O:N];
J =k :=0; D[O] := g(1)-g(0)+(x+B)xg(0);
for n i= 1 step 1 until N do
begin if axD[Jj] < B xD[k] then
begin F := axD[J]; J := J*+1 end
else begin F := BxDl(k]; k := ktl end;
Dln] := g{n+1)-g(n)+F;
end computation of D;
M := g(0);
for n := 0 step 1 until N do
begin print ('n=*, n, *; D[n)l=*, D[n], *; M(n]= ', M);
M := M+D[n];
end printing the table of D and M.

This algoritim takes only O(N) steps to compute M[O],M[1],...,M[N] ,
instead of the O(Nz) steps which are implied by the original definition
of M in (0.1).

op(™ 10 (0.2)
Theorem 1 also has a useful corollary when @ and B are equal:

Corollary. Let a =p and let g(n) be as in Theorem 1. Then

Mgw(n) = g(n) +a(Mgw(l_-n—;-}- J))'Mgw(ran-l)) for all n>1 . (1.h)

(Here | xj , Tx1 respectively denote the greatest integer < x

and the least integer >x .)




Proof: By Theorem 1 with B8 =a, M is convex. It is easy to prove
for any convex function M that the minimum value of M(k) + M(n-k)
occurs for k = | nf2) . (Note further that (F(1),F(2),F(3),F(4),...) =

(a@(0),a(0),aD(1),a0(1),+..) in this case.)
o

2. The case g(n) = n : "optimal trees"

When g(n) =n, 8o that D(0) =1 and D(n) = 1+F(n) in
Theorem 1, we are soon led to an interpretation of M eﬂﬁ(n) in terms
of binary trees. In this section we shall develop this tree relationship
in an independent manner, without explicitly using the result of Theorem 1.
Our general plan is to define a weighting function for the nodes of a
binary tree; M gaa(n) will turn ocut to be the minimum total weight of
any binary tree with n nodes. (See [1l] for an introduction to the
well-known properties of binary trees.)

A binery tree T is, by definition, either empty or it consists
of a left subtree £(T) , a right subtree r(T) , and an apex or root
node a(T) ; 2(T) and r(T) are themselves binary trees. Let A
denote the empty binary tree, and let |T| be the number of nodes

of T . Thus,

0 y if T =A;
Iz| = (2.2)
1+ (D) |+ |e(T)] , if T 4.

Now consider the function

0 ’ it T =A H
”T) = (2.2)
[T+ me(T))+8 Mx(T)) , if T AA ,



and let

M(n) = min WT) . (2.3)
T: |T|=n

We shall say T is "optimal" if (T) = M(|T|) . It is easy to see
that the "principle of optimality" of dynamic programming is satisfied,
in the sense that all subtrees of an optimal tree must be optimal.

Consequently for n >0 we have

M(n) = n+ min (aM(k) +BgM(n-1-k)) ,
0<k<n

i.e.y M(n) =M n) .
Another way to view the situation is to consider finite strings
(i.e., sequences) of the letters L and R . If o is such a string,

define w{o) by the following rules:
w(e) =1 ; w(lo) =1+aw(s) ; w(Ro) = 1+pw(a) . (2.%)

Here € denctes the empty string. As an example c¢f this definition,
w(LRRLL) = 1+a+a5+o¢2+d232+q352 .

Any node in a binary tree may be uniquely identified by a sequence
of 1's and R's [7 ]: we denote a(T) by € , and dencte the nodes
of 1(T) and r(T) by placing an L or R respectively before the
denoctations in 2(T) , r(T) . Thus if (T) is the set of all such
strings, we have

, 1f T =A3
(e} UL AU(T)) URAX(T)) , if T 4A.

/(T) =

It is easy to see that a set of strings S is equal to T) for same

T if and only if

oleS or OReS impliee o0eS . (2.5)



Furthermore M is a "total weight" function, in the sense that

mT) = L, wo) . (2.6)

o T)

This is the basic relation we shall use; it is easily verified by
induction.

Now consider & sequence of strings (ol, 0, 05,...) such that,
for each n , w(on) has minimum weight among all strings not in
{al,...,un_l} . Thus, o0, =€ ; 0, =L if a<p, 0, =R if a>p.
(For some choices of O and B, e.g. Q= 1/3 and B = 2/3, there
are infinitely me:y strings which will anever appear in the sequence.)
For each n , the set Sn = {al,...,an} defines an optimal binary tree;
this follows from (2.5), because w(oL) and w(cR) are always greater
than w(o) . Consequently

Mp(™) = 15);9 w(g) - (2.7)

This explicit interpretation of M o is essentially that of Theorem 1,
since (D(0),D(1);...) is precisely the sequence (w(al),w(ae), o) o

As & simple application of these ideas, we can derive an asymptotic

formula.

Theorem 2. Let g(n) =n, 0<a<p, and a <1l . Then

Mop(®) ~ T - (2.8)

Proof: If o is a string of length >m, w(o) >w(L") = 1+a+ ceo s
= (l-dn" l)/ (1<@) . There are only finitely many strings of length <m,
hence 1im inf M(n)/n > (1-0™1)/(1<a) for all m . On the other hand,
1im sup M(n)/n < 1/(1-1) , since the sequence of strings e,L,LQ,LB,

gives an upper bound.
a




3. The case g(n) =n : asymptotic results when min(®,B) =1

Theorem 2 shows how M grows wvhen min(a,8) <1 . When a =8 =1
we have w(o) = m+tl for all strings o of length m , hence we can

obtain the well-lnown explicit formula

rloge(ml) 1 .

M..(n) = ¥ Tlog (k1)1 = (m+1) Mlog (a+1)] - 2 1
gll 1<k<n % ©2
=n log, n+ o(n) . (3.1)
When @ =1 and g > 1, the problem of estimating Mgoﬁ(n) is

considerably more difficult. In this case the weight function w(o) is

related to partitions into powers of B ; for example,
w(LRRLL) = 1+1+8+ 52+ 52+52
The weights take the form of polynomials with nonnegative coefficients,
s +apta g +t...rag (3.2)
ptapraf t...tap .
such that there are nc "gaps":

a; >0 = a4, >0. (3.3)

An expression of the form (3.2) may be called a partition into
powers of B ; if condition (3.3) is also satisfied we shall call it a
gapless partition. It is convenient to regard the case 8, =8 = .0 = 0
as & gapless partition, even though it is not the weight of any string o ;

the nonzero gapless partitions are in one-to-one correspondence with

strings of L's and R's , since (3.2) is the weight of

a. -1 a.-1 a -1
t® Ro! R...RLE .

Let P(x) denote the number of partitions into powers of B whose

value i < x , and let H(x) be the corresponding number of gapless




partitions. Thus, H(x) is the number of strings of weight < x ,
plus one. We have P(x) =H(x) =1 for 0 <x <1, and it is not

difficult to deduce the following recurrence relations for x >1 :

P(x)

[}

P(x-1) +P(x/B) ; (3.4)

H(x) = H(x-1) +H((x-1)/B) - (3.5)

As a consequence, we have the following relation between partitions

and gapless partitions:

Lemma 3.1. c:-Ll‘P(x+ 1/(B-1)) <H(x) < célP(x+ 1/(g-1)) , where
cl = P(l+ l/(a'l) ‘0) _a_'n_d_ 02 = P(l/(B-l)) .

Proof: Let Hl(x) = P(x+1/(B-1)) . For x > 1 we have
Hy(%) = B(x-1+ 1/(8-1)) +B((x-1)/B+1/(B-1)) = H, (x-1) +1, ((x-1)/8)

and for 0 <x <1 we have ¢, <H,(x) <¢c Thus

l L
cilﬂl(x) < H(x) < c;]}{l(x) for a1 x , by induction on |x] .

When B =2 , we have cl =c, = 2 , 80 the above lemma shows that
the number of gapless partitions of n into powers of 2 is exactly
half the number of ordinary partitions of nt+l into powers of 2 , for
all positive integers n . A combinatorial proof of this result is alsc
possible: The mumber of ordinary partitions (3.2) of n in which g =1
is the same as the number with a > 1 , under the correspondence
(ao,a.l’-.o,ak-l,l) - (a.o,al,..-,ak_l+2) . The nlmber of Ordimy
partitions of n in which a = 1 1is the same as the number of gapless
partitions >f n-1 , under the correspondence (e.o,al,...,ak_l,l) -

(ao+1, 8.1"'1, X -,B.l(-1+l) .



The H function has a comparatively simple relation to M,
namely

M(H(x)-1) = [‘th(t) xJI(x)-J‘x H(t)dat , (3.6)
0 0

since M(H(x)-1) is the sum of all gapless partitions whose value
is <x (cf. (2.7)). Therefore we can use known results about partitions

into powers of B in order to deduce the asymptotic behavior of M :

Theorem 3. When B >1 and g(n) =n , we have

1 !—E_Tn__n n1+~/2 In g/in n
~ In

Proof: N. G. de Bruijn [ 3] has proved that

In p(x) = 1n 5(L+ y) (ln ) 2)1n x+p(y)+0 _(l_og_lgg__XI_)

log x

(5.8)

vwhere y = ZLogB x-logﬂ log6 % , and where p is a rather horrible-

looking function of period 1 , namely

e, L l 2 /lnB*'—l.nB-—ln?I

To(sm) o) ormn . e

where z((z+l) = 1+ 732+ 72z +aee s

p(y) = (75 - % 4

X
Now we wish to show that the integral J‘ H(t)dt in (3.6) is

0
small with respect to the other term x(x) . We have

10



jx H(t)dt = jx (H(pt+1l) - H(Bt))dt
0 0

-1 fx+1 1
=8 ([ H(u)du - [ H(u)au) = O(H(Bx)) -
B8x 0

By (3.8) and Lemma 4.1, 1n(i(Bx)/H(x)) =y ln g+ 0(1) , hence
H(Bx) = O(xH(x)/log x) . (3.10)

If we set n = H(x)-1 and M(n) = nef(n) , we now have

M(n)

L

xn+0(xn/log x) , (3.11)

]

f(n) = 1In x+0(1/log x) , (3.12)

and it remains to express 1In x in terms of n .
We have 1n x - y 1n g+ 1n y+0(log log x/log x) ; hence by

(3.8) and Lemma 4.1,

mn:%—éy2+(1+l”gﬁ)y+(lnls-%)1ny+0(1) .

Consequently

y = .fg"—’logs ool 1, oleglogn

e In 8 s/log n

and (3.7) follows immediately for those values of n having the special

form H(x)-1 . In general suppose that H(x-0)-1 = n,<n<m = H(x)-1 .

Then n,-n, < H(x) - H(x-1) = H((x-1)/B) = O(H(x) log x/x)

hence no/nl -1 &s n -3 by(35.11), M(no)/M(nl) -1.

o(n,) »

]
The above proof can be extended to obtain slightly more information
than is stated in Theorem 3; we could evaluate f(n) to within
0(1/log n) . But the complicated form of (3.9) shows that it is
inherently very difficult to go any further than this.

11
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Before moving to the next topic, let us digress for a moment to
summarize the interesting history of the present case. Euler gave the
generating function for partitions into powers of 2 in his famous paper
on partitions {5]. A. Cayley {1] proved that the number of sequences

ceesdy such that a, =1 and 1<a < 2a, is equal to the

i R 1 141 = 8y

number of partitions of 2k-l into powers of 2 ; he proved this using

the corresponding generating function. Binary partitions were independently
studied by Tanturri [16]. The behavor of the generating function in the
neighborhood of unity was investigated about 1923 by C. L. Siegel, in
unpuvlished work. P. Erdds [4] found the leading term of (3.8), and

K. Mahler [13] found the other terms except with 0(1l) instead of the
periodic function p(y) , wvhen B is an integer. N. G. de Bruijn [3]
obtained (3.8) for all B >1, and his work was further generalized by

W. B. Pennington [1k]. The connection between binary partitions and the

M g12 function was pointed out by Knuth [10], who gave an elementary
derivation of the leading term in (3.8) when g = 2 . Heller [3] found

the leading terms of (3.8) using a different approach. Arithmetic properties

of B-ary partitions have been studied by Churchhouse [2] and Rdaseth [15].

L. The case g(n) =nu : asymptotic results when min(a,B) >1 .

When Q = B8 , the weight of any string o is simply
l+a+ ...+a‘°‘ ; s0 it is easy to obtain an "explicit" formula for

Mgas wvhen g(n) =n and a =8 :

Mgw(2m+k-l) S MLras ... +dP D (1e2at ...+ PR

+ k(1+a+...+d") , for 0<k<2™ . (4.1)



It follows that for 0 <@ <1 and a>1,

M__((1+6)2")

i SR 1 1, ea
m"_f‘: P s -7 s (4.2)

Replacing (1+8)2" by n , it follows that

1+ 1 a
Mw(n) ~c(8) n %2

( log, n) mod 1
where © =2 -1 and

-(1+ log2 Q)

c(0) = (B - 27 (1+0)

is a periodic function of lc,sg2 n . For example, when 0 =g =2,
the asymptotic form of M 822(n) varies between -25n2 (when n = 2™ )
and %na (when nas%zm ).

We shall see that such behavior is typical of the case

min(a@,B) > 1 . If we define the constant 7 by the relation

a?+p7 =1, (k.3)

we will find that M eﬂB(n) grows approximately as n'' /7 |

When
1+1/y

log a/log  is irrational, it turns out that M 8‘,m(n)/n actually
approaches a limit as n —<e . On the other hand in many cases when
log aflog B is rational, Mgce(n)/nl+ Yy oscillates between two
different limits, as in the case ax =8 .

We shall begin our analysis of the general case g(n) =n,
min(a@,B) > 1 by generalizing the H function used in Section 5. Let

h(x) be the number of strings o whose weight w(o) is <x , and let
H(x) = h(x)+1 . (b.4)

We have H(x) =1 for 0 <x <1, and for x >1 the rule for defining

13



weights implies that

H(x) = H((x-1)/a) +H((x-1)/B) . (4.5)

The basic relation (3.6) between H and M , namely

X X

M(h(x)) = xt(x) - [ H(t)at = xh(x) - [ n(t)at (4.6)
o 0

is still valid for this generalized H function. Indeed, by separating
the strings o which begin with L from those which begin with R

(cf. (2.4)) we obtain the formula
M(h(x)) = h(x) + aM(h((x-1)/a)) + eM(h((x-1)/B)) - (&.7)

Therefore if we can determine the asymptotic behavior of h (or H ),
we will be able to see how M grows, and to see how the value of k
for which the minimum occurs in (0.1l) depends on n .
Now that the problem has been set up in this way, it is comparatively

easy to deduce the order of growth of M :

Lemma 4.1. Let 7 be the positive constant defined by (4.3). There

exist positive constants €12 S5 Cl ’ 02 » such that

x’ < H(x) < e x” (4.8)

¢y 2

1+1/y

Clxl+ Yy <M(x) <Cx (4.9)

for all sufficiently large x .

Proof: Choose c, so that H(x) Sczx7 for 1<x<2.

Then we can prove by induction on n that H(x) < c.x’ for

2
1 <x<n, since H(x) = H((x-1)/a) +H((x-1)/B) , which (by induction)

is < c2((x-1)/a)7+cz((x-l)/ﬁ)7 = c?_(x-l)’ < 02x7 .

1k




The lower bound is a little trickier: If we assume that there is

a positive constant a such that H(x) zaxy'e for x <x. , then we

0
have H(xo) > a(xo-l)7-£](, where
at gt € €
K==+ > min(a%,g®) > 1 . (L.10)
7 &

For sufficiently large X, we will have a(xo-1)7"}( >exl® for

o

X, <x< x0+l . Indeed we can clearly extend this to &ll x >x, ,
Since such an &a exists for arbitrarily small ¢ , we must have
H(x)/x""% w» as x -w= .

Let ¢ be a constant such that xy-(x-l)7 < ex’™t for all
large x ; and let R be a constant such that RK > R+tc , where

K=a7+ 51'7 >1 as in (4.10). For sufficiently large x. we will

0
have (xo-l)7-lRK zxg-l(mc) and H(x) >rx’™Y for a1l x >x -
Thus there will be a positive constant ¢ <1 such that
H(x) > clx7+Rx"-l for x, <x< ma.x(a,a)xo+l . (k.11)
We will show that this relation holds for all x >x. . Let

0
X, = ma.x(a,s)xo+n ; we will show by induction on n that (%.11) holds
for X, SXSX 1 and this will establish (4.8). The calculation
is not difficult, and it reveals why we have been foresighted enough

to choose ¢ and R 1in such a mysterious way:

H(x) = H((x-1)/a) +H((x-1)/B)

v

e, ((x-1)7/a) + (x-1)7/87)) + R((x-1)" "1/ "L+ (x-2)77Y/87 7Y

¢y (x-1)7 + RK(x-1)""*

> clx7 - clcx7'1 + (R+ c)x7'1

> c:lx7 + 7L
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Now to obtain bounds on M(x) , we may use (2.7). By the definition
of H we have

w(an) <x if and only if H(x) >n , (k.12)
hence by (k.8)
Y7 o7 < wio) < cilh(m)l/’ (4.13)

for all large n . It follows that M(n) , the sum cf the first n

weights, satisfies

M(n Y =1/ M(n 7 -l
l:irm-}:f T*1/7 > 741 2 s l?*s:p 341/7 < 1 1 NUPLY)

The desired relation (&.9) is an immediate consequence.
The latter part of this proof suggests the following result.

Lemma 4.2, Let 7 be as in Lemma L.1. Then lim H(x)/x' exists

b e J

if and only if  Lim M(n)/n™*Y/7

n-e

exists.

Proof: If lim___ H(x)/x' = c then by (4.14), lim _..M(n)/nl'fl/? -

(7/(7*1))C'l/7 . Conversely if M(n) ~Cnlﬂ'/7 we must have
w(un) ~ (1+ 1/7)Cnl/7 since w(an) is a nondecreasing function of n .
(This follows from a straightforward *rauberian” argument: We have
M(L(1+¢€)n)) -M(n) > (L(1+€)n) -n)o(wn) , hence 1lim sup w(on)/nl/7 <
cel((ar )7 1) for all e >0 . Similarly,

. 1/y -1 1+1/7
lim inf w(on)/n >Ce (1-(1-¢) ) .) Relation (k.12) completes

the proof.
o
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Now let us investigate whether or not the limits do exist, for
vardous a and p . We have seen that the limit does not exist when
o = @ ; similarly we can construct a large number of further examples,
including all cases where a and p are integers and lcg aflog B is

rational:

Theorem %.1. Let min(@,p) >1 , and let 7 be defined by (k.3).
If log flog § is ratdonal, and if 7 <1 (ise,, if o 7t+g™<1)

then lm __ M(n)/nl”'/7 does not exist.

Proof: We have Q = Op sy B = 6% where p and q are relatively
prime positive integers and € > 1 . Without loss of generality we may
assume that p < q . We will show that large "gaps" exist between
weights, in the sense that there are positive real numbers x <y such
that no string weights lie between omx and omy-l for any m . This
is enough to prove the theorem, since existence of the 1imit would imply
that H(6™x)/H(e%y-1) - x'/y’ £ 1 = H(e"x)/H(e"y-1) .

The weight of every string is & polynomial in & , namely

8 8 a 8
efsotly . +olsa? s (k.15)

where ao=0 and 8,18 =P or ¢ for 0<i<t . Wemay think
of (4.15) as & number written with radix 6 and digits O or 1,
subject to the requirement that exactly p-1 or q-1 O*s occur between
adjacent 1's . For convenience, we shall call (L.15) a weight of

order e, .

Py by by
Let S be the set of all infinite expansions © +0 +0 + ooy

where b, =0 and b1+1-bi=p or ¢ forall 1i>0. Thus § is

a set of real numbers which satisfies

s=(+0%) y(2+07P) . (4.16)

17



The largest element of S 1is 1/(1-0'9) . This set contains large
gaps, since the largest element of 1+0° % is 1+0°%/(1-07F)
and this is smaller than the smallest element 1+6 P/(1-0"%) of
1+6Ps . (We nave 0°%/(1-0"P) <6P/(1-07Y) since this relation
is equivalent to 6°2-621 <o P.o%P  j.e., (672-0P)(1-072-0P) <0 .)
Equation (4.16) now shows that there are many further gaps.
1+02+6 %5 <1+6™%+0Ps <1+ P+0™% <1+406P+0Ps,
etc., and we see that S is contained in samething like a "Cantor
ternary set": Every point not in S 1lies in an interval that is not
in S, and S has measure zZero.

Since every element of Oq°PS is greater than every element of S,
we can find positive numbers x <y such that the interval (x,y)

contains no points of

8y = «e- Ue2syuoelsSyUS UGS UGS U ver . (4.17)

If w is the weight of a string such that 6"'x <w < @"y-1 , then

1

This contradic’.s the choice of x and y , so there are no string

=w+o Y (1-67% €S, , hence O'mwl is an element of S, N (x,y) .

weights between € x and ©'y-1 .
m]

The next theorem shows why the hypothesis ¥y <1 1s necessary in
Theorem 4.1, since there are infinitely many examples when M(n) /nl'"l/7

approaches a limit even though log @/log B is rational.

Theorem 4.2. Let ats 5'1 =1. If log &/log B is rational and
a £ pf then

-

-1 -1 2
~ Z{3og B - 1og Q) (@™ log a+p ~ log B)n° . (k.18)

M(n)

18



Proof: We have a = o sy B= o3 where p and q are relatively
prime positive integers and 6 1is the unigue real root > 1 of the
equation 1-06P-0"2-0. Since @ £ B we may assur.c that p <gq .
To prove this thecorem we shall refine the observations made in the
proof of Theorem k.1 by studying the weights of order m more closely.
Since p and q are relatively prime, there will be weights of order m
for all large m .

The weights of order m have the form v » Wwhere w is a weight

of order m-p or m-g . For large m , the largest weight of order m-q is
N T B A T P

em'Q"'P - euq + euq -1

oP-1 el-1

9m+a.u R

where

(u+l)g =m (modwlop) , 0<u<p , and

(4.19)
a, = 0"3(eP™1- o) P11 .
Similarly the smallest weight of order m-p is @ + b, , where
(W#1)p =m (moduloq) , 0<v<q, and
(4.20)
bv = QVP(OQ'P _Qp'q) -QQ'P
We have
a <a =-01P<c_eP%_p <b , (%.21)

u-— 0 0~-"v
hence the weights of order m appear in increasing order if we read

their radix @ representations in lexicographic order.
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Let r =q-p and let O <8 <r . We shall divide the weights
into r disjoint classes, where the weights of class s consist of
all weights of order s , B8+r, s+2r, ..., stkr, ... . From the
argument in the preceding paragraph we see that the weights of class s
appear in increasing order if we treat their radix © representations
as binary mumbers; and furthermore the difference between consecutive
welghts of class & is bounded. (The set of all such differences
contains pq elements {bv-a.u o <u<p, 0<v<a}, plus perhaps
a finite uiber of other differences which might appear for small m .)

Let f Dbe the number of weights of order m , 80 that f£. =1,

0

f =0 for m<0, and f = for m >0 . (In the special

£ +f
n-p n-q
case p=1, q=2, fm is a Fibonacci number and © = (1+/5)/2 .)

Let g =£ +f +1 + ... be the number of weights of order <m

r “m-2r

e f t = = -
belonging to class m mod r ; and finally le ho 1 and hm - gm-r-q
for m >0 . We shall prove that if

a a a a_. .
w=0r +0 "t 401400 (4.22)

is the n-th smallest weight of class s , we have

n=h +h +...+h +h . (k.23)
8  %-) 2 %

The proof is by induction on m=a.t;since n=l=h0 when m =0,

we may assume that m >0 . Let (4.22) be the k-th smallest weight of
order m . Then n = gm-fm+k s Where 1 <Kk sfm . If a't-l = &t-q
then w-6" 1is the k-th smallest weight of order m-q , hence by
induction (4.23) holds if and only if n-h = Bpeq " fm_q+k . The
latter is true by the definition of hm and k . Similarly if

m
8 1 =8 -p, W-9O is the (k-fm_q) -th smallest weight of order

m-p , hence by induction (4.23) holds if and only if
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n-hm = gm_p - fm-p+ k- fm-q 3 since gln-p - fm-p = gm-q » the proof of
(k.23) is complete.
N te that the generating function for the h's is

r__r+q - gD
he" =1 (z -z ) = (1-2z7) . (b2l
z m® * (1-25)(1-2P -2 (L-2F)(1-2° -2%) (h.2)

This can be written

-
he® = —%_+R(z) , ¢ = 1-9 ,  (k.25)
Lo oo (1-677) (o P+ q0™%)

where R(z) has no singwlarities in |z| < o1+ , since o™% is the

mallest root of 1-z22-22=0. (12 1 =2zP+z% then 15lz|p+ |z|q,

hence |z| > 071, with equality iff z = 61 .) Consequently

h = c™+o(6") . (4.26)

Let Hs(x) be the number of weights of class & that are <x,

so that we have
H(x) = Ho(x) + Hl(x) +eaat Hr__l(x) +1 (&.27)

For fixed s , we will show that lim _ Hs(x)/x =c . Let w be
the largest weight of class s that is < x ; we have observed that
x-w 1is bounded. If w is given by (L.22), T;S(x) is given by (4.23),

which equals cw+ o(w) = cx+o(x) . It follows that
H(x) ~Tcx , (4.28)

and the theorem is obtained by applying Lemma 4.2, since we have

re = log p-1log @

(8 -a) (@™ 1og a+p T log B)
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A more detailed examination of the simplest case of Theorem 4.2,
when @ =@ = (L+/5)/2 and B = §° , actuslly yields an explicit
formula for the n-th weight:
-1 -1
wio) =p Lo ") +n . (4.29)

(cf. [11], exercise 1.2.8-36, p. 493.) We also have
ME) = g B -2V ()T 4y (+.30)

in this case, when F = (8" - (- $) "™ //5 1is a Fibonacci mumber.
A completely different approaci. seems to be necessary when
log @/log B is irrational. The following discussion 1s based on

Dirichlet integrals.

Theorem 4.3. Assume that min(q,B8) >1 and log &/log B is irraticnal,

and let 7 be defined by (4.3 ). Then lim _ M(n) /a7 extsts.

Proof: We shall make use of the following result fram the analytic

theory of numbers:

Lemma 4.3: Let f(t) be a nondecreasing function of the real variable t ,

with f£(t) >0 . Assume that G(s) = [ #(t)at/t™" 1is an snalytic
1

function of the camplex variable s when Re(s) >7 >0 , except for &

first-order pole at s = 7 with positive residue C . Then f£(t) ~Ct’ .

A proof of +his lemma appears in the appendix below. Let us apply
this lemma to the function f£(t) = h(t) = H(t)-1 . By Lemma L.1,

the integral

o(s) = [ n(t)at /¢854 (4.31)
1
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diverges when & = 7 ; but it converges absolutely and uniformly in any
bounded region such that Re(s) > 7+¢ , for all fixed € >0 . It follows
that G(s) is analytic in the half-plane Re(s) >7 .

We will now show that G(s) has a simple pole at s =y , by
analytically continuing G to the left of the line Re(s) =7 .
Consider the function G,(s) = (L-a®-p"%)G(s) ; when Re(s) >7 ,

we have

6,(s) = J" n(t+1)at / (¢+1) 5+t -j‘. h(t/a)at / +5* - J‘. n(t/g)at / t5*
0 a 8

{7 @ en(t/a) + ne/aNat / (1+0)%* - [ (n(e/ed +n(e/p))a / ¢
o 0

% * J". (n(t/a) + h(t/p))at((t+1)
min(a,B)

8=l _gosoly (4.32)

[}

(This derivation uses (L.5) together with the fact that h(t) =0 for

-8-1 __-s-1 ~B=2

t <1.) Since (t+l) t = 0((s+1)t ) , the latter integral
converges whenever Re(s) > 7-1 . Therefore we can analytically continue

G(s) into this region, by using the formula

6(s) = 6 (e)/(1-0""-p"%) , (4.33)

and letting Gl(s) be defined by (Lk.32). The only singularities of
G(s) in this region are the poles at s =0 (if 7 <1 ) and possibly
at the zeroes of 1-a >-p™® . For s =7 , we have a simple pole
since we know this is a singularity of G(s) ; the corresponding residue
Gl(y)/(zn a-a’+mp.p’) must be positive, since G(s)(s-7) is
positive when s approaches 7 from the right. Furthermore this is
the only singularity of G(s) when Re(s) >7 , for if we write

a

s =o+it wehave [0 %+ %| <a %487 <a”+p7 =1, where equality
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holds iff a2 =a? and B ° =877 . This condition implies that
t =2mp/ina and T = 2mq/tn B for some integers p and q ; if 7
is nonzero, this contradicts the fact that log aflog # is irrational.
We have now shown that G(s) satisfies the hypotheses of Lemma 4.3,
so h(t) ~Ct’ . This completes the proof (cf. Lemma L.2).

0
Incidentally if we attempt to apply this same method of proof

when log a/log B is rational, we find that 1-a%-p7%

has infinitely
many zerces on the line Re(s) =7 . But by an amazing coincidence,

when 7 =1 and Q £B, Gl(s) happens to be zero at all but one of

these points.

It is possible to evaluate the residue C , when 7 = 1 ; in fact,
(4.18) holds also when log ®/log B is irrational, since the residue
is a continuous function of «@ .

The reader will note that Theorems L.l -L4.3 do not cover all cases.
If y >1 and log &/log B is rational, we conjecture that
1im M(n) /07 does not exist. Tt can be shown that this conjecture
holds "almost always", with at most countably many counterexamples

(see Fredman [6]).

5. The case g(n) =1.
Another interesting case of the general problem we are considering

occurs when g(n) =1 for all n . The problem breaks into two subcases:

Theorem 5.1. Assume that g(n) =1 for all n , and that min(a,8) > 1 .

Let 7 be defined by (4.3). Then there exist positive constants

C, » C, such that Clnl+l/7 < M(n) <anl+l/7 for all n . Furthermore

lim M(n)/n1+l/7 exists if and only if log @/log @ is irrational.
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Proof: Theorem 1 applies to Mg($ ; in this case D(n) = F(n) for

n>1, and it is easy to see that again we obtain a tree interpretation

as in Section 2 above. This time we have D(n) = (a+ s)w(aml) , where
the weights are defined by the rules
wie) =1 , w(lo) =ow(s) , w(Ro) = pw(o) . (5.1)

The new rule is simpler than (2.4 ); the new weights are given by the
final term of the previous weights, e.g. W(LRRLL) = o?az . The
veight o'p’ occurs ('}’) times, since this is the mumber of strings
containing i L's and j R's . |

To deduce the asymptotic behavior of M L_;oa(x'x) , We proceed as above,
letting h(x) be the rumber of weights < x , and H(x) = h(x)+1 . This

time H(x) =1 for 0 <x <1, and
H(x) = H(x/a) +H(x/B) , for x>1 , (5.2)

a relation simpler than (4.5). It is rnow easy to prove Lemma 4.1 for
the new H and M functions, and Lemna 4.2 follows as before. Now
we use the idea in the proof of Theorem L.3: Let G(s) be defined

by (k.31), and Gl(s) = (l-a‘s-ﬁ's)c—(s) . When Re(8) >7,

- S N s+l
Gy(s) = [ (n(t) -n(t/o) -n(t/p))at /L™~ = [ at/t" " =1/s . (5.3)
1 1
Thus, G(s) can be analytically extended to the entire plane by using
the formula G(s) = 1/s(1-a"®-p"%) . When log a/log p is irrstional,
we argue as in Theorem 4.3 that Lemma U4.3 applies; hence h(x) ~Cx”
and M(n) ~ (a+ a)C'l/7 7n1+l/7/ (y+1) , where C = :l./(of7 mo+g7 mp’) .
When log Qflog 8 is rational, on the other hand, there is no analog

to Theorem 4.2; the limit h(x)/x’ doesn't ever exist. The reason is
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that o = of sy B = e for some © , and all weights are powers of o .
Thus h(en) = h(0n+1'-o) » 1.e., there are large gaps between the

weights, as in Theorem L.1.

a
Theorem 5.2. If g(n) =1 forall n and if « <B, @<1, then
Mgaa(n) =1+ (a+p)(1+a+ ...+ Yy (5.4)

Proof: For this case, Theorem 1 does not apply, and in fact the

function Mgns turns out to be concave! We will prove (5.4) by

induction. For k <n/2 we have M(k) < M(n-k) , hence

oM(k) + BM(n-k) > aM(n-k) +BM(k) . For k > n/2 we have

ot(k) +M(n-k) - (oM (k-1) + BM(n-k+1)) = (a +8) (o - B™H) < (a+ B) (o - 1K)
<0 . Hence M(n+l) = 1+oM(n)+AM(0) , and the proof by induction is

complete.

6. The Case g(n) = B0 °
When ¢(0) =1 and g(n) =0 for all n >0 , we obtain a case
*
strongly related to the previous one. Let M (n) = Mgpa(n) -1/(a+p) ;
then

M(0) =1-1/(a+p) ,

min (o8 (k) +a/(a+p) + g (n-k) + B/ (at+ B)) - 1/(a+p)
0<k<n

M*(ml)

1-1/(a+p)+ min (aaf (k) + g (n-K)) .
0<k<n

In other words M*(n) = Mgw:a(n) s where g*(n) = 1-1/(a+B) . 1If
a+B >1, M (n) is therefore just 1-1/(a+p) times the function

in Theorem 5.1 or 5.2.
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If a+8 =1, M(n) is trivially equal to 1 for all n . The

remain’ng case has a new twist:

Theorem 6: Let g(n) =8 , and a+B <1, and let 7 be defined
by (4.3). (Note that 7y is negative, between -1 and O .) If

log aflog @ is irrational, Mgae(n) ~ (a+p - l)C-]'/7 7n1+1/7/ (y+1)

where C =1/(@” In o’ +p7 1ng’) . On the other hand if log o/log B

E rational, e > 1lim sup Mgw(n)/nl+l/7 > 1im inf Mm(n)/nl*l/’, >0 .

Proof: Theorem 1 applies to this case, since D(0) =a+p-1 is
negative. It follows that the D's are all negative (we have M(n) > M(n+l) ,
but M is still convex); in fact, D(n) = (& +a-1)/w(cn+l) , where the

weights w(g) are defined now by the inverse rules
w(e) =1, w(Io) = a"N(@) , w(Fo) = B w(a) - (6.2)

The function H(x) of Theorem 5.1 applies, but with @, B, ¥ replaced
respectively by ot s 5'1 , =7 ; and we have c:lx'7 < H(x) < c2x'7 .
Therefore (cf. (L4.13)) we have

(a+p-1e;Y7 M7 < opm) < (a+c-l)cil/7(m-1)l/7

The theorem now follows as in Lemma 4,2 and Theorem 5.1, provided
we can prove that M(n) -0 as n -w, since M(n) = 1+D(0) + ... +D(n-1) .
By definition, M(n+l) < aM(k) + gM(n-k) for all k ; and since the D's

are negative, M(n) < M(n-1) . Hence

M(n+1) < oM( Ln/2]) ) +pM( Tn/21)
<aM( Ln/2) ) +pM(n/2]) .

But a+p <1, hence M(n) =0 . 0



7. The case g(n) = n2
We shall conclude this study of the M functions by considering

a function g(n) which grows more rapidly than those considered so far.

1,1

Theorem 7. E‘g(n)=n2 for all n and if o " +B " >1 then

Mpp() ~ (3 B)n° [ (a+p-0B) . (7.2)

Proof: We may apply Theorem 1l; and we note that Jj+k = N-1 , whenever
the "if" test occurs in the algorithm following that theorem. Therefore
F(n+1l) = min(aD(k),8D(n~k)) for same k . If F(n*l) = oD(k) then
a(J) < F(n+l) < @D(n-j) for all j <k, and gD(n-j) < F(n+l) < ab(J)
for a1l j > k ; similarly if F(n+l) = BD(n-k) we have

oD(j) < F(n+l) < gD(n-j) for all j <k and BD(n-J) < F(m+l) < ad(J)

for all j >k . Thus in all cases

min(aD(J)sD(n-3)) < F(n+l) < max(0D(J),pD(n-j)) (7.2)

forall j, 0<Jj<n. Inparticular, (7.2) holds when

LBn/(a+p) ) . If we now write D(n+l) = E(n)+2Cn , for

.
]

(o]
]

(x+B)/(a+p-af) , we have D(n+l) = g(n+2) - g(n+l) + F(n+l) , hence

min(aD( [ Bn/(a+B) | ),BD( Lan/(@+B)] ) < E(n)+2Cn - (2n+3)

< max(od( LBn/(a+8)  ),8D( fon/(a+B) 1)) . (7.3)

Now 2Ca | Bn/(a+B)] = 2Cn-2n+0(1) , so there is a constant A such

that

|E(n) | < max(a|E( LBn/(a+p)} )], BIE( Tan/(a+p)] D+A . (7.4)
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from these relations we can prove that |E(n)| does not grow too
rapidly. Since ap/(a+p) <1, there is a constant A\ < 1 such that
max(a(g/(a+ B)))”,B(a/(a+ B)))') <1 ; let this maximum be p . There is
and

N
a constant n. such that p(n+a+ ﬁ)}'-tA <n for all n>n

0 0 2
we can find Cl > 1 with |E(n)| < Clnk for all n < n, - By induction,
A
(7.4) shows that |E(n) | <Cyn for gll n .
We have proved that D{(n) = Xn +o(n)‘) ; consequently

M(n) = cn® + O(an)

When a+p =0 , i.e., ot B'l =1, we can use the same technique
to show that Mgr'e grows as ne logn . Assume that a <p . If we
write D(n+l) = Ea(n) +2n log nflog @ , we find

E (n) < max(aB,( Ln/ct)),BE,( [n/p1))+0(10g n) ;
this implies that Ea(n) SCp for some C, . Similarly if we write
D(m+l) = Ea(n) +2n log n/log p , we find

Bg(n) 2 min(o@,( L/ ),BEg( [o/81)) +0(log )

so Ee(n) > -C.n . Therefore M__.(n) lies between n° log n/log B+ 0(n2)

B gp
and n° log n/log a+ 0(n2) . It would be interesting to discover if

1im Mgaa(n)/n2 log n exists. In the case & =p =2 our derivation

proves that
2 2
Mg22(n) =n 1082 n "‘0(!1 ), (7'5)

a formula analogous to (3.1l).
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Incidentally when a =g =~ 2 it is possible to give "explicit"

formulas for M(n) , in terms of the binary representation of n . Let

a
ntl =2

lio24 .42

T, where a, >a& >.ee>8, >0 . Then

1 2

B.l aa a'r
D(n) = 1+2(a) -2 "+ (ag#l) 2 %+ ...+ (a,r+1) .27%) and

acta,
M(n) = Z 2 J(max(a.,a.)+1-281 )
1<i,j<r 1 J
a,+1l a 2a
-2 1 (n-2 1)-§(2 1. 1)+en-1. (7-6)

atl _

In particular, M(2%-1) = (a - %) 2?84 2 % .

When a+pB <0f we have (a-1)(B-1) >1, so min(a,g) > 1 .
Now g(n) = n° >n, 8o we know from the results of Section L that
Mgo@(n) zclnhl/7 for some C, , where a?4+p7 =1 (hence y <1,
and 1+1/y >2 ). It can be shown that Mm(n) is also Sc2nl+l/7

in this case; in fact, whenever min(a,g) > 1 , the general upper bound

Mm(n) = 0(n1+1/7) holds for all functions g(n) that are O(nl’lh's) .

This result will appear in a future paper [6].



Appendix. A Tauberian theorem

Now let us return to lLemma 4.3, on which we based our proofs of
Theorems 4.3, 5.1 and 6. Results of this type were originally given
by N. Wiener [17, 18] and S. Ikehara [3], in a rather complicated
form somewnat more general than we need. Landau [12] simplified the
jdeas and used them to give a new proof of the prime number theorem; but
he gave a slightly less general result than Lemma 4.3. The following
proof is based on that of Landau, with minor modifications in order to
prove what we need. (At this point, the reader should refer back to the
statement of Lemma L.3.)

Let g(s) = G(s) -C/(s-y) , & function which is analytic for
Re(s) >7 . We now introduce two parameters, y and A , which will
eventually approach infinity. By the Riemann-Lebesgue lemme and the

fact that g is analytic,
2 .
r (1 . .lg_l)el"yt gr+e+in)at| < 2%7—‘)- , for0<e<l, (A.d)
2

where K(\) depends only on A . Let

p(x) = £(5/ Me T /N) (A.2)

then for £f:~xd 0<€e<1 and for n - e we have
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Mn-y) .
! ) g yemex/N (B )? gy
Ny

A(n-y) 2
%j‘ Y ¢(x)e°‘(y"x/") { (1 - J%l) e at ax
-2

-)‘y

1 J\Q( 1. %)eﬂ\y’t j."(n'y) £(FHE/N) (IR (9/A) o o
2

-ky

2 . n .
% I (1 - -bé%l)el"“’t [ peuyu” (7 ML) 4 e
-2 0

2 .
gj' (l - J—Z’—l)eﬂ'y-t G(y + e+ iAt)dt + o(1) ,
-2

as n -me . (The parameter n was introduced in order to Justify
the change in order of integration.) Note that in the special "ideal"
case f(u) = cu’ we have @(x) =C and G{s) = C/(s-y) ; subtracting
this particular case from the general case and combining the result
with (A.1) yields
[ [ )
- i 2 - 2
[ #xre e(y+x/N\) (glr’:__x) ax-c [ e e(y+x/N) (B_i_:l:_x) ax| < l%’;)_ . (A.3)
~Ny -Ny
Now we can let € - O , because if € 1is extremely small the integrals

clearly approach their value when £ = O . Therefore we have proved

U0 (R ax o [ @RH% | < KN (A
=Ny -\y

(This is the key inequality which gives us a handle on the problem: When
y is very large and |x]| is bounded, f(x) must be very nearly equal

to C.)
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From the monctonicity of f we now have the following inequalities

when -/A <x</A:

TN SN g < f(ey'*l/fh)e-ﬂy-l//h) . (A.5)
Hence
y-1/N /A /h x
e i = I O B
€ 5N -/A
2y /N " ,sin x,2 KN
< e Cf =< ) ax+ Y ’
-Ky

for all fixed A and y >1 . If we let y - o we obtain

4N (]
(“’" > ﬁ;-‘l)ff,, 0% e < Mo [ EBH
u -

u -® -

and if we now let A - ® we have lim sup f(u)/u7 =C . A similar

argument, using the other half of (A.5), proves that lim inf f(uw)/w’ =C .
a
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