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ABSTRACT: An algorithm is presented which when given a complete
desceription of a set of Turing machine computations.
finds a Turing machine which is capable of doing those
computations. This algorithm can serve as the basis
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and the possibility of its application to other types
of problems.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily represented the

official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U.S. Govermment.

This regearch was supported by the Advanced Research Projects Agency of

the Departwent of Defense ($D-182) U.S.A., and the National Science
Foundation, Grant No. GJ-T76.



1. Introduction

The traditional means for obtaining the degired performance
from a computer ig to write a program which specifies in abstract
notation and in complete detail exactly what is wanted. This paper
will be concerned with _he problem of obtaining this performance from
the machine by giving it examples of the desired computation and having
it program itself. We will be concerned with designing a trainable
Turing machine although the concepts presented are applicable in a much
more general context as discussed in Section 4.

The Turing machine to be discussed here will have an infinite

one dimensional tape and will have the capability in one move to read

a symbol on the tape, print a new symbol to replace the one just

read, and step right or left one increment on the tape. It will have
a deterministic finite-state c aitroller with a designated initial
state which will upon receiving an input symbol read from the tape,
yield the symbol to be printed and the step direction (right or left)
to be made. A computation will be defined to be the complete sequence
of moves which are executed hy amachine starting in its initial state
with its head on the left-most nonblank symbol of the tape and ending
at a halting condition with the device reading a aymbol and in a state
such that no next move is defined. Initial tapes will be assumed to

have only a finite number of nonblank symbols, and we will be interested



only in computations of finite length. A particular Turing machine
will be said to be able to execute a particular computation if when
given the initial tape associated with that computation, it goes
through the sequence of moves ia the computation and halts after the

last aove.

Tape

ABC

finite-state read-write head
controller

Figure 1. A Turing Machine

A move will be vritten as a three symbol string with the
symbols representing, respectively, the symbol read, the symbol printed,
and the step direction (L or n). A computation involving 3} wmoves will
be written as a j~tuple with the 1-th move listed in the {-th position.

Thus a computation in which a machine reads an A, prints a B, and



steps right, and repeats this move three times before halting will be
represented as (ABR,ABR,ABR).

We will be studying the following training maodel: A finite
set of computations which can be executed by some Turing muchine Ho are
given to the trainable system, and this system finds a Turing machine M1
which will correctly execute all of the given computations. Hopefully, if
the trainable system is given enough sample computations, it will find the
correct machine so that Hl is behaviorably equivalent to Ho for all
finite computations which Ho can execute. That is, Hl will exactly
mimic Ho in all of its moves in any finite computation starting with any
initial tape. If this occurs, we will say that the trainable system has
learned the function computed by Ho.

The existence of such a trainable computer is not surprising since
it is only neceasary for it to begin enumeraring the class of all Turing
machines until it finds one which can execute the given finite-set of comp-
utations. If it yields a machine Hl which is not equivalent to Ho, we
need only give it an additional sample computation for Ho which it cannot
execute tO cause the enumeration to continue. Since Ho is one of the
machines which will be eventually enumerated, we can be sure that we cen
force the system to eventually enumerate either Ho or some machine equiva-
lent to it (for all finite computations). When it does, the system will have
learned the function computed by Mo and additional sample computations
from Ho will not cause it ~ ever yield any other machine. This learning
model has been studied by others and this type of argument has been given
a number of timeg, particularly in papers on grammatical inference
(4,6,7,8,13,14,22],

From a practical point of view, on the other hand, we might



expect this type of learning by enumeration to be useless for two
reasons. First of all, in order to learn any function it is necesscry
to check all of the functions which precede it in the enumeration, and
this 1s likely to involve an astronomical amount of computation even for
very modest problems. Secondly, it appears at first glance that a huge
number of sample cumputations may be required before the system will ever
enumerate a correct answer. It is the purpose of this paper to deal with
both of these objections.

We will exhibit an algorithm which enumerates not Turing
machinea but pearts of Turing machines and which carefully guides its
czarch by intelligently using information from the sample computatfions.
The algorithm finds a machine which can execute the first i moves in
the samples and searches for a change which will enable it to execute the
first i+l moves. The process is repeated for increasing i with
backtracking when necessary. We will demonstrate that very large solution
spaces can be searched with only a few seconds or minutes of computer time,
and furthermore, that relatively few sample computations are needed
before a correct answer is found. For example, in the next section,
we search for and find a three state machine with a three symbol alphabet
from a space of approximately 6= 10,077,696 machines. We find that
it only takes one sample romputation involving eleven moves to force the
search to a correct answer, and the computer finds this answer in just
over three seconds.

The research reported here is an ocutgrowth of studies in
grammatical inference where the problem {s to infer a grasmar from a finite

number of samples from its language. Many of the results and idean



presented in Biermann and Feldman [4]}, Feldman 7], Feldman, et.al. [8],
Gold [13], Horning {14], Solomonoff [22] and others are directly applicable
to the current problem although their emphasis is on grammar discovery.
These papers contain a number of results concerning enumeration methods
and techniques for choosing a "best" angwer.

One might also look for related research among the papers which
have been written on automatic computer program synthesis (Amarel [1,2],
Manna and Waldinger (15], Slagle [21], Waldinger and Lee [23])but most
of these deal with a different formulation of the problem: Given a formal
description of a task to be performed, how can the formalism be translated
into a computer program? This paper is concerned with problems of inference
from examples rather than a translation between formalisms.

Most of the previously studied trainable systems have utilized
the technique of basing decisions on the values of certain stored
parameters and then have exhibited adaptive behavior by varying these
parameters. The perceptron [18], many pattern recognition systems [16,19],
and many game playing programs [20] are examples of this type of learning
system. The system described here uses an entirely different approach to
learning, finite-state machine synthesis, axi the nature of its performance
is consequently dramatically different.

In the next sections, an algorithm for finding a Turing machine
capable of executing a given set of computations is given and & number
of examples demonstrating iL. ~-rformance are presented. In Section 4,
the generality of the approach will be demonstrated by solving & program
synthesis problem for a modern computer. In Section 5, the probliem of

computer program synthesis from input-ocutput information only is discussed.



2. The Algorithm
The algorithm for finding & Turing machine which executes a

given set of computations is given in Figures L, 5, and 6. We will study
an example before describing it in detail. Suppose it is desired to

find a machire which sorts A's and B's; that is, the machine will
begin with its head at the left end of a randomly arranged string of

A's an? B's and will rearrange the symbols until all of the A's
precede all of the B's, (ur sample computation will sort the string
BAA and will proceed as follows: The head moves right until {t finds
an A. It replaces the A with a B and then moves left until it finds
either the left end of the tape or another A, It moves right one step,
puts the newly found A there, and then proceeds off to the right looking
for another A. The computation is shown in Figure 2 and ts described
by the sequence (BBR,ABL,BBL.__R,BAR,BBR,ABL,BBL,AAR,BAR,BBR) » A blank

symbol on the tape is written as _ .

CURRENT_TAPE NEXT MOVE
BAA BER
BAA ABL
BBA BBL
.BBA _R
pBA BAR
ApA BBR
AB4 ABL
ApB BBL
ABB AAR
ABB BAR
AAB BBR
AAB. (halt)

Figure 2.

An example computation. The position of
the head on the current tape is indicated by a dot.



For the moment, it will be assumed that we know that the
desired Turing machine has three states, and the strategy for finding
it will be to try to guess which of these states the machine is in
after each move in the computation. Beginning in state 1 (see Figure 3),
we guess that the machine goes to state 1 after the move BBR. After
ABL, we might again guess the device will go to state 1 except that this
would yield a contradiction with the next move BBL. (State 1 makes the
move BBR 1instead of BBL.) So we guess the device will be in atate 2
after ABL. After similar arguments we decide the device may go to states
1 and 3 after moves BBL and _ _R. However, attempts to find the state
after BAR all yield contradictions causing a revision in the guesses.
Perhaps the device goes to state 2 after move BBL. Then states 5 and 1
are the next noncontradictory choices to be made after moves _ R and BAR.
At this point, the next three choices become fixed as a logical consequence
of previous decisions so they are included and are parenthesized to
indicate this fact. After AAR, the only noncontradictory choice is 3
and the rest of the table follows immediately. The final machine (Figure
3, bot' m) is the correct answer, a Turing machine which sorts A's and
B's. Thus the trainable computer can learn to sort on the basis of one
sample computation.*

Notice that at euch point the guessed state is the lowest
number which does not yield a contradiction with the immediate next moves.
If a contradiction is found at any time for all possible choices 1, 2, and

3, then the search is backed up to the last arbitrary choice, it is

*
One can show that if this sort of procedure is executed on any string
which begins with B and has at least two A's in it, then the
resulting computation is satisfactory for training the machine to
sort.
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incremented by one, and the search proceeds. In this way the space of
all possible three state machines is searched until the correct answer

is found. If no three state machine can perform the computation, then the
back up will eventually reach the first move indicating that the class

of four state machines should be examined.

The notation of the algorithm must be defined. INPUT is an
array which holds sequentially each of the moves in each sample computation.
The last symbol read before a computation halt appears with an exclamation
point to indicate the end of the computation. Thus in the example above,
the entries BBR,ABL,BBL,----,BBR would appear in positions 1 through
11 and _. would appear in position 12. Other sample computations would
have been entered in locations 13 and beyond.

The array STATE holds the guessed sequence of states with the
nonarbitrary choices enclosed in parentheses. The array TRAN holds a
complete description of the momentarily guessed Turing machine and is
updated contizuously as changes are made in STATE, Its exact form need
not be considered.

FUT(I,LEVEL) is a functionl ;vhich yields the list of states
which the current machine in TRAN will go through beginning in state I
if it makes the moves INPUT(LEVEL),INPUT{LEVEL+l),-----., Oftean FUT
will yield an empty list because TRAN will not have transitions
corresponding to the given sequence of mowes. In the example above, FUT
(1,6)= (1,2,2) after move B3R and FUT(3,10) = (1,1) after move BAR.

It may be that TRAN is in contradiction with the given sequence of wmoves
either because it indicates the wrong print oxr step right or left instruetion

or because INPUT indicates & computation temmination (exclamation point)



FUT yields liat X

C

Compute X«FUT{I,LEVEL

D

{Increment LEVEL.)

Enter I into STATE(LEVEL).
If X is not empty, enter
future states (parenthesi
ed) into STATE(LEVEL+l),
STATE(LEVEL42), . . .

See Figure S5 for detail.

FUT yields a contradickion

ncrement I. If I exceeds
then reduce LEVEL to

ast unparenthesized entry,
& STATE(LEVEL)+1l., Delete]

orresponding entries in
RAN. See Figure 6 for

etail.

es LEVEL=O ?
(See Figure 6.)

for any x ?
NO YES
ES
4 lel
) K € K+l
N:-[ Is INPUT(LEVEL) empty?] |
YES B
Add the transition in INPUT(LEVEL-1)
to the machine in TRAN from state
[s__‘ﬁ’a STATE(LEVEL-1) to state I.

Figure 4. The glgorithm




X is a list.

1~ eg IND=1?

YES NO

STATE(LEVEL)&"(1)" STATE(LEVEL) « I
1
[LEVEL — LEVEL+1 |

1

NO

[Is X empty? }::::f‘STATE(LEVEL)-Parenthelize CAR(X)
X<« CDR(X)

P | YES LEVEL= LEVEL +1

Figure 5. Enter newly proposed next state into STATE.
(If X is a list, CAR(X) is the first element of the list
and CDR(X) is a copy of X with the first element deleted.)
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YES

7

{ Does IND=17

Reduce LEVEL to last un-

NO

parenthesized entry in STATE.
Delete corresponding entries

Delete entry in TRAN just
made in step B.

from TRAN.

i

—-.-———[ Does LEVEL=0?

TES
-

NO

[1«- STATE(LEVEL) |

IeI+1 -«

Is 1 > K7

A NO

Does I exceed the highest
previous state in STATE by
more than one?

Figure 6.

12

I increment and backtrack logic.




and TRAN does not. In either case, FUT yields a special symbol meaning
"contradiction".

K is the currently hypothesized number of states, is initially
set at 1, and is incremented until an acceptable machine is found. IND
is an indicator which is set at 1 if the currently considered move is the
first in a computation, IND is O otherwise. LEVEL is the index of
arrays INPUT and STATE telling which entry is currently being considered,
and I 1is the proposed new state name to be entered into STATE(LEVEL).

Figures 4, 5, and 6 in conjunction with these definitions
completely describe the algorithm for the trainable computer. If the
contents of STATE are printed out each time the algorithm passes point
P, the entries in Figure 3 result for the example. Notice that the
search can be greatly reduced at point A 1in Figure 6 by requiring that
each previously unused state name 1 exceed the highest previously
uged state name by exactly one. For example, 1f the first two entries
in STATE are ((1),2) and the gearch for s machine has failed, there is
no need to try ((1),3) since 3 is simply a new name for the state 2.

Another important way to increase efficiency which is not ghown
in Figure 4 is to include a test at point C which works as follows:
Compute FUT(1,J) for each J>LEVEL such that INPUT(J) 1is the be-
ginning of a computation. If in any case FUT(1,J) yields a contradiction,
go to D. This helps to prevent the algorithm from making hypotheses on
the basis of one computaticn which will be found to be wrong later when
other computations are examined. This feature was included in the program

which is discussed in the next Section.
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The algorithm thus exhaustively searches the space of K state
machines for K = 1,2,3,---= until a machine is found which can execute
the given sample computations. If the algorithm yields a machine which
is only capable of doing the sample computations correctly but is not
really the '"right answer", it can be given additional sample computations
cauging it to resume its search. Since a correct Turing machine exists
somewvhere in the enumeration, it will be eventually found if enough such
additional computations are included.

The efficiency of the algorithm can probably be improved by
processing the sample computations in parallel. The method would be to
examine all of the computations which have been assumed to be in some
particular state and to look for the next transition from that state
using the information from all of the samples simultaneously. This
method has the advantage that it would not be dependent on the order in
which the samples are presented and it would probably find cutoffs at an

earlier time in the search.

1



3. Some Experiments with the Algorithm
The algorithm described above was programmed in the Stanford

LISP 1.6 language, compiled and used to find Turing machines which solve
various problems. The results are summarized in Figure 7 where each
problem is described and its solution given. The computations in column
four are represented by their initial tapes. Thus the string BAA
in problem 6 represents the complete computation described in the previous
section, The amount of PDP-10 CPU time required to do the search in each
case is given in the last column. These times do not necessarily represent
the best possible performance since no unususl efforts were made to write
optimal code and LISP does not typically yield fast executions. Another
thing that should be mentioned is that repetitions of the same computation
did not necessarily yield the same computation time because the number
of internal garbage collections would vary from one test to the next. So
these times should be congidered to be only a kind of rough estimate of
the amount of effort required to obtain a solution.

The first set of computationa in each problem was obtained
as follows. The first i initial tapes from the set of allowed tapes (see
column three) were used to generate i sample computations. These i
computations were input to the algorithm and a solution was produced.
This process was completed for i = 1,2,3 --- until & correct answer
was found. The first set of computations given for each problem is thus
minimal in the senge that if the last computation were deleted, the set
would no longer be adequate for inferring the correct answer.

The answers to problems one through six could be inferred from

just one sample computation and the shortest such computation was found

15
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in each case. These are included in the table along with their
computation times. The algorithm usually found the snswer in less time
then in the first experiment. Surprisingly, in several cases of the
first experiment, the first i-1 of the 1 sample computations could
be deleted without affecting the ability of the system to find a correct
answer.

In the other problems, the second set of sample computations is
simply representative and not necessarily minimal in any sense.
Occasionally the algorithm produced an answer which was different from
the one given but which was still correct. These instances are so
marked. The amount of search time required to find a solution is not an
easily predicted quantity as indicated in problem eight. Adding a sample
computation to a set of computationg which {s already adequate for
inferring & correct answer can increase the total search time because
each newly proposed transition must be checked for compatibility with this
computation as well as the others. This addition can also decrease the
search time by enabling the algorithm to discover that it has made a wrong
decision at an earlier time.

These problems were not chosen using any particular criterion
and are representative of all of the experience gained with this algorithm.
One can expect similar performance on any problem which involves about
four states or less in the control as long as the total number of
transitions is not great. Some searches for four state and larger machines
were terminated after ubout ten minutes of CPU time without an angwer.

Machines with a large number of states can be found in a reasonable

18



amount of time if the number of transitions is sufficiently small.

For example, the machine which starts with a blank tape and types

out squentially the twenty-six letters of the alphabet has twenty-
seven states and was found in 104 seconds. The total search time is a
function of number of states, size of alphabet, number of transitions,
the order of the sample computations, and the order of the transitfons
within the computations.

When training the system to do a computation, it is necessary
to have & systematic algorithm in mind. There are an infinite number
of ways to get from any initial tape to any final tape, and a method
must be chosen which results in a finite-state control. (learly, it is
easy to find a Turing machine which when given the number 1l yields the
number 13. However, it is not so easy to find a machine which when
glven any prime number will find the next prime number. If the sample
computations involve a naive scheme for getting from the initial tape
to the final tape, the resulting machine may never have the desired
capability although it will always be able to reproduce the sample
computations.

From a practical point of view, it is quite helpful to choose
a4 method for doing the desired computation which the system can easily learn.
This usually involves finding a scheue which requires a small number of
states. Notfice that problems two, four, and nine involve essentially the
same computation but alphabets of different size were used. The machines
tended to be more difficult to find if they had more states even if their

alphabets were significantly smaller.
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4, On the Degign of an Autoprogrammer
The algorithm described in this paper is designed to find a

finite-state control from sample input-output sequences and can be used
to find a controller or program for any computer. In order to iilustrate
the general applicability of this technique, we will consider the
problem of writing & program which factors any natural number intc its
prime factors, and we will use a modern computer with registers and
arithmetic operations.

It is first necessary to find a sample computation and in this
example, we will factor 12 into its prime factors 2,2,5. We will store
the number to be factored in register Rl, the nuwber to be divided into
Rl in R2, and the remainder and quotient for the division in registers
R3 and Ri, respectively. The method will be to divide Rl by R2 and
then either print or increment R2 depending om whether the remainder is
zero or not. If a prime factor is found, the new quotient is entered
into R1 and the process is continued. The sample computation is traced
in Figure 8. Certain steps are taken only if some particular condition

holds, and in such cases, that condition is indicated.

20



Condition Command

=
R
e
2

Rl ~ read

R2 ~ 2

Rt = RI+R2, R3 «~ remainder
R3 =9 Rl ~ R4

print R2

Rhk ~ RI:R2, R3 ~ remainder
R3 = O Rl - RY4

print R2

R4 =~ R1:R2, R3 ~ remainder

R2 «R2 +1

R¥ ~ R1:R2, R3 ~ remainder
R =0 Rl ~ RL

print R2
Rl =1 halt

_- r e, WwwwwWwwooon BRE

u@uuum@m l\)@l‘\)l\)l\)o
0O 0O 0O 0O = r o o O o o o0 O o
it et e ps = = N W OVONONO O

Figure 8

A sample computation: Factoring 12 into primes.

Since the only changes in the flow of the program result from
conditionul tests, the inputs to the finite-state control are the results
of these tests. If no condition i{s listed, we will let S be the
standard input symbol. The finite-state control which solves the problem
thus will yield a series of commands like those in the figure altering
the command sequence appropriately when the conditional tesats so indicate,

Since the algorithm of Section 2 is designed to find Turing
machines, it requires in each move description a step left or a step

right command. This is not applicable to the current problem and will

21



simply always be listed as R.
Now if we let each of the conditions (e.g., R3 = 0) and each
of the commands (e.g., Rl ~ read) be an abstract symbol, we can submit

the sample computation directly to the algorithm without change:

[(S, Rl ~ read, R), (S, R2 = 2, R), ======

—mm——- , (RL = 1, halt, R)].
In this case, the LISP program computed for about eight seconds and
produced the finite-state controller of Figure 9.

It 18 a small change to make the finite-state controller into
a computer program, and the flow diagram for this program appears in
Figure 10. If input symbols appear at a node which are not the standard
S, a conditional test must be inserted to implement the branching. The
resulting computer program will correctly extract the prime factors from
any positive integer. Since there is nothing special about either the
computer or the example problem, this method is clearly quite general.

Summarizing, we can find a computer program for executing
some algorithm from example computations which employ that algorithm.
We simply list sequentially, for each example, the commands executed
by the algorithm including with each command any conditions which must
be checked before ita execution. These sequences with the modifications
described above are then submitted to the algorithm of Section 2, and
the resulting finite-state controller can be directly converted into a
flow diagram for the computer program. The only alteration required is
the inclusion of conditional tests to check for conditions listed as input

symbols on the finite-state controller. The resulting computer program

22



O

 S/R1 ~ read

halt

$/print R2
S/R2 ~ R2+1

Rz‘ = O/Rl v-Rll-

Figuvre 9

Finite-state controller for finding prime factors.
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Start

T

Rl « read

1

R2 -~ 2

1

Does R1 = 1 ?

yes

*No

Ri «~ Rl =+ R2
R3 ~ remainder

1

{7Does R3 =0 ?

No

Halt

Tres

Rl ~ R4

1

print R2

Figure 10
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Flow diagram for a computer program.
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will correctly execute all of its given example computations and will
correctly execute the desired algorithm if it has been given enough
examples. We will call a system which carries out the abcve process an
Sutoprogr Mmer .

It is important to note that the autoprogrammer as we define
it here does not actually create an algorithm for solving a problem
where none existed before. The algorithm must be implicitly contained
in the sample computations, and the method described here simply finds
and makes explicit that algorithm by constructing a satisfacetory flow
diagram. It may be true that the autoprogrsmmer concept will not prove
to be a useful aid to traditional computer programmers because one must
essentially write the program as he is doing the examples. However,
there sre situations such as in a desk calculator where an autoprogramser
might be quite useful. In this case, the operation codes correspond to
keys on the machine and the user may not be a computer programmer. With
an autoprogrammer built into the device, the user could begin doing his
repetitive task in the ususl way but at some point he could stop and allow

the keys to go on pushing themselves.
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5. Computer Program Synthesis from Input-Qutput Pairs

Perhaps the next logical step after the autoprogrammer is
the development of a system which gynthesizes computer programs from
input -output information only. The system would have no information
concerning how each output ig obtained from its correspcnding input and
would be faced with the problem of filling in all of the steps as
well as finding the progran. The system could enumerate the set of
all possible sets of intermediate steps, find a program corresponding
to each set of computations, and use some criterja for choosing one
of the programs as its answer. This all appears to be well beyond the
range of possibility for any general class of functions,

One approach to this problem was seriously investigated.
Suppose we are interested in automatically synthesizing computer programs
which use only finite memory and which yield as outputs, n-place binary
numbers where n 1is fixed for any particular program. Then it is
only necessary to find n finite-state automatons each of which
corresponds to one of the n binary places. Here we consider an

automaton to be a device which scans an input string once from left to

right and returns an output of 0 or 1. We synthesize for the ith place

an automaton which is capable of scanning each of the sample inputs and
returning in each case the ith place of the corresponding output. Finite-
state automata theory is well understood, and it is possible to obtain
convergence to the correct machine if enough input-output pairs are

known. The program synthesizer constructs the n eautomatons and produces

a program which simulates them.

Such a system was developed and was very efficient as & program
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synthesizer because finite-state machine synthesis is very direct and
fast. Every program produced was completed in a few scconds of CPU
time and was executable on the PDP-10 system. However the requirements
for input-output data were very great because of the number of strings
required for gynthesis of the individual automatons was large. For an
megtate automaton, most of the strings of length 2m-2 were needed

2m-2
before the machine could be synthesized and this amounts to E ri

i=0
strings for an r symbol input alphabet. As an example, the program
which counts the number of A's modulo 4 (thus n=2) in strings of A's and
B's required nearly all of the 127 possible input strings of length six
or less before it could be produced. Fecent developments in grammatical
inference using man-machine interactive capabilities [4] have enown how
to reduce this input requirement, but the fuadamental difficulty is likely
to remain.

Another great disadvantage of this sysiem was its finite-state
memory limitation. Although every progrem we writ2 1ses a rfinite memory,
it is usually written as if the memory were infinite. We would never
be able to claim that we had, say,written a program which enumerates the
prime numbers if we did not make this asswaption.

It may be that in terms of input requirements, th: best program
synthesizer will be some comp.omise between this approsch and the auto-
programmer which requires every intermediat2 step in each s.mple computation.
Perhaps a method can be developed for giving hints as to Low to do the

computation without having to include the actual steps.
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6. Conclusion

In this paper, we think of a trainable machine as a manipulative
system with a8 finite-state controller, and the learning process for the
machine involves finding the correct controller. The approach is quite
general ag demonstrated by the fact that it haza been applied to very
different types of problems. It is also important to note that the controller
can be found either by a traditional finite-state machine synthesis method
or by some kind of search. The philosophy of the paper may be applied

in many ways, and the specific systems discussed here should be thought

of as examples of a general approach.
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