
| STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMD AIM 151

COMPUTER SCIENCE DEPARTMENT

REPORT NO. CS 240

CORRECTNESS OFTWOCOMPI LERS FOR A LISP SUBSET

BY

RALPH L LONDON

|

OCTOBER 1971

[

COMPUTER SCIENCE DEPARTMENT

STANFORD UNI VERSITY

72378% = A

RSC





STANFORD ARTIFICIAL INTELLIGENCE PROJECT OCTOBER 1971

MEMO AlM«151

COMFUTER SCIENCE DEPARTMENT

REPORT CS=247

CORRECTNESS OF TWO COMPILERS FOR A LISP SUBSET

by

Ralph L. London

ABSTRACT: Using mainly structural Induction, proofs of correctness
of each of two running Lisp conpilers for the POP=10
computer are 9lven, Includedaret he ratlomale f or
presentina these Proofs, a discussion of the proofs, and

the changes needed to the second compller to complete Its
Proof,

To be Presented at the Conference on Proving Assertions about
Programs, New Mexico State University, January 1972,

This research was supported {im part by the Advanoed Research
Projects Agency -of the Office of t he Secretary of Defense under
Contract SD-183 and in part by the National Aeronautics and Space
Administration under Contract NSR £5-028-500,

The views and conclusions contained In this document are t hose

of the aut hor and should not be Interpreted as necessarily
representing the official coliclas, efther expressed or Impl ied, of
the Advanced Research Projects Agency, theNatlona| Aeromautlcs and
Space Administration, or the Us, Sy, Government,

Reproauced In the USA Avail able from the Clearinghouse for

Federal Scientific and Technizal Information (or Its successors),
Springfield, Virginia 22151, Price: Ful I Size CODY $3,00;
microflche copy %2.,95,



rE



CORRECTNESS OF TWO COMPILERS FOR A LISP SUBSET

by

Ralph Ly London

INTRODUCTION AND JUSTIFICATICN

This paper contalns proofs of correctness of each of two useful,
running compilers: named CO and C4, The source language for both
compilers Is the sane subset of pure (basic) Lisp, which subset
exe judes special or ¢lobal variables, function names as arguments,
and the form label: the obJjeet language Isessentlally assembly code
for the PDP=18 computer: and the conpilers themselves are witten
recursively in RLISP (Hearnr 1978), a verslon of Lisp with Algel=~like
syntax, The compilers were Written by John MCarthy as par¥ of a
series of progressively more optimizing complijers for USe In a course
at Stanford entitled "Computing wlth Symboliec Expressions," Only
later have these conpilers been eonsliderad for proving correctness,
Alistirg of the compilers and sanple output are In the Appendlces,

The proof P4 of correctness of the compiler C4 1sa modification
and extension of the proof PO for C2. The organization of this paper
is first to prove C@ correct exclusively, A brief discussion of the
proof appears Just after the proof, Then using the sane machinery
t hat ls defined, and using much of the proof P@,; the compller C4 is
proved correct, This serial organization, reflecting the essential
chronol ogy of the WwWorK, seens Preferable to proving t he two compilers -
in parallel, The reader should now Ignore C4 (and P4) unt! the
start of P4, except to note that the Input and overal| statement of
correctness are the sameas for CO,

To prove the correctness of a compljer is a frequently heard
chai lenge, The present proof partly responds to the challenge! The
conpiler is sufficiently lengthy and complex not to be vfewed as
merely another cooked-up research example, As evidence of this,
Whitfield Diffle has shown the c¢omeiler capable of compl|ing Itself
successfully, - Yet the compiler has certaln toy-problem aspects, for
example accepting a subset of full Lisp, the Inefficleney of the
resulting object code, anti the simpleparser, It is certainly not a
progquction conpiler, Nevertheless, exhibiting yet another proof
seers Jjustifled since (i) a conpiler |S somewhat different from Other
alacrithms that have oeen proved (there are at least two programs
neing executed, the conpiler and the object Program, and, to a lesser
extent, the source program); (1!) there has oeen |lIttle progress In
orovinag compilers correct beyond t he wor k of M Carthy 8
painter(1967), painter(l967), Kaplan(1967), Burstal | (1969), and
Buyrstall & Landin (1969), although tne work of MeGowan(|971) should
be mantioned: (111i) there remalns the wecrthwhlje goal of belng ap -

to prove compilers correct; (iv) this proof has been made to serve as
the nucleus of a proof of correctness ©f a more optimizing comd'ler
in the existing series’: (v) the Informml proof serves as the basis of
more formallzed procfs, the latter being necessary If a proof of



correctness is to be checked byaproof checker (Milnarl1972)} and
(vi) the ccrrectnass of the conplier [S$ not immediately obvious,

THE PROBLEM STATEMENT, NOTATION, AND PLAN OF ATTACK

The reader is assumed to have a basic knowledge of Lispisay
from Welssman’s (1967) primer, The Input to the compiler |[s (DE NAME
(args) body), OE is for Define Expression and NAME |s thename of
the function belng compiled, The quantity (args) Is the |lst of
arguments (formal paraneters) for the function NAME and body|8 the
body of the function, The calling convention Isthat a defined
function f of N 2 2 arguments, say argl,arg2,,,ssargN,williflnd
run-tine val ues of t hose arguments In Successive accumulat ors
starting In acl, whlch holds argds, and the result flargl,arglsy..
argN) will be returned in acl, This convention applies also to any
function call comp! led by the compl|er in response to a call in the
source code, e.9, the callto CAR 1n WE SI MPLE (X) (CAR X))+ In
particular the call may be a recursive Calls 8,8,

(DE COMPLEX (X Y) (COND C((NULL X) (CONS Y X))
(TCCOMPLEX (CDR X) Y)) 1),

W now give a nore detailed and nore Precise description Of t he
allowable syntax and its intended neaning, The |lst (args) Isalist
of atoms excluding NIL, Ty) and numeric=-atomsi body is an expression
where expression is defined recursively below (N2 @ in aii relevant
cases). The value of an expression EXP, denoted V EXP» is

~~ recursively defined at the same time (as an "Informallization" of the
Lisp EVAL function),

(i) atom, in particular NILsT» or a numeric-atom, V atom:
V NIL = (QUOTE NL) [@ In this compilerld,
v T= (QUOTE TT)» where a non-NIL value is considered equal

to V To»

V numeric-atom = (QUOTE nuneric-atom), and
V other atom = its bindings l,8¢ run-time value whieh may

not be a function name,

(ii) (AND EXPL EXP2 ,,. EXPN), V AND expression = Tf all v EXP]
are non-NIL otherwise NIL, V (AND) =T. AND evaluates
Its arguments from jefttorigntunti| ecither NIL Is found
in which case the remmining argunents afe not evaluated, Or
until the last argument |S evaluated,

(iii) (OR E&xP1l ExXP2 ,., EXPN), U OR-expression = T if any V EXP is
non=NIL otherwise NIL, V (OR) = NIL, OR evaluates Its

arguments from ieft to right until althernon=NILls found
In which case the remining argunents afe not evaluated, or
until the last argument 1s evaluated,

(iv) (NOT EXP), V NOT-expression = T if V EXPIsNIL otherwise NIL,

2



(v) (COND (EXP1 EXP2) (EXP3 EXP4) ,,, (EXP[2N~=1] EXPL2ND)),

V COND=expression I's detarmined as foliows, The
expressions EXP1, EXP3, 4,,» EXP[ZN=1] are evaluated
starting with EXPL untl] the first EXP(2I~1]Is found whose
value is nomn-NIL, V COND=expression Is then V EXPL21]), If
no ExPr2i-11 exists with non=NIL value, then
V COND=expresslon Is undefined,

(vi) (QUOTE EXP), V QUQTez=-expression = EXP, i,e4 EXP unevaluated,

(vii) (fname EXPL EXP2 ,,, EXPN) where fnane # AND, OR, NOT, COND,

QUOTE, V functlioneexpression = fname(V EXP1l, V EXP2, +..,
V EXPN), i,8. tho value of the function fname appiled to
Its evaluated arguments V EXPL, V EXP2, 4,4» V EXPN, The
ar gunents are evaluated once before the functionis called,

(viii) ((LAMBDA (atoml atom ,,, atomN) EXP) EXP1 EXP2 .., EXPN)

where atom! # NIL, Tonumerjc~-atom, VvLAMBDA=expresslion is
determined as follows. A LAMBDA-expresslion defines a
function whigh has no explicit Catomie) nane, V LAMBDA~-
expression is the value of this function applied to Its
evaluated arguments V EXPl, Vv EXP2, ,,4» V EXPN, In other
words, V LAMBDA=expression = V EXP where V EXP [8 computed
after the substitutions atoml « V EXPL, aton2 + V EXPZ2,
eses atomN e V EXPN have been made in EXP, If there {8 a
clash of bound variables, the convention Is that the

Innermost binding governs,

Since function names are forbidden as argunents, the expression
((LAMBDA (X) (X)) Y} neans a call to the function X of no arguments
rather than a call to the functlon argument Y, The above syntax
forbids ((X)), (((X)))) etcs aS expressions,

The compiler is proved correct under the assumption that Its
input 1&8 syntactically correct, Since no error checking i$ done by
the eompiler, nothing Is claimed for the results, if anys» of

incorrect Imput, Correct input also means, for exanple, that a |]|st
of forml paraneters consists of distinct atons and that the number
of forral Paraneters is always equal to the nunber of actual

parareters, There are presumably many Other such conditions,
viotatlons of some of which may have reasonable Interpretations,

The statement of correctness of the compiler Is t hat the

compller~produced opJect code, when executed, leavesa result In acl
equal to the value of the source language function applied to the
same argunents, The object code takes its N argunents from the
agcecurulators acl, YER! ach, If A = al a2 ,,. aN represents the
argurents, t hen t he correctness stat enent may be restated as

reaquirline that the eauation

V ( (DE NAME (args) body) A) = contents Of acl

3



holds after executing the |Ist of compiler-produced Instructions

COMP (NAME, (args)s body)

starting with aci holding al for 1S]SN,

The followlngfagcts about the POP=17 from p
by MCarthy: The PDP=12 has a 36 bit 2 fonputer 2% 1 ¢ aad orl teyr
instructions and in accumulators used as index registers this |S the
right part of the word where the least stgnifligcant bits In arithnetic
reside,

There are 16 general registers Which Serve simu|tameousiya s
accumulators (receiving the results of arlthmeticoperations),index
registers (mod!fying the nominal} addresses of Instructtons to form

effective addresses), and a$ the first 46 registers of nenory (If the
effective address of an Instruction is |ess than 14, then the
Instruction uses the corresponding general register as {18 operand),

All Instructions have the same format and are Written for the

LAP assenbl, program{in the form

(<OP name> <accumulator> <address> index register)),

Thus (MOVE 1 3 P) causes accumulator 1 to recelvethe contents Of a

memory .register whose address Is 3I*c(P), | +e, +{the contents of
general register P>, In the following deser pt] on of Instructions,
cef> derotes the effective address of an Instruction,

MDVE c({ac) +« c(<ef>)

MOVE] c(ac) + <ef>

HLREZ (uged in C4 only) c(left half ac? « plght halh of e(<efd)
HRRz (used In C4 onty) cflright half ac) «c(rloht ha |? of c(<ef>)
SUB c(ac) + clac) = ¢c(<efd)
JRSI 0g tg <ef>

JUMPE Ri cl ac) 3 @ then g45 t, <ef>
JUMPN Ifctac)#Z(0 then go to <afd
CAME (used In C4 only) If clac) 3 ¢(<ef>) then sSklpnextinstruction
CAMN (used In C4 onjy) If clac)# c(<ef>) then skip next Instruction
PUSH clclright half of ac)) * c(<ef>);the contents

of each half of ac Is Increased by one
POP (POPJ P) Is used to return from & subroutine

These Instructions are adequate for complling baslclLisp code
with the addltlon of the subroutine cal|lng pseudo=instruction,(CALL
n (E <Ksubr>) is used for calling the Lisp subroutine <€suberd> wlth n
arguments, The convention is that the argunents wll} be stored in
successive accumulators beginning wlth accumulator $s,andthe result
will be returnedin accumulator 1, Inparticular the funetlioms ArOwm
and CONS are called with (CALL 1 (& ATOM)) and (CALL 2 (E CONS))
respectively, Note that the Imstruction (suB P (Co 8B 3 3)) Just
deletes the Top Three elements of the stack P, (PUSH P ac) Is used

4



to putcftae) on thestackP, This ends thefacts about the PDP=1p
computer,

To show the result and effect of executing a Section of assembly
code, notatlonofhand-simulation, deskechecking, or tracing of cede
is used. It is best explained by example, Starting with N
accurulators cach holding a value and an empty StackP, namely

acl |al | |
ace | al

? & 0

acNjaN |

PI

the 11st of Instructions

((instructions to leave «3 in acl)

(PUSH P11)
feo

(Instructions to leave 9N In a¢l)
(PUSH P 1)

(MOVE 1 1«N P)

(MDVE 2 2-h) P)
¢$ 2 e&”

( MOVE N 2 P)
(SUB P (C 0 0 NN))

(CALL N {(E ngme)))

gives the trace

aclliols 31% o2% ,,, aN#* al® name(el a2 ,,, ON)

acl |e2% a24% undsf
1" 4

acN|joN« aN« undef

Plas Ao* 4, AN®

Thus thevaluenagme(ala2,,, aN) is in acl, undef (anundefined

quantity) is i n acifor2SisNsince these accumulators gare unsafe
over name, and the stack P Is unaltered fromthe start, Thetraoe

shows the final resulto f tracings the Intermediate results are
recorded put marked by an asterisk (*#) as being no |onger present,

The pl an of attack 1S as follows!

(i) Prove correct 3 auxliiary Procedures [MKPUSH(N,M), PRUP(VARS,N),

and LOADAC(N,K)J whichare not part of the maf n recurslveness
of the compiler (lemmas 13),

(it) under the assumationoino conditional expressions or Bo00lean

expressions (j,e,no COND, AND, OR, NOT), prove the compiler
correct(theoremsi=~3dandtermi nation), and

(iii) Prove the compller correct Wltnout the restrlictiveassumption

5



of (il) (theorems 4=7),

The proof techniques to be used are mainly those 8hOWR in
Longon(3197@), The factorization into (ii) @and(lii), convenient fOr
construct Ing, for presenting, and for reading the proof, s hows how

one can Grove an algorlthm in suitable segnents rather than havingto
do it all at once, [tthereader omlts theorems 4=7 of (jl), t he :
br oof of correctness of an interesting Subcompliier results, In this
part recurslon is sti i i al lowed in the sense that the compiler wii]
correctly complle a recursive function, But the obJect code may not
terminate if such a recursive function Iscalled Since there is no

branching to "stop the recursion?

The number In@ of the lemmas and theorems reflects the order of
their dlgcovery and poof, The epdercould be altered py merging
t heor ens 1 and 7 and by placing theorem 3 as the last theorem If the
sole interest wera to prove the entire compiler,

PROOF OF AUXILIARY FUNCTIONS FOR C2

The LIsp operation CONS is denoted In RLISP by an infix dot(,):
A3 = (CONS. A B) , By imepaction of the whole compller, It fol lows
that all numerically=valjued quantities are integers, eo |S used as an
end-of -proof marker,

Lemma 1, If N > 2 and M > 0, then MKPUSH(N,M) =

((PUSH P M)

(PUSH P M+1)
LII

(PUSH P N)) .

If M> 2, then MKPUSH(@Z,M) = NIL ,

Pr oof, Backwards |jnduction On My If M > N MKPUSH(N,M) 3 NIL .
If M3 N, we have (PUSH P MM) NIL =((PUSHPN)), Assume the | emma
for M$ N and consider M1 2 B,

MKPUSH(N,M=1) = (PUSH P M=1) MKPUSH(N,M) since N 2 M=}

= (PUSH P M=1),
((PUSH P M)
(PUSH P M+1)

LII

(PUSHP N)) by induction hypothesis for M

= ((PYSH P M=1)
(PUSH P M)

(PUSH P M+1)
LII

(PUSH P N)) by definition of CONS, e

6



| Alternative notatton mmy be wusedto avoid the three dots Coos)
in the lemma and in the proof, Analogously to the sigma notatlon for
indicating s-urns (e.g. 3igma(l=1,N,AC1]), define a |Ist functional L:

LCI=M,N, (PUSH P 1)) = NIL IfN< M

| LCI=M,N, (PUSH P 1)) = (PUSH P M),L(1=M+1,N, (PUSH P {))
If N 2 M

whereas slgma denotes iterated addition, L denotes Iterated CONSing,

The lemm is restated as MKPUSH(N,M)= L(I3My,N, (PUSH P |)), The

proof of the induction step becones

MKPUSH(N,M=1) = (PUSH P M=2) MKPUSH(N,M)

= (PUSH P M=1),LC(i=M,N, (PUSH P {))

= L(i=Mel1,N, (PUSH P |),

Similar notation may be used for lemmas 2 and 3 befow,

Lerma 2, Let VARS = (xi x2 see XM), Then PRUP(VARS,N) = ((x1,N)
(x2,N+*1) soy (XM N+M=1)), This list of pairs is called tha PRUP
lists short for "pajr=up.,"

Pr oof, Induction on My If M = @, then PRUP(VARS,N) = NL since
NULL VARS, Assune for M 2 © and consider M+1,

PRUP(VARS,N) = (CAR VARS,N),PRUP(CDR VARS ,N+1) since M+1>7 Impites
not NULL VARS

= (x1, N),C(x2,N+1) +, (x(M*1],N+M)) by the Induction
hypothesis for COR VARS

= ((x1,N) (x2.N+1) ,,, (xCM*1],N*M)) by use of + 1 ©

Lerma 3, LOADAT(N,K) = ((MOVE K N P)
(MOVE K+1 N+1 P)

LII

(MOVE K=N 0 P)) |

Pr oof, Backwards induction on N, If N > @, the result is NIL |,
If N = J,w8 have (MOVE K & P) NIL = ((MOVE K-0 O P)), Assume the
lemma for N £ & and consider N=1,

LOADAC(N~1,K) = (MOVE Kk N=1 P),LOACAC(N,K+1) since N=1 < 0

= (MOVE K N=1 P),((MOVE K+i1 NP) ,,, (MOVE K&i=N 0 P))

by induction hypothesis for N



= ((MOVE K N=1 P) (MOVE K+1 NP) ,,, (MVE Ke(N=31) 0 P))

by use of . and arithmetic. eo

THE RUN-TIME STACK

The obJect code uses a run=time stack in a rather standard way
for holding the actual Paraneters ©0f both functlom calls and LAMBDA

expression evaluations, A s each actual parameter (blndinmg) Is

eval uated, It I's pushed onto the stack, This suffices for, a LAMBDA
expression but not fora funetlion, After all of the l|atter’s actual
parareters are evaluated and pushed onto the stack, al | are moved to
the accumulators and popped from the stack In order to satisfy t he
conventions for calling a function, The first task ofthe compi|ed
function definitionis to push the actual Parameters back to the
stack from the accumulators, Thus for both a funotlon and a LAMBDA
expression, the respective code body accesses OF obtains the actuaI
parareter from the stack,

W forgo stating the varlous possible stack conflgurations In
full ¢generallty to avold (presumably) less than transparent notation,
What is In principle required can be seen by an examples

(OE F (A BY (G A ((LAMBDA (A) (CAR A)) B) A B))

This must be compiled tdentlically to

(DE F (A B) (6 A ((LAMBDA (Al) (CARA1))B)AB))

where the bound A of the LAMBDA expression has been renamed Al, The
accessible variables of F are A and BJ those of the LAMBDA expression

are Al and B, Atthepolnt of compliing the argument A of CAR A, the
stack P (at run-time) wlll be

P| A 3 A B '

actual the first actual paraneter
parameters actual parameter corresponding
to thecalI to the call of G to Al

of F

The complie~time PRUP |ist wi]l be ((A,4) (A.,1) (B,2)) or, using Al,

((A1,4) (A,1) (B,2)) , Note the absence of a 3 slmce that spot holds
a temporary value and not the value cfan actual parameter usable In
the body of the LAMBDA expression(In thls exanple eltherAior B but
not A).

Thus the compli jatlon of the argument A of CARA(atgcase 3 of
COMPEXP with M =z =4asit would be) produces a MVE Involving the top
of the stack, mnanely (MOVE 1 M+4 P): (MOVE 1 O P), and not (MOVE 1
M+1 P) = (MOVE 1 3 P), A compllation Of B at this poelnt would
produce (MOVE 1 M+2 P) = (MOVE 1 =-2 P),

8



After compiling the fourth, and last, actual Parameter of Gy the
stack Will be

P| A B A CAR 3 a B

actual parameters actual parameters
| to the call ofF to the call of 6

We sha | | need t» show that the proper run-time stack
| configuration Is set up and malntalned, and that the quantity WM and

the Integers InthePRUPIISt together Produce the correctaccessing
from the stack P, The auantity «M gives the number of stack
locations currently accessible by the function being compiled, Let
us deflne the predicate STACKOK(M,PRUP) to nean (Il) »M {8 the gorrect
number of stack locations, and (1!) M and the Integers In the PRUP
list at complle=timg together Produce the correct accessing of the
stack at run-tine, The definition of STACKOK [necjludes t he
representationof "what the compiler knows So far" concerning the
location In the stack of variables and temporary values, As Dart of
no error checking the conplier assumes an inf Inlte run-time stack
with no tests for stack overflow, The proofaccordingly makes the

SAME assumptlon,

PROOF OF THE mAIN THEOREMS FOR C2

The maln Proof technlque used for theorems 19 2, and 4-7 Is

structural Induction on express|ons, Each theorem states what a

procedure of the conpiler does: theorems 1 and 7 for COMPEXP, 2 for
COMPLIS, 4 for COMPANDOR, 5 for COMBOOL, and 6 fer COMONO, Each of
these procedures is recursive and also can call many of the other
procedures, To prove these theorems for an arbitrary expression EXP,
t he following induction hypothesis i$ used for each theorem
Theorems 1, 2, and 4-7 have a]| been proved for all subexpressions of
EXP, To invoke one of these theorens Inductively on a Subexpressioan,
it is necessary to verify that all hypotheses of that theorem are
satisfled,

The length of the 11st X wll| be denoted by L Xs Al | procedures
of the conpiler except for PRUP produce as values a |i8t of compljed
instructions, as: may be Verlfled by inspection (In particular noting
each One=|lne code generation is a one-element |I18t and otherwise the
APPEND function is used), The auantities VPR and My, which appear as
actual paraneters to the procedures In theorems 3122) and 4=7, are
unchanged by these procedures In view of the definition of funectiona]
evaluation,

Theorem 1 [Definjtion of COMPEXP(EXP,M,VPR)], As s une t he
following conditions hold at the call of COMPEXP(EXP,M,VPR)!

Cl: EXP Is an expression,

c2¢ MS8 and ~*M is the number of 8tack locations currently accessible
by the function being compiled,

9



=

c 3: Variables current|y accessible to XP are Xi, X2» ,,.» XK wlth
K £ =M,

c4: yPR is a PRyP Isto + K palrs (xl.J)) 18JS=M, of the currently
accessiblevariableswhere the Innermost occurrence (Of a formal
parameter) of a duplicated variable nemeappearsfirst on VPR,

C5: At run-time the stack P contains the values of the variables and
temporary values as

where X[=M] is at the top of the stack,
C6: STACKOK(M,VPR),

c7: EXP Is an atom (ZNIL, #T, #numerlg=atom) » EXP Is a variable X |,
1€1€K, on the VPR ||st,

Result, After executton of the list, 1, of Imstructions produced by
COMPEXP, the accumulator acl containsV EXP, P |s safe over t he
gxecutlon o f I, Not e that the accumulators are Unsafe over the

execution of 1,

Proof of definition of COMPEXP (under t he assumptlonof no
conditional or Boolean expressions theorem 7 proves COMPEXP wlth
such expressions), Structural Induction on EXP, Bas|s step! EXP |s
an atom, elther NIL, T, a numeric=atom, or other atom, If EXP ls
NIL, then case1 of COMPEXP produces ((MOVEl 1 @)) so aol holds 0 =
v NL If EXP!sT, then case 2 produces ((MOVElI 1 (QUOTE T7))) so acl
holds(QUOTET)-VT, If EXP Is a numeric-atom t han case
sroguces ((MOVE! 1 (QUOTE numeric-atom))) so @ael hol d8 (QUOTE
mumericeatom), the correct value,. If EXP 18 an other atom, than c¢ca8e
3 produces ((MOVE 1 M+CDR ASSOC(EXP,VPR) P)), By C7 jet EXP = «I
appear first on VPR in the paler (X1,J), By C4 CDR ASSOC(EXP,VPR) =
CDR (X!,J) = J. By C5 and C6 the Instruction (MOVE 1 MJ P) loads
acl with Vv Xi, Noteil<JS=-M >» M+lsSM+ JSP, l,e.avalld stack access,

Induction Step: CAR EXP and CDR EXP are always deflnmedatcases
4-7 (a total of 10 ogcurrences) since NOT ATOM EXP because ¢caSe 3
failed, If' Exp= (QUOTE @), then case © Is the flrst to hold

producing ((MOVEI 1 (quOtE «))) as required,

If EXP = (fname a) with fname. not one of AND, OR, NOT, COND,
QUOTE, then case? jsteflrst to hold, EXP thus Is alnen=speclal)
functior to be evaluated using arguments of the |I8ta = (al a2 ,,,
aN) where N= L a 2 0, Tha |ist of instructions produced Is

((COMPLIS((a),M,VPR))

(LOADAC(1-N,»1))

(SUB P CC0 0 NN)
(CALL N (E fname))) ,

congitlons D1=07 (see theorem 2) for Inductively invoking COMPLIS
nold as fol |ows!

10



D1: Definition of (a),
D2: Ce,

33: ¢3 on U, a subpart of EXP,

D4,05,06: C4,C5,C6, respectively,
37: Assumption of syntactlicaliyocorrect input,

Using the definitions of COMPLIS and LOADAC, we obtain

--- (Instructions to |eaveVel In acl)

(PUSH P 1)
COMPLIS bo

(Instructions to leave V oN in acl)
--- (PUSH P 1)

(MOVE 1 1-N P)
LOADAC. (MDVE 2 2<=N P)

| ILI |

.v- (MOVE N 0 P)
(SBP (CO 0 NN)

(CALL N (E fnane))) |,

Tracing these instructions, namely

acl|als ai» a2« ,,, aoN#» als fname(V al,V a&2,,,.,VaN)
ac2|a2#*a2# yndef

"Vo

acN|aN# aN# yndef

Plage As® 40 aN®

gives the desired result (including the caseN=0)since V EXP =
fname(V «1,V a2,,,,,V aN), Note that the Instruction (CALL N (E

frame)) my be a recursive call since the standard convent]ons of
arguments and returned Val ue are ©Obeyed, and the arguments are
stacked (saved) by the called function, Recall that function nanes
are forbidden as argunents SO a formal paraneter nane maybe called
by a CALL Instruction,

Finally If EXP = ((LAMBDA («) [@) €)» then only ¢ase8 holds,
Since case 7 falls, NOT ATOM CAR EXP, [et N s | € = | « by correct
input, The |1st of instructions produced is

((COMPLIS((e),M,VPR))

(COMPEXP(RB,MaN, APPEND(PRUP((a),1=M),VPR)))
| (SUB P (COR NN))

Conditions Di=D7for inductively invoking COMPLIS hold as follows:

D1: Definition of (¢), D2: C2,03:C3 on (€)» a subpart of EXP,
D4,D5,D6: c4,C5,C6, respactively, D7! Syntactically correct input,

ConagitlorsC1-C7 for f{nductively invoking COMPEXP hold as follows:

11



Ci: B Is an expressjon by the syntax definitioninvoivingLAMBDA,
C2: M=N <3 since M € 0 and N 2 3, There are now =(MeN) meM*N stack

locations cyrrent|y accessible,
C3: variables currently accessibleton areXl X2,.s00 XCK*NI) |,0,

there are now K+N variables allowed in A, K*N £ =M+N since
K ££ =M

C4: Cefinltion of PRUP and C4,C5,ardCéapp|ied ¢o VPRy The new
palrs are put first, The naw indices are 1-M= =M+1l through =~M+N,

C5: C5 for Xl, eu XC=M3 together wlth COMPLIS((€),M,VPR)) for
X{=M+l1, * 00? XC~M+N1,

C6:C6,C4 just above, and C5 Justabovs,
C7: Syntactlicelly correct Inputand the augmented PRUP |lst,

Hence tracing these tinstructions,namely

acl |XC=M+11s ,,, X[=MeNJ&® V EXP
PIX1 x2 ,,, X[~=M) X{=M+1ls ,,, X[=M+N]»

gives the desired result (Including the case N = 2), singe COMPLIS

essentially makes the substitutions at *« v €| and then COMPEXP
computes Vp which Is now V EXP,

In all cases the stack P Is safe over the execution of I, Note
that VPR remalns unaltered even In thelLAMBDA case because here the

augmented PRUP Ist In the call to COMPEXP |sacopy only for that
recursive calli when that oall finishes (he outer VPR |Ist Is
intact,

Theorem 3 [Lefinition of COMPLIS(U,M,VPR) J, AS S UTE t he

go0llcWirg conditions hold at the call of COMPLIS(U,M,VPR)!

Di: U = (ul u2 ,,, uN)isallst of arguments,
Day COMPEXP’s Co,
13 variables currently accessible to the nembers of U areXi, Xe,

vrer XK with K<=M,

D4,05,043 COMPEXP’s C4, Cs, Cgs respectively.
D7: COMPEXP'’s (7 with EXP replacedby UJ.

Result, COMPLIS = ((instructions t o |eaveVullinacl)
(PUSH P 1)

(instructions to leave V uNin acl)
(PUSH P 1))

Proofof definjtion of COMPLIS, Structural Induction on U,
Basis step: Uis NULL whence COMPLIS = NIL, Induction step! Since
u.# NIL, COMPLIS(U,M,VPR)

| = ((COMPEXP(ui,M,VPR))
(PUSH P 1)

(COMPLIS((u2 ,++ uN),M=1,VPR)})) ,

12



Conditions C1-C7 for Inductively Invoking COMPEXP hold by D1=D7,
respectively, Hence invoking COMPEXP shows

(COMPEXP(yl,M,VPR)) = (Instructions to leave V ul in ae¢l)

with the stack P safe, (PUSH P 1) stacks V Ul on the too of P,
Conditions Di1=D7 for invoking the Induction hypothesis for COMPLIS
hold as follows}

p2: By p2 and (PUSH FP 1) which means there are now =(M=1l) 5 =M+l
stack locatlons, the top one being a temporary value,

D3; By [D3 (KS =No>Kg =M+l),

DS: By D% and (PUSH P 1), P Is PIX1 X2 ,,, X[=M] Vv ul ,
Dé: By Dé and D5 just above,

07:By B07,

Hence the induction hypothesis shows COMPLIS((u2 ,.. UN),M=1,VPR) =

((Instructions to leave V U2 In acl)

(PUSH P 1)
tvd

(Instructions to leave V uN In acd)

(PUSH P 1))

Hence COMPLIS(U,M,VFR) =

((instructions to leave V ul In ag¢l)
(PUSH P 1)
II |

(Instructions to leave V uN in acl)

(PUSH P 11), ®

Theorem 3 [Correctness of the compllerl, Let A % al a2 +., aN

be an arbitrary list of ectual paraneters, Starting with aclholding
ai, 1Si<Ny» and after execution of the |1sts]ly of Inmstructions
nroduced by COMP(NAME, (args),body) we have

V ( (DE NAME (args) body) A) = contents of acl

and the stack P is Safe over the execution of 1,

Proot, Let N = L (args), COMP(NAME,(args),body)

= ((LAP NAME SURBR)
(MKPUSH(N,1))

(COMPEXP(podys»=NsPRUP((args) ,1)))
(SUB P (C22 N N))
(POPJ RP)

NIL )

13



- ((LAP NAME SUBR)
--- (PUSH P 1)

MKPUSH (PUSH P 2)

“ow (PUSH P N)
COMPEXP (Instructions to leave V bodyin acl)
con (SUB P (C 0 2 NN)

(POPJ PI

NIL )

by using the definitions of MPUSH and COMPEXP although lt remains to
sho, that MKPUSH and COMPEXP may be Inyoked, Since N 2 2 no may
invoke MKPUSH, The congltions C1=-C7for COWEXP hold as follows?

Cl: body is an expression by the assumption of syntactically correct
Input, |

C2: =N = -LENGTH (args?) £2, ==N = N |s the correct Number of stack
locations since oreclselyl (args)locationsare accessible,

C3: the accessible variables are al, a2 eyes aN,

C4: By definition of PRUP((args),1l),
C5: By the number N of (PUSH P |) Instructions,
C6: STACKOK(=N,PRUP) ho|dsS by the definition of PRUP ghd the Order of

the PUSH instructions,
C7: By syntaeticallycorrecgtinput and the definition of PRUP(VARS,1),

Thus starting with acf holding al for 1S1SN, we have the trace

acllal#* V body
ac2|ad* undef

acN|aN#* yndef

Plag® ap® +, aN#

Since V body = ((DE NAME (args) body) AldandsincethestackPls
safe, the result |S proved, (1f condlitienalandBoolean expressions
are allowed, then theorem 7 |S needed,) ©

Theorem 4 [Nefinjtion of COMPANDOR(U,M,L,FLG,VPR)], Assume the

following conditions hold at the call of COMPANDOR(U,M:L,FLG,VPR)

El: U = (ul u2.., uN) is a list of Booleanexpressions,
E2: COMPEXP’s C2,

£3: COMPLIS’s D3,

£4,£5,E6: COMPEXP’s (C4,C5,Cé,respectively,
£7: COMPLIS’s D7,

E88! L Is a label.

E93 FLG Is T or NL,

14



Result, COMPANDOR produces a Ilsty I, of Instructions given by

FLG | Algol equivalent of |
LE ELLA LE EP ETE PEELE EL EEE

NIL I if NOT yl then go to Li
| if NOT u2 then go to LI

NE

| 1# \OT uN then @0 to L?

at-a- Batata al Radiol doll ededdhadi didi dad dl 4 5
TI if ul then go to Ls

| if y2 then go to L3
| I

I if uN then go to Li

with the statement labeled L not In I, P is safe over the execution

of I,

Proof of definition of COMPANDOR, Structure] Induction on U,
Basis step! U Is NULL whence COMPANDOR = NIL, Induction 9tep!
Assure FLG = T, COMPANDOR(U,M,L,*LG,VPR)

= ((COMBOQL(ul,M,L,FLG,VPR)) Co
(COMPANDOR((u2 +40 uN) ,M,L,FLG,VPR))) by definitlionof

COMPANDOR since U # NULL

= ((1f ul then go to LY) | |
(COMPANDOR((uW2 +++ uN), M,L,FLG,yPR))) by Inductively

Invoking COMBOQL on the Boolean expressionul

= ((1f ul then go to Li?
(tf u2 then go to Li)

(1f UN then go to Lj; ?¥) by inductively Invoking COMPANDOR

on the j1st 152 rye UNIIE2=E7 hold prior totnvoking COMPANDOR since P Is safe over "if ui

then go to Lj" and both M and VPR are unaltered
by CoMBOOL ,

L is in neither-the first Instruction nor Ininstructions2througnN
whence L Is outside I, Similarly the stack P Is safe, The case FLG

= NIL Is proved simijariy, ®

Thecrem 5 (Definition of COMBOOL(P,M,L,FLG,VPR)], Assume the

following conditions hold at the cal of COMBOOL(P,M,L,FLG,VPR)!

Fl: Pls a Boolean axpression,
F2=-F73 COMPEXP’s C2«C7, respactively, with EXP replaced bynp.
F8: L Isalabe],
F9: FLG 1s T or NIL,

15



Result, COMBOOL produces a list, I of instructions given by

FLG | Algol equivalent of I
= da - | erm rs rerorvnms rrr sraraw

NILIif NOT P then go to bi
T | 14 P then go to LI

4th t he statenent labeled L not {iInmnly, P is safe over the execution

of I,

Prodf of definition of COMBOOL, Structural Induction on P.
Assume FLG = T, Basis step? P Is an atom, COMBOOL(P,M,L,FLG,VPR)

= ((COMPEXP(P,M,VPR))

(JUMPN 1 L)) by case 1 of COMBOOL

F((instructlons (o leave V P i-n aci)
(JUMPN 1 L)) by "inductively" Invoking COMWEXP (nore

precisely, b y repeatingonthe atomP the basis
step of the proof of COMPEXP; inductionls
Invalid since the P in COMPEXP I$ not a sub-

structure of P in COMBOQL)

=(if P then go to LJ) by checking dcases,

Induction ster: CAR P and CDRParealways defined at cages 2=5
since NOT ATOMP because ¢as® 1 failed, Also CADR P 18 defined at
case4since the NOT operator must have an argunent,

If P= (AND a), then from case 2b (wlth FLG = T)COMBOOL

= ((COMPANDOR((a) ,M,L1,NIL, VPR))

(JRST 0 L) [the Is redundant]
Li) by jetting GENSYM() be the (abe) L1# L

slnee cachecall to GENSYM glves a upigque
value

= ((if NOTal then go to L11})
(If NOT @2 then 90 to L1})

(tf NOTaN then go to L113)
(JRST 2 L)

Li) by Inductively invoking COMPANDOR on (e«),
a Boolean list

= ({fPthen go to LI L12) by checking cases that define
AND (Including evaluationonly wuntll the
fipstNIL®}] and the case (AND) with NULL
a),

If P= (OR a), then from case 3a (with FLG = T) COMBOOL

16



= (COMPANDOR((a) ,M,L»T,VPR))

= (({f al then go to Li)
(if a2 then go to Li)

(1 aN then go to LI)) by Inductively Invoking COMPANDOR
on (a), a Boolean |jst

= (if Pthen go to Li) by cheoklng cases that define OR
(Including evaluation only until the first
non-NIL al and the ¢28e(QR) with NULL «?,

If P= (NOT al), then from case 4 COMBOOL

= (COMBOOL_((«1),M,L,NOT FLG,VPR))

= (If NOT 21 then go to L#) by Inductively invoking COMBOOL
on (¥1), a one-elenent Boolean |!s¢

= (if Pthengo to Li) by definition of P,

IfPisanyother Booleanexpression,thencase5yle|ds

( (COMPEXP(P,M,VPR))
(JUMPN 1 L)),

Immediate Inductive invoking of COMPEXPIsinvalld because the P In
COMPEXP Is nor a substructure of P [In COMBOOL, But control's
reaching case 5 of COMBOOL means P IS not an atom (caSei1) and neans
CAR P ls nelther AND, OR, NOT (cases 2-4), Thus COMPEXP(P,M,VPR) wii|
be computed by one of its ¢ases 5-8 all of whose procedures are
called with substructures of Pe. €It |8 crucial to avold case 4 of

COMPEXP tt o avoid the cycle COMBOOL(P,,,) =» COMPEXP(P,s+) =
COMBOOL(P,.s),) COMPEXP(P,M,VPR) may be calculated by repeating the
proof of cases 5=8 on P (see theorems 7 and 1)} this yields the sane
calculationas the basis step for COMBOOL, Since the definition of
GENSYMD guarantees unlgue labels belng generated, the label L IS not
in the "instructions to leave V Pin acl,"

The case FLG = NIL Is proved sim{lar|y, e

Theorem 6 [Definttien of COMCOND(U,M,L,VPR)], Assume the
: followingcondlitions hold at thecal! of COMCOND(U,M)L,VPR)!

Gi: U-= ((ul u2) (ul ud) ,,., (UL2N=1] WL2N])) Is a list of palrs of

expressions, thefirstof eachobealrbelng a Booleanexpression,
G2-G7i COMPEXP’s C2-C7, respectively, with EXP replaced with ul,
G8: L Is a label,

Result. COMCOND gives a list, Il»rof Instructions equivalentto the
Algol

17



acl ‘= {f wl then u2 else 1fud then ué4 ,., else

if ULEN=1] then ul2N]s LL?

P Is safe over the exscution Of I, If no ul2|=1]1s non=NIL, the
value In acl is undefined, In other words acl 12 V CONDwaxpressiaon,

Pr oof of definition of COMCOND, Structural induction on U,
Gas]s step: UIs NULL whence COMCOND produces,as required, Just the
label L$, Induction step: NOT NULL Uand correct syntax inply CAAR
U, CADAR U, and CDRUarea|ways defined, COMCOND(U,M,L,VPR)

= ((COMBOOL(ul,M,L1,NIL,VPR))
(CCMPEXP(u2)M,VPR))

(JRST L!

“4~ C COMCOND(((u3 ud) ,+¢ (ul2N=13 ul2N1)),M,L,VPR)))

by |ettimng GENSYM() be the |abe] LL # L

= ((f{f NOT yl than go to L1})
(Instructions to leave V u2 in acl)
(JRST L)
L1

(aclit={f ul then ud 4», else |f ur2N=1] then ur2Nl} L1))
by Inductively Invoking COMBOOL, COMPEyP, and
COMCOND

= (acli=sif ul then u2 ,., e|se if ul2N=1]then ul2Nl} L1?)

by checklingcases Involving Vv ul,

P issafeas required, The ecaseof no ul2l=1)belng non=NIL glves an
undefined result as required (in particular for N =z 0),®

Theorem 7. COMPEXP(EXP,M,VPR)as definedIn theorem 1 also holds
for e¢ondlitional and Boolean expressions,

Proof. (An addition to the proof Of theorem 1,) Basls step:
Vvaguous, Induction step: If EXP = (Boolean ®)wlth Boolean one of
AND, OR, NOT, then case 4 is the flrstto hold, COMPEXP(EXP,M,VPR)

= ((COMBOQL(EXP,M,L1,NIL,VPR))
(MOVED 1 (QUOTE T))

(JRST 2 L2)

Li

(MOVED 1 92)
LZ) where L1 # L2are the two GENSyM() |abe|s

= ((tf NOTEXP then go to L113)
(MOVED 1 (QUITE T))

(JRST 2 L2)
L1

(MOyET 1 2)
Le) by repeating the proof of cases2=4, all

i8



involving substructures, of COMBOOL(EXP,.)
since case 4 of COMPEXP neans CAR EXP is

either AND, OR, NOT,

If V EXP = Tythenaclholds (QUOTE T) as reaulred since the (MOVE! 1
(QUOTE Tl)and the (JRST 2 L2) Instructions are executed, If V EXP =

| NIL» then acl holds 0 as resulted since control goes to Li and the
(MOVE]I 1 B) Is executed,

If EXP = (COND @), thencase 5 {3% the first to hold, COWEXP =

COMCOND((a),M,L,VPR) using the label L for GENSYM(), Invoking
COMCOND inductively shows the reauired Value, according to the
definition of COND, is imacl,e

TERM NATION OF THE COMPILERCO

Except to COMP in theorem _.3, add the statement "and the
procedure terminates" toteresult of each procedure definition of
the compiler, The jndugtijon hypothesis wil} show termination Of each
procedure call on a substructure, The 1nduction step 1s now reduced
to essentially "straight-line code" whichterminates, COMP terminates
since MKPUSH and COMPEXP do,

To show that COMBOOL and COMPEXP term nate when one {8 called

from the other on the original Structure, W can repeat a proof Part
as was done in the proofs of theorems 2? and 7,

DISCUSSION Of THE PROOF P#2

The process of constructing this proof my be viewed as
discovering enough of theassumptions about the input and the
programring conventions used In writing the conpiler, a8 stating
them, and as provimg them to be preserved or consistent|y followed
over al | t he crocedyres o f the compiler, The sycoessful
factorization Involving conditional and Boolean expressions was
useful in doing this, The recursion of tha conpiler has beer handled
byt he statements Ofthetheorems, Ineluding three dots (,,s'88
needed, and by the use of structural induction, In addition, some

y lessons of tep=down programming (DlJkstra 1972), stepwise rsflnsnent
| (Wirth 1971), and Hoare'’s (1971) approach were applied in the proof

procesSS although i1nformmlly,

It Is noteworthy that the proofprocess uncovered No errors In
the compiler, A previous version of this paper omitted completely
nuneric-atoms although condition C7 (then written without the clause
"zt numerjcwatom”) unintentionally excluded them Diffie noticed

t heir omissloNwhenthe comd ler aportedwh| le compl iingg factorial
function, Since nuneric-atoms are needed for 8e|f=compl ation, case
2 of COMPEXP was changed to include numerlc~atoms, No Other changes
ware made to the compl ier, The previous version of %thl® paper did
not exclude the use of NL, T, and nuneric-atoms as formal ©paraneters
nor the use of fumgti{onm nanes as argunents, They nust be excluded

19



since the compilsr fails on these Inputs,

Lespite thnacompiler’s belng written purely functionally, this

oroof may ve usefully viewed as enploying Inductive assertions, When
appliedtorecursive procedures of the kind tn t he cempi ler, the
method verifies tithe conditions necassary for calling a procedure

(inc uding a recursive cay), The resu;t of the procedure is then
us®8 to ghow what ig teu® after <¢he call (even If the Ppocedy,fg are
called meral, as arguments to tne APPEND function), This Is the same
way A standard iterative program |S proved,

Unexplored so far are the Implications for automat!c proof
checking, of the length Of tnis informal, but hopefully rigerous
rroof, Next is the Proof P4,

THE COMPILER C« ANDPROQF of CORRECTNESS P4

Tha Input to the compijer C4 and the overalI statenent of

correctness are the same as for Cd, T h e compilerC4ls simi lar in
structure to CD, has twice as many |inesof code asC@®, and produces
about half as many instructions for a glven function as Cl. In
response the proof P4 contains eleven new theorems and lemmas
(Theorers8=12a n d Lemmas 4=9) corresponding to t he elevennew
functions in C4, Also P4 contains modifications to the proofs
(mainly additional cases) of theorems 1, 3» and 5-7 reflecting the
changes In C4 tothe functions of Cds The similar structure allows

much of the proof PZ, witnout change, to become a part of P4, In
particular, the statements of lemmas 1 and 2 and theorems 1=7 are

unchanged (LOADAC, the subject of lemma $s» [Is a completely new
function) because the Jenerally more efficient complled code of C4
accorplishes the same overall effect as does the code of C0, The
proofs of the new theorems and the Proofs of modiflcationsIn P4 are
the "Samek I nd" of proofs as in P23, (Diffie has self=compi led C4
successfully also,)

M Carthy described the three maln differences betwen CZ and C4
in a riteup, The second difference is the min source of
improverentIn the compiied code as WelI as the main reason for t he

lengthofPé4,

(i) When the argument of CAR or COR is a variable, C4 complies a
(HLRZ® 1 i P) or (HRRZe 1 | P) which gets the result through the
stack without first conpiling the argument into an accumulator,

(ii) Wien C4 has to set up the argunents cf a function In the
accurulators, On general, C4 must compute the argunents one at a time
and save tt hem cn the stack, and then |0a& the accumulators from the

stack, however, if ome of the arguments I|3 a variable, ls a quoted
expression, Or can be octalned from a variable by 8 chain of CARS and

DORs, then It nega not he conputed until the time of loading
accurulators since it ean be computed using only the accumulator in
which_lt is Wnted,

20



(i{i1)C2 computes Boolean expressions badly and generates many
unnecessary labels and JRSTS, C4 Is nore sophistlcatedabout this,

c4 uses four additional PDOP=10 ([nstructionst HLRZ®, HRRZ®,

GAME and CcAMN, The flrst two are used, with the @=sign denotingndifect reference, t o obtaln CAR amd CDR, respectively, A n
assurptlion of P4 is that the instruction HLRZ® means ofagc) «

CAR(c(<ef>)) and that HRRZ® neans c(ac) » COR(c(<ef>)), Because CAR
and CDR are compiled 9Pen rather than c¢l0Sed, as would be the caSe
for an atbltrary function calls It must be explicitiyemphaslzedthat
CAR and CDR of T, NILs or numerie=-atom arc considered Incorrect

input, Since NULL and EQ are compl|ed open, the values Of both must
be explicitly defined for P4:

V (NULL ExP) = T iff v EXP = NIL

V (EQ EXPL EXP2) = T iff V EXPL = V EXP2

with these defimitions and motivation, the Proof P4, organized In
bottom-w Style, follows,

The |istings of the two compliers wefe checked by hand to
discover the differences, Thesame set of differences was obtained
when the |istings were conputer-conpared by a file comparison ut!i 1ty
nrogram, These differences showed where new theorems were nceded and

where old proofs needed modification,

Lemma 4 (Dafinmition of CCCHAIN(EXP)], Assume EXP (8s a

non=atomic expression, CCCHAINCEXP)  T If and only IfEXP sof the
form

(CRR (CBR (oo. (CBR a))))

with at least one B, Each PB Is either A or D (thus producing CAR Or
CDR) and ais an atom, In other words, CCCHAIN(CEXP) = T [#f EXP Is a
car-cdr chain.

Proof, Inducttfon on the number N of |eading B’s In EXP, Basls
steps: If N= © them CCCHAIN gives NL because CAR EXP {8s nelther CAR
nor CDR, IfN = 4 then EXP = (CBR a), The result Is T because CAR
is CAR or CDR and « Is an atom CCCHAIN a isnot called,

Induction step: If EXP = (CBiR (CR2R (,+,,(CANR a)))) with N 2
2, then CBIR Is CAR or COR so the left part of the AND Is true,
Since N 2 2, (CBR2R (,,+(CBNR @))) Is mot an at om, CCCHAIN may be
invoked inductively, ylelding T and hence CCCHAIN EXP glves T, ®

lermn 5 [Definition of CLASS1(U, V)], Input assumptions:

Ulsalisto f expressions (ul u2 ,,. uN),
Vis an S—expression,

21



Result, Let ci be the classifying integer of ul, namely

ul I ci
Math adl ad adiadih lh dial Sadi dadiadhod = = ==

T, NILS nymerjc=atom | #
other aton 1 1

nunted expression | 2
car-cdr chain | 3
other expression I 4

CLASSI (Uy, VY) = (eNsuN)elooo (cz, u2) (cl, ul).VI)) ’

Proof, Structural induction on Us Basis step! NULL u glves Vv,

Induction step: CLASSI(COR U (ecl,ul).V) =
(NL UN) Cova (c2su2d) (Ceci, ul) V))), Note that ul in CCCHAIN ul Is
non=atoric ~ since the first test for ATOM ul failed. For the Special
case VY = NIL the result reduces to the Jist of palrs ((eN.,uN) ,.,

(c2.ud) (cil.ul)) , ©

Lerma 6 [Definition of CLASS2(U,V, FLG)], Input assumptions:

Uis a list of pairs (C(gN,uN) +, (¢c2,uU2) (cl,ul)) with ci as defined
1n CLASSY,

V is an S=8ypression,

Result, Let j be tne greatest integer, If any, such that ¢J= 4 in U.

FLG |i Result

aaa ddl dh fh afi
T 1 Cel,ul),((e2.u2)0us +{CcN,uUN),V)) with ¢J] now 5
LR EE AA EEE LEA Al Rall Al ll ad A Ell Ball Eda dl Adal EER Al

NIL I (cl.ul).({c2,u2)ees +CCcN,UN),V)) with ¢cJ stli| 4

In words, the list of pairs |s reversed and the first 4 is changed to

oS,

Proof. Structural induction on U, Basis step: NULL u glves v,
Induction step: If-FLG= T and ¢N =.4then CLASS2(CDR U, (5,uN),V),
NILY =. (el ud) el (c2,u2),es «(5uN) VY) with cl» 22) veer CcIN=1]) as

in U., If FLG # T or eN# 4 then CLASS2(CDR U, (cN,uN),V, FLG) =
(cl1,ul),((c2,u2),,s +CCcN,uUN),V)) with the ¢i’s as In the table of
the result, Again, when V = NIL, the result reduces to the |Ist Of
nairs ((ecl,ul) (c2.yuy2) ot 9 (aN.uN)), ©

Lerma 7 [Definition of CLASSIFY(U)], Assune U = (ul u2 +, UN),

Let dl be the classifying integer Of Wl as in CLASSI except the |ast
other expression has dl of 5 |{nstead o f 4, Then CLASSIFY(U) =
((d41,ul) (d2.u?) ,,. (dN,UN)D) ,

Proof, Composition of CLASSI with Vv as NL and CLASS2 with V as
NIL and FLG as 7, ©

22



or I

Theorem 8 (Defimition of COMPLIS(Z, M, K, VPR)], Input
assurptions:

Zz is a CLASSIFY’ad |ist ofpajrs ((dK,uK) (dCK+1),ulK+1]),,,(aN,uN)),
Congltlons Di1=D7 of COMPLIS of Theorem 2,

Result, Let ©1, ,+..0 ©LJ=1] denote those subscripts, |f any, in 2
for whigh dl is equal to 4, and let @j denote the one di, iY any,
equal to DO.

COMPLIS = ((Instructlions to leave V yfel] In acl)
(PUSH P 1)

(instructions to leave V ulelJ=1]lin acl)
(PUSH P 1)

(Instructions to leave V u(eJ)in aclell))

Note that this COMPLIS is a new functlon from that of Theorem 2, The

f,nction STACKUP(U, M, VPR) Is (dentical to the old COMPLIS,

Proof, Structural I1nductfon on Z, Basis step! NULL 2 glves

NIL, Ingquetion stgpt lf gK 24 then gl = K, COMPEXP(uK, M, VPR)
induetlvely proguces

(Instructions to (eave V ulell] In acl)

In view of the (PUSH P 1), then COMPLIS(((dLK+1J,ulK+1]),,,(dN uN),
M~1, K+1i, VPR) Inductively completes the desired result,

If dK = 5 then eJ = K and there are no (more) 4's, COMPEXP(uK,
M, VPR) Inductively Produces

(Instructions to leave V ulejl In acl)

If K = 1 (i,e, J = 1)» no further instruction Is needed nor
generated because V ufeJjl !s already In acl, Otherwise {f K # 1, the
instruction (MOVE K 1) [Ss generated to |eave V uleJ]l in acl{ej] =
ac(K],

If dK Is nelther 4 nor 5, COMPLIS(((JCK+1),ulK+1]),,, (dN,uN)),
M, K+1, VPR) inductively glves the daslirad result,

Theorem 9 [Definition of COMPC(EXP, N2, M, VPR)], Input
assurptions!

EXP 1s a car=cdr chain (CBiR (CR2R (,.,(CBNR a)))) where N 2 13 each
rl is efther A or Dj and « IS an atom # T, NIL, numeric~atom,

Condltlons €2=C6 and C7 for afrom COMPEXP of Theorem1,

Result. COMPC = ((ac[N2) ts CRIR aglN2]))

(ac[N2) ,= CR2R aciN2])
d 1

23



(ac[N21 = CBNR a))

Only accumulator N2 is used,

Pr oof, Induction on the nunber J of RB’s in EXP, Define €i to
be L or R according as BilsA or D, 3asls step; If N= 1 then EXP
= (CR1R a), Since ATOM a, COMPC produces

((Hei1RZ?® N2 M+CDOR ASSQOC(a, YyPR) P))

wh ich is ((ac[N2) i= CBIR «)), the |ast |Ine of the result,
Induction step: If N 2 2 them NOT ATOM (CR2R (,,,(CRNR a))): Hence
COMFC produces

(HelR2@ N2 N2)

o COMPC((CR2R(,, (CANR®))), N22» M, VPR)

which, invoking COMoC Inductively, becomes

((acCN2) := CpR1R ag[N2 3)

(acfN2] := CnB2R ag[N21])

¢«

(acCN2] := CBNR a))

Incidentally, the assumption that EXP is a car-cdt chain makes
unnecessarytheerrgrcheckatthe first Iilne Of COMPC, o

Theorem19[Defintticn o f LOAUDAC(Z, M2, N2, M, VPRR)], [ nput

assumptions;

21s a CLASSIFY’ed 1ist of pairs,

2 = ((ACN2J,ulN2]) (dlN2+1],ulN2+1]) ,,.s C(dN,uN))
ConglitlonsD1=D70 tCOMPLIS o f Theorem,

Let el, 825 vees 2[1=M2] denote those subscripts, if any, in 2 for
whighdiis equal t o 4, The stack P contains the values of the
1-M2 ulel’s as follows

Let ejs» with J >1-M2, denote thegn2di, If any, equal to 5, Assume
acleJ] holds V Cell.

Results, LOADAC = ((Instructions to leaveV U[LN2]) I n aclN2])
(Instructions To leave V uUu[N2+31) In ac[N2+1))

| 20 I

(tnstructions to leave V UN In acgh))

Fach line Of instructions uses anly the accumulator mentloned, The
stack P is unaltered, (The ej=tn line In ol, ing aclejl Is mlssing,)

Pr oof, Structural {tnductiomno nds Basisstept NULL Z gives
NIL. Irductlion stao: SIx cases basedon theclassifylng Integer
ACNZ2), If dIN2] = 1 then ufN2) is an other atom LOADAC produces

24



(MOVE N2 M+CDOR ASSOC(ulN2]), VPR) P)

o LOADACC(((JCN2+1],ulN2+1)) +. (dN,uN)), M2, N2+1i, M, VPR)

The MOVE Instruction leaves V UIN2) In ac{N2] using on|y &aciN2],
Inductively t h e¢ LOADACpart completes the result including the
una lteration of tne stack. The use Of the Infix dot follows the
conventions that the vajue Of LOADAC Is a [ist of Instrugtlons,

I? dCN2] = 2 or 2 then ulN2] is elther T,NIL, or numeric=atom:’
or a quoted expression, The proofsarsecachsimiiar to the case
d(N2) 2 1, The generated instructions are, respectively,

(MOVE] N2 (QUOTE ulN21])

a n d

(MOVET N2 ,IN21)

with each followed by the same LOADAC term as In the first case,
Both MOVE] instructions leave V uUCN2]) inacf{N2] using only ac(N213,
and again the LOADAC term tnductive|y completes the result,

[f dfN23 =3 then WCN2] Is a car=-cdr chain, Syntactically
correct input Iimpiles the atom ® at the end of the chalnI$ neither
T,NILy nor numeric= atom Thus COMPC may be Invoked, Since a
car=cdP chain Is executed from Plight to left, the REVERSE function is
needed, LOADAC Produces

(CacCN2] :3 CANR a)

(ac[N2] ;= CA2R ac[N21)
(acCN2] ,= « CBIR aclN2])}
(same LOADAC term as flrstcase))

The first N |ines are

(Instructions toleave V uUulN2] In aciN2)])

and the LOADAC term inductively conpletes the result,

If dIN2]) 5 5 then acCN2] I's not altered,
LOADACC((dEN2+1],ulN2+1]) ,40 C(dNJuN))s 4, N2+1, M, VPR) [nduotively |
gives the result, (The oconstantlas the secondargument [In this
call toLOADAC neans 1-M2 = 1-1 =z 2, {,e. the stack Input condition
of LOADACiS vacuous,)

Filrnally, If dCN2) = 4 then the last test of LOADAC produces

(MOVE N2 M2 P)

which, using onlyacCN2), leaves V ulN2] In ac[N2] because thereare
1-M2 = ~M2+1 of t he (V.  ulelld)’s in the stack,

LOADACC((dIN2+1].ulN2+1]) +. (dN,uN2), M2+1, N2+1, Ma VPR)

25



inductively completes the resul® since there |S now One fewer 4 In
the remaining d[N2+1] ,.,. dN, Even though the stack 1s una|tered,
the Stack segment Of interest |% now from V ul82] to V u[1=M2) whlch
the stack Input condition Inductively renumbers as V ulell to

Vvul=M2], ®

Lemma 8 [Definition of CCOUNT(2)], Assume 2 Is a CLASSIFY’ed
list of palrs ((di,yl) (d2,u2) «so (AN, uN), CCOUNT gives the nunber

of di’s that are 4, This nunber Is denoted by #4,

Pr oof, Structural f§{nductlion on 2, Basls step! NULL 2 glves @,
Inductlon step# 1f d1 = 4 then 1 + CCOUNT ((d2,u2) ,,, (dN,uN))
inductively gives the result, If dl # 4 then CCOUNT ((d2,u2),..,

(gNoUN)) Inductively glveS the result, eo

Lerma9, If N 2 0 then SUBSTACK N Is th8 same function as
LIST LIST(/SUB,'P,LIST(’C,2,0,N,N)), .

Proof, If N= 2 then NIL Its LIST LIST(’SuB,'P, LIST(’C,D,0,
co BY) If N > 0 then 1t Is clear, e

Theorem 11 (Definition o f COMPLISA(U, M, VPR) 1, Input

assumptions;

U= (ul u2 +4s UN) is a list of argunents,
Conditions D2«D7 of COWMPLIS of Theorem 2,

Result, acl holds V ul for 1S1¢N, The stack P Is safe over the out-
put of COMPLISA,

Proof. COMPLIS(CLASSIFY U, M, 1, VPR) places the class 4
argurents on the stack In the order requlred for LOADAGC, COMPLIS
also leaves the class 5 argument, say UJs inacl, It {8 permissible
to invoke

since (i) there are now =(M=#4) = -M+#4 accessible stagk |ocations,
(ii) there are 1=(1-#4) =2#4 of (he di’s which are 4, (}1|) the stack

P contains the class 4 arguments {Nn the proper order by the result of

COMFLI S, and (lv) ac] holds V uJ by the last | Ine of the result of
COMPLI S, After SUBSTACK#4, the result 1S established,

The order of flrst COMPLIS and then LOADAC avolds th8 need to

stack a non-class 4 argument Sinee after the ciass 5 argument is
computed by COMPLIS, LOADAC may assume the safety of al | acl, 1S18N2,
e

Theorem 12 [Detinttion of COMPANDOR1i(U, M,L,L2, FLG, VPR),

Input assunptions:

26



U = (ul u2 +0 uN),

Conditions E1=E9 of COMPANDOR of Theorem 4,
L2lsalabel different from L.

Results, COMPANDORI produces a |Isty ls: of Instructions glven by

FLG | Algo] equivalent of |

NIL | If NOT ul then go to LI
| 1f NOT u2 than go to LI

ey

| 14 NOT ulN=1] then go to LU;
| 1f uN then go to LZ;

Tif ul then go to Li
| 1f u2 then go to L;

LI I

I if ulN=1) then go to Lj
| if NOT uNthen go 'Co L<;

If, however, UisNULL thenthe Algol equivalent produced Is"@o to
l.2:." The statements labeled L and L2 are not In I, P |ssafe over
the execution of I,

Pr oof, Structural Induction on Us NULL U glves "go to L23.,"
ihductlon step! Assune FIG = Tu 1) NULL (u2 444 UN), f.e, N = 1,
then

COMPANDORY = COMBOOL (yl, M, L2,» NIL, VPR)

= if NOT ul then go to LZ:

ag required, if NOT NULL (u2 ,,. UNY,i.8,N22, then

((COMBOOL (ul, My, L, FLG VPR2) |
(COMPANDORLI((U2 +. uN), My, Ly, L2:, FLG, VPR))

inductively givest nh eresults Note that (U2 ,«s uN) is not NULLIN
the inductive call, Thaunliqueness of the label generation mechan|sm
willhelpshowthat thelabelslL and Lé are outside I, The case FLG
= NIL Is essentially identlical.®

Theorem 1 3 [Definition of COMBOOL(P, M, L, FLG, YPR)I, Input
assurptions are the same as COMBOOLofTheorem 5, COMBOOL produces a
[ ists 1, of Instructions @lven by (the same 88 Theorem 3)

FLC | Algo! equlivajent of I

NIL [ifNOT P then 90 to Li

LEAR EE PEE TPE EEL ELLE ELE ER.

Tl if P then go to Li

27



with the statement labeled L not iml, P Is safe over the execution

of I,

Pr oof. (Modifications to the proof of theorem 5,) Assume FLG =

T, Add a casga P = T which from case @,1 produces (JRST 2 L) as
required, Add a case P = (EQ a B) with a and PB expressions,
Inductively invoke COMPLISA((a A), M, VPR). COMBOOL produces from
case 1,1

((acl holds V «)

(ac? holds V B)

(CAMN 1 2)

(JRST @ L))

= (§{f (EQ a B) then go to LI)

= (ffP then go to Li)

Mdify the P - (AND a) case, If @ Is non=NULL then after
evaluating COMPANDOR1((a), M, L1, L, NIL, VPR), the resujtfo|lows by
noting the equivalence of

((If NOT uN then go to kL13)
(JRST L)

Ly)

and

((if UN then go to Li)

Ly)

If @ is NULL, than ((JRST LJ) L1) results In both Instances,

Under the assumption FLG = Ty the P = (OR a) case }|3s unchanged,

Add the case P = (NULL 9) with & an expression, COMBOOL
nroduces fromcase 4,1

((COMPEXP((a), M, VPR)) _

(JUMPE 1 L))

= ((Instryctions ta leave V @ inacl)
(JUMPE 1 L))

-= (If P then go to Li)

These cases wlth FLG = NIL areprovedsimilarly, The tests In
COMEOOL are slightly different! T is treated separately rather than

as an atom: the EQ and NULL functions aretreatedssparatel/yrather
than as arbltrary functions in the |asttest, These differences do
mot affect the result of COMBOOL,©

28



Theorem 14 [Definition of COMCOND(U, WM, Ls VPR)), Same as

COMCOND of Theorem 6,

Proof, To the proof of Theorem 6 aodtwocasestothelnduction
step corresponding to the second and third tests of COMCOND, The
second test asks if the paler (ul u2) 1s thepalr ((NULL a) NIL), If
so COMCOND produces

((COMPEXP(a, M VPR))
(JUMPE 1 L)

(COMCOND( (CUS ud) ,¢9 C(Ul2N=11 ul2N3))s Ms L,VPRY))

= ((instryctions to leave V @ in acl)
(JUMPE 1 L)

(acl ez |f usd t hen y4.,.181l Se If UlLZN=1 then utany} Li))by ingUetively invoking cl PEXP ang OMCOND
= (acl t= If NULL ® then NIL elselfud then ud4 ,,, else

if ul2N=1] then ul2N])} L?:) |
by checking two cases on NULL at |f NULL «
than acl already holds @ = V NIL,

~~ The third test asks if (ul u2) Is (T u2), If so any succeeding
pairs may be ignored, COMOND produces

((COMPEXP(u2, M, VPR))
L)

as required, ©

Theorem 15 [Definjtion o f COMPEXP(EXP, M, VPR)], Same as

Theorems dandy,

Proof, (Modifications to the proofs of Theorems 1 and 7,) Add a
case for EXP =(CAR a), By correct syntax, @ZT, NlL,numeric=atom,
If a is an atom c¢ase 3,la produces

(HLRZ@ 31 M+CDR ASSOC(a, VPR)P)

As in Theorem Ll.,case3,» M+CDR ASSOC(a, VPR) |s correct; by the
definition of HLRZ®, acl nolds V EXP, IF «a is not an atom, thencase
3,1b holds. Invoking COMPEXP(a, M, VPR) inductively leaves V @ in
acl, from which (H_LRZ® [| 1) produces CAR V a 5 V EXP Inaclas
required, The additional case for EXP = (COR a) Is Identical to the
case for CAR except for HRRZ@,

Case 4, Thafirstcaseo f Theorem 7 also handles the function
EQ since Theorem 13 handles EQ,

Case 7 EXP = (fname a) where © consists of N ar gunents,
COMPEXP produces

29



((CCOMPLISA((a)» My, VPRI?

(CALL N (E fname)))

This IScorrect, i1+8s 3ac1l holds V EXP In view of the definitions of
COMPLI SA and CALL,

Case 8, STACKUP |s Identical with COMPLIS of Theorem 2, USe
Lemma 9 on SUBSTACK, e

Theorem 16 [Correctness of the compli |erl), Same as Theorem 3,

Proof, Sane as Theorem 3 but using Lemma 9, eo

Termination of C4 follows by essentially the same arguments s
used for CB, CLASSIFY and SUBSTACK joln COMP as exceptions Since
neither Isrecursive. COMPLISA can be shown totermimatsby replacing
its twocalls(in COMPEXP, case 7 and COMBOOL, case 1,1) by thebody
of COMPLISA; this substitution wll allow the body to reference
substructures directiy., This completes the proof P4 of the compijer
cq,

~The process of constructing P4 uncovered six errors jn C4 a
originally written, In addition to the numerlic~atom problem In CO,
Three were found early on by attempting to show thatCARsand CDORsin
C 4 werealways wel |~deflned,l,o, notappiied toatoms, Although no

further errors were expected, the other three surfaced after
carefully stating thetheorems and then discovering where the proof
could not be conpleted, Eachcasethatfall|ed |edvery quickly to the
construction of a counter-example 0 the Statement Of correctness,
and furthermore showed what changes to C4 would be sufficient, These
changes were mnde (by London) and the proof wascompleted,

The changes made to C4 are shown in the |isting of the compli jer
in Appendix 2, Each change |S ROW elaborated!

(i) COMPEXP, case 2, Same change to CO for numerio~atoms,

(ii) COMCOND, |ine 2and COMBOOL, case 1, Found by checking C A Rs
and CDRs for being wel (-defined, Counter~examp|es are Boolean atomle
variables,

(iit) COMPANDORL, Iines 1-2, Pound as inCjl), Only counter-examp|es

are (AND) and (OR), Incorrectness {mn the flrst proposed change CIF
NULL U THEN NIL ELSE), which seems correct, was only discovered by
checking the case N = 0 in P = (AND @) of Theorem 13,

(iv) LOADAC,case CAAR 2 = 0 and CLASS1l, lines 3=5, Found by con=
sidering the case 9f T» NL and numeric=atomsasactuaiparameters
to a function in the atom case for LOADAC in Theorem 10,

30



(v) LOADAC, case CAAR Z = 5, Found by noting that the result for
LOAJAC in Theorem 13 did not Inductively follow |f d{N2] = 5,
counter=-examples are function calls witha c¢jass 5 argument’ all
succeeding argunents fail®8d to be compl led at all,

(vi) COMBOOL, case 5, Foundby reconsidering the case of a LAMBDA
expression In Boojean context (for example anargument Yt0©AND,OR,0Or
coyD)atthe last case of Theorem 5 which case falled in Theorem 13,

As a check 9n the changes and the completed proof P4, London
usec the changed C4 to compile some ©0f MCarthy's test functions and
als? a set of renresentative counter-examplesS, The test functions

gave identical output as the original C4 (another use of the fle
comparison wutltlity program), The counter-examples gave o¢oOrrect
output as determined by a hand Inspection,

ACKNOWLEDGMENTS

Asnoted, John McCarthy made thecompllersavailabletome, Rog

M, Burstall and Anttfield ODIffile nrovided many stimulating
discussions and suggestions,

31



- RP



REFERENCES

surstalls, Ry, M,, 1969, Proving properties of prograns by structural
induction, Computer J,» 12, 1» February, pp, 41-48,

Burstall, Re My, § Landin, P. Ju» 1969, Prograns and thelr proofs: An
al gebraic anpraach, Machine Intelligence 4, B, Meltzer & D.
Michie (eds.), American Elsevier, pp. 17-43,

Dijkstra, E, W., 1972, Notes on structured programmng, T.H.=Rapeort
72-wSK=23, Technological University Eindhoven, The Netherlands,
Second Edition, Anril,

Haarms A Co» 1973, REDJCE 2 wuser’s mmnual8 Artificial Intel ligence
Mero AJM=133, Stanford University, October,

Hoare, CuA R,y 1971, Proof of a program: FIND, Comm. acMm 14, 1,
January, Pp.39=45,

kanian, D. M,» 1957, Correctness of a compller for Algoi=llke

programs, Artificial Intelligence Memo No, 48, Stanford
University, July,

Longon, R, Ls.» 1372, Proving programscorrect: Some techniques and

examples, glT, 13, 2, pp. 168-182,

McCarthy, J, 8 Painter, J, A, 1967, Correctness of a comp! lar for
arithmetic exnressions, Proceedings of a Symposium inmApplied

Mit hemmatics, Vols 490 Ju T. Schwartz (ed, ), Ansr | can
Mathematical So¢iztys, pp,33-41,

McGowan, C, Le.» 1971, An inductive woof technjaue for Interpreter
equivalence, Farmall Semantics Of Programming [anguages: R,
Rustin (ed,), osrentice~Hall, to aPpsear,

Milner, Fre o LOT 4 Implamentation a nd applications oo f Scott's logic
for computable functions, Proceedings of a Conference on Proving
Assertlons about Programs, Assnciation for Computing Mchinery,
to ApDhear,

Painter, Je. A.» 1367, Semantic correctness of a compller for an
Algol=| lke Janguyage, artificial Intelligence Mm No, 44 [also
Ph,0, thesis], Stanford University, Mrch,

) Weissman, C., 19587, Lisp 1.5 Primer, MBDickenson PyblishingCo,

Wirth, N,, 1974, Proaramdevelopmentb y stepwise refinenent, Comm,

32



BN | —
Wer ard

i yi



APPENDIX 1 = A LISTING Of THE COMPILER C#

FEXFR COMPL FILE « SEGIN SCALAR 2;
EVAL(/OUTPUT, {*OSK: | LI ST (CARFILE,’LAP)))¢g

: EVAL(? INPUT , (DSK: , FILES
INC('T ,NIL)YS

QUTC(T,NIL)$

LJOF Z « ERRSET(RLADC)I)S
IFATOMZTHENGO T oDONED
7 « CAR #%

[F CAR 2 £Q‘JE THEN
BEGIN SCALAR PKOG;

PROG « CUMP(CADR 2,CADODR 2,CADUDR 2)%
MAPC(FUNCTIAN(PRINT)PROG) I

QUTC(NIL,NILIS
PRINT LIST(CADR 2,LENGTH PROG)3

QUTC(T,NIL)S

END

ELSE PRINT 2%
50 TO LODPD

DONE CUTC(NIL,T)S

INC(NIL,T)S

RETURN'ENDSZOMPEN D ;

SR RBRBRERBRT FERRERS TEI BFR IRS RRR EERE RRI UF RERTRREBEHRRDIRBSRIRSRRRERNEN

For the nurposes of thls papers» the compiler starts here; above here
may be ignored,
pgararargrgga sree reETe ers re REXEL FI EEE AE EEA XE ALE RAL EEA ld EER XESS LAL S,

COMP(FN,VARS,EXP) «

(LAMBDA N;

APPEND

LIST LIST('LAP,FN,’SUBR J);

MKPUSH(N,1),

COMPEXP (EXP, =N,PRUP(VARS,1)),
LIST LIST (+SuUs ,*P,LLIST(’C,B8,2,N,N)),
*{(POPJ P) NIL)

LENGTH YARS;

PRUP(VARS,N} « IF NyLL VARS THEN NIL
ELST (CAR VARS , N) , PRUP(COR VARS,N+1);

MKPUSH(N,M) « IF N<M THEN MIL ELSE LIST(’PUSH p!P aM) JMKPUSHIN,M+1)}

COMPEXP(EXP,M,VPR) «

[1] IF NULL EXP THEN * ¢ (HNOVE] 1 ©))

(2) ELISE IF EXP EQ *T OR NUMBERF EXP THEN
LIST LIST('MOVEI, 1, (LIST(’/QUOTE, EXP)))

r31] ELSE IF ATOM EXP THEN
LIST LIST(’MOVE ,1,M+COR ASSOC(EXP,VPR),'’P )

[4] ELSE IF CAR CXP EQ “AND OR CAP EXP EB ‘OR OR
C A REXPEQ NOT THEN

33



- N

(LAMBDA L1,L2; APPEND(COMBOOL(EXP,M,L1,NIL,VPR),
LIST(’(MOVE] 1 (QUOTE T)),LIST(’JRST .,02,L2),

L1,’(MCVE]l 1 @),L2)))

(GENSYM(),GENSYM())

(5) ELSE IF CAR EXP EQ ‘COND THEN
COMCOND(CDR EXP,M,GENSYM(),VPR)

61] ELSE IF CAR EXP EQ 'QUOTE THEN LIST LIST(’MOVE!,1,EXP)
[7] ELSE IF ATOM CAR EXP THEN

(LAMBDA Nj; APPEND(COMPLIS(CDR EXP,M,VPR),
LOADAC(Li=N,1),
LIST LIST(’SUB, ' P LLISTC’C,0,0,N,N)),

LIST LISTC'CALL ,N,
LIST('E ,CAR EXP))))

LENGTH CDR EXP

[8] ELSE IF CAAR EXP EQ ‘LAMBDA TH&N
(LAMBDAN} APPEND(COMPL]IS(CDR EXP,M,VPR),

COMPEXP(CADDAR EXP,M=N,
APPEND (PRUP(CADAR EXP,1=M),VPR)),

LIST LISTC(’SUB,'P ,LIST(’C ,@3,0,N,N))))
LENGTH CDR EXP?

COMPLIS(U,M,VPR) «
IF NULL U THEN NIL

ELSE APPEND(COMPEXP(CAR U,M,VPR),
' ((PUSH P 1)),

COMPLIS(COR U,M=1,VPR))}

LOADAC(N,K) « IF N>p THEN NIL ELSE LIST(’MOVE ,K,N,’'P),
LOADAC(N+L1,K+1);

COMCOND(U,M,L»VPR) |
[F NULL U THEN LIST L

ELSE (LAMBDA L1; APPEND
COMBOOL(CAAR U,M,LL,NIL,VPR),
COMPEXP(CADAR U,M,VPR),
LIST(LIST(/JRST ,L),L1),

COMCOND(CDR U,M,L,VPR)))
GENSYM();

COMBOOL(P,M,L,FLG,VPR) «
[13 IF ATOMP THEN APPEND (COMPEXP(P,M,VPR),

LIST LIST(IF FLG THEN *JUMPN

ELSE '"JUMPE ,1.L))

) ELSE IF CaR P EG ' AND THEN
7 a3 (IF NOT FLG THEN COMPANDOR(COR P,M,L,NIL,VPR)
[bb] ELSE (LAMBDA LL1; APPEND

COMPANDOR(CDR P,M,L1,NIL,VPR),

LIST LIST('JRST +8,L1,
LIST L1))

GENSYM())

[3) ELSE IF CAR P EQ 'OR THEN
[a] (IF FLG THEN COMPANDOR(CDR P,M,L,T,VPR)

34



EEE

[bl] ELSE (LAMBDA Ll; APPENOU(
COMPANDQOR(CDR PsM,L1,T»VPR),

LIST LIST(*JRST ,8,L),

LIST Li)

GENSYM() )

[4] ELSEIF CAR P FQ ‘NOT THEN
COMBOOL (CAPR P,M,L,NOTFLG,VPR)

| £5 ELSE APPEND(COMPEXF(P,M,VPR),
LIST LIST(IF FLG THEN’JUMPN

ELSE ‘JUMPE ,1,L));

COMPANDOR(U,M,L,FLG,VPR)Y ° IF NULL U THEN NIL
ELSE APPEND (COMECOL (CAR U,M,L,FLG,VPR),

CIMPANDOR(CDR U,",L,FLG,VPR));

35





_— —

AFPENDIX 2 = ALISTINGO FTHEMIOREOPTIMIZ2INGCOMPILERRTSY

The changes naedadtocompieltethenroof or correctness ofC4
a r eshowri nthisi sting- - delationsenclosedbetween the symbolsc
and © and additionserclosed between %the symbols [ and J with the

latter two also DbeinGusedto number cases, The eight changes are at
COMPEXP, case 2: COMCOND, line 2: LOADAC, cases CAAR #2 = 9 and CAARZ

>. CLASSY, I1ines 3I=3, COMBOOL, cases 1 and 5,andCOMPANDORY, l i nes
1-2:

|
FEXFRCGMPL FILE« BEGINSCALARZE;

| EVAL(/OUTPUT, (*0OSK: _LIST( CAR FILE *LAP)Y))®
EVAL INPUT | (*DJ8Ks, FILED))S

INC(’T yNILYS
CUTC(T,NIL)S

LOOP: Z « ERRSET(READ())EF

| FATOMZ THENGOT O DONE?

Z & CAR 275

IF CAR ¢ EC? 'DE THEN

BELGINSCALARPROG;

PROG « COMP (CADR 3z,CADDR z,CADUDR 23%
MAPC(FUNCTI SN(PRINT),LPROG)S
CUTC(NIL,NIL)S

PRINTLIST(CADRZ,LENGTHPRQG)®

QUTC(T,NIL)EZ
END

ELSEPRINT2S
GO TO LCOPY

DONE : OUTC(NIL,T)S

INC(NIL,T)¢

RETURN fENDCOMP ENDS

YE EXEXE XESS EET ERR RERR-FE- FYFEEEEEFELELELESEEAEEXAERERAEREE-REEEEREEERY RARE REX KK XX

For thepurposes of this papers the compiler starts here} above here
maybe 1 gnored,
I'S EETE ZEEE XERXES REE. FE FS Fry RFE EF XR XERER-R-R-X-R-R-EES REX RX YX RY RR 2 RFR FU F-E- EX FX XE

COMP (FN,VARS,EXP) -

(LAMBDA VPR,N;
APPEND(

L1 Ss TLISTC(!LAP,FN,’SUBR),
MKPUSH(N,1),

COIMPEXP(EXP, =N,VPR),
SYRSTACK N,

'C(POPJPY NIL)

(PRUP (VARS, <),LENGTH VARS)

SUFSTACK N «| FN=2 THEY NII,

ELSELIST LIST(/SUB ,*F L,LIST(’C ,3,8,N,N));

36



PRUP(VARS,N) « IF NULL VARS THEN NIL

ELSE (CAR VARS , N), PRUP(CDR VARS,N+1))

MKPUSH(N,M) « IF N¢<M THEN NIL ELSE LIST(’PUSH,’P,M) MKPUSH(N,M+1);

COMPEXP(EXP,M,VPR) «

C1] IF NULL EXP THEN ’((MOVEIl 1 2))
[2] ELSE IF EXP EQ ‘T eTHEN ((MOVE]l 1 (QUOTE T»))=

[OR NUMBERP EXP THEN

LIST LIST('MOVE], 1, (LISTC(’QUOTE, EXP)))]
£3] ELSE IF ATOM EXP THEN

LIST LIST(’MOVE ,1,M+*COR ASSOC(EXP,VPR),'P)

(3,11 ELSE [IF CAR EXP EQ ‘CAR THEN
Cal (IF ATOM CADR EXP THEN

LIST LIST('HLRZ@,1,

M+CDR ASSQC(CADR EXP,VPR),'P)

Cpl ELSE APPEND(COMPEXP(CADR EXP,M,VPR),
'{(RLRZ®@ 1 1))))

[3,21 ELSE IF CAR EXP EQ ‘COR THEN
[al (IF ATOM CADR EXP THEN

LIST LIST(’HRRZe2 ,1,

M+CDR ASSQC(CADR EXP,VPR),’'P )

[p] ELSE APPEND(COMPEXP(CADR EXP,M,VPR),
'((HRRZ@ 1 1))))

C41] ELSE JF CAR EXP EQ ‘AND OR CAR EXP EQ 'OR OR
CAR EXP EQ 'NOT OR CAR EXP EQ ‘EQ THEN

(LAMBDA L1i,L2; APPEND(
COMBOOL(EyP,M,L1,NIL,VPR),

LIST(’ (MOVE] 1 (00 OTE TY), LIST(’JRET.D.L2),
Li,’ (MOVET 1 @),L2)))

(GENSYM(),GENSYM())

[5] ELSE IF CAR EXP EQ 'COND THEN
COMCOND(CDR EXP ,M,GENSYM(),VPR)

6] ELSE IF CAR EXP EQ 'QUOTE THEN LIST LIST¢('MOVEI,1,EXP)
C7] ELSE IF ATOM CAR EXP THEN

APPEND(COMPLISA(CDR EXP,M,VPR),
LIST LIST(’/CALL ,LENGTH CDR EXP,

LIST('E ,CAR EXP)))

£813] ELSE IF CAAR EXP EQ "LAMBDA THEN
(LAMBDA N; APPEND(STACKXUP(CDR EXP,M,VPR),

COMPEXP(CADDAR EXP,M=N,
APPEND(PRUP(CADAR EXP,1=M),VPR)),
SUBSTACK N))

LENGTH CDR EXP;

STACKUP(U,M,VPR) « IF NULL U THEN NIL
ELSE APPEND(COMPEXP(CAR U,M,VPR),

‘((PUSH P 13),
STACKUP(CDR U,M=1,VPR));

37



CCCHAINEXP«( C AREXPEQR CAR ORUCAREZXP EQ‘CDR)A N D
(ATOM CADR EXPO RCCCHAIN CADR EXP);

CCMPC(EXF,N2,M,VPR) «
| FATOMEXPTHEENE RRO R/COMPC

ELSEIl F car EXPEQ!CARTHEN

(IF ATOM CAUR EXP THEN

LISTLIST(’RHLRZ® ,N2,M+CDR ASSOC(CADR EXP,VYPR),’'P )
ELSE LIST('HL.RZ® ,N2,N2),COMPC(CAOR EXP,N2,M,VPR))

ELSE IF ATOMCADREXPTHEN

LIST LIST(’HRRZg JN2,M+CORASSOC(CADR EXP,VPR),’P )
ELST LIST(!'ARRZ® ,N2,N2),COMPC(CADR EXP,N2,M,VPR);

COMCOND(U,M,L,VPR) «

IF NULL U THEN LIST L

ELSE IFINCTATo MCAARUAND]J

CAAAH UEC/NULLANDNULLCADARU TH EN

APPEND(COMPEXP(CADAAR U,M,VPR),
LIST LIST JUMPE ,1,L),

COMCONUO (CUR U,M,L,VPR))
ELSE IF CAARUEQ!TTHEN |

APPEND( COMPEXP(CADAR U,M,VPR),LIST L)
ELS EC(LAMBDALL; APPEND

COMDO00L(CAAR UsM,L1,MIL,VPR),
CCMPEXP(CADAR U,M,VPR),

LISTC(LIST("JRST ,2,L),L1),

COMCOND(COR U,M,L,VPR))})
GENSYM();

COMRPLISA(U,M,VPR) =~

(LAMBDA #3; APPEND (

COMPRIS (Z2,M,4, VPR) |

LOASAC(Z2,1«-CCOUNT 2,31 ,M=CCOUNT 2Z,VPR),

SURSTACKCCOUNT t))
CLASSIFYUu:

CCOUNT 2 « IF NULL 2 THEN © ELSE IF CAAR 2 = 4 THEN 1+CCOUNT CDR 2
ELS ECCOUNTCORZS

LOACAC(Z,M2,N2,M,YPR)
IF NULL ZTHENN TU

ELSE IF CAAR 2 = 1 THEN
L1sT(¢('MQVE ,N2,M+CDRASSQC(CDAR 2,VPR),’'P )

,LOADAC(CDR #,M2,N2+1,M,VPR)

ELSE IF CAAR z= THEN
LISTC('MOVET, N2, (LIST(’QUOTE, CDAR £)))

JLOADAC(CDR 2,M2,N2+1,M,VPR)]

ELSE IF CAARZ = 2 THEN

LIST(’MOVvVE]l JN2,CDAR #) |
LOAWDAC(CDR Z,Mc,N2+1,M,VPR)

ELSE IFCAARZ=3ITHEN

38



APPEND (REVERSE COMPC(COAR Z,N2,M,VPR),

LOADAC(CDOR Z,M2,N2+1,M,VPR))
ELSEIF CAAR 2 = 5 THEN <NIL2> (LOABAC(CDR 2,1,N2+1,M,VPR)]
ELSELIST(/MOVE N2,M2,'P),

LOADACC(CDOR Z)M2+1,N2+1,M,VPR)}

COMPLIS(Z2,M,K,VPR) «
IF NULL #2 THEN NIL

ELSE IF CAAR Z2 = 4 THEN APPEND
COMPEXP(CDAR 2,M,VPR),

\ ‘( (PUSH P 1)),

COMPLLIS(CDR 2,M=1,K+1,VPR))

ELSE IF CAA 2 = 5 THEN APPEND
COMPEXP(CDAR 2,M,VPR),
IF Ks1 THEN NIL

ELSE LIST LIST(/MOVE ,K,1)))

ELSE COMPLIS(CDR Z,M,K+1,VPR)}

CLASSIFY U « CLASS2(¢(CLASSI(U,NIL)SNIL,T):

CLASS1(U,V) « IF NULL U THEN V
ELSEIF ATOM CAR U THEN

r(lF CAR U = ‘NIL OR CAR U = *T OR NUMBERP CAR U THEN
CLASS1(CDR U, (@ , CAR U),V)
ELSE] CLASSI(COR U, (1, CAR UV),,V)[)]

ELSE IF CAAR U = QUOTE THEN CLASS1(CDR U,(2 , CAR U).V)
ELSE IF CCCHAIN CAR U THEN CLASS1¢(CDR U,¢(3 , CAR U),V)
ELSE CLASS1(CDR Ua(4 , CAR UY) ,V)i

CLASS2(U,V,FLG) « IF NULL U THEN V
ELSE IF FLG AND (CAAR U = 4) THEN

CLASS2(CDR U,(5 , COAR U),V,NIL)
ELSE CLASS2(CDR U,CAR U , V,FLG)}

MKJRST L « LIST LIST(!/JRST 8,0)

COMBOOL(P,M,L,FLG,VPR) »

[2.11 IF P EQ TTHEN (IF FLG THEN MKJRST L ELSE NIL)
Cl3 CELSE IF AToM P THEM APPEND

COMPEXP(P, M, VPR),
LIST LIST(IF FLG THEN ‘JUMPN

ELSE ’'JUMPE EYLIRE
(1.1, ELSE IFCcARP EQ 'EQ THEN APPEND

COMPLISA(CDR P,M,VPR),

[F FILG THEN *((CAMN 1 2)) ELSE *((CAME 1 2)),
MKJRST L)

[2 ELSE JFCARP EQ 'AND THEN
a (IF NOT FLG THEN COMPANDOR(CDR P,M,L,NIL,VPR)
ro] ELSE (LAMBDA L1; APPEND(

COMPANDORA1(COR P,M,L1,L,NIL,VPR),
LIST L1))

GENSYM())

39



[3] ELSE IF Ca’ P £4 OR THEN

(al ( It FLG THEN COMPANDORC(COR P,M,L,T,VPR)

Co) CLSE (LAMYDALY; APPENOI(
COMPANDORL(CDR P,M,L1,L,T,VPR),
LIST Ll))

GENSYM())

[4] ELSE IF CARPER*NGTTHEN

CIMSOQOL(CADR P,M,L,NOT FLG,VYPR)

[4.13 ELSE IF CAK P EQ ‘ NULL THEN APPEND(
COMPEXP(CADR P,M,VPR},
LIST LIST(IF FLLG THEN ‘JUMPE

ELSE ‘JUMPN ,1,L1))

[59 ELSE elf ATOMCAR P THEN APPEND
COMPEXP(P,M,VPR),

LiST LIST(IF FLG THEN ‘’JUMPN

ELSE ‘JUMPY ,1,L?);

CCHMPANDOR(Y,M,L,FLG,VPR) « IF NULL 1) THEN NIL

ELSE APPEND (COMS0QL (CAR U,M,L,FLG,VPR),
COMPANDCR(CDR U,M,L,FLG,YPR));

COMPANDCR1I(U,M,L,LZ,FLG,VPR)Y « [IF NULL U THEN MKJRST L2

ELSE] IF NULLCDRU THEN COMEOOJL (CARU,M,L2,NOTFLG,VPR)
ELSE APPEND (COMROOL (CAR U,M,L,FLG,VPR),

COMPANDOCRLI(CDR U,M,LsL2,FLG,VPR));

44)





§ a:

g APPENDIX 3 = SAMPLE CUTPLT OF CO AND C4 FOR A REVERSE FUNCTION

4 (DE REV (XY) (COND C(HULL XY Y) (T (R2V (CDR X) (CONS (CAR X) Y)))))

: Coce from Co Comments Code from C4

| (LAP REV SUBR) haacer (LAP REV SUBR)
(PUSH P 1) stack first arg (PUSH P 1)
(PUSK P 2) stack second arg (PUSH P 2)
(MOVE 1 =1 P) compute x

(PUSH P 1) stack It

(MOVE i 2 P) recel | X (MOVE 1 =1 P)
(SUB P(C B22 1 1) adJ. stack by1

(CALL 1 (E NULL) cal| NULL
(JUMPE 1 L2) i f notNULL jump (JUMPN 1 L2)
(MOVE 1 a P) recall| Vv (MOVE 1 2 P)
(JRST L1) Jump for return (JRST L2)

LL 2 the label L2 L2
(MOVEI1 (QUOTET)) computa T

(JUMPE 1 L3) ftnet T jum
! (MOVE 1 «1 P) compute X
| (PUSH P 1)

k (MOVE 1 A BP) recall X
| (SU= P (C 8 & 1 1))

(CALL 1 (& COR)) COR

(PSH P 1)

(MOLE 1 «2 P) s0Mpute X
(PUSK P 1)

(MOVE 1 3 P) F331 X
(Sys P (Cc 0211)

(CALL1(E CAR)) CAR, rasn, CAR X (HLRZ@ 1 =1 P)
(PiJSH P 1)

(MOVE 1 «2 P) compute Y
(PUSk P 1)

(MOVE 1 «1 P) recall CAR X

: (MOVE 2 OP) recyll Y (MOVE 2 2p)
J (Sil PA(CODO 3 2 2) die stack py @
| (CALL, 2 (E CONS)) 2oNS. (CALL 2 (E CONS))

(Pys+ P 1)

(MOVE 1 «1 PRP) recal| COR X
(MGVE 2 @ PP) recall CONS, resp. (MOVE 2 1)

transfer CQNS

computeCUR X (HRRZ® 1 =31 P)
(SUe P (C2 pn 2 2))
(CALL 2 (EE REV)) REV (CALL 2 (E REV))
(JRST L1) jump for return
L3

Ll L1

(Sy P (Ca 2 2 2)) return (SUB P(C a2 2 2))
(POFJ P) (POPJ P)

NTL PNdo fegoue NIL

41



i ‘


