(STANFORD ARTIFICI AL INTELLI GENCE PRQOJECT
MEMD AIM 151

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS 240

CORRECTNESS OFTWOCOMPI LERS FOR A LISP SUBSET

BY
RALPH L. LONDON

OCTOBER 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UN VERSITY

STANFORD ARTIFICIAL INTELLIGENCE PROJECT OCTOBER 1971
MEMO AIM=151

COMFUTER SCIENCE DEPARTMENT
REPORT CS=-249

CORRECTNESS OF TWO COMPILERS FOR A | ISP SUBSET
by

Ralph L+ London

ABSTRACT: Using main|y structural Inrduction, proofs of correctness
of each of two runninge WIisp conpilers for the PDOP=1@
computer are ©olven, Includedaret he ratlomale f or
presenting these Proofs, a discussion of the proofs, and
the <changes needed to the second compller to complete Its
Proof,

To be Presented at the Conference on Proving Assertions about
Programs, New Mexico State University, January 1972,

Thi s research was supported in part by the Advanoed Research
Projects Agency -of the Office of the Secretary of Defense under
Contract SD-183 and in part by the National Aeronautlics and Space
Administration under Contract NSR £5-0208~500,

The views and goncluslons contained In this document are those
of the aut hor and should not be Interpreted as necessarily
representing the officlal policlas, elther expressed or impl| ieds» of
the Advanced Research Projects Agency, theNatlona| Asromautlcs and
Space Adminlstration, or the U. 3y Governnent,

Reproauced in the USA, Available from the Clearlinghouse for
Federal Scientlific and Technizal Information (or Its successors),
Springfield, Virginia 22151, Price! FulI size copy $3,00;
microflche copy $2,95,

-

CORRECTNESS OF TWO COMPILERS FOR A LISP SUBSET

by

Rafph L+ London

INTRODUCTION AND JUSTIFICATICON

This paper contalns proofs of correctness of each of tw useful,
running compilers, named CO and C4, The source language for both
compilers Is the sanme subset of pure (basi¢c) Lisp, which subset
exeliudes speclal or global wvariables, function mnames as argunents,
and the form label: the obJeect language Isessentlally assembly code
for the PDP=10 computer: and the conpilers thenselves are written
recursively in RLISP (Hearn 1972), a verslon of LISp with Algel=~like
syntax, The compilers were wrlttem by John MCarthy as paP¥ of a
serles of progressively more oprtimizing compijers for uUSe In a coursSe
at Stanford entitled "Computing wlth Symboliec Expressions," Only
later have these conpilers been eonsidered for proving correctness,
Alistlrg of the compilers and sanple output are In the Appendlces,

The proof P4 of correctness of the conpiler C41s a modlflcation
and extension of the proof PO for C#. The organization of this paper
is first to prove C@ correct ©xcluslively, A brlef discussion of the

proof appears Just after the proof, Then wusing the sane ‘machinery
t hat Is defined, and using much of the proof P@, the compller C4 Is
proved correct, This serial organizatlion, reflecting the essential
chronology of the Work, seenms Preferable to proving the two compllers -
in parallel, The reader should now lgnore C4 (and P4) untll the
start of P4, except to note that the Input and overal| statenent of

correctness are the sameas for CO

To prove the correctness of a comeljer is a frequently heard
chai lenge, The present proof partly responds to the ¢hal|enge! The
conpiler is sufficigntly lengthy and comp|lex not to be vfewed as

merely another cooked-up research exanple, As evidence 0f this,
Whitfield Ciffle has shown the compiler capable of compl|ling Itself
successfully, - Yet the compller has certaln toy-problem aspects, for

example accepting a subset of full Lisp, the Inefficliency of the
fQSU!t'ng object coce, anti the slmpleoarser, It 1s certain]y not a

proguction conpiler, Nevertheless, exhibiting ye%t another proof
seerms Justifled since (i) a conpiler 1% somewhat different from Other
alacrithms that have oeen proved (there are at least two programs

seirg executead, the conpiler and the object Program, and, to a lesser
extent, the source program)i (11} there has oeen |Ittle progress In

oroving compllers correct beyond t he wor k of MCarthy 8
painter(1967), painter(1967), Kaplan(1967), Burstal|(1969), and
Burstall & Landin (1969), although tne work of MeGowan(|971) should
be mantioned; (1ij) there remalns the wcrthwhl|e goal of belng ap -

to prove compiiers correct; (iv) this proof has been made to serve as
the nucleus of a proof of correctness ©f a more optimizling com»'|er
in the existing series’ (v) the Informal proof serves as the basis of
more formallzed procfs, the latter being necessary If a proof of

correctness is to be chesked byaproof checker (Milner1972)) and
(vi) the ccrrectnass of the conplier IS not immediately obvious,

THE PROBLEM STATEMENT, NOTATION, AND PLAN OF ATTACK

The reader is assumed to have a basic knowledge of Lispssay
from Weissman’s (1967) primer, The lnpout to the compiler Is (DE NAME
(args) body), NE is for Define Expression and NAME |8 thename of
the function belng compiled, The quantity (args) Is the |1st of
argurents (formal| paraneters) for the function NAME and body |8 the
body of the function, The <callling convention J[sthat a defined

function f of N 2 8 arguments, say argl,arg2,,,.0argN,willflind
run-tinme values of those argument s In sSuccessive accumul ators
starting In acl, which holds argls and the result flargl,arglri,es
argN) will be returned in acl, This convention applies also to any
function call compf led by the compller in response to a call in the

source code, e,9, the callto CAR in VWE SI MPLE (X) (CAR X)), 1In
particular the call may be a recursive Calls 8,8,

(DE COMPLEX (X Y) (COND C(NULL X) (CONS Y X))
(TCCOMPLEX (CDR X) Y))),

W now give a more detailed and more PFrecliSe description Of the
allowable syntax and its intended mneaning, The |lst (args) Isallst
of atoms excluding NIL, T, and numeric=atomsi body is an expression
where expression is defined recursively below (N 2@ in aii relevant
cases), The value of an expression EXP, denoted V EXPys is
recurslively defined at the sam time (as an "Informallizatlon" of the
Lisp EVAL function),

(i) atom, in particular NILsT» or a numeric-atom, V atom:
V NIL = (QUOTE NIL) (@ In this compilerld,
v T= (QUOTE T)» where a non-NIL value is considered equal
to VT
V numerfc-atom = (QUOTE nuneric-atom), and
V other atom = its blndingsi,e, run-time value whiech may
not be a funectlon name,

(i) (AND EXP1 EXP2 ,,, EXPN), V AND-expression = THf all v EXPi
are non-NIL otherwlse NIL, V (AND) =T, AND evaluates
Its arquments from f|efttorigntuntl| either NIL s found
in which case the remmining argunents afe not @evaluated, Or
until the last argument !$ evaluated,

(1§i1Y (OR E&XP1 ExP2 ,.,., EXPN), U OR-expression = 7T if any V EXPI is
non=NIL otherwise NIL, V (OR) = NIL, OR evaluates Its

arguments from ieft to right until althernon=NILls found
In which gase the remmining argunents afe not evaluated, or

until the last argunment 1is evaluated,

Civ) (NOT EXP), V NOT-expression = T if V EXPIsNIL otherwise NIL.

(v) (COND (EXP1 EXP2) (EXP3 EXP4) ,,, (EXP[2N-1] EXPL[2NI])),
V COND=gxpression I's detarmined as foljows, The
expressions EXP1, EXP3, ,,,» EXP[2N=1] are evajuated
starting with EXP1 unt!l]| the first EXPC2I=1] Is found whose
value is non=NIL, V COND=expression is then V EXPL21], If
no ExPr2i-11 exists with non=NIL value, then
V COND=egxpression Is undefined,

(vi) (QUOTE EXP), V QuUQTe=-expression = EXP, i,e, EXP wunevaluated,

(vii) (fname EXP1 EXP2 ,,, EXPN) where fname # AND, OR, NOT, COND,
QUOTE, V functloneexpression = fname(V EXP1, V EXP2, ,,»
V EXPN), i,e. tho value of the function fname applled to
Its evaluated arguments V EXPLi, V EXP2, ,,4» V EXPN, The
argunents are evaluated once before the function is called,

(viii) ((LAMBDA (atoml atom2 ,,, atomN) EXP) EXP1 EXP2 .., EXPN)
where atom! # NILs Tonumeric-atom, VvV LAMBDA=expresslion is
determined as follows. A LAMBDA-expresslion defines a
function whliegh has no explicit Catomie) nane, V LAMBDA~-
expression is the value of this function applied to |Its
evaluated arguments V EXPl, vV EXP2, ,,4» V EXPN, 1In other
words, V LAMBDA=expression = V EXP where V EXP [|s computed
after the substlitutions atomi <« VvV EXPL, aton2 + V EXP2,
evss atomN ¢ V EXPN have been made inmn EXP, If there {8 a
clash of bound variables, the conventlon |8 that the
Inmermost binding governs,

Slnee function names are forbidden as argunents, the expression
((LAMBDA (X) (X)) Y) neans a call to the function X of no argument s
rather than a call to the functlon argument Y, The above syntax
forbids ((X)), (((X))),» etc, aS expressions,

The compiler is proved correct under the assumption (hat Its
input is& syntactically correct, Since no error checking {s done by
the compiier, nothing 1Is claimed for the results, if any, of
incorrect Input, Correct input also means, for exanple, that a |]st
of formal paraneters consists of distinct atoms and that the number
of forral Paranmeters is always wequal to the nunber of actual
parareters, There are oresumably many ©Other such condltions,
violatlions of some of which may have reasonable Interpretations,

The statement of correctness of t he compiler Is that the
compller~produced opJect code, when executed, leaves a result In acl
equal to the value of the source language functlen applled to the
same argunents, The object code takes its N argunents from the
accurulators acl, voa 1 acN, If A = al a2 ,,.,aN represents the
argurents, t hen t he correctness statenment may be restated as

requirline that the equation

V ((DE NAME (args) body) A) = contents Of acl

holds after executing the |18t of compiler-produced Instructlons
COMP(NAME, (args)s» body)

starting with aci holding al for L1<ISN,

The followlngfacts about the POP=12 computer are from g
by MCarthy: The ®OP=17 has a 36 bit word and an 18 bit% ad(?rgsrsl,tei‘g

instructions and in accumulators used as index reglisters this IS the
right part of the word where the least significant bits In arithmetic
reside,

There are 16 general registers whiech Serve simu|taneousiya s
accumulaters (recejving the results of arlthmeticoperations),index
reaglsters (mod!fytng the nomina} addresses of Instructtons to form
effective addresses), and a$ the first 316 reglsters of nemory (1f the
effective address of an Instruction is |ess than 14, then the
fnstruction uses the corresponding general register as {ts operand),

AlT Instructions have (he same format and are Wrlttem for the
LAP assembl, program {n the form

(<op nane> <accumulator> <address> <index register)),

Thus (MOVE 1 3 P) causes accumulator 1 to recelvethe contents ©Of a
memory .register whose address Is 3+¢c(P), | .o, +{the contents of
genaral reglster P>, In the following description of Instructions,
<ef> derotes the effectlve address of an instruotion,

MDVE clac) ¢« c(<efd)

MOVE] clac) +« <ef> _

HLRE (used In C4 ,nly) c(lefg half ac) « plght halfi of o(<ef>)
HRRz (used In C4 onjy) clright half ac) «c(right hals of c(<efd>)
SuB clac) ¢« clac) = c(<efd)

JRS] 99 to Cef>

JUMPE ki lac)z= o then 9, t, <efd

JUMPN Ifctac)# 0 then go to <efd>
CAYMEL (used In C4 oniy) 1If cflaec) 3 c{<efd>) then skipnextinstruction
CAMN (used In C4 onjy) If clae) # ¢(<ef>) then skip next Instruction

PUSH clclrioht half of ac)) « c(<ef>);the contents
of each half of ac Is Increased by one
POPY (POPJ P) IS used to return from & subroutine

These Instructions are adequate for complling basiclLisp code
with the addltlon of the subroutine caljlng pseudo=instruction, (CALL

n (E <Ksubr>) is used for calllng the LISP subroutlne <subr> wlith n

argurents, The convention is that the arguments w!ll} be stored in
successive accumulators beginning wlth accumulator l,andthe resuylt
wil!l be returnea in accumulator 1, Inparticular the fungtloms ArOwm
and CONS are called wth (CALL 1 (& ATOM)) and (CALL 2 (E CONS))
respectively, Note that the Imstruction (suB P (C o 3 3)) Just

deletes the Top three elements of the stack P, (PUSH P ac) Is used

4

to putctac) o n thestackP, Thils ends thefacts about the PDPe1p
computer,

To show the result and effect of executing a Sectlion of assembly
code, notatlonofhand-simulation, deskechecking, or tracing of cede
is used. It is ©best explained by example, Starting with N
accurulators cach holdlng a value and an empty StackP, namsly

acllal
ac2|a2
[N 2]
acN|jaN
Pl

the |Ist of Instructions

((instructions to leave @1 "in acl)
(PUSH P1)

(Instructions to leave 9N In acl)
(PUSH P 1)
(MOVE 1 1N P)
(MDVE 2 2-h) P)
[2N BN B
(MOVE N 2 P)
(SUB P (C 0 0o NN))
(CALL N (E ngme)))

gives the trace

acllols a1* o2% ,,, aN* al® name(el a2 ,,, aN)
ac2|a2% a2% undsf

"
acNjaN& aN# undef

Plags ap# ,,, aN& |

Thus thevaluename(al a2,,, aN) is in acl, undef (anundefined
auantity) is i n acifor28isNsince these agccumulators are unsafe
over name, and the stack P Is wunaltered fromthe start, Thetraoe
shows the final resulto f tracings the Intermediate results are
recordedbut marked by an asterisk (*) as being mno |onger pressnt,

The plan of attack IS as follows}

(i) Prove correct 3 auxiiiary Procedures C[MKPUSH(N,M), PRUP(VARS,N},
and LOADAC(N,K)Jwhichare not part of the mfn recurslveness
of the compiler (lemmas 1«3),

(it) under the assumptionoino conditional expressioms or Boolean
expressions (i,e,noCOND, AND, OR, NOT), prove the compiler
correct(theoremsi=3andtermination), and

(ii1i) Prove the <compiler correct WIitnout the restrictiveassumption

of (il) (theorems 4=7),

The proof techniques to be used are mainly those 8S8hOWR in
Longon(197@), The factorization into (ii) @andC(iii)s, convenient foOr
construct I ng, for presenting, and for reading the proof, shows how
one can Grove an algorlthm in sulitable segnments rather than havingto

do it all at once, Ifthereader omItS theorems 4=7 of (ili), t he
broof of correctness of an interesting Subcompller results, In this
part recurslon is sti i i &l lowed in the sense that the compijer Wwljp]
correctly complle a recursive function, BuUY the obJect code may not
termnate if such a recursive function i{scaljed since there is no

branching to "stop the recursion?

The number M@ of the lemms and theorems r@f|ects the order of
their dlgcovepy and proof. The eopdepcoy|d be altered bpy meprgling
t heor ens 1 and 7 and by placing theorem 3 as the last theorem |f the
sole interest wera to prove the entlire compller,

PROOF OF AUXILIARY FUNCTIONS FOR C2

The LIsp operation CONS is denoted In RLISP by an Infix dot(,):
A3 = (CONS. A B) , By incecpaction of the whole compller, 1t fol lows
that all numerically=vajued quantitlies are integers, o !|$ used as an
end-of-proof marker,

Lemma 1, If N>@2 and M > @, then MKPUSH(N,M) =

((PUSH P ™)
(PUSH P M+1)

(PUSH P N)) ,
If M> 2, then MKPUSH(@,M) = NIL ,

Proof, Backwards |nduction On M, If M > N MKPUSH(N,M) s NI_ .
If M= N, we have (PUSH P M), NIL s((PUSHPN)), Assume the |emma
for M € N and consider M1 > D,

MKPUSH(N,M=1) = (PUSH P M=1) ,MKPUSH(N,M) since N > M=}
(PUSH P M=1),

((PUSH P M)
(PUSH P M+1)

(PUSH P N)) by induction hypothesis for M

((PYSH P M=1)
(PUSH P M)
(PUSH P M+1)

(PUSH P N)) by definition of CONS, e

‘ Alternative notatton mmny be wusedto avoid the three dots Coos)

in the lemmn and in the proof, Analogously to the Slgma notatlon for

indicating s-urns (es,g.sigma(1=1,N,AC11), deflne a |Ist functlonal L:
LCI=M,N,(PUSH P 1)) = NIL IfN< M

LCi=M,N, (PUSH P 1)) = (PUSKH P M), L(i=M+*1,N,(PUSH P i))
If N2 M

whereas sloma denotgs iterated addlitlom, L denotes lterateg CONSing,

The lemm is restated as MKPUSH(N,M) = L(I3MyN,(PUSH P 1)}, The
proof of the induction step becones

MKPUSH(N,M=1)

(PUSH P M=1) MKPUSH(N,™)

(PUSH P M=1),LC}=M,N,(PUSH P |))
= L(i=sMe«1,N,(PUSH P [)),
Similar notation may be used for lemms 2 and 3 bejow,
Lerma 2, Let VARS = (xi X2 e+s9¢ XM), Then PRUP(VARS,N) = ((x1,N)
(x2,N*1) .4y (xM,N+M=1)), This list of pairs is called tha PRUP

fists short for "pajr=up."

Proof, Inducttion on My If M = @, then PRUP(VARS,N) = NIL since
NULL VARS, Assume for M 2 © and consider M+1,

PRUF(VARS,N)

(CAR VARS,N),PRUP(CDR VARS,N+1) since M+1>7 Impiles
not NULL VARS

(x1oNY, C(x2,N+1) +,, (xUCM+1],N+M)) by the Inductlion
hypothesis for CDR VARS

((x1,N) (x2,N+1) vee (XCM*1],N+M)) by US8 of v ®

Lerma 3, LOADAT(N,K) = ((MOVE K N P)
(MOVE K+1 N+1 P)
LI

(MOVE K=N 0 P)) |

Proof, Backwards induction on N, If N > @, the result is NIL |,
If N = Z,we have (MOVE K 2 P),NIL = ((MOVE KO O P)), Assume the
lemra for N € € and consider N=1.

LOADAC(N~1,K) (MODVE K N=1 P),LOACAC(N,K+1) since N=1 < 0

(MOVE K N=i P),((MOVE K+1 N P) ,,, (MOVE K«+1=N O P))
by Indugtion hypothesis for N

= ((MOVE K N=1 P) (MOVE K+1 NP),,, (MOVE Ke(N=1) 0 P))
by use of . and arlthmetlc. e

THE RUN-TIME STACK

The obJsct code uses a run=time stack in a rather standard way
for holding the actual Paraneters ©f both functlonm calls and LAMBDA
expression evajuations, A s each actual oparameter <(bindimg) 1
evaluated, It Is pushed onto the stack, This sufflices for a LAMBDA
expression but not for a funetlon, After all of the |atter’s actual
parareters are evaluated and pushed onto the stack, al | ape moved to
the accumulators ang popped from the stack In order to satlisfy ¢ he
conventlions for calllng a funetlion, The first task ofthe cempi|ed
function definftionis to push the actua| parameters back to the
stack from the atcumulators, Thus for both a funotlon and a LAMBDA
expression, the respective code body accesses ©OF obtains the actua I
pararetar from the stack,

W forgo stating the varlous possible stack conflgurations In
full 9enerallty to avold (presumably) less than transparent notation,

What Is In principle required can be seen by an example}
(OE F (A B)Y(G A ((LA!MBDA (A} (CAR A)) B) A B))
This must be compiled ldentically to
(OE F (A B) (G A ((LAMBDA (A1) (CARAL1))B)AB))

where the bound A of the LAMBDA expression has been renamed Al, The
accessible varlab|es of F are A and B} those of the LAMBDA expresslon
are Al and B, Atthepolnt of complling the argunent A of CAR A, the
stack P (at run-time) wll| be

P| A B A B '

- e wm e ww L B R B L A B hadl L R R L KR

actual the ffirst actual paraneter
parareters actual parameter corresponding
to thecal I to the call of G to Al

of F

The c¢omplie~time PRUP 1ist wi||] be ((A,4) (A.1) (B,2)) or, using AL,
((A1.,4) (A,1) (B,2)) , Note the absence of a 3 slmgce that spot holds
a temporary value and not the value cfan actual parameter usable In
the body of the LAMBDA expresslion (In this exanple eltherAilor B but

not A).,

Thus the compi jatlon of the argument A of CARA(atgase 3 of
COMPEXP with M : =4asft would be) produces a MWVE Involylng the top
of the stack, namely (MOVE 1 M+4 P) : (MOVE 1 0O P), and not (MOVE 1
M+l P) = (MOVE 1 -3 P), A compilation Of B at this point would
produce (MOVE 1 M+2 P) = (MOVE 1 =2 P),

After compliling the fourth, and last, actual Parameter of G, the
stack Wil be

P| A B A CAR 3 a B ,
actual parameters actual parameters
to the callofF to the call of G

W shal | need %9 show that the proper run=-time stack
configuration Is set up and malntalned, and that the quantlty M and
the Integers InthgPRUPIISt together Produce the c¢cofrectaccessing
from the stack P, The auantity =M gives the number of stack
locations currently accessible by the functlon being compiled, [Let
us deflne the predicate STACKOK(M,PRUP) to nean (l) =M {8 the gorrect
number of stack |ocatlons, and (!1!) M and the Integers In the PRUP
list at complle=timg together Produce the correct aeccessing of the

stack at run-tine, The definition of STACKOK {nciudes t he
representation of "what the conpiler knows So far" concerning the
location In the stack of varjfables and temporary values, As Dart of

mo error checkling the complier assumes an inf Inlte run-time stack
with no tests fopr stack overflow, The proofaccordingly mmkes the
Same€ assumptlon,

PROOF OF THE MAIN THEDQDREMS FOR C2

The maln pProof technlque wused for theorems 19 2, and 4-7 Is
structural Induction on expressjons, Each theorem states what a
procedure of the conpiler does: theorems 1 and 7 for COMPEXP, 2 for
COMPLIS, 4 for COMPANDOR, 5 for COMBOOL, and 6 fer COMIONO, Each of
these procedures is recursive and also can c¢all many of the other
procedures, To prove theSo theorems for an arbltrary expression EXP,
t he followling induction Thypothesis Is$ used for each theorem
Theorems 1, 2, and 4-7 have a| | been proved for all subexpresslons of
EXP, To invoke one of these theorems Inductively on a Subexpression,
it is necessary to verify that all hypotheses of that theorem are
satisfled,

The length of the 118t X wl || be denoted by L X, A | procedures
of the conpiler except for PRUP produce as values a |i8%t of compl|ed
instructions, as: may be verlfled by inspection (In particular noting
each One=|lne code generation is a one-elenent |18t and otherwlse the
APPEND function i{s used), The auantities VPR and M, Which appear as
actual paraneters to the procedures |n theorems 392y and 4=7» are
unchanged by these procedures In view of the definitlon of funetiona]
evajuation,

Theorem 1 [Definition of COMPEXP(EXP,M,VPR)], Assune t he
following condftions hold at the call of COMPEXP(EXP,M)VPR):

Cl: EXP Is an expression,
c2% MSB and *M is the number of 8Stack |ocations currently accessibie
by the function being coOmpi]lad,

9

C

3 : Vvariables current|y accessible to EXP are X1, X2, ,,.0» XK wWlth

K £ =M,

c4: yPR is a PRyP|Isto 1 K palrs (xl.J)» 18JS=M, of the current|y
accessiblevariables where the Innermost occurrence (Of a formal
parameter) of a duplicated variable nemeappearsfirst on VPR,
8.9, (“‘LPOT)) (808’ (0-6) (A1) (B.2) (C.3)).

C5: At run=-time the stack P contains the values of the varlables and
tenporary values as

PIX1 X2 o+, X[=M]

where X[=M] is at the top of the stack,

Cé6: STACKOK(M,VPR),

c7: EXP Is an atom (#NIL, #T, #numerlgc=atom) > EXP Is a vgrlaple XI,
11K, on the VPR ||st,

Result, After exegutton of the IIs%, 1, of Imstructions produced by
COMPEXP, the accumulator acl contalins V EXP, P I|s safe over t he
executlon o f I, Note that the accumulators are Unsafe over the
exeacutlion of I,

Proof of definition of COMPEXP (under t he assumptlonof no
conditlonal or Boolean axpresslionsi theorem 7 proves COMPEXP wilth
such expressions), Structural {ndugction on EXP, Bas|s step! EXP |s
an atom, elther NIL, T, a numeric=atom, or other atom, If EXP |s
NIL, then ocase L of COMPEXP produces ((MOVEl 1 @)) so aol holds 0 =
Vv NL If EXPIsT, then case 2 produces ((MOVElI 1 (QUOTE T))) so acil
holds(QUOTET)=-VT, If EXP Is a numeric-atom t han case
proguces ((MOVEI 1 (QUOTE numeric-atom))) so @6l hold8 (QUOTE
numericeatom), the correct value,. If EXP I8 an other atom, than caSe
3 produces ((MOVE 1 M+COR ASSOC(EXP,VPR) P)), By C7 |et EXP = «xI
appear flrst on VPR in the bpalr (XI,J), By C4 CDR ASSQC(EXP,VPR) =
CDR (X!,J) = J. By C5 and C6 the Instruction (MOVE 1 MiJ P) 1loads
acl with Vv X, NotelZJS~M 2 M+1<M+J<@, |,e,avalld stack acecess,

Induction Step: CAR EXP and CDR EXP are always deflnedatcases
47 (a total of 10 oecurrences) since NOT ATOM EXP because ¢asSe 3
failed, If' Exr = (QUQTE o), then case 6 Is the flrst to hold
producling ((MOVEI 1 (quOtTE @))) as required,

If EXP = (fname @) with fname not one of AND, OR, NOT, COND,
QUOTE, then case? isteflrst to hold, EXP thus Is alnen=speclal)
functior to be evaluated using argunents of the |18t « = (el a2 ,,,
aN) where N =L « 2 0, Tha 11st of Instructions produced s

((COMPLIS((a),M,VPR))
(LOADAC(1-N,1))
(SUB P CC 0 0 NN
(CALL N (E fname))) ,

Condltlons D1-07 (see theorem 2) for Inductively invoklng COMPLIS
hold as fol|owsl

10

D1: Definition of (a),

D2: Ce,

33: Cc3 on U, a subpart of EXP,

D4,05,06t C4,C5,C6, respectively.,

37: Assumptlon of syntacticallyocorrect input,

Using the definitions of COMPLIS and LOADAC, we obtain

--- (CInstructions to |eaveVal [n acl)
(PUSH P 1)
COWPL‘S [I
(Instructions to leave V oN in ael)
.- (PUSH P 1)
(MOVE 1 1-N P)
LOADAC. (MOVE 2 2<N P)
L |
cw- (MOVE N 0 P)

(SUB P (C 0 0 NN)
(CALL N (E fnane))) |,

Tracing these instructions, namely

acljals aiws a2« ,,, oN»alw fpname(V al,V a2,,,.,VaN)
ac2|a2* a2+ yndef
acN|aN# aN# yndef

Plag# aye ,,, aN@

gives the desired result (including the caseNz@)since V EXP =
fname(V o1,V a2,,,,,V aN), Note that the Instruetlion (CALL N (E
frname)) mmy be a recurslive call since the standard conventlions of
arguments and returned value are ©Obeyed, and the arguments are
stacked (saved) by the called function, Recal| that function nanes
are forbidden as$ arguments SO a formal| paraneter name maybe called
by a CALL Instruction,

Finally If EXP = ((LAMBDA (@) @) €)s then only c¢ase8 holds,
Sincecase 7 falls, NOT ATOM CAR EXP, et N = | € = | @ by correct
input, The |Ist of inmnstructions produced is

((COMPLIS((e),M,VPR))
(COMPEXP(R,MaN, APPEND(PRUP((a),1=M),VPR)))
(SUB P (C 0 2 NN))

Conditlons D1=D7for inductively invoking COMPLIS hold as follows:

D1: Defiritien of (¢), D2: C2,03:C3 on (€)» a subpart of EXP,
D4,D05,D¢6: C4,C5,Cé, respactively., D7} Syntacticall|ly correct !nput,

ConditlorsC1=C7 for f{nductively Invoking COMPEXP hold @8 follows!

11

Ci: P Is an expression by the syntax definitioninvoivingLAMBDA,

C2: M=N €2 since M < 0 and N 2 3, There are now ={(M=N) s«MeN stack
locations current|y accesslible,

C3: varlables currently accessibletoa areXi X2,,,¢0 XLCK*NI) i,0,
there are now K+N varlebles alfjowed np, KN & «M+N since
K £ =M

C4: Cefinltion of PRUP and C4,C5,ardCébapp|ied (o yPR, The new
palrs are put flrst, The new Iindices are 1-M = =M+l through =M+N,

C5: C5 for X1, ,e.s X[*M3 together wlth COMPLIS((€),M,VPR)) for
x['h"'l]! N XE'M"’NJO

C6:C6,C4 just above, and C5 Justabovs,

C7: Syntacticelly correct Input and the augmented PRUP |lst,

Hence tracing these finstructions,namely

acl|X[~=M+1Js ,,, X[=M+NJ® V EXP
P|X1 X2_ s X[=M1] xt'”"'ij. o e Xt'M+NJ'

gives the desired result (lncluding the case N = 2), slinge COMPLIS
essentially makes _ the substitutions .t = v €] and then COMPEXP
computes V@ which is now V EXP,

In all cases the stack P |Is safe over the execution of I, Note
that VPR remalns unaltered even In thelLAMBDA case because here the
augrented PRUP Itst 1n the call to COMPEXP {sacopy only fOP that

recurslive c¢al i when that oall finlshes (he outer VPR jIst |s
tntact,e
Theorem 3 ([Lefinftion of COMPLIS(U,M,VPR)], As sume t he

¢olicwirg conditions hold at thg call of COMPLIS(U,M,VPR)1!

D1: U = (ul u2 ,,, uNl)isallst of arguments,
Day COMPEXP's Co,
053 varjables currently accessible to the nenbers of U areXi,Xx2,

vr o0 XK with K<=M,
D4,05,0g3 COMPEXP’s C4, C5, Cgs respectively.
D7: COMPEXP'’s (7 with EXP replaced by UJ,

Result, COMPLIS = ((instructions ¢ o |eaveVullinacl)
(PUSH P 1)

(iné%;uctionst oleave V uNin acl)
(PUSH P 1))

Proof of definjtion of COMPLIS, Structural induction on U,
Baslis step! U is NULL whence CCMPLIS = NIL, Induction step! Since
U, # NIL, COMPLIS(U,M,VPR)

= ((CCMPEXP(ui,M,VPR))

(PUSH P 1)
(COMPLIS((u2 ,4+s UN),M=1,VPR))) ,

12

Conditlons C1-C7 for Inductively Invoking COMPEXP hold by D01=D7,
respectively, Hence invoking COMPEXP shows

(COMPEXP(yu1,M,VPR)) = (Instructions to leave V ul in a¢l)

with the stack P safe, (PUSH P 1) stacks V Ul on the too of P,
Conditions D4=D7 for invoking the Induction hypothesis for COMPLIS
hold as follaws}

D1: By D1 for U,

p2: By p2 and (PUSH P 1) which means there are now =(M=1) 5 =M+l
stack locatlons, the top one being a temporary value,

D3: By L3I (K S =4>K< =M1,

04: By D4.

DS: By D% and (PUSH P 1), P Is PIXI X2 ,,4 XC=M] VvV vl ,

D6: By Dé and D5 just above,

07: By 07,

Hence the induction hypothesls shows COMPLIS((uU2 ,., UN),M=%1,VPR) =

((instructions to leave V u2 In acl)
(PUSH P 1)
v d
(Instructions to leave V uN In ag?)
(PUSH P 1)) ,

Hence COMPLIS(U,M,VFR) =

((instructions to leave V ul In acl)
(PUSH P 1)

[A}
(Instructions to leave V uN in acl)
(PUSH P 1)), ¢

Theorem 3 [Correctness of the compllerl), Let A % al a2 .., aN
be an arbitrary |ist of ectual paraneters, Startlng with aclholding
ai, 1SISN, and after execution of the |lstyls of Instructions
produced by COMP(NAME, (args),body) we have

V ((DE NAME (args) body) A} = contents of acl
and the stack P is Safe over the execution of 1,
Proot, Let N = L (args), COMP(NAME,(args),body)
= ((LAP NAME SUZR)
(MKPUSH(N,1))
(COMPEXP(podys=N,PRUP((args),1)))
(SUB P (C 22 N N))

(POPJ P)
NL)

13

= ((LAP NAME SUBR)

c-- (PUSH P 1)
MKPUSH (PUSH P 2)
- (PUSH P N)
COMPEXP (instructlons to leave V body in acl)
o= (SUB P (C 0 @ NN
(POPJ P)
NIL)

by using the definitions of MPUSH and COMPEXP although |t remains to
sho, that MKPUSH and COMPEXP mmy be Inyoked, Since N 2 @ y0 may
invoke MKPUSH, The congltlions C1=C7for COVWPEXP hold as follows?

Cl: body is an expression by the assumption of sSyntactically ecorrect
Input., |

C2: =N = -LENGTH (args) £ 2, <==N = N |sS the correct number of stack
locations since oreclselylL (args)locationsare accessiblie,

C3: the accessible variables are al, a2 900 aN,

C4: By definltion of PRUP((args),1),

C5: By the nunber N of (PUSH P 1) Instructions,

C6: STACKOK(=N,PRUP) ho|ds by the deflinltion of PRUP ghd the order of
the PUSH Instructions,

C7: By syntacticallycorrectinput and the definition of PRUP(VARS,1),

Thus starting with acf holding al for 1$1SN, we have the trace

acllal* V body
ac2laé* undef

acN|aN#* undef
Plag® ag® +,. aNe ,

Since V body = ((DE NAME (args) body) A)andsincethestackPls
safe, the result 1S proved, (1 f condltionalandBoo|ean expressions
are allowed, then theorem 7 S needed,) ®

Theorem 4 [Nefinjtion of COMPANDOR(U,M,L,FLG,VPR)], Assume the
followlng conditions hold at the c¢all of COMPANDOR(U,MsL,FLG, VPRI

El: U = (ul u2.., uN) Is a |ist of Booleanexpresslons,
£2: COMPEXP’s C2,

£3: COMpPLIS’s D3,

£E4,E5,E6: COMPEXP's (4,C5,C6,respectively,

E7: COMPLIS’s D7,

E8: L Is a label.

E9¢ FLG Is T or NL,

14

Result, COMPANDOR produces a IIsty I, of Instructions given by

FLG | Algo! equlivalent of I

-u--'—-- ------ LA K K N N B N N N _N_ X N K N N]

NIL I 1f NOT ul then go to Li
| if NOT u2 then go to L}

] Ve

| 1# ~\OT uN then @0 to LI
at'a' \--—w--------.--ﬂ.-----.'.
Tl if yl then go to L3
| if u2 then go to L3
| "o

I if uN then go to L3

with the statement labeled L not In I, P is safe over the execution
of I,

Proof of definjtion of COMPANDOR, Structure! Inductlon on U,
Basis step! U Is NULL whence COMPANDOR = NIL, Induction 9tep!
Assure FLG = T, COMPANDOR(U,M,L,FLG,VPR)

((COMBOOL(ul1,M,L,FLG,VPR)) .
(COMPANDOR((W2 444 uN),M,L,FLG,VPR))) by definitionof
COMPANDOR slingce U # NULL

(C1f ul then go to LI}
(COMPANDOR((u2 v uN) ,M,L,FLG,yPR))) by Inductively
Invoking COMBOOL on the Boolean eXxpressionul

€Ctf yl then go to L3}

(1f u2 then go to Li)
1 00

(1f UN then go to L;¥) by Inductively Invoking COMPANDOR
on the I1st (U2 4y UNIIE2=E7 hold prior to
tnvoking COMPANDOR since P |s safe over "if ul

then go to L3" and both M and VPR are unaltered
by COMBOOL.

L is in neither-the first Instruction nor Ininstrugtions2throughN
whence L |Is outside !, SlImilarly the stack P Is safe, The case FLG
= NIL Is proved simijarly, ®

Thecrem 5 (Definition of COMBOOL(P,M,L,FLG,VPR)], Assune the
following conditions hold at the cajl of COMBOOL(P,M,L,FLG,VPR)!

F1i1Plsa Boolean eaxpresslion,

F2=F73 COMPEXP’s C2«C7, respactively, with EXP replaced byp .
F8: L Isalabe],

F9: FLG Is T or NIL,

15

Result, COMBOOL produces a list, 1T ,of instructions given by

FLG | Algg!) equlivalent of I

-ra- I--;---------------------

NILIif NOT P then go to i
T | 1t P then go to L}

4t h t he statement labeled L not Inl, P is safe over the execution
of 1,

Prodf of definitlon of COMBOOL, Structural Induction on P,
Assume FLG = T, Bagis step! P Is an atom, COMBOOL(P,M,L,FLG,VPR)

= ((COMPEXP(P,M,VPR))
(JUMPN 1 L)) by case 1 of COVMBOOL

(Cinstructions (o leavye V P i-n aci)

(JUMPN 1 L)) by "linductlively" Invoking COWVPEXP (more
precisely, b y repeatingonthe atompP the basis
step - of the proof of COMPEXP; Inductionls
Invalid slnce the P in COWEXP |8 not a sub-
structure of P in COMBOOL)

=({f P then go to kL3}) by checking 2cases,

Inductlion step: CAR P and CDRParealways defined at cages 2=5
since NOT ATOM P because ¢ase 1 failed, Also CADR P |8 defined at
cased4since the NOT operator must have an argunent,

If P = (AND a), then from case 2b (wlth FLG = T)COMBOOL
= ((COMPANDOR((a),M,L1,NIL,)VPR))

(JRST 0 L) (the 2 Is redundant]

L) by jettyng GENSYM() be <the |abel L1 # L
slhce cachcall to GENSYM glves a upique
value

= ((if NOTal then go to L1}

(1f NOT @2 then Q0 to L1})

(1f NOTaN then go to L1j)

(JRST 2 L)

L1) by Inductively invoking COMPANDOR on (&),
a Boolean list

= ({fPthen go to L% L1 by cheeckling cases that define
AND (Including evaluationonly wuntll| the
fipstNIiLal and the case (AND) with NULL
a),
If P = (OR @), then from case 3a (with FLG = T) COMBOOL

16

(COMPANDOR((a),M,LsT»VPR))

(Cif al then go to L)
(tf a2 then go to L3}

(1t aN then go to L})) by Inductlively Inveking COMPANDOR
on(e), a Boolean|jist

= (if Pthen go to L3#) by cheoklng cases that define OR
(Including evaluation only until the flrst
non-NIL al and the ¢28e(OR) with NULL «?

If P = (NOT al)y, then from case 4 COMBOOL

(COMBOOL ((a1),M,L,NOT FLG,VPR))

(If NOT «1then go to L3) by Inductively Invoklng COMBQOL
on (%1), a one-elenent Boolean |lst

(if Pthengo to L3#) by definition of P,

[fPisanyother Booleanexpression,thencase5yle|ds

((COMPEXP(P,M,VPR))
(JUMPN 1 L)),

Immediate Inductive invoking of COMPEXPIsinvalld because the P In
COMPEXP Is nor a substrueture of P [In COMBOOL, But contro|'’s
reaching case 5 of COMBOOL means P IS not an atom (cas$ei) and neans
CAR P Is nelther AND, OR, NOT (cases2=4), Thus COMPEXP(P,M,VPR) wl||
be computed by one of its ¢as$es 5=8 all of whose procedures are
called wlth substructures of P+ €¢It I8 cruclial to avold ocase 4 of
COMPEXP t o avoid the cycle COMBOOL(P,,,) = COMPEXP(P,.s) =~
COMBOOL(P,.4),) COMPEXP(P,MyVPR) may be calculated by repeating (he
proof of cases 5«8 on P (see theorems 7 and 1)} this ylelds the sane
calculationas the basis step for COMBOOL, Since the deflnltlon of
GENSYMD guarantees unlque labels belng generated, the |abel L I8 not
in the "Instructions to leave V P in acl,"

The case FLG = NIL 18 proved sim|lar|y, e

Theorem 6 (Definmnition of COMCOND(U,M,L,VPR)I), Assume the
followlngconditions hold at thecall of COMCOND(U,M)L:VPR)?

Gi: U= ((ul u2) (u3 u4) ,,,» (U[2N=1] Wl2N])) is a |ist of palrs of
expressions, thefirstof eachopalrbeling a Booleanexpression,

G2-G7% COMPEXP’s C2-C7, respectively, with EXP replaced with uJ,

G8: L Is a label,

Result. COMCOND gives a list, lrof Instructions equivalentto the
Ajgol

acl 1= {f wul then u2 else 1fud then u4 ,,, else
if ULZN=1) then ul2NJ;s L3

P 1Is safe over the exsecution Of I, If no ul2]=1)1s non=NIL, the
value In acl is wundefined, In other words acl 3= VCOND=expression,

Proof of definition of COMCOND, Structural inductlon on U,
fasls stept U |s NyLL whence COMCOND produces, as required, Just the
label L%, Induction step: NOGT NYLL U and correct syntax inply CAAR
U, CADAR U, and CDRUarealways defined, COMCOND(U,M,L,VPR)

((COMBOQL(u1,M,L1,NIL,VPR))
(CCMPEXP(u2)M,VPR))
(JRST ?

L
ot éOMCOND(((u3 u4) oo (Ul2N=13 Uul2N1)),M,L,VPR)))
by letting GENSYM() be the |abe] L1 # L

(C1f NOT ul than go to L1})
(Instructtons to |leave V u2 in acl)
(JRST L)
Li
(acli=j{f ul then ud4 v . else |f ur2N=1] then uC2Nl} L1))
by Inductively Invoking COMBOOL, COMPEXP, and
COMCOND

(aclizif ul then u2 ,,, e|se if ul[2N=1]then ul2N]} L})
by checklingcases Invelving V ul,

P {ssafeas required, The easeof no ul2l=i)belng non=NIlL glves an
undefined result as required (in particular for N =z @), ®

Theorem 7., COMPEXP(EXP,M,VPR})as deflined In theorem 1 also holds
for condlitlomnal and Boolean expressions,

Proof, (An addition to the proof Of theorem 1,) Basls step:
vacuous, Induction step?: If EXP = (Boolean ®)wlth Boolean one of
AND, OR, NOT, then c¢ase 4 is the flrst to hold, COMPEXP(EXP,M,VPR)

((COMBOCL(EXP,M,LL,NIL,VPR))
(MOVED 1 (QUOTE T))

(JRST ¢ L2)

L1

(MOVED 1 2)

L2) where L1 # L2are the two GENSyM() |abe|s

((tf NOTEXP then go to L1})
(MOVED 1 (QUITE TN

(JRST 2 L2)

L1

(MOyETD 1 2)

Le) by repeating the proof of cases<=4: all

18

invoiving substructures, of COMBOOL(EXP,.)
since c¢case 4 of COVWPEXP neans CAR EXP is
either AND, OR NOT,

If Vv EXP = Tythenaclholds (QUOTE T)asreaulired since the (MOVE]l 1
(QUOTE T))and the (JRST 2 L2) Instructions are exeguted, If V EXP =
NIL, then acl holds 0O as resulted since contPal goes to L1 and the
(MOVEI 1) |Is executed,

If EXP = (COND @), thencase 5 {% the first to hold, COMPEXP =
COMCOND((a)sM,L,VPR)Y using the label L for GENSYM(), Invoking
COMCOND inductively shows the reauired Value, according to the
definition of COND, is imaci,e

TERM NATION OF THE COMPILERCH

Except to COMP in theorem .3, add the statement "and the
procedure terminates" toteresult of each procedure definftlon of
the compiler, The indugtion hypothesis wll| show termination Of each
procedure call on a substructure, The induction step 1is now reduced
to essentially "straight=iine code" whichterminates, COMP terminates
since MKPUSH and COMPEXP do,

To show that COMBOOL and COMPEXP terminate when one {8 called
from the other on the original structure, W can repeat a proef Ppart
as was done in the proofs of theorens 2 and 7,

DISCUSSION Of THE PROOF P@

The process of constructing this proof my be viewed s
discovering enough of theassumptions about the input and the
programring conventions used In writing the compiler, a8 8tatlng
them, and as proving them to be preserved or consistent|iy followed
over a1 | t he gcrocedures o f the conpiler, The successful
factorization Involving conditional and Boolsan expressions was
useful in doing this, The recursion of %th®& conpiler has beem handled
bythe statements Ofthetheorems, ineluding three dots (s4s)as8
needed, and by the use of structural induction, In addltloms sone
lessons of tep=down programming (DlJkstra 1972), stepwise rsflnsnment
(Wirth 1971)), and Hoare’s (1971) approach were applied in the preof
proceSs although informmlly,

It |s noteworthy that the proofprocess uncovered no garrors In
tha compiler, A previous version of thspaper omtted completely
nuneric-atons although <condition C7 (then written without the ¢lause

"# numeric=atom") wunintenmtlonally excluded them Diffie noticed
t heir omisslonwhenthe SOMP1Ier portadwnllecompliinag factorlal
function, Since numeric-atoms are needed for 8@|f=gompljatlion, case
2 of COWMPEXP was c¢hanged to include numerlo=-atoms, No Other ¢hanges
ware made tOo the sompl ler, The previous version of %this paper dld
not exclude the wuse of NIL, T, and nuneric-atoms as formal paraneters
nor the use of function names as arguments, They must be excluded

19

since the compllier fails on these Inputs,

Uespite thecompiler’s belng witten purely functionally, this
proof may ve usefully viewed as enploying Inductlive assertions, Wien
appliedtorecursive procedures of the kind tn the compiler, the
method verifies the conditions necassary for calling a procedure
(incyuding a recurs_ive cajy)s The resu;t of the procedure is thep
used to ghow what ig tpu® after the call (even !f the Ppocedy,es are
called rmeral, as arguments to tne APPEND function), This Ts tAe same
way A standard iterative program [S proved,

Unexplored so far are the Imp|icatlons for automat!c bproof
checking, of the length Of tnis informal, but hopefully rigerous
rroof, Next is the Proof P4,

THE COMPILER C+ ANDPROQF of CORRECINESS P4

The Input to the compijer C4 and the overal I statenent of
corractness are the same as for C@, T h e compilerC4ls simjlar in
structure to CD, has twice as mmny Iines of code asC@, and produces
about half as many instructions for a glven function as Cd. In
response the proof P4 contains e|leven new theorems and 1emms
(Theorers8=12a n d Lemmas 4=9) corresponding to t he elevennew
functions in C4, Also P4 contains modifications to the proofs
(mainly additional cases) of theorems 1, 3» and 5=7 reflecting the
changes In C4 tothefunctions of Cd« The similar structure allows
mich of the proof PgZ, witnout change, to become a part of P4, 1In
particular, the statements of lemmas 1 and 2 and theorens 1=7 are
unchanged (LOADAC, the subJect of lemma $» IS a completely new
function) because the 3Jenerally more efficient complled code of C4

accorplishes the same overall effect as does the code of €8, The
proofs of the new theorems and the Proofs of modiflcations In P4 are
the "sare k I nd" of proofs as in P2, (Diffie has self=compi |ed C4

successfully also,)

M Carthy described the three maln differences between CZ and C4
in a riteup, The second difference is the min source of
improverent In the compiied code as Wel I as the mmin reason for t he
lengthofP4,

€i) When the argument of CAR or COR is a variable, C4 compllies a
(HLRZ® 1 § P) or (HRRZ@ 1 I P) which gets the result through the
stack without first conpiling the argument into an accumulator,

(ii) Wien C4 has to set up the argunents cf a function In the
accurulators, On general, C4 nust compute the argunents one at a %t[me
and save tt hem cn the stack, and then |0ad the accumulators from the

stack, however, {f one of the arguments |5 a varlable,|Is a guoted
expressions, Or c¢an be ottalned from 2 variable by @ chain of CARS and
CDRs, then It neso not »e conputed until the time of loading

accurulators singe it canm be computed using only the accumulater in
which_ltis Wnted,

20

(iil1)C8computes Boolean expressions badly and generates many
unnecessary labels and JRSTS, C4 Is more sophistlcatedabout this,

c4 uses four addltional PDP=-12 |[nstructionst HLRZ®, HRRZe,
AME» and CAMN, The flrst two are used, with the @=sign denoting
%'h’dffect reference, t o obtaln CAR amd CODR, respectively, A n
assurptlion of P4 s that the instruction HLRZ® means o¢fagc) «
CAR(c(<ef>)) and that HRRZ@ ncans c¢(ac) « CDR(gt<ef>)), Because CAR
and CDR are comPjiled 9pen rather than c¢l0Sed, as wou|d be the caSe
for an arbltrary functlon calls» !t must be explleltiyemphasizedthat
CAR and CDR of T, NIL, or numeric-atom are conslderecd Incorrect
input, Since NULL and EQ are compl|ed open, the values Of both nust
be explicitly defined for P4

V (NULL EXP) = T If#f v EXP = NIL
V (EQ EXP1 EXP2) = T I{ff V EXP1 = V EXP2

with these definmltions and motivation, the pProof P4, organized In
bottom-w Style, follows,

The |istings of the two compllers were checked by hand to
dlscover the differences, Thesame set of differences was obtained
when the |lstings were computer-conpared by a f1 e comparison utl |ty
nrogram, These dijfferences showed where new theorems were neceded and

where old proofs needed modificatlion,

Lemma 4 ([Dafimition of CCCHAIN(EXP)], Assume EXP is a
non-atomlic expression, CCCHAINCEXP) . T |f and only [tEXPIsof the
form

(CBR (CBR (,,,(CRR a))))

with at least one B, Each B Is either A or D (thus produc]ng CAR Or
CDOR) and ais&an atom, In other woprds, CCCHAINCEXP) = T [#¢f EXP Is a

car-cdr chain.

Proof, Inductfon on the number N of |eading B’s In EXP, Basls
steps: If N= @ them CCCHAIN glves NIL because CAR EXP |8 nelther CAR
nor CDR If N =1 then EXP = (CGBR a), The result Is T because CAR

1s CAR or CDR and « Is an atom CCCHAIN a isnot called,

Induction step: If EXP = (CBLiR (CB2R (.+,,(CANR a)))) wlth N 2
2, then CRLR s CAR or CDR so the left part of the AND Is true,
Simee N 2 2, (CR2R (4, (CBNR @))) Is not an at om, CCCHAIN may be
invoked inductively, ylelding T and hence CCCHAIN EXP glves T, o

Lerma 5 [Definitjon of CLASS1(U, V)], Input assumptions:

Uisalisto f expressions (ul u2 ,,. uN),
Vis an S~expression,

21

Result, Let ci be the classifying integer of ul, namely

ul I ¢i

LA R R R R e ekt el i

T, NIL8 nymerjc=atom |
other atonm I
aqunted expression |
car-cdr chain |
other expression I

B UNE

CLASSl(Up V) = (cN.uN)-(...((CZ.UZ).((cl.U19.V))) ’

Proof, Structural induetion on U. Basis step: NJLL u glves v,
Induction step: CLASSI(COR U, (ecl,ul).V) =
(N, UNY (vl (c2.u2),CCel,ul) V))), Note that ul in CCCHAIN ul |Is
non=atoric ~ since the first test for ATOM ul falled. For the 8Spocial
case YV = NIL the result reduces to the |18t of palrs ((eN,uN) .,
(c2.ud) (ci.ul)) , e

Lermm 6 ([Definmjition of CLASS2(U, V, FLG)], Input assumptlons:

Uis a list of pairs (CgN,uN) ., (c2,u2) (cl,ul)) with ¢ as defined
in CLASSY,

V is an S=eypression,

FLG =T or N L,

Result, Let j be the areatest integer, If any, such that ¢J = 4 in U

FLG i Resuft

- - en L - T m W wP W L R N R R R R XN Ryt N N XX

T 1 Cel,ul) ((e2,u2)uus +CCcNyUN),V)) with ¢J mow 5

L R e e L L P R EE R RERE R R R XX R R XN

NL I <Cl.U1).<(020U2)10| l‘(cNOUN)QV)) with CJ st"' 4

In words, the list of pairs !s reversed and the flrst 4 is changed to
5,

Proof. Structural induction on U, 3asis step: NULL u glves v,
Inductlion step: If-FLG = T and ¢N =-4then CLASS2(CDR U, (5,uN),V),
NILY = (el ud)eC(c2,u2),4y (5, uN),V)) with ¢cls 225 sees cIN=1) as
in U, If FLG # T or eN# 4 then CLASS2(CDR U, (cN,uN),V, FLG) =
(ci,ul), ((c2,u2),,s +CCcN uUN),V)) with the ¢ci’s as In the table of
the result, Again, when V = NIL, the result reduces to the |Ist Of
najirs ((el,ul) (c2,u?2) ,+y (eN,uN)), o

Lerma 7 [Definition of CLASSIFY(U)], Assune U = (ul u2 +y4 uNd,
Let dl be the «classifying integer Of Wl as In CLASSI exceot the |ast
other expression has dl of 5 Instead o f 4, Then CLASSIFY(U) =
((d1,ul) (d2.u?2) ,,., (dN,UN))

Proof, Composition of CLASS1I with Vv as NL and CLASS2 with V as
NIL and FLG as T, ®

22

Theorem 8 (Definmnjtion of COMPLIS(Z, M, K, VPR)], Input
assurptions:

Zz is a CLASSIFY'ed |ist ofpajrs ((dK,uK) (dCK+1]J,ulK+1]),,,(aN,uN)),
Conditlons D1=D7 of COMPLIS of Theorsm 2,

Result, Let ©1, ,+¢2 80J=1] denote those subscripts, |f enys, in 2
for whigh dl is equal to 4, and let @j denote the one di, i? any,
equal to S,

COMPLIS = ((instructions to leave V ulel] In acl)
(PUSH P 1)

(Instructions to leave V ulelJ=1]lin acl)
(PUSH P 1)

(Instructions to leave V uleJ)!In acleJ)))

Note that thls COMPLIS is a new functlon from that of Theorem 2, The
f,nction STACKUP(U, M, VPR) Is identical to the o|d COMPLIS,

Proof, Structural Inductfon on Z, Basis step! NULL 2 glves
NIL, Ingugtion stgp: It gK =4 then g1 = K, COMPEXP(uK, M, VPR)
inductively proguces

(Instructions to leave V ufel] In acl)

In view of the (PUSH P 1)) then COMPLIS(((d{K+1],ulK+11),,,(dN,uN)),
M=1, K+1, VPR) Inductively comp|etes the deslred result,

If dK = 5 then eJ = K and there are no (more) 4's, COMPEXP(uK,
M, VPR) Inductively Produces

(Instructlions to leave V uCeJ] In acl)

If K= 1 (i,e, @J = 1), no further instruction Is needed nor
generated because V UCB.J] Is already in acl, Otherwise |[f K # 1, the
instruction (MDVE K 1) is generated to |eave V ufejJ]l in aclfej]l =
aclK],

If dK 15 neither 4 nor 5; COMPLXS(((dCK*lJ.UEK*iJ) [} (dNOUN)).
M, K+1, VPR) inductively glves the deslirad result, ®

Theorem 9 ((Definition of COMPC(EXP, N2, M, VPR)]J, Input
assurptions!

EXP 1s a car=cdr chain (CRIR (CR2R (,.,,(CANR a)))) where N 2 1} each
Bl is elther A or D3 and « IS an atom # T, NIL, numeric~atom,
Condltlons C€2=C6 and C7 for afrom COMPEXP of Theorem 1,

Resul t. COMPC = ((ac[N2]

13 CALR aclN2))
(acfN2] ;= C
d

B2R acCN2])

23

(ac[N2] = CBNR a))

Omly accunmulator N2 's wused,

Pr oof, Induction on the nunber J of B’s In EXP, Deflne €i to
be L or R according as RBilsA or D 3asls step; If N= 1 then EXP
= (CB1R a), Since ATOM a, COWPC produces

((Hei1R#Z® N2 M+COR ASSQOC(«, VPR) P))

= CB1R «)), the |ast |Ine of the result,

wh ich s ((ac[N2) :
£ N 2 2 then NOT ATOM (CR2R (,,,(CBNR a))), Hence

Inductlon step: I
COMFC produces

(HelRZ@ N2 N2)
. COMPC((CA2R(,, (CANR2))),» N2, M, VPR)

which, invoking COMSC !inductively, becomss

((acCN2) := Cp1R ag[N2 3)
(acCN2] := CR2R ac(N21])

«
(acCN2] ;= CBANR a))

Incidentally, the assumption <that EXP is a _car-cdt chain makes
unnecessarytheerrgrcheckatthe flrst tlne O f COMPC, o

Theorem1d[Defintticn o f LOAUDAC(Z, M2, N2, M, VPR)], [nput
assurptions;

2 4is a CLASSIFY’ed 1ist of pairs,

2 2 ((dIN2J,ulN21) (dIN2+1],ulN2+13) ,,,s (dN.,uN))

ConglitlonsD1=D70 fCOMPLIS o f Theorem2,

Let €1, 82, +uvs 2[1=M2] denote thoSe subscripts, if any, in 2 for
whighdlis equal t o 4, The stack P contains the values of the
1~-M2 ylel’'s as follows

Pl V ulel] V ule2] e VvV uli-M2]

Let ej, with J >1-M2, denote thegn2dis If any,) equal to 5, Asguyme

acleJ] holds V uteJ].

Result, LOADAC = ((Instructions to leave V U[CNZ2])) I n acfN2])
(Instructions to leave V U[NZ2+1] In ag[N2+1))

L N)

(fnstructlons to leave V uN In aghN))

Each line Of instructions uses anly the accumulator mentloned, The
stack P is unaltered., (The aj=tn line In,ol,ing aclejl |s mlssing,)

Proof, Structural 1inductiomo nZ2+ Basisstep! NULL 2 gives
NIL, lrductlon stan: SIx cases basedon theclassifylng Integer
A[(NZ2), 1f d[N2] = 1 then ufN2)ls an other atom LOADAC produzes

24

(MOVEN2 M+CDR ASSOC(ulN2], VPR) P)
o LOADAC(((dCN2+1],ulN2+1]) ,,. (dN,uN)),» M2, N2+1, M, VPR)

The MOVE Instrugtion lcaves V UIN2) In ac{N2] using on|y aclN2],
Inductively t h e LOADACpart completes the result including the
unalteration of the stack, The use Of the Infix dot follows the
conventions that the vajue Of LOADAC Is g (ist of Instruetlons,

If dIN2] = 2 or 2 then ulN2] s elther T,NIL, or numeric-atom:
or a Quoted expression, The proofsareeachsimiiar to the case
d[N2J] 3 1, The ¢generated instructions are, respectively,

(MOVE] N2 (QUOTE ulN21])

(MOVEI N2 ,[N2J)

with eaeh followed by the same LOADAC term as In the first case,
Bot h MOVE] Instructions leave V ulN2]) inacCN2] wusing only acl(N21],
and again the LOADAC term Inductive|y completes the result,

If dgN2) =3 then WEN2) Is a car=cdr chaln, Syntactically
correct input Impjles the atom ® at the end of the chaln I8 neither
T/NILy, nor nmumeri{c= atom Thus COMPC may be Invoked, Slnee a
car=cdr chain Is executed from Plght to left, the REVERSE functlon is
needed, LOADAC Produces

(CacCN2] := CBNR a)
(acCN2] := CA2R acCN21)
(aclN2] ;= . CR1R ac(N2)}
(same LOADAC term as flrstcase))
The flirst N |ines are
(Instructions toleave V ulN2] In aclfN2])

and the LOADAC term inductlively conpletes the result,

If dCN2) z 5 then ac(N2] s not altered,
LOADACC((QdCN2+1),ulN2+13) ,+s C(dNJuN))s» 1, N2+1, M, VPR) [nductively
gives the result, (The oconstantlas the secondargument In this

call toLOADAC neans 1-M2 = 1=-1 = @, {,e. the stack |[npuyt condition
of LOADACiS vacuous,)

Filnally, If dCN2) = 4 then the last test of LOADAC produces
(MOVE N2 M2 P)

which, using onlyacCN2), leaves V ulN2] In ac(N2] because thereare
1=-M2 = ~M2+1 of t he (v ulell)’s in the stack,
LOADACC((dIN2+1] ., ulN2+1]) 4.y (dN,uN)), M2+1, N2+1, My VPR)

25

induetlive|y completes the re
the remalning d[N2+1] ,.,. dN,

the Staek segnent

Of

interest

the staek Input condition |

VU['leo)

sult since there 1S now one fewer 4 In
Even though the stack |s unaltered,
Is now from V ule2] to V ul1=M2) whlgh
nductively renumbers as V ulell to

Lerma 8 [Definition of CCOUNT(Z)], Assume 2 |Is 8 CLASSIFY’ed
list of palrs ((dl,ul) (d2,u2) ses (dN,uN)), CCOUNT glves the nunber
This nunber Is denoted by #4,

of di’s that are 4,

Proof, Structural fnductl!

Inductlon step # 1f
Inductively glves the result,
glveS the

(gN,uUN)) Inductively

Larma 9, If N
LIST LIST('SUB,'P,LIST(’C,2,0,N,N)),

Proof, If N =

o BY)y If N > 0 then

Theorem 11
assumptions;

)

C

dl = 4

2 0 then

t hen N

on on 2, Basls step: NULL £ glves @,
then 1 + CCOUNT ({(d2,u2) ,,, (dN,uN))
If d1 # 4 then CCOUNT ((d2.:uU2) 44,

result, e

SUBSTACK N Is ths same funotlon as

IL ts LIST LIST(’suB, ’'P, LIST(’C,P,0,

It Is clear, e

Definitlion

U = (ul w2 ves UN) %5 a l‘St of
Conditlons D2=D7 of COWMPLIS of

Result, acl holds V ul for 1gI

put of COMPLISA,

o f COMPLISA(U, M, VPR)], Input

argunent s,
Theorem 2,

€N, The stack P |s safe over the out-

Proof. COMPLIS(CLASSIFY U, M, 1, VPR) places the ¢lass 4
argurents on the stack {n the o "
also leaves the class 5 argument, say Uls InacJ, It {8 permlssible

to invoke

LOADAC(((d1l.ul)

since (i) there are

P contains the class
COMFLI S, and (lv)

(d2,u2) .

] now <=(M=#4
(i§{) there are 1=(1-#4) =#4 of
4 argunents N the proper order by the result of

acJ holds

COMPLI S, After SUBSTACK#4, th

The order of
stack a non-class 4
computed by COMLIS,
'y

rder requlred for LOADAC, COMPLIS

, CANJuN)), =24, 1, M=#4, VPR)

) = =M+#4 accessible stagk Jocatlions,
the di’s which are 4, (11]) the stack

V ul by the last |Ine of the result of
e result 1S established,

tlrst COWLIS and then LOADAC avolds th8 need to
argument S|

LOADAC may

nce after the class 5 argumant is
assume the safety of al] acl, 1S18N2,

Theorem 12 [Detinition of COMPANDORL(U, M,L,L2, FLG, VPR),

Input assunptions:

26

U = (Ul u2 4.9 uN),
Congitlons E1=E9 of CCMPANDOR of Theorem 4,
L2tsalabel dlifferant from L.

Result, COMPANDORlI produces a |Ist,]+ of Instructlions glven by

FLG | Algo] eauivalent of |

P e g e W LX X R R R R A R R R B A

NIL | If NOT ul then go to L}
| 1f NOT u2 than go to L}

[
[Tt NOT UlN=1] then go to L3
| 1f uN then 3o to L2;

TI11f ul then go to Li
| 1f u2 then go to L;

I LI I}

I if uON~=1] then go to L3
| 1f NOT uNthen go 'Co LZ&;

1f, however, U isNULL thenthe Algol squivalent produced Is"go (o
23" The statements labeled L and L2 are not in I, P jssafe over
the execution of I,

Proof, Structural Induction on Us NULL U glves "go to L23,"
ihductlon step! Assume FLG = Te If NULL (u2 4¢0 uN), 1,86, N = 1,
then

COMPANDORY = COMBOOL(yl, M, L2, NIL, VPR)
=if NOT ul then go to L23
as required, if NOT NULL (u2 ,,., uN),i.8.N22, then

((COMBOOL (ul, My L, FLG VPR))
(COMPANOORLI((U2 +uy uNd), My, Ly L2, FLG, VPR))

inductively givest nh eresults Note that (u2 ,,, uUN) I8 not NULLIn
the Inductive call, Thaunliqueness of the labe| generation mechanism
willhelpsnhowthat thelabelslL and L2 are outside I, T, case FLG
= NIL Is essentially identlcal.®

Theorem 1 3 ([Definition of COMBOOL(P, M, L, FLG, YPR)], Input
assurptions are the same as COMBOOLofTheorem 5, COMBOOL produces a
I isty I, of Instructions @glven by (the same &8 Theorem 9)

FLC | Algo! equlvaient of 1

- - e I LR e e P R R R R A R g

NIL [1T§NOT P then g0 to Li

p---l. RN R N R R K A R B

Tl if P then g0 to L

27

with the statenent labeled L notim I, P Is safe over the execution
of I,

Proof. (Modifications t0o the proof of theorem 5,) Assume FLG =
T. Add a casse P = T which from case 2,1 produces (JRST @ L) as
required, Add a <case P = (EQ « B) with @« and P expressions,

Inductively invoke COMPLISA((a fB), M, VPR). COMBOOL produces from
case 1,1

((a¢l holds V «)
(ac2 holds V B)
(CAMN 1 20
(JRST g L))

(if (EQ @ B) then go to L#)

({1f P then go to Li)

Mdify the P - (AND a) case, I[f @ Is non=NULL then after
evalyating COMPANDOR1((a), M, L1, L, NIL, VPR), the resul|tfo||ows by
noting the equivajence of

((If NOT uN then go to L13)
(JRST L)
L)

and

((if uN then go to Li)
L)

If @ is NULL, than ((JRST L) L1) results In both Instances,

Under the assumptlon FLG Te the P = (OR a) case }s unchanged,

Add the c¢ase P = (NULL @) with & an expression, COMBOOL
nroduces fromcase 4,1

((COMPExP((a)y, M, VPR))
(JUMPE 1 L))

((Instryctions ta leave V @ Inacl)
(JUMPE 1 L))

(1f P then go to Li)

]

These cases wlith FLG = NIL areprovedsimilariy, The tests In
COMBEOOL are slightly different: T |s treated separately rather than
as an atoms the EQ and NULL functions aretreatedseparatelyrather
than as arbltrary functions in the |asttest, These differences do
not affect the result of CSOMBOOL, e

28

Theorem 14 [Definition of COMCOND(Y, M, Ls VPR)), Same as
COMCOND of Theorem 6,

Proof, To the proof of Theorem 6 addtwocasestothelnduction
step corresponding to the second and third tests of COMCOND, The
second test asks if the palr (ul u2) Is thepalr ((NULL &) NIL), 1t
so COMCOND produces

((COMPEXP(a, M VPR))
(JUMPE 1L)
(COMCOND(((U3 ud) ,4y (Ul2N=13 ul2N3))s M+ L,VPR)))

((instryuctions to leave V @ in acl)
(JUMPE 1 L)
(acl = }f ud then U4i.selse If ul2N=14y then ul2Nsi L))
by indugtively invoking CH PEXPang OMCOND

(acl := If NULL @ then NIL elselfu3 then ud4 ,,, else
if yC2N=1] then ul2NJ]; L)
by cnecklng two cases on NULL at [f NULL «
than acl already holds @ = V NIL,

~ The third test asks if (ul u2) Is (T u2), If so any succeeding
pairs may be fgnored, COMCOND produces

((COMPEXP(u2, M, VPR))
L)

as required, ©

Theorem 15 [Definjtion o f COMPEXP(EXP, M, VPR)], Same as
Theorems landy,

Proof, (Modifications to the proofs of Theorens 1 and 7,) Add a
case for EXP =(CAR @), By correct syntax, @ZT, NlL,numeric=atom,
If a is an atom c¢ase 3,1a produces

(HLRZ®@ 1 M+CDR ASSOC(a, VPR)P)

As Iin Theorem 1,casel3,» M+CDR ASSOC(a, VPR) Is correct; by the
definition of HLRZ®@, acl nolds V EXP, IF @ is not an atom, thencase
3.1b holds. Invoking COMPEXP(e, M, VPR) inductively leaves V & in
acl, from which (HLRZ® 1 1) produces CAR V @ = V EXP Inaclas
required, The additional c¢ase for EXP = (COR @) Is tdentical to the
case for CAR except for HRRZ@,

Case 4, Thafirstcase o fTheorem 7 also hand|es the function
EQ since Theorem 13 handles EQ,

Case 7, EXP = (fname @) where o conslsts of N argunents,
COMPEXP produces

29

((COMPLISA((a)y» My VPR))
(CALL N (E fname)))

This IScorrect, 1sees acl holds V EXP In view of the definitions of
COMPLISA and CALL,

Case 8, STACKUP |s Identical with COMPLIS of Theorem 2, USe
Lemra 9 on SUBSTACK, e

Theorem 16 [Correctness of the compl |erl, Same as Theorem 3,
Proof, Same as Theorem 3 but usling Lemma 9, e

Termination of C4 follows by essentially the same argumenta s
used for €@, CLASSIFY and SUBSTACK Jjoln COMP as exceptions 8ince
neither fisrecursive, COMPLISA can be shown toterminateby replacing
its twocalls(in COMPEXP, case 7 and COMBOOL, case 1,1) by thebody
of COMPLISA; this syubstltutlon wlII allow the body to reference
substructures directiy., This completes the proof P4 of the complier
c4,

The process of constructing P4 uncovered six errors jn Cé4
originally written, In additlon to the numeric~atom problem in CO,
Three were found early on by attempting to show thatCARsand CDRsin
C 4 werealways wegl|~-deflned,l,a, notappiliadtoatoms, A|though no
further errors Wer e expected, the other three surfaged after
careful |y stating thetheorems and then discovering where the Proof
could not be conpleted, Eachcasethatfal|ed |9dVQPy quickly to the
construction of a counter-example %0 the Statement Of corregtness,
and furthermore showed what changes to C4 would be suffle¢lent, These
changes were made (by London) and the proof wascompleted,

The changes made to C4 are sShown in the |lsting of the cOmpi jer
in Appendix 2, [Each change |S MOW elaborated!

(i) COMPEXP, case 2, Same change to C@ for numerlo~atoms,

¢ii) COMCOND, |ine 2and COMBOOL, case 1, Found by checklng C ARs
and CDRs for being wel| (-defined, Counter~examp|es are Boojean atomlic
variables,

(ii1) COMPANDORL, Ijnes 1=2, Pound as in(jl), Only counter=examp|es
are (AND) and (OR), Incorrectness in the flrst proposed change tIF
NULL U THEN NIL ELSE), which seens correct, was only discovared by
checkling the case N = 0 In P = (AND @) of Theorem 13,

(iv) LOADAC,case CAAR Z = 0 and CLASS1, lines 3=5, Found by con=

sidering the case 9f T, NIL, and numeric-atomsasactualparameters
to a functlion in the atom case for LOADAC in Theorem 10,

30

(v) LOADAC, case CAAR £ = 5, Found by noting that the result for
LOAJAC in Theorem 18 did not Inductively follow [|f d{N2] = 5,
Counter-examples are functlon calls with a class 5 argumenti all
succeeding arguments fail®8d to be compl led at all,

(vi) COMBOOL, case 5, Foundby reconsidering the case of a LAMBDA
expression In Boojean context (for example anargument Yt0AND,OR,OF
coyD)atthe last case of Theorem 5 which case falled Iin Theorem 13,

As a check on the changes and the completed proof P4, London
usec the changed C4 to compile some ©f MCarthy's test functlons 4nd
also a set of representative counter-examples, The test functions
gave identical output as the origlinal C4 (another use of the flije
comparison utllity program), The counter-examples gave c¢orrect
output as determined by a hand [nspection,

ACKNOWLEDGMENTS

Asnoted, John McCarthy made thecompllersavailabletome, PRog

M, Burstall and Wnl!tfield DIffle nrovided many stimulating
discussions and suggestions,

31

REFERENCES

surstalls, R, M,, 1969, Proving properties of programs by structural
induction, Computer J,s» 12, 1, February, pp, 41-48,

Burstall, R. M., § Landin, P, Jy» 1969, Prograns and thelr proofs: An
al gebraic anprosach, Machine Inteiligence 4, B, Me|tzer & D.
Michie (eds.)s Amepican Elsevier, pp. 17=43,

Dijkstra, E, W., 1973, Notes on structured programmng, T.H.=Report
72-WSK=23, Taechnological Ynlversity Eindhoven, The Netherlands,
Second Edition, Aonrll,

Hearms A C,» 1973, REDUCE 2 wuser’s mmnual8 Artifieia| Intel l|igence
Mero AIM=133, stanford University, October,

Hoares Co A Re» 1971, Proof of a program: FIND, Comm., ACcM 14, 1,
January, pPp.39=45,

kanfan, D. M,» 1957, Correctness of a compller for Algoli=|lke
programs, Artificial Intelligence Memo No, 48, Stanford
University, July,

Longcon, R, L., 1372, Proving programscorrect: Some tachnlaues and
examples, glT, 13, 2, pp. 168-182,

McCarthy, J, 8 Painters J, A, 1967, Correctness of a g¢ompllar for
arithmetic exnressions, Proceedings of a Symposium imApplied
Mt hematics, Vol, 49, J T, Schwart z ({ed,.), Anst | can
Mithematical Sgsiatys pp,33-41,

McGowan, C, L., 1971, An inductive woof technjiaue for {nterpreter
equivalence, Farmal Semantics Of Programming [anguages, R,
Rustin (ed,), nsrantice~Hall, to anrpsear,

Milners FR,, W., Implamentationa n dapplicationso fScott’s logic
for gomputable functions, Proceedings of a Conference on Praving
Assertlons about Programs, Asseciation for Computing Mchinery,
to Appear,

Painter, J. A,» 1967, Semantic correctness of a c¢ompller for an
Algol=|Tke Janguyage, artificial Intelligence Mmoo No, 44 C[also
Ph, D. thesis], Stanford University, Mrch,

Welssman, C., 1967, Lisp 1,5 Primer, Dickenson PyblishingCo,

wirthy Noy 1971, Proaramdevelopment b y stepwise refinement, Comm,
ACM, 14, 4, Apri |+ pp, 221=227,

32

APPENDIX 1 = A LISTING OF THE COMPILER C#®

FEXFS COMPL FILE « 3EGIN SCALAR Z;
EVAL(/OUTPUT , ¢ *DSK: | LI ST (CARFILE,'LAP)))g
EVALC(*INPUT , ('DSK: , FILES
INC('T JNIL)S
QUTC(T,NIL)$

LJOF: Z « ERRSET(CAD(Y
IFATOMZTHENG O T 0DONED
2 « CAR Z%

IF CAR # E£Q'JETHEN

BEGIN SCALAR PROG;

PROG « CUMP(CADR Z,CADUR z,CADDDR R

MAPC(FUNCTIAON(PRINT),PROG)S
QUTC(NIL,NIL)S

PRINT LIST(CADR Z,LENGTH PROG)S

QUTC(T,NIL)S

END
ELSE PRINT 28
50 TO LODPS

DONE OUTCINIL,T)S
INC(NIL,T)S
RETURN’ENDSZOMP END ;

%l*#"‘lI*i&i*{i#&#*#*&i*'#*&b*&kﬁ&&&#*#**i#*i****“’l'*“'i**“"&&i'.*
For the nurposes of thls paper» the compiler starts here; above here

may be ignored,
&#*l#&iilli#i*bi&#ﬁu*{i&i&ul&{%i&#i!**#&%l%lii&*ii*&il&&&.l&#il&*il!*

COMP(FN,VARS,EXP) «
(LAMBDA N;
APPEND(

LIST LISTC('LAP,FN,’SUBR).
MKPUSHIN, 1),
COMPEXP(EXP,=N,PRUP(VARS,1)),
LIST LIST (*rSUB ,'P,LIST(’C,B,2,N,N)),
*((POPJ P) NIL)))

LENGTH yARS;

PRUP(VARS,N} « IF NyULL VARS THEN NIL
ELSC (CAR VARS . N) . PRUP(CDR VARS,N+1);

MKPUSH(N,M) « IF N<M THEN MIL ELSE LIST(’PUSH 2 'P o M) MKPUSH(N,M+1)}

COMFEXP(EZXP,M,VPR) «

(11 IF NULL EXP THEN * ¢ (NMOVET 1 2))
(23 ELSE IF EXP EQ *T OR NUMBERF EXP THEN

LIST LIST('MOVE]L, 1, (LIST(’'GUOTE, EXP)))
£31] ELSE IF ATOM EXP THEM

LIST LIST(’MOVE ,1,M+COR ASSOC(EXP,VPR),’P)
(473 ELSE IF CAR TXP EQ *AND OR CAP EXP EQ *OR OR

C A REXPEQ'NOT THEN

33

(LAMBEDA L1,L2; APPEND(COMBOOL(EXP,M,L1,NIL,VPR),
LISTC/(MOVE] 1 (QUOTE T)),LIST('JRST ,@,L2),
L1,/ (MCVE]l 1 2),L2)))

(GENSYM(),GENSYM())

ELSE IF CAR EXP EQ *COND THEN
COMCOND(CDR EXP,M,GENSYM(),VPR)

(51
(61 ELSE IF CAR EXP EQ 'QUOTE THEN LIST LIST(’MOVEI,i,EXP)
€73 ELSE IF ATOM CAR EXP THEN
(LAMBDA N; APPEND(COMPLIS(CDR EXP,M,VPR),
LOADAC(1=N,1),
LISTLIST('SUB, ' P LLISTC('C,0,@,N,N)),
LIST LISTC‘CALL ,N,
LIST('E ,CAR EXP))))
LENGTH CDR EXP
£83l ELSE IF CAAR EXP EQ ‘LAMBDA TH&N
(LAMBDAN} APPEND(COMPL]IS(CDR EXP,M,VPR),
COMPEXP(CADDAR EXP,M=N,
APPEND(PRUP(CACAR EXP,1=M),VPR)),
LIST LIST(rsSuUB,'P ,LIST('C ,8,0,N,N))))
LENGTH COR EXP3
COMPLIS(U,M,VPR) =~

IF NULL U THEN N L
ELSE APPEND(COMPEXP(CAR U,M,VPR),

'((PUSH P 1)),
COMPLIS(CDR U,M=1,VPR))}

LOADAC(N,K) « IF N>p THEN NIL ELSE LIST(’MOVE ,K,N,’P),
LOADAC(N+1,K+1);

COMCOND(U,M,L,VPR) .

IF NULL U THEN LIST L

ELSE (LAMBDA L1; APPEND(
COMBOOL(CAAR U,M,L1,N]L,VPR),
COMPEXP(CADAR U,M,VPR),
LISTC(LIST(*JRST ,L),L1),

COMCOND(CDK U,M,L,VPR)))
GENSYM();

COMBOOL(P,M,L,FLG,VPR) «
IF ATOM P THEN APPEND(COMPEXP(P,M,VPR),
LIST LIST(IF FLG THEN *JUMPN

€11l
ELSE '"JUMPE »1,L))
) ELSE IF CaR P EQ 'AND THEN
123 (IF NOT FLG THEN COMPANDOR(COR P,M,L,NIL,VPR)
[bl ELSE (LAMBDA L13 APPENO(
COMPANDQR(CDR P,M,L1,NIL,VPR),
LIST LIST('JRST »8.L),
LIST L1))
GENSYM())
[33 ELSE IF CAR P EQ 'OR THEN
(1F FLG THEN COMPANDOR(CDR P,M,L,T,VPR)

fal
34

(b] ELSE (LAMSDA L1 APPENOC
COMPANDQR(CDR P,M,L1,TsVPR)Y,
LIST LIST(’JRST ,8,L),

LIST L1))
GENSYM())
(4] ELSE IF CAR P FQ *NOT THEN
COMBOOL(CADR P,M,L,NOTFLG,VPR)
(51 ELSEAPPEND(COMPEXFP(P,M,VPR),

LIST LIST(IF FLG THEN’JUMPN
ELSE ‘JUMPE ,1,L));

CCMPANDOR(U,M,L,FLG,VPR)Y XFNUL U THEN NIL

ELSE APPEND(COMECOL(CAR U,M,L,FLG,VPR),
CIMPANDOR(CDR U, 1,L,FLG, VPR));

35

AFPENDIX 2 = ALISTINGO FTHEMOIREOPTIMIZINGCOMPILERTY

The changes neededtocompietethenroofor correctness ofC4

a r eshowri nthislisting- - delationsencloSedbetween the symbolsc
and > and additionsernzlosed between %he symbols [apnd J with the
latter two also beinGusedto number cases, The ecight changes are at

COMPEXP, case 2; COMCOND, line 2: LOADAC, cases CAAR 2 s @ and CAARZ
5. CLASSY, 1ines 3=5; COMBOOL,cases 1 and5;andCOMPANDORL, 1 i nes
I-2:

FEXFRCGMPL FILE« BEGINSCALAREZS
‘ EVAL(/OUTPUT , (*DSK: | LIST(Cc AR FILE ,‘LAP)))g
EVALCPINPUT | (*DSK: FILEXYS
INC(’T 'NILYS

CUTC(T,NIL)S

LDOP: Z « ERRSET(READ())®
I FATOM ZTHENGOT O DONES
£ ¢« CAR 2%
IF CAR ¢ EC? 'DE THEN

ELGINSCALARPROG;
PROG « COMP(CADR 3,CADDR z,CADJDR z)%
MAPC(FUNCT I SN(PRINT),PROG)$
CUTC(NIL,NIL)S
PRINTLIST(CADRZ,LENGTHPRQOG)$
OUTC(T,NIL)E

END
ELSEPRINTzS
GO TOLCOPS

DONE : OUTC(NIL,T)%
INC(NIL,T)¢
RETURN *fENDCOMP EMND:

TR YRR FEEE R R R RS SRR ES A 8 AR X222 A AR A R R R 2 AR R AR R RS R X 2 X X X4

For thepurposes of this paper, the compijer starts herejabove here

may be ignored,
XS ZZEZEEEREREREFEYXEFY L s A R XA RR R R AR RS R R LSRR R R R R LA X R 2

COMP(FN,VARS,EXP) «
(LAMBDA VPR, N;
APPEND(

LI s TLIST(!'LAP,FN,’SUBR),
MKPUSHI(N, 1),
COMPEXP(EXP,=N,VPR),
SYBRSTACK N,
*C(POPJP)Y NI

(PRUP(VARS,1),LENGTH VARS):

ELSELIST LIST(’/SUB ,*F ,LIST('C ,B3,8,N,N));

36

PRUP(VARS,N) « IF NULL VARS THEN NIL
ELSE (CAR VARS , N) , PRUP(CDR VARS,N+1))

MKPUSH(N,M) « IF N<M THEN NL ELSE LIST(’PUSH,’P,M),MKPUSH(N,M+1);

COMPEXP(EXP,M,VPR) «
£11 If NULL EXP THEN ’((MOVEI 1 2))
€21 ELSE IF EXP E£Q ‘T cTHEN *((MOVE]l 1 (QUOTE T)))»
[OR NUMBERP EXP THEN
LIST LIST(’MOVEI, 1, (LIST(’QUOTE, EXP)))]
£31] ELSE IF ATOM EXP THEN
LIST LIST(’MOVE ,1,M+CDR ASSOC(EXP,VPR),'P)
£3,11 ELSE IF CAR EXP EQ ‘CAR THEN
Cal (IF ATOM CADR EXP THEN
LIST LIST('HLRZ@,1,
M+CDR ASSOC(CADR EXP,VPR),'P)
Cpl ELSE APPEND(COMPEXP(CADR EXP,M,VPR),
*((HLRZ® 1 1))))
(3,21 ELSE IF CAR EXP EQ ‘COR THEN
Cal (IE ATOM CADR EXP THEN
LIST LIST('HRRZ® ,1,
M+COR ASSOC(CADR EXP,VPR),'P)

(pJ ELSE APPEND(COMPEXP(CADR EXP,M,VPR),
'((HRRZ@ 1 1))))
€41 ELSE [F CAR EXP EQ ‘AND OR CAR EXP EQ@ 'OR OR

CAR EXP EQ 'NOT OR CAR EXP EQ 'EQ THEN
(LAMBDA L1,L2; APPEND(
COMBOOL (EyP,M,L1,NIL,VPR),
LIST(’ (MOVE] 1 (Qﬁ OTE T)),LIST(’JRST.Z.L2),
Li,’ (MOVEL 1 2),L2)))
(GENSYM(),GENSYM())

(51 ELSE IF CAR EXP EQ 'COND THEN

COMCOND(COR EXP,M,GENSYM(),VPR)
(6l ELSE IF CAR EXP EQ 'QUOTE THEN LIST LIST¢’MOVEI,1,EXP)
€71 ELSE IF ATOM CAR EXP THEN

APPEND(COMPL]SA(CDR EXP,M,VPR),

LIST LIST(’CALL ,LENGTH CDR EXP,
LIST(’E ,CAR EXP)))
£81 ELSE [F CAAR EXP EQ 'LAMBDA THEN

(LAMBDA N. APPEND(STACKXUP(CDR EXP,M,VPR),
COMPEXP(CADDAR EXP,M=N,
APPEND(PRUP(CADAR EXP,1=M),VPR)),
SUBSTACK N))

LENGTH CDR EXP3:

STACKUP(U,M,VPR) « IF NULL U THEN NIL
ELSE APPEND(COMPEXP(CAR U,M,VPR),
‘((PUSH P 1)),
STACKUP(CDR U,M=1,VPR));

37

CCCHAINEXP«(C AREXPEQ-C AR O RCAREXP EQ‘CDR)A N D
(ATOM CADREXPO RCCCHAIN CADR EXP);

CCMPC(EXF,N2,M,VPR) «

I FATOMEXPTHEENE R R O R/COMPC

ELSEIl Fcar EXPEQ/CARTHEN
(1F ATOM CAUR EXP THEN
LISTLIST('HLRZ® ,N2,M+CDR ASSOC(CADR EXP,YPR),'P)
ELSE LIST(*HLRZ® ,N2,N2),COMPC(CADR EXP,N2,M,VPR))

ELSE IF ATOMCADREXP THEN
LIST LIST(’HRRZg »N2,1M+CORASSOC(CADR EXP,VPR),’'P)
ELST LIST(/ARRZ® ,MN2,N2),COMPC(CADR EXP,N2,M,VPR);

COMCOND(U,M,L,VPR) «
IF NULL U THEN LIST L
ELSE IFINCTA T O MCAARUAND]
CAAAH UEZ'NULLANDNULLCADARU T HEN
APPEND(COMPEXP(CADAAR ,M,VPR),
LIST LIST(fYJUMPE ,1,L),
COMCONU(CUR U,M,L,VPR))
ELSE IF CAARUEQ'TTHEN A
APPEND(COMPEXP(CADAR U,M,VPR)Y,LIST L)
E LS ECLAMBDALL; APPEND(
COMJ00L(CAAR UsM,L1L,NIL,VPR),
CCMPEXP(CADAR U,M,VPR),
LIST(LIST(*JRST ,2,L),L1),
COMCOND(CDR U,M,L,VPR)))
GENSYM();

COMFLISA(U,M,VPR) =«
(LAMBDA #Z; APPEND (
CMRLIS (2 ,My%, VPR) |
LOADAC(Z2,1-CCOUNT £,1,M=CCOUNT Z,VPR),
SUBSTACKCCOUNT t))
CLASSIFY

CCOUNT 2 « IF NULL 2 THEN © ELSE IF CAAR Z2 = 4 THEN 1+CCOyYUNT CDR 2
E LS ECCOUNTCORZ;

LOACAC(Z,M2,N2,M,VPR)
F NuLL ZTHENN T U
FLSE IF CAA? 2 = 1 THEN
LIST((*MOVE ,N2,M+CDRASSQOC(CDAR 2,VPR),'P)
+LOADAC(CDR #,M2,N2+1,M,VYPR)
ELSE IF CAAR 2= THEN
LIST(’MOVEL, N2, (LIST(’/QUOTE, CDAR £)))
JLOADAC(CDR 2,M2,N2+1,M,VPR)]
ELSE IF CAAR Z= 2 THEN
LIST(’MOVE]D +N2,CDAR #) '
LOWDAC(CDOR Z#,Me,N2+1,M,VPR)
ELSE IFCAARZ=3ITHEN

38

APPEND(REVERSE COMPC(CDAR 2,N2,M,VPR),
LOADAC(CDOR Z,M2,N2+1,M,VPR))
ELSE IF CAAR 2 = 5 THEN <NIL> (LOADAC(CDR Z,1,N2+1,M,VPR)]
ELSELIST('MOVE.N2,M2,'P),
LOADACC(COR Z,M2+1,N2+1,M,VPR)}

COMPLIS(Z,M,K,VPR) «

IF NULL 2 THEN NIL

ELSE IF CAAR Z = 4 THEN APPEND(
COMPEXP(CDAR 2,M,VPR),

s *((PUSH P 1)),

COMPLIS(CDR 2,M=1,K+1,VPR))

ELSE I[F CAAR 2 = 5 THEN APPEND(
COMPEXP(CDAR 2Z,M,VPR),
IF K=1 THEN N]L
ELSELIST LIST(/MOVE ,K,1))

ELSE COMPLIS(CDR Z,M,K+1,VPR)}

CLASSIFY U « CLASS2(CLASSL(U,NIL),NIL,T):

CLASS1(U,V) « IF NULL U THEN V
ELSE IF ATOM CAR U THEN
C(IF CAR U = ‘NIL OR CAR U = *T OR NUMBERP CAR U THEN
CLASS1(CDPR U, (@ , CAR U),V)
ELSE] CLASSL1(COR U, (1, CAR W) ,ViD)]
ELSE IF CAAR U = *QUOTE THEN CLASS1(CDR U,(2 , CAR U).V)
ELSE IF CCCHAIN CAR U THEN CLASS1(CDR U,(3 , CAR U).V)
ELSE CLASS1(CDR U,(4 , CAR U),V)i

CLASS2(U,V,FLG) « IF NULL U THEN V
ELSE IF FLG AND (CAAR U = 4) THEN
CLASS2(CDR U, (5 , COAR U),V,NIL)
ELSE CLASS2(CDR U,CAR U , V,FLG)}

MKJRST L « LIST LIST(!JRST »2,L)}

COMEOOL(P,M,L,FLG,VPR) =
(2.11 IF P EQTTHEN (IF FLG THEN MKJRST L ELSE NIL)
Cl3 CELSE IF ATOM P THEM APPEND(
COMPEXP(P, M, VPR),
LISTLIST(IF FLG THEN ‘JUMPN
ELSE ’'JUMPE '1|L))J
1.1, ELSE IFCARP EQ 'EQ THEN APPEND(
COMPLISA(CDR P,M,VPR),
[F FLG THEN *((CAMN 1 2)) ELSE *((CAME 1 2)),

MKJRST L)
E2 ELSE IFCAR P EQ 'AND THENW
A (IF NOT FLG THEN COMPANDOR(CDR P,M,L,NIL,VPR)
(o3 ELSE (LAMBDA Li; APPEND(
COMPANDORL (COR P,M,L1,L,NIL,VPR),
LIST L1))
GENSYM())

39

£33 ELSE IF Car P £§ *OR THEN
Cal (IF FLG THEN CUMPANDOR(COR P,M,L,T,VPR)
Lol ELSE (LAMBDALL; APPEND(
COMPANDORLI(COR P,M,L1,L,T,VPR),
LIST Ll1))
GENSYM())
(43 ELSE IF CARPER'NGTTHEN

CIMSOOL(CADR P,M,L,NOT FLG,VPR)
(4,13 ELSE IF CAK P EQ “ NULL THEN APPEND (
COMPEXP(CADR P,M,VPR),
LIST LIST(IF FLG THEN ‘JUMPE
ELSE ‘JUMPN ,1,L))
£53 ELSE <cIFATOMCAR P THENS APPEND(
COMPEXP(P,M,VPR),
LIST LIST(IF FLG THEN '’ JUMPN
ELSE <JUMPY ,1,L));

CCMPANDOR(Y,M,L,FLGE,VPR) « IF HNuLL U THEN NIL
ELSE APPENC(COMBOOL(CAR U,M,L,FLG,VPR),
COMPANDCR(CDR U,M,L,FLG,VPR));

COMFANDSRLI(U,M,L,L2,FLG,VPR) « [IF NULL U THEN MKJRST L2
ELSE] I F NULLCODRU THEN COMEOOL (CARU,M,L2,NOTFLG,VPR)
ELSE APPEND(CIMROOL(CAR U,M,L,FLG,VPR),
COMPANDCRL(CDR U,M,L,L2,FLG,VPR));

49

APPENDIX 3 = SaMPLE CUTPLT OF CP ANJ C4 FOR A REVERSE FUNCTION

(DE REV (X Y) (COND C(HULL X)) Y) (T (REV (CDR X) (CONS (CAR X) Y)))))

Coce from CoO

(LAP REV SUBR)
(PUSH P 1)

(PUSK P 2)

(MOVE 1 =1 P)

(PUSH P 1)

(MOVE 1 @ P)

(Sus P(C Y2 1 1))
(CALL 1 (E NULL))
(JUMPE 1 L2)

(MOVE 1 0 P)

(JRST L1)

L2

(MOVEI1 (QUOTET))
(JUMPE 1 L3)

(MOVE 1 -1 P)

(PUSH P 1)

(MOVE 1 2 P)

(SUus P (C O 81 1))
(CalLL 1 (& CODR))
(PYSH P 1)

(MOLE 1 =2 P)

(PUSH P 1)

(MOVE 1 2 P)

(SJs P (C 0211y
(CALL1(E CAR))
(PiJSH P 1)

(MOVE 1 =2 P)

(PUSK P 1)

(MOVE 1 =1 P)

(MOVE 2 © P,

(Stys P(C DA 2 2))
(CALL, 2 (E CONS))
(PUSH P 1)

(MOVE 1 <1 P)

(MOVE 2 2P

(SUe P (C 2 2 2))
(CALL 2 (& REV))
(JRST L1)

L3

L1

(Sy= P (C a 2 2 2))
(POFJ P)

NI L

Comments

hasacer

stack first argyg
stack second arg
compute x

stack 1%

recel| X

adJ. stack by 3
zal | NULI,

i f notNULLJump
recatl | v

Jump for return
the label L2
computa T

fnet T jum
compute X

recal I X

COR

s0Mpute X

ragall X

CAR, rasn, CAR X
compute ¥

recall CAR X
reCa'| Y

dje stack py 2
Rang.~ 2 P

recal | CDR X
recall CONS, resp,
transfer COQNS

compute COR X
REVY
jump frr return

return

endo fegouer

Code from C4
(LAP REV SUBR)

(PUSH P 1)
(PUSH P 2)

(MOVE 1 =1 P)

(JUMPN 1 L2)
(MOVE 1 ¢ P)
(JRST L1}

L2

(HLRZ@ 1 =1 P)

(MOVE 2 2 p)

(CALL 2 (E CONS))

(MOVE 2 1)

(HRRZ®@ 1 =1 P)
(CALL 2 (E REV))

L1

(SuB P(CD2 2 2))

(POPJ P)
NTL

