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l. Introduction

The traditional means for obtaining the desired performance

from a computer ig to write a program which specifies in abstract

notation and in complete detail exactly what is wanted. This paper

will be concerned with "he problem of obtaining this performance from

the machine by giving it examples of the desired computation and having

it program itself. We will be concerned with designing a trainsble

Turing machine although the concepts presented are applicable in a much

more general context as discussed in Section 4.

The Turing machine to be discussed here will have an infinite

one dimensional tape and will have the capability in one move to read

a symbol on the tape, print a new symbol to replace the one just

read, and gtep right or left one increment on the tape. It will have

a deterministic finite-state c mtroller with a designated initial

state which will upon receiving an input symbol read from the tape,

yield the symbol to be printed and the step direction (right or left)

to be made. A computation will be defined to be the complete sequence

of moves which are executed hy amachine starting in its initial state

with its head on the left-most nonblank symbol of the tape and ending

at a halting condition with the device reading a symbol and in a state

such that no next move is defined. Initial tapes will be assumed to

have only a finite number of nonblank symbols, and we will be interested
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only in computations of finite length, A particular Turing machine

will be sald to be able to execute a particular computation if when

given the initial tape associated with that computation, it goes

through the sequence of moves ia the computation and halts after the

last waove.

Tape

LE AE _-_ a
|

finite-state read-write head

controller

Figure 1. A Turing Machine

A move will be written as a three symbol string with the

symbols representing, respectively, the symbol read, the symbol printed,

and the step direction (L or n). A computation involving 3} moves will

be written as a j-tuple with the i-th move listed in the {~-th position.

Thus a computation in which a machine reads an A, prints a 8B, and
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steps right, and repeats this move three times before halting will be

represented as (ABR,ABR,ABR).

We will be studying the following training model: A finite

set of computations which can be executed by some Turing muchine M, are

given to the trainable system, and this system finds a Turing machine M,

which will correctly execute all of the given computations. Hopefully, if

the trainable system is given enough sample computations, it will find the

correct machine so that M, is behaviorably equivalent to M for all

finite computations which M can execute. That is, M, will exactly

mimic M in all of its moves in any finite computation starting with any

initial tape. If this occurs, we will say that the trainable system has

learned the function computed by M_.

The existence of such a trainable computer is not surprising since

it is only necessary for it to begin enumeraring the class of all Turing

machines until it finds one which can execute the given finite-set of comp-

utations. If it yields a machine M, vhich is not equivalent to M, we

need only give it an additional sample computation for M which it cannot

execute to cause the enumeration to continue. Since M is one of the

machines which will be eventually enumerated, we can be sure that we csn

force the system to eventually enumerate either Mor some machine equiva-

lent to it (for all finite computations). When it does, the system will have

learned the function computed by M and additional sample computations

from M will not cause it ~ ever yield any other machine. This learning

model has been studied by others and this type of argument has been given

a number of times, particularly in papers on grammatical inference

(4,6,7,8,13,14,22]%.

From a practical point of view, on the other hand, we might
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expect this type of learning by enumeration to be useless for two

reasons. First of all, in order to learn any function it is necesscry

to check all of the functions which precede it in the enumeration, and

this 1s likely to involve an astronomical amount of computation even for

very modest problems. Secondly, it appears at first glance that a huge

number of sample computations may be required before the system will ever

enumerate a correct answer. It is the purpose of this paper to deal with

both of these objections.

We will exhibit an algorithm which enumerates not Turing

machinea but parts of Turing machines and which carefully guides its

caarch by intelligently using information from the sample computations.

The algorithm finds a machine which can execute the first 1 moves in

the samples and searches for a change which will enable it to execute the

first {+1 moves. The process is repeated for increasing {i with

backtracking when necessary. We will demonstrate that very large solution

spaces can be searched with only a few seconds or minutes of computer time,

and furthermore, that relatively few sample computations are needed

before a correct answer is found. For example, in the next section,

we search for and find a three state machine with a three symbol alphabet

from a space of approximately 67= 10,077 ,696 machines. We find that

it only takes one sample computation involving eleven moves to force the

search to a correct answer, and the computer finds this answer in just

over three seconds.

The research reported here is an outgrowth of studies in

grammatical inference where the problem is to infer a grammar from a finite

number of samples from its language. Many of the results and ideas
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presented in Biermann and Feldman [4], Feldman ;7;, Feldman, et.al. [8],

Gold [13], Horning [14], Solomonoff [22] and others are directly applicable

to the current problem although their emphasis is on grammar discovery.

These papers contain a number of results concerning enumeration methods

and techniques for choosing a "best" answer.

One might also look for related research among the papera which

have been written on automatic computer program synthesis (Amarel [1,2],

Manna and Waldinger [15], Slagle [21], Waldinger and Lee [23]) but most

of these deal with a different formulation of the problem: Given a formal

description of a task to be performed, how can the formalism be translated

into a computer program? This paper is concerned with problems of inference

from examples rather than a translation between formalisms.

Most of the previously studied trainable systems have utilized

the technique of basing decisions on the values of certain stored

parameters and then have exhibited adaptive behavior by varying these

parameters. The perceptron [18], many pattern recognition systems [16,19],

and many game playing programs [20] are examples of this type of learning

system. The system described here uses an entirely different approach to

learning, finite-state machine synthesis, and the nature of its performance

is consequently dramatically different.

In the next sections, an algorithm for finding a Turing machine

capable of executing a given set of computations is given and & number

of examples demonstrating iL. -~-rformance are presented. In Section 4,

the generality of the approach will be demonstrated by solving a program

synthesis problem for a modern computer. In Section 5, the problem of

computer program synthesis from input-output information only is discussed.
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2, The Algorithm

The algorithm for finding a Turing machine which executes a

given set of computations is given in Figures 4, 5, and 6. We will study

an example before describing it in detail. Suppose it is desired to

find a machire which sorts A's and B's; that is, the machine will

begin with its head at the left end of a randomly arranged string of

A's an? B's and will rearrange the symbols until all of the A's

precede all of the B's. (ur sample computation will sort the string

BAA and will proceed as follows: The head moves right until it finds

an A. It replaces the A with a B and then mows left until it finds

either the left end of the tape or another A. It moves right one step,

puts the newly found A there, and then proceeds off to the right looking

for another A. The computation is shown in Figure 2 and {as described

by the sequence (BBR,ABL,BBL,_R,BAR,BBR,ABLBBL, AAR,BAR,BBR), A blank

symbol on the tape is written as _ .

CURRENT TAPE NEXT MOVE
BAA BBR

BAA ABL
PBA BBL
.BBA —R
BBA BAR
ApA BBR
ABA ABL
ABB BBL
4BB AAR
ABB BAR
AAB BBR
AAB. (halt)

Figure 2.
An example computation. The position of

the head on the current tape is indicated by a dot.
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For the moment, it will be assumed that we know that the

desired Turing machine has three states, and the strategy for finding

it will be to try to guess which of these states the machine is in

after each move in the computation. Beginning in state 1 {see Figure 3),

we guess that the machine goes to state 1 after the move BBR. After

ABL, we might again guess the device will go to state 1 except that this

would yield a contradiction with the next move BBL. (State 1 makes the

move BBR instead of BBL.) So we guess the device will be in atate 2

after ABL. After similar arguments we decide the device may go to states

1 and 3 after moves BBL and _ _R. However, attempts to find the state

after BAR all yield contradictions causing a revision in the guesses.

Perhaps the device goes to state 2 after move BBL. Then states 3 and 1

are the next moncontradictory choices to be made after moves _ _R and BAR.

At this point, the next three choices become fixed as a logical consequence

of previous decisions so they are included and are parenthesized to

indicate this fact. After AAR, the only noncontradictory choice is 3

and the rest of the table follows immediately. The final machine (Figure

3. botwm) is the correct answer, a Turing machine which sorts A's and

B's. Thus the trainable computer can learn to sort on the basis of one

sample computation.¥*

Notice that at euch point the guessed state is the lowest

number which does not yield a contradiction with the immediate next moves.

If a contradiction is found at any time for all possible choices 1, 2, and

3, then the search is backed up to the last arbitrary choice, it is

"One can show that if this sort of procedure is executed on any string
which begins with B and has at least two A's in it, then the
resulting computation is satisfactory for training the machine to
sort.

T
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incremented by one, and the search proceeds. In this way the space of

all possible three atate machines is searched until the correct answer

is found. If no three state machine can perform the computation, then the

back up will eventually reach the first move indicating that the class

of four state machines should be examined.

The notation of the algorithm must be defined. INPUT is an

array which holds sequentially each of the moves in each sample computation.

The last symbol read before a computation halt appears with an exclamation

point to indicate the end of the computation. Thus in the example above,

the entries BBR,ABL,BBL,----,BBR would appear in positions 1 through

11 and _! would appear in position 12, Other sample computations would

have been entered in locations 13 and beyond.

The array STATE holds the guessed sequence of states with the

nonarbitrary choices enclosed in parentheses. The array TRAN holds a

complete description of the momentarily guessed Turing machine and is

updated continuously as changes are made in STATE, Its exact form need

not be considered.

FUT(I,LEVEL) 18 a function which yields the list of states

which the current machine in TRAN will go through beginning in state 1

if it makes the moves INPUT(LEVEL),INPUT {LEVEL+l),~----, Often FUT

will yield an empty list because TRAN will not have transitions

corresponding to the given sequence of moves. In the example above, FUT

(1,6)= (1,2,2) after move BBR and FUT(3,10) = (1,1) after move BAR.

It may be that TRAN is in contradiction with the given sequence of moves

either because it indicates the wrong print or step right or left instruction

or because INPUT indicates a computation termination (exclamation point)
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LEVEL « 1

FUT yields list X 1e1]. FUT yields a contradicgion
Compute X«FUT(I,LEVEL =

C

Enter I into STATE(LEVEL). Increment I. If I exceeds
If X is not empty, enter K then reduce LEVEL to
future states (parenthesi ast unparenthegized entry,
ed) into STATE(LEVEL+1), [ «+ STATE(LEVEL)+l. Delete
STATE(LEVEL+2), . . . orresponding entries in
See Figure S for detail. RAN. See Figure 6 for

(Increment LEVEL.) jetail.

Pp (2)

Does LEVEL=D ?

Does INF (LEVEL=~1 }=""x | (See Figure 6.)

NO YES

ES NO 9 ©

NO Is INPUT (LEVEL) empty?
YES B

Add the transition im INPUT (LEVEL-1)

Stop to the machine in TRAN from stateSTATE(LEVEL-1) to state I.

Figure 4. The algorithm
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X is a list.

NO

STATE (LEVEL)e'""(1)" STATE (LEVEL) « 1

LEVEL = LEVEL +1

NO

Is X empty? [a1 STATE(LEVEL)~Parenthegize CAR(X)
Xe CDR(X)

P | YES LEVEL= LEVEL +1

¢ owt

Figure 5. Enter newly proposed next state into STATE.
(If X is a list, CAR(X) is the first element of the list

and CDR(X) is a copy of X with the first element deleted.)
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YES NO

Does IND=17

Reduce LEVEL to last un- Delete entry in TRAN just
parenthesized entry in STATE, made in step B.
Delete corresponding entries
from TRAN.

YES

Does LEVEL=(Q?

NO

IND «OQ

1«STATE(LEVEL)

NO

Does 1 exceed the highest
previous state in STATE by
more than one?

NO ;

Figure 6. I increment and backtrack logic.
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and TRAN does not. In either case, FUT yields a special symbol meaning

"contradiction".

K is the currently hypothesized number of states, is initially

set at 1, and is incremented until an acceptable machine is found. IND

is an indicator which is set at 1 if the currently considered move is the

first in a computation. IND is O otherwise. LEVEL is the index of

arrays INPUT and STATF telling which entry is currently being considered,

and I is the proposed new state name to be entered into STATE (LEVEL).

Figures 4, 5, and 6 in conjunction with these definitions

completely describe the algorithm for the trainable computer. If the

contents of STATE are printed out each time the algorithm passes point

P, the entries in Figure 3 result for the example. Notice that the

search can be greatly reduced at point A in Figure 6 by requiring that

each previously unused state name 1 exceed the highest previously

used state name by exactly one. For example, 1f the first two entries

in STATE are ((1),2) and the search for a machine has failed, there is

no need to try ((1),3) since 3 is simply a new name for the state 2.

Another important way to increase efficiency which is not shown

in Figure 4 is to include a test at point C which works as follows:

Compute FUT(1,J) for each J>LEVEL such that INPUT(J) is the be-

ginning of a computation. If in any case FUT(1,J) yields a contradiction,

go to D. This helps to prevent the algorithm from making hypotheses on

the basis of one computation which will be found to be wrong later when

other computations are examined. This feature was included in the program

which is discussed in the next Section.
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The algorithm thus exhaustively searches the space of K state

machines for K = 1,2,3,--== until a machine is found which can execute

the given sample computations. If the algorithm yields a machine which

is only capable of doing the sample computations correctly but is not

really the "right answer", it can be given additional sample computations

causing it to resume its search. Since a correct Turing machine exists

somewhere in the enumeration, it will be eventually found if enough such

additional computations are included.

The efficiency of the algorithm can probably be improved by

processing the sample computations in parallel. The method would be to

examine all of the computations which have been assumed to be in some

particular state and to look for the next transition from that state

using the information from all of the samples simultaneously. This

method has the advantage that it would not be dependent on the order in

which the samples are presented and it would probably find cutoffs at an

earlier time in the search.

14



3. Some Experiments with the Algorithm

The algorithm described above was programmed in the Stanford

LISP 1.6 language, compiled and used to find Turing machines which solve

various problems. The results are summarized in Figure 7 where each

problem is described and its solution given. The computations in column

four are represented by their initial tapes. Thus the string BAA

in problem € represents the complete computation described in the previous

section. The amount of PDP-10 CPU time required to do the search in each

case is given in the last column. These times do not necessarily represent

the best possible performance since no unusual efforts were made to write

optimal code and LISP does not typically yleld fast executions. Another

thing that should be mentioned is that repetitions of the same computation

did not necessarily yield the same computation time because the number

of internal garbage collections would vary from one tegt to the next. So

these times should be considered to be only a kind of rough estimate of

the amount of effort required to obtain a solution.

The first set of computationa in each problem was obtained

as follows. The first i initial tapes from the set of allowed tapes (see

column three) were used to generate i sample computations. These i

computations were input to the algorithm and a solution was produced.

This process was completed for {i = 1,2,3,~-~ until & correct answer

was found. The first set of computations given for each problem is thus

minimal in the senge that if the last computation were deleted, the set

would no longer be adequate for inferring the correct answer.

The answers to problems one through six could be inferred from

just one sample computation and the shortest such computation was found

15
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in each case. These are included in the table along with their

computation times. The algorithm usually found the answer in less time

then in the first experiment. Surprisingly, in several cases of the

first experiment, the firat i-1 of the 1 sample computations could

be deleted without affecting the ability of the system to find a correct

answer.

In the other problems, the second set of sample computations is

simply representative and not necessarily minimal in any sense.

Occasionally the algorithm produced an answer which wag different from

the one given but which was still correct. These instances are so

marked. The amount of search time required to find a solution is not an

easily predicted quantity as indicated in problem eight. Adding a sample

computation to a set of computations which {s already adequate for

inferring & correct answer can increase the total search time because

each newly proposed transition must be checked for compatibility with this

computation as well as the others. This addition can also decrease the

search time by enabling the algorithm to discover that it has made a wrong

decision at an earlier time.

These problems were not chosen using any particular criterion

and are representative of all of the experience gained with this algorithm.

One can expect similar performance on any problem which involves about

four states or less in the control as long as the total number of

transitions is not great. Some searches for four state and larger machines

were terminated after about ten minutes of CPU time without an angwer.

Machines with a large number of states can be found in a reasonable

18



amount of time if the number of transitions is sufficiently small.

For example, the machine which starts with a blank tape and types

out squentially the twenty-six letters of the alphabet has twenty-

seven states and was found in 104 seconds. The total search time is a

function of number of states, size of alphabet, number of transitions,

the order of the sample computations, and the order of the transitions

within the computations.

When training the system to do a computation, it is necessary

to have & systematic algorithm in mind. There are an infinite number

of ways to get from any initial tape to any final tape, and a method

must be chosen which results in a finite-state control. Clearly, it is

easy to find a Turing machine which when given the number 11 yields the

number 13. However, it is not 80 easy to find a machine which when

glven any prime number will find the next prime number. If the sample

computations involve & naive scheme for getting from the initial tape

to the final tape, the resulting machine may never have the desired

capability although it will always be able to reproduce the sample

computations.

From a practical point of view, it is quite helpful to choose

a method for doing the desired computation which the system can easily learn.

This usually involves finding a schewe which requires a small number of

states. Notice that problems two, four, and nine involve essentially the

same computation but alphabets of different size were used. The wachines

tended to be more difficult to find if they had more states even if their

alphabets were significantly smaller.

19



4, On the Degign of an Autoprogrammer

The algorithm described in this paper is designed to find a

finite-state control from sample input-output sequences and can be used

to find a controller or program for any computer. 1In order to iilustrate

the general applicability of this technique, we will consider the

problem of writing a program which factors any natural number intc¢ its

prime factors, and we will use a modern computer with registers and

arithmetic operations.

It is first necessary to find a sample computation and in this

example, we will factor i2 into its prime factors 2,2,5. We will store

the number to be factored in register Rl, the nuvwber to be divided into

Rl in R2, and the remainder and quotient for the division in registers

R3 and R4, respectively. The method will be to divide Rl by R2 and

then either print or increment RZ depending on whether the remainder is

zero or not. If a prime factor is found, the new quotient is entered

into Rl and the process is continued. The sample computation is traced

in Figure 8. Certain steps are taken only if some particular condition

holds, and in such cases, that condition is indicated.

20



Condition Command Rl R2 R3 R4

Rl « read 12 0 0 0

R2 «~ 2 12 2 0 0

Rt = RI+-R2, R3 « remainder 12 2 0 6

R3 = 0 Rl ~ Rh 6 2 0) 6

print R2 6 ® 0 6
Rik ~ RI:R2, R; ~ remainder 6 2 0 3

R3 = 0 Rl «= R} 3 2 0 3

print R2 3 ® 0 3
Rit « R1:R2, R3 + remainder 3 2 1 1

RZ -~R2 +1 3 3 1 1

RY ~ R1:R2, R3 ~ remainder 3 3 0 1

R3 =0 Rl « RL 1 3 0 1

print R2 1 ©) 0) 1
Rl =1 halt 1 3 0 1

Figure 8

A sample computation: Factoring 12 into primes.

Since the only changes in the flow of the program result from

conditional tests, the inputs to the finite-state control are the results

of these tests. If no condition is listed, we will let S be the

standard input symbol. The finite-state control which solves the problem

thus will yield a series of commands like those in the figure altering

the command sequence appropriately when the conditional tests so indicate.

Since the algorithm of Section 2 is designed to find Turing

machines, it requires in each move description a step left or a step

right command. This is not applicable to the current problem and will
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simply always be listed as R.

Now if we let each of the conditions (e.g., R3 = 0) and each

of the commands (e.g., Rl ~ read) be an abstract symbol, we can submit

the sample computation directly to the algorithm without change: |

[(S, Rl ~ read, R), (S, R2 «= 2, R), ======

--===-, (Rl = 1, halt, R)].

In this case, the LISP program computed for about eight seconds and

produced the finite-state controller of Figure 9.

It 1s a small change to make the finite-state controller into

a computer program, and the flow diagram for this program appears in

Figure 10. If input symbols appear at a node which are not the standard

S, a conditional test must be inserted to implement the branching. The

resulting computer program will correctly extract the prime factors from

any positive integer. Since there is nothing special about either the

computer or the example problem, this method is clearly quite general.

Summarizing, we can find a computer program for executing

some algorithm from example computations which employ that algorithm.

We simply list sequentially, for each example, the commands executed

by the algorithm including with each command any conditions which must

be checked before its execution. These sequences with the modifications

described above are then submitted to the algorithm of Section 2, and

the resulting finite-state controller can be directly converted into a

flow diagram for the computer program. The only alteration required is

the inclusion of conditional tests to check for conditions listed as input

symbols on the finite-state controller. The resulting computer program
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S/R1 ~ read

S/R = 2 halt

S/print R2
S/Ri « RI:R2 S ~ R2RS Rem. /R2 « R2+1

R%2 = C/R1 ~ Rl

Figure 9

Finite-state controller for finding prime factors.
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yes

Does R1 = 1 ?

No

Ri ~ RL + R2

R3 = remainder

yes

Rl ~ RY

Figure 10

Flow diagram for a computer program.
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will correctly execute all of its given example computations and will

correctly execute the desired algorithm if it has been given enough

examples. We will call a system which carries out the abcve process an

SUtOPIORT ANNEX .

It is important to note that the autoprogrammer as we define

it here does not actually create an algorithm for solving a problem

where none existed before. The algorithm must be implicitly contained

in the sample computations, and the method described here simply finds

and makes explicit that algorithm by constructing a satisfactory flow

diagram. It may be true that the autoprogrammer concept will not prove

to be a useful aid to traditional computer programmers because one must

essentially write the program as he is doing the examples. However,

there are situations such as in a desk calculator where an autoprogrammer

might be quite useful. In this case, the operation codes correspond to

keys on the machine and the user may not be a computer programmer. With

an autoprogrammer built into the device, the user could begin doing his

repetitive task in the usual way but at some point he could stop and allow

the keys to go on pushing themselves.
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5. Computer Program Synthesis from Input-Qutput Pairs

Perhaps the next logical step after the autoprogrammer is

the development of a system which synthesizes computer programs from

input output information only. The system would have no information

concerning how each output is obtained from its correspcnding input and

would be faced with the problem of filling in all of the steps as

well as finding the program. The system could enumerate the set of

all possible sets of intermediate steps, find a program corresponding

to each set of computations, and use some criteria for choosing one

of the programs as its answer. This all appears to be well beyond the

range of possibility for any general class of functions.

One approach to this problem was seriously investigated.

Suppose we are interested in automatically synthesizing computer programs

which use only finite memory and which yield as outputs, n-place binary

numbers where n {is fixed for any particular program. Then it is

only necessary to find n finite-state automatons each of which

corresponds to one of the n binary places. Here we consider an

automaton to be a device which scans an input string once from left to

right and returns an output of O or 1. We synthesize for the pth place

an automaton which is capable of scanning each of the sample inputs and

returning in each cage the sth place of the corresponding output. Finite-

state automata theory is well understood, and it is possible to obtain

convergence to the correct machine if enough input-output pairs are

known. The program synthesizer constructs the n automatons and produces

a program which simulates them.

Such a system was developed and was very efficient as a program
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synthesizer because finite-state machine synthesis is very direct and

fast. Every program produced was completed in a few seconds of CPU

time and was executable on the PDP-10 system. However the requirements

for input-output data were very great because of the number of strings

required for synthesis of the individual automatons was large. For an

me-state automaton, most of the strings of length 2m-2 were needed

2m=2

before the machine could be synthesized and this amounts to > rl
i=0

strings for an r symbol input alphabet. As an example, the program

which counts the number of A's modulo 4 (thus n=2) in strings of A's and

B's required nearly all of the 127 possible input strings of length six

or less before it could be produced. Fecent developments in grammatical

inference using man-machine interactive capabilities [4] have enown how

to reduce this input requirement, but the fuadamental difficulty is likely

to remain.

Another great disadvantage of this sysiiem was its finite-state

memory limitation. Although every program we writz 1 ses a finite memory,

it is usually written ag if the memory were infinite. We would never

be able to claim that we had, say, written a program which enumerates the

prime numbers if we did not make this asswaption.

It may be that in terms of input requirements, th: best program

synthesizer will be some comp.omise between this approsch and the auto-

programmer which requires every intermediat2 step in each s.mple computation.

Perhaps a method can be developed for giving hints as to Low to do the

computation without having to include the actual steps.
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6. Conclusion

In this paper, we think of a trainable machine as a manipulative

system with 8 finite-state controller, and the learning process for the

machine involves finding the correct controller. The approach is quite

general ag demonstrated by the fact that it hea been applied to very

different types of problems. It is also important to note that the controller

can be found either by a traditional finite-state machine synthesis method

or by some kind of search. The philosophy of the paper may be applied

in many ways, and the specific systems discussed here should be thought

of as examples of a general approach.
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