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LARGE [g,d] SORTING NETWORKS

by

David C. Van Voorhis

ABSTRACT

With only a few exceptions the minimum-comparator N-sorter networks

employ the generalized "divide-sort-merge" strategy. That 1s, the N

inputs are divided among g 2 2 smaller sorting networks —-— of size

Ni sNoseoes Nos where N = oy N ~ that comprise the initial portion of
the N-sorter network. The remainder of the N-sorter is a comparator

network that merges the outputs of the Nl-, Ny=» . . . . and Ny —sorter

networks into a single sorted sequence. The most economical merge

networks yet designed, known as the "[g,d]" merge networks, consist of d

smaller merge networks —— where d is a common divisor of NysNo» oc oo Ny Ded

followed by a special comparator network labeled a "Lg,d] f-network."

r .r

In this paper we describe special constructions for [2 ,2°] f-networks,

r > 1, which enable us to reduce the number of comparators required by a

: 2

large N-sorter network from .25N (log, N) - .25N( log N) + O(N) to
2

.25N(1og,N) — .37N(1ogN) + O(N).





TABLE OF CONTENTS

f Page

| I. Introduction 1

} II. [g,d] Sorting Networks 3
r Tr

: III. Constructing [27,2 ] f-networks 11
! m
| Iv. (2 )-sorter Networks 32

v. Conclusion 37

Appendix A Proof of Lemma 1 39

Appendix B Proof of Theorem k 42

Appendix C Proof of Lemma 3 50

References 53





ii] |

LIST OF ILLUSTRATIONS

Figure Page

1. b-sorter network 2

r r
2. [2 y 2 ] f-network constructed using

(a) Theorem 2 and (b) Theorem 3 twice 13

3. f-network for [4,4] 16-sorter 15
r Tr

4. [27,2°] f-network for V constructed using
(a) Theorem 3 and (b) Theorem 2 twice 17

r r

5. [27,27] f-network 18

® 2

6. The comparators Vi1,28) V(1+1,2s5-1) D
Te The subsets of V 44

A A

“1. 46
8. The comparators Vi, s+" iV, s)

LIST OF TABLES

Table 1. Small f-networks 6

. 21

Table 2. Small values of Prot od >
~~

Table 3. G(2™) and s(2™) for m < 16 33





iv

ACKNOWLEDGMENTS

The author is greatly indebted to Dr. Harold S. Stone for his prompt

and careful attention to several versions of this paper, and for his many

constructive suggestions that have been encorporated. The author also

wishes to thank Dr. Robert W. Floyd and Dr. Donald E. Knuth, who each

made several helpful suggestions.





I. Introduction

A comparator network with 4 inputs is illustrated in Fig. l(a).

Each of the 5 comparators, labeled A, B, C, D, and E, compares 1ts

two inputs and emits the smaller on its higher output lead and the larger

on its lower output lead. An abbreviated diagram for this comparator Let-

work is given in Fig. 1(b), where each comparator is replaced by a vertical

line connecting the two comparands.

A comparator network with N input and output leads 1s called an

[] [1 * []
N-sorter network, or simply an N-sorter, if for any set of 1nputs I =

ESE PPRRRTE I the resulting outputs 0 = {01,055.50} satisfy:

1) 0 is a permutation of I; and 2) ©, < Op if J £ k. The net-

work depicted in Fig. 1 1s a b-sorter, since comparators A throughD

move the smallest input to 01 and the largest input to 0), and then

comparator E orders the remaining two inputs.

The most economical general strategy known for constructing N-sorter

networks, the [g,d] strategy, 1s introduced in[ 2 J]. Although it rep-

resents an extension of the earlier paper, the present paper is self-

contained. The earlier paper describes the lg,d] strategy for arbitrary

g,d, and gives specific results for N-sorter networks with N < 36. The

present paper describes the especially efficient networks that have been

r

discovered for the case g=d = 2 .

¥ Since we wish to allow for the possibility that two or more inputs

have the same value, we probably should refer to I and 0 as
"multisets, rather than as "sets." And we should then refer to
particular members of I as a "submultiset' of I, rather than as
a "subset." (See D. E. Knuth C11.) However, we prefer to use the
more familiar terms "set" and "subset," and will do so consistently,
even when all members of I are required to have one of the values

0 or 1.
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II. [g,d] Sorting Networks

One way to determine whether a comparator network with N inputs

and N outputs is an N-sorter network 1s to verify that 1t will sort

all N. permutations of the numbers 1, 2, . . ..N as inputs. However,

the following theorem reduces to oN the number of input patterns

required to test a comparator network.

Theorem 1: (Zero-One Principle)

A comparator network with N inputs and N outputs 1s an N=

sorter network if and only if it will sort all oN combinations of

N inputs where each input is either 0 or 1.

Proof: See references 2,3, andl,

Although oN grows much more slowly than N!, 1t 1s not feasible

to test large networks for oN different combinations of inputs.

Therefore, 1f we desire large sorting networks, we must build them

in such a way that we can guarantee "by construction" that they will

sort all combinations of inputs. The most economical strategy known for

designing large sorting networks, the [g,d] strategy, 1s introduced in

[ 2]. In the remainder of this section we present a brief description

of the [g,d] networks.

The purpose of the [g,d] N-sorter network, where N = gd, is to

accept as input the unordered set I = {i030 0. styl and to produce

as output the set 0 ={0,50,; . 0.) where 0 1s a permutation of I,

and ° < °, < vee S Ox In order to specify the internal structure of



the [g,d] (gd)-sorter network precisely, we find it convenient to

consider I to be a g X d array, with t(a,8) _ Lo-1)asa The g rows
and d columns of I are given by

Lia,#) = Lend {I(g,8)} l1=0Qc<g; (1)

Lx) = > {To,8)} I <p < d. (2)

Using this notation, we define the Lg,d] (gd)-sorter network as

i) g d-sorters for a,x)’ l <a<g; followed by
11) d g-sorters for I sy 1 =pB <d; followed by

(*,8)

111) a special comparator network called a Lg,d] f-network,

which 1s defined below.

It has been shown [ 2 , 5 ] that the g+d small sorting networks

in 1) and ii) leave the rows and columns of I sorted. In order to

distinguish the original unordered set I from the set with sorted rows

and columns, we relabel the latter V = (VysVoseeesVyls The (g,d]

f-network 1s defined informally to be a network that contains whatever

comparators are sufficient to transform the partially ordered set V into

the completely ordered set 0.

The Zero-One Principle guarantees that a comparator network which

begins with g d-sorters and d g-sorters is a (gd)-sorter network 1f it

sorts I when each member of I is either 0 or 1. Therefore, when

designing a [g,d] f-network that will complete the ordering of V, we

may assume —-- without loss of generality —-- that all members of V are

either 0 or 1. We make this assumption throughout the remainder of

- this paper.



If the number of O's in V .\ is denoted Z(V then it can(*,3) (%,3)7? t
be shown that since the rows and columns of V are sorted,

Z(V < Z(V < < Z(V < Z(V d;(Vig,x)) = 2V(g1,%)) = oS 2V(q 0) 20g ay) 6 (3)

Z(V < Z(V < < Z(V < ZV g.( (%,0)’ ( (*,d-1) To ( (%,1)’ ( (%,d)’ ) (4)

We are now 1n a position to make the following definition.

Definition 1:

A sequence of comparators is called a [g,d] f-network for N = td

items 1f and only if it will complete the ordering of the partially

ordered set V = {visvos eee, vyhs where a) the columns Vix, 4) 1<j<d,
are ordered and b) the number of 0's in Vix i) satisfies (4).’

The best f-networks known for g,d = 2,4 are given in Table 1.

Each of the tabulated f-networks 1s described by a sequence of templates

of the form Vv Vv . —— < < - <(1,0) (i+3,8) where 1 Qy B d, J 0, and jd+ B
—-— followed by a range for i, which is specified in terms of t = N/d.

Let Ire a ‘Nv represent the minimum number of comparators required’

by a lg,d] f-network for N items. (This function is only defined when

N 1s a multiple of d.) Since we have not proved that the f-networks in

Table 1 are minimal, we have labeled the number of comparators they

A

require a N). Note that { (N) is linear in N, i.e. thatlg,a]™) [&,d]

d N a N ble,a]™) - lg,a] ¥ - "lg, a)’ (5)

where aro d] is (1/d) times the number of templates required by theJ

[g,d] f-network and b 1s a positive constant.
Le,d]



A

Lg,d] f-network for N-sorter, N = td f (N)
[g,d]

[2,2] Vit, 2) V(i+1,1) 1 <i < t-1. t-1 = 3N-1

Vi1,3) V(1+1,1)’ 1 <i € t-1;

[2,4] Vii) Vit, 2) 1 <i < t-1; ht-3 = N-3

Vo. ov: V,. 1 <ic<t;(1,2)*"(1,3)’ i

[4,2] Vii,2) V(i+2,1)’ 1 <i < t-2; 2t-3 = N-3

"(1,3)" (142,1) LEE

Vi1,2)"V(1+1,1)’ 1 <1 < t-1;

CL,4] Vii,h) V(i+,3) 1 <i< t-1; 8t-11 = 2N-11

Vii,3) V(i+1,1) 1 <i 5 t-1;

Vii, nya, 2) 1 <1 < t-1;

Vii,2)V(i,3) 2 <i < t-1;

Vein) Viie1,1)? "1 <i <t-1.

Table 1. Small f-networks.
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We may use the [g,d] strategy recursively to obtain N-sorters for

arbitrarily large N, provided we can construct lg,d] f-networks for

large N. Theorems 2 and 3 below, which are proved in[ 2 }, describe

two methods for constructing large f-networks using several copies of

smaller f-networks.

Theorem 2:

Let the set V= {visvoseev,vy}, where N = tsd, be considered a
= Vv ) . Then we can

t x s x d array, with Vii, dk) (i=1)sd+(j-1)d+k

construct a [g,sd] f-network for V using:

i} d [g,s] f-networks for V(x, %,k)’ 1 <k =< d;
followed by

ii) one [g,d] f-network for V.

Theorem 3:

Let V be as in Theorem 2. Then we can construct an [sg,d]

f-network for V using:

i) s [g,d] f-networks for V,, . *)? l<J=ss;(*,3,

followed by

ii) one [s,d] f-network for V.

As an example of the constructions described by Theorems 2 and 3, ,

r

suppose that we desire to construct a [2,2] f-network for the set
r

v = {visvos NY where N = t-2 . According to Theorem 3, we should
| r—1 r-1

consider V to be at X 2 X 2 array, and use 1) 2 [2,2] f-networks

r-1 . r-1

for Vix xk)’ 1 <k £2 7, followed by ii) a [2,2 7] f-network for V.2"

From Table 1 we find that the [2,2] f-network for V(*,%,k) requires the
V,. l <i <t-1 h 11 of th

comparators Vii,2,k) V(i+1,1,k)’ 1 t-1, so that a of the
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comparators required by 1) are described by Vit, 2,k) Y (i41,1,k )
1<istl 1sks<2

It 1s not really necessary to consider V to be a t X s X d array

in order to apply Theorems 2 and 3, although this assumption does

simplify the description of the [g,sd] and [sg,d] f-networks. In the

r r

next section we find it necessary to describe a [2,2°] and a [27,2]

f-network for a t X oF array. It 1s readily verified that the

comparators prescribed by Theorems 2 and 3 for these two f-networks

are those given 1n Corollaries 1 and 2 below.

Corollary 1:

r r

Let the set V={v,v,..,vl, N=t2 , 'be considered a t X 2
r

array. Then we can construct a [2,2 ] f-network for V using:

r
- —-1,:V,

i) the #(N-2°) comparators Vii,s+2" y Vit1, 5)
-1

1<istl, 1sss<2 ~; followed by
r-1

ii) one [2,2 ~] f-network for V.

Corollary 2:

r

Let V be as in Corollary 1. Then we can construct a [2,2]

f-network for V using:

i) the 2(N-27) comparators V :VP (1,28) (i+1,2s-1)’

l<i<t-1l, 1=<s8< ot, followed by
CL r-1
ii) one [2° 7,2] f-network for V.

The number of comparators required by the best f-network that can

be constructed out of smaller f-networks using the construction of

Theorem 2 and/or Theorem 3 is given by
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Lo aM) = min min F(g,d,N,q,p) |, (6)
1 ’ l<q<g l<p<d

g mod gq = 0 2<q+0p ! !
d mod p = 0

: where

: F(g,d,N = q-p-f% N/(q-p) ) + 2 N| (g,d, »q,P) q (g/q,d/p] (N/ (a P) ) (q,p] ( )

| «a N/ RA N .y 1 (e/a,p] a) +P [a,d/p]¢ /P) (7)

Note that a 1] (N) = ? N)= 0, that: LT = 1, th| le, ] (N) [1,4] ) so that: a) if gq en (7)
describes a construction that uses only Theorem 2; b) if p = 1, then

(7) describes the use of Theorem 3 alone; and c¢) if p,q > 1, then (7) .

describes a network built using both theorems. The case p=qg =1 1s

not allowed, since it would reduce (6) to an identity.

| We may use Equations (5)-(7) to show that the number of compar-
{i

ators required by the best [2 ,29] f-network that can be constructed

| according to Theorems 2 and 3 is given by

$4 ju = ari JaN = be i ja, (8)I [2 ) 2 ] L2 2 ] [2 ye J

where

ar 1 Jj. = min min ar .1-r Jj—-s4 + ap .r .S| [27,27] JL oS, | ,2 717 2,2") (9)
O<r+s

’ i- S~ + r ,.j-s

uy Te ] 2 , 20 ] ’
be i J max max 2 TF Sy ir j-s (107

| (252) = crc 0<s <j [27 52" 7]
O <r + s

| b- _r s2%b i-1r 8S + 2% r ~j-s
+ (25,277 [2 7,27] [27,27 7]
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Starting with a b = 1 hich btain from Table 1g [2,2] _ 2, [2,2] , which we o 1 ,
we may use (9) and (10) to show that the most economical [2,4],[4,2],

and [4,4] f-networks that can be constructed using Theorems 2 and 3 are

described by

a a 1;
[2,4] = Ck, 2] =

b = b = :

[2,4] = "[u,2] =
(11)

a 2;
[4,4]= 77

b .
Ch, 4] = 2

The [2,4] and [4,2] f-networks listed in Table 1 are, in fact,

constructed according to Theorem 2 and Theorem 3, respectively. However,

the [4,4] f-network given in Table 1, which achieves bry, 4] = 11, 1s theJ

smallest example of ,a more economical construction that has been

discovered for [2,27] f-networks, r > 1. This construction 1s described

in the next section.
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III. Constructing (2%, 2%] f-networks

In this section we describe a particularly efficient method for

constructing [2",2%] f-networks, r > 1. The construction depends

upon the concept of a "redundant" comparator. Now the purpose of

the comparator OR: is to compare v_ and Vg and to interchange

the two if Va > ver which 1s to say, if vy = 1 and Vg = 0. The

comparator Vag is said to be "redundant" if it can be shown that,

as a result of previous comparators, (v_ = 1) = (Vg = 1). A

redundant comparator never makes any interchanges; therefore, the

network performance 1s not altered by removing any redundant com-—

parators.

The method used in this section for constructing a [2F,27]

f-network is: a) to determine the templates required by the

[2F,2M] f-network derived using Theorems 2 and3; DP) to reorder

the templates in such a way that, although the resulting network

still orders V, some of the comparators become redundant; and

c) to remove the redundant comparators. The number of comparators

required by the efficient [27,27] f-network 1s just the number

determined by Equations (8)-(10), minus the number that become

redundant when the templates are reordered. Since the economical

construction does not reduce the number of templates, the linear

coefficient aot oT is not changed from (9). We shall see that
the improvement is reflected by an increase in brat, 2" over (10).

Suppose that we desire to construct a [2%,2"] f-network for the

set V = {Vy;V5yeee,Vy} , where N = t.2¥. According to Theorem 2,
the [27,27] f-network can be constructed using: & [2%,2"
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r-1

f-network for the odd members of V, labeled v;ale,2 ] f-network
r

for the even members Ver and a [2 ,2)] f-network. Furthermore, according

to Theorem 3, each of the [2F,2%" 1; f-networks can itself be built out

of two [oft oh and one [2,251 f-networks. The successive levels
r .r

of detail for the resulting [27,2] f-network are displayed in Fig. 2.

Considering V to be a t X oF array, we define the six subsets of V

appearing in Fig. 2 as follows.

v vy (12)= 101 i odd J odd (1,3)

Vio — \_/ \_/ vy i) (13)
i even j odd ?

vo o= \U/ / {v } (14)el : : (1 J)
1 odd J even

= Vv. 15)Veo AN J (1,3)] (15
1 even Jj even

— 16V vil Yo (16)

_ 1v, =v, ,\ Ve (17)

These subsets are illustrated for the case t = of =} in Fig. 3, and

for the case t + 10, 2° =8in Fig. 6.

We may use Corollary 2 to express the [2,2] f-network in
Tr r-1

Fig. 2(b) as &(N-2 ) comparators followed by a [2 ,2] f-network



Yi ol

“3 [27,277] 2
* f-network ) - 0,

for V, . )
r

N-1 [2,2] .
f-network ,

v for V
2

Vi 25,2"
J f-network .
] for V, = | .

vy | —— Oy

(a) |

\'4 %1 . purr .

amet” f-netwofrk °3
A'4 Tr - - ’

| for Vv, : [25,2 1
| f-network

v for V

2 Trlr A° » .

. for Vet , : [2,271] .
rr] f-network | .

v Y - - [) ]

ory 2 . [2° Lr : for v, ,

(b)

Fig. 2, [27,20 f-network constructed using

(a) Theorem 2 and (b) Theorem 3 twice.
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r .r

for V. The resulting [2 ,2] f-network contains the following

four groups of comparators, which appear sequentially.

1) Four [2¥74 7 f-networks for V..  V .,V _,.? 01' "02? "el? e2"

r-1

2) Two [2,2 ~] f-networks for v, and Voi
1 Ir

=D .3) The z(N ) comparators (1,28) V(i+1,2s-1) (18)
r-1

l<i<t-1l, 1<s<2 ;

r-1

4) A [2 , 2] f-network for V.
r

The economical [2F,2 ] f-networks take advantage of the following

observation (which 1s proved below): If we interchange the order of

2) and 3), then not only does the resulting network still order V,

r-1 r-1

but also 2 of the comparators in the [2° 7,2] f-network become

redundant.

Before proving this observation, we shall illustrate the con-

struction, using the [4,4] l6-sorter as an example. The partial

ordering in the intermediate set V is illustrated in Fig. 3(a),

with an arrow from Vo to Va representing the relation Vo < Vg

The dashed lines in Fig. 3(b) represent the four [2,2] f-networks

required by 1) for the four sets Vo1? Von? Ver? Veoo The dashed

lines in 3(c) through 3(e) represent, respectively: the 6 compara-

tors called for in 3); the [2,2] f-networks for V, and V_ required

by 2); and the [2,2] f-network for V given in 4).

The comparators illustrated 1n 3(b) through 3(e) are exactly

those described for the [4,4] f-network in Table 1 —-

plus two extra comparators in 3(e), namely VotVa and Vig Vise

These two comparators are redundant. The partial ordering in V

depicted in Fig. 3(a) requires that vl = 0 1f z2(V) 2 1, and that



(vn) (%2 ) (vs) (v ) Fig. 3. f-network for
ara [4,4] 16-sorter,{7

orove 25

pdfs CREA
| (a)

OXIOFOOENIOZD,Fad ae / /
- - / /

Rey /f |

/ ed rad + ,
y .7

oelicrcNolcIcle/ / 7 PANY
¢ ] / 7

(fd Fis] fd fa [isl fad
(b) (c)

) —= 7 “7 rd

fo /1e\ [vj fide 7) /Y16"
(d) (e)
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Vy = O orvb5 =0 if z(v) 2 2. The comparator Toi Vs in 3(c)
guarantees that vy = 0 if z2(V) 2 2. Therefore,

(v, = 1) 2 (z(v) < 2)

so that the comparator VoiVa is redundant. By symmetry, the

comparator 1115 1s also redundant.
r r Co

Although the economical [2,2 ] f-network is a modification of

the network depicted in Fig. 2 and described by (18), it still begins

r-1 r—1

with four [2° 7,2 7] f-networks for Vig Vio Ver? and Veo® In

Fig. 4 we display successive levels of detail for a third possible con-

r .r

struction for a [2 , 2 ] f-network. Note that it, too, begins with

four [2°71 2 f-networks for V Vv \Y and V although’ 01' 02' ‘el’ e2’

the remainder of the network differs from that in Fig. 2. All three

r r
[27,2"] f-networks share the construction depicted in Fig. 5, namely

r-1 .r-1
four [2 , 2 ] f-networks followed by a speclal comparator network

that we shall call an [r] h—network.

An [r] h-network 1s defined informally to be a network that

contains whatever comparators are sufficient to complete the

ordering in V. Fig. 2 and -Fig. 4 illustrate two different [r]

h-networks.

In order to define an h-network precisely, let us consider the

r-1 .r-1
partial ordering in V achieved by the four [2 ,2 ] f-networks.

Clearly they order the sets Vor? Vop? Vor? Veor Since the construction
r-1

of Fig. 2 and (18) guarantees that a [2,2 ] f-network will complete

the ordering of Vo» once Vol and Vos are ordered,
¢ 251

Z(V,,) < Z(V_q) = Z(V,,) ) (20)
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v —_ 0

v5 — 0,
. | f-net for

— 0

v 3
+ | "(28-1,%,*) ’

1 T Vor Vet [2 27 |
f-network

Vary r-1 or. | for V )
| [27,2]
22 f-net for ‘

¢ Vizg,*,*) ’

ARR 2Y. |
°N

(a)

: \'s — 0
1 [257121 KE tz 1 _ .

—] tor ol f-net for _ 0°
3

Vion
Vary ri ,r-1-.1] : (2s 1,%,%)

. [12 7,2 Tlf J=v Uv,. for Vo ol e [2,2F ]

. / | f-network
4 | for V |

Vv . . |

2 dlcat-aslyy)G Ra
+ |for Vet | 1 f-net for ‘

V 0

Vors2 | rt .r-1 | (28,%,*)
[le 2 “Vv JV

for V_, 02 e2 o
— SL — N

(b)

Fig, 4. 2¥,2" f-network for V constructed using

(a) Theorem 3 and (b) Theorem 2 twice.
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A'S Lo] - (s)

| SE [2,2 : 1
9 for Vat . J
ee 3

Vor *

2T+1 : (2-1 ry :
. for Vo | .

- h—network

for V

) Ef
Vors2 r-1 .r-1.| .

. [2 2 ] .
for V ’

Fig. s. [25,27] f-network,
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Co : r-1
Similarly, since another [2,2" "] f-network will order V once

e

| \% and V are ordered,
| el el

| < Z(V_,) pt 21| 2(Vep) = 2(Vey) e2/ T (21)

r-1

According to the construction depicted 1n Fig. 4, one [2 2]

f-network will order V \ Jv and another will order V \_v :
ol el 02 e2

. Thonce Vo1? Vor? Ver? and Veo are all ordered erefore,

| Z(v .)=<2(v..)=<z(V..) + or-1 (22)el ol Mel ’

r-1
+ 2 [

z(V_,) <Z(Vop) = Z(Vep) (23)

We are now ready for the following formal definition.

Definition 2:

r

A sequence of comparators is called an [r] h-network for N = te?

items 1f and only if it will complete the ordering of the partially

ordered set V= {Vv sven esvyls where a) the four subsets of V
1

j defined by (12)-(15) are each ordered and b) the numberof O's in

these subsets satisfies (20)-(23).

From out discussion of Fig. 2 we conclude that one possible

construction of an [r] h—-network consists of items 2), 3), and L)

| from (18). Lemma 1 shows that we may interchange the order of 2) and

3) in (18).
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Lemma 1:

r

Let the set V = {visVoseee,vyl, where N =t.2 and t is even, be
r

considered a t X 2 array. Then we can construct an [r] h-network for

V using:

[3 r []

i) the #(N-2 ) comparators Vii,28)V(1+1,2s-1)’
-1

1 <1<t-1, 1< 5s < of y that produce the inter-

mediate set wv; followed by

_ -1

ii) one [2,2" 1 f-network for ‘A and another [2,2" ]

f-network for Ve followed by

iii) one [25712] f-network forV.

Proof:

The complete proof of Lemma 1 is given in Appendix A. [Essentially

we show that the comparators in i) tend to move O's from Vj to V_,

while maintaining the partial ordering in the four subsets of V.

Specifically, we prove that a. V a and 7, are all ordered and
that

A r-1
+ 2° 7; 2z(V_,) < 2(V 1) =z(¥ ,) (24)

r-1
< + 2 ; 2

r-1
< + 2° 7. 26z(V_) < 2(9.) z(V_) (26)

Therefore, the [2,21] f-networks 1n 1i) will complete the ordering
A r-1 CL \V/ofV. and V, so that the [2 7,2] f-network in iii) will then order V.

0 e

Q.E.D.
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r-1 0We can use Corollary 1 to express the [2,2 ] f-network for °
CL r-1 A A

in ii) of Lemma 1 as the #(#N-2° ~) comparators Vig, se2 HV(a4, 5)
r-1 r-2

1<i<t-l, 1<s<2 ,s odd, followed by a [2,2 ~~] f-network.
r-1

Similarly, we can use Corollary 1 to express the [2,2 ] f-network

-1 r-2

for v as 2(&N-2" ) comparators followed bya [ 2,2  ~] f-network.
This leads to the following recursive construction for an Lr]

h-network.

Theorem 4:

Let V be as in Lemma 1. Then we can construct an [r] h—-network

for V using:

i) the 2(N-27) comparators Vi, :VP (i,2s)"" (i+1,2s-1)’

1 €£1i<t-1, 1<s¢K oF that produce the inter-

mediate set V; followed by

CL Ir Jii) the #(N-2 ) comparators Vis, sve? 1339141, 6):
-1

1 <£1<t-1, 1<s£< oF , 1 £ k £2, that produce

the intermediate set v; followed by

111) an [r—-1] h-network for V.

Proof:

Lemma 1 and Corollary 1 imply that the intermediate set V can be
r-2 ~ r-2

ordered by: a [2,2 ] f-network for vy and another [2,2 ]
~~ r-1 ~~

f-network for V_, followed by a [27 7,2] f-network for V. As noted
above, these three f-networks constitute one example of an [r-1]

h-network. (Simply replace r in Fig. 4 by r-l.) A complete proof of

Theorem 4, which shows that the number of 0's in the four subsets of

_ V satisfies (20)-(23) with r replaced by r-1, 1s given in Appendix B.

Q.E.D.
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Consider the [r] h-network illustrated in Fig. 2, namely a

r-1 r-1

[2,27 7] f-network for V, and a [2,27 7] f-network for Vv, followed by
r

a [2 ,2] f-network for V. We may use Corollary 1 to express the

r-1

[2,20 7] f-network for V, as the sequence of templates Q__qsa. 5s--.s%;

-1.: 1 £1 ££ t-
where a) a. 1 1s the template Vii,s+2" H V(i+1,s)’ 1 <t-1,

-1

l < ss < ot , S odd; and b) the sequence a0, 12 0c era TePTESents the
templates for the [2,2°] f-network for v. We may use Corollary 1 to

r-1

express the [2,2 ] f-network for Vo as a similar sequence of templates

Bro1, Props... sPy- Since the templates % and Bo are identical except

that Oo, requires s odd and Bo requires s even, we can combine the two

templates Q and Br into a single template To
r

In a similar manner we may use Corollary 2 to express the [2 ,2]

f-network for V as the sequence of templates ASSEN FRRRSRIY, where a)
r-1

] : l1<i<t-l, 1<s<?2 ; and
x. 1s the template Vii,2s) Vii+1,2s-1) ’ /

b) the sequence Tp 17. . 07 represents the templates for the [2P,2]
f-network for V. The [r] h—-network 1llustrated in Fig. 2may then be

represented as the sequence Tre12 pen? 0 ome T12Tpo Tyg... 0% However,

Theorem 4 embodies the following corollary.

Corollary 3:

Let V be as in Lemma 1; let the two sequences of templates

12 Tp ees Ty and LIFE SRPINEOo) be as defined above. Then the

following sequence of templates constitutes an [r] h-network for V.

2
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The partial ordering in the intermediate set V achieved by the

| [27,27] (47 )-sorter network is not completely specified by (20)-(23).

Since the odd rows of V contain members of Voi alternated with members

of Voy» while odd columns of V consist of members of Vo1 separated by

| members of Voor and since the rows and columns of V are ordered,

+ 1.
z2(v1) s Z(Vgy) +2(V,5) (28)

If the number of 1's in Veo is represented by [V |, then we can show
by symmetry that when t 1s even,

[vl = A + A MU (29)

We shall see that the additional ordering in V specified by (28) and

i (29) guarantees that of - 2 of the comparators 1n the [r] h-network

for V described by Corollary 3 are redundant. To show this, it is

convenient to use two lemmas.

Lemma 2:

| oT rLet V = {vysvoseeervyds where N = t- > 2 and t is even.

Suppose that the four subsets Vor? Voor Vay? and Veo of V are each

| orderedand that they satisfy (20)-(23). Suppose also that

r-1 .

Z(Vgq) < 2 = Z(V 5) = Z(Vgq) ’ (30)

wv. <2" = |v | =< |v, (31)ob el o2!-
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Then if we apply the [r] h-network described by Theorem 4 to V, the

oF comparators V Vv i € {1 t-1} 1 £8 < p tl are
(i,2s)" (1+1,2s-1)’ ’ ? '

redundant.

Proof:

The £(N-27) comparators V :V l<1ix<t-1(i,2s)°"(i+1,28-1)’ ’

l <£s < ot-1 are illustrated in Fig. 6 for the case t = 10, oF = 8.

th £
The comparator Vi1,25)V(2,2s-1) compares the s member © Voy?

th

written (Vo) go with the s member of Voor (Vo) Suppose that
r-1

(Vy) = 1, where 1 < s < 2° °~. Then, since Ver and Voo are ordered

we may use (30) to show that

(V.) =1=2z(V..)<s< 2""el’s el

= Z(V_,) < 2(V,,) < s

(Vols (

Therefore, the comparators (Voy) a: (Von) or Vi1,2s)"V(2,2s-1)’
1 <s < ort are redundant.

If t is even, then the comparator V(t-1,28)V(t,28-1)’
r-1 1 r-1

l<s <2 y may be rewritten as (Vo) ais’ (Von) ase? where a = ZN-2
r-1

Suppose that (Vio) gts = 0, where 1 = s 5 2 . Then since Vio and Vel

are ordered, we may use (31) to show that

(v_.) =0 = |v | < ofl g11 < fHo2’a+s 02

r-1

= Iv, < [vl <2 T-s+l

= O. 33)= (Ve1) ass (
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OJ OIC OIOXOI0XO,
| / / / /

oo) fa [fa [a [A/ / / /

: 4° ,7 pa ,’

CFCICECICECICEC,
, oo , oo , oo SE

, ,’ 4 2

HOHEHE ®
| ,’ ,’ | ov | 7

Fal fo [ef A [a] fb [ne] fd3 / yd

,’ 2 ’ 2

Kd ’ Ke 7

,° ,’ 7 | ,

CSICICICECIOK
[A Fo] fo

Fig. 6. The comparators Vis 28) (i+ 28-1)"

| Rey: Vor = 0 Vo2 - [1
vy =O vy =A



The contrapositive of(33)is (Vepdges = 1 = (Veo) oo = 1, so that

the comparators V(t-1,28)"V(t,28-1)’ 1 <s< ptt are also redundant.
Q.E.D.

Lemma 3:

Let V = {vysVaseeesvily where N = t.2° > 2° and t is even.

Suppose that the four subsets Vor? Voor Ver? and Veo of V are each

ordered and that they satisfy (20)-(23),(28)and (29). Then if we

apply the [r] h-network described by Theorem 4 to V, the subsets of

the intermediate setV satisfy (20)-(23) and (28)-(31),with r replaced

by r-1.

Proof:

The proof of Lemma 3 is given in Appendix C.

Consider the [r] h-network described by the sequence of templates

given by (27), where TT. operates on a set V, T, 1 operates on ?, and
X._y operates onV. If the subsets of the original set V satisfy the
hypotheses of Lemma 3, then Lemma 3 shows thatV satisfies the

hypotheses of both Lemma 2 and Lemma 3. Lemma 2 shows then that pt1

of the comparators in Tq are redundant; repeated use of Lemmas 2 and

3 shows that om comparators 1n are redundant, 1 €£ p £ r-1. This

inspires the following definition.



Definition 3:

AX

Let V = (V1sVoseeervyds where N = te«2", be considered a
r

t X 2 array. Then a reduced [r] h-network or an |[r]

&network consists of:

i) the i(n-2")-2" comparators V VV,
(1,28) "(i+1,2s8-1)’

2 £1 =< t-2, 1 <5 s < ot that produce the intermediate
A

set V; followed by

a) nothing, if r = 1; or

r A A
- F r=1y:V,.b) the #(N-2°) comparators Vii, so ly Viie1,s)’

r—1

l<ic<t-l, 1<s<2 , that produce

the intermediate set Vv; followed by an (r-114 -

network for V.

It 1s readily verified that the ir] 4 —network requires

51 oP = pT+1 - 2 fewer comparators than the [r] h—-network.
: : r r

Theorem 5 shows that if V is the intermediate set for the [2,2]

(4" )~sorter network, then the [r-1] h-network in iii) of Theorem

L may be replaced by an [r-11 4 —-network, thereby saving ofp

comparators.

Theorem 5:

We may complete the ordering of the intermediate set V achieved

in the [27,27] (4 )-sorter network using:

i) four [2°71 FH f-networks for the subsets V_ _,V’ 01" 02'

s+ followed Db
Ver Veo v Y

11) the [r] h-network described by Theorem 4 with the [r-1]

) RN h—-network for the intermediate set V replaced by an

[r—-1] &network.
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This theorem summarizes the results of Theorem4, Lemma 2, and

Lemma 3.

r .r

The number of comparators required by the economical [2 , 2 ]

f-network described by Theorem 5 1s given by

A A r 4)— - -1-(% -2 tr NIo" ot (N) 4 fr or 1,7 15(3N) + N + r-13¢ ) (3

where YU p-17 is the number of comparators required by the [r-1]

snetwork. We may use Definition 3 to show that troy satisfies
the recurrence relation

r+l

Ar) = Lrgy(N) + N= 27, (35)

with the boundary condition

— - 3. (36)

The solution to (35) and (36) is

r+2

L(V) = (3) N= (27-5). |r]

A

We may use (37) along with the boundary condition f [2,2] (N) =

#N - 1 to solve (34). In the notation of the last section,

A

f-.r .r«(N) - ar. r rN =-b..r Tr (38)EELAV PiA Ea



where

2
a r rq = r(of, 2" = 27 (39)

b- rr r4 = 4 BT - 3.27 + 2 (40)
[27,27] 3 3

A

When 1 # j and i,3j>1, the most economical L2 ,29 f-networks

known use the economical [2%,2" f-networks as building blocks for

the construction of Theorems 2 and 3. The number of comparators

required by these networks is given by Equations (8)-(10).It is

readily verified (by induction) that

ari jq = s 41)

which reduces to (39) when i = j = r. No closed form solution is

known for Brot ody with arbitrary i,j, and i # j, although the’

following special result can be proved.

ki

2-1)br i ki EY) ys (42)
(25,27 © Fy 125,27]

where br. i iq is given by (40).

We have calculated bro? 27 for i,j s 32, and give the results’

for i,j <8 in Table 2. The symmetry of (10) implies that

bei ja = br.j oi 43)(2t,29] = Pd, ety
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which is observed in Table 2. For i < j £ 32 we find that the

right-hand side of (10) is minimized if and only if r = 0 and s = j

(mod i). Therefore, for i € j £ 32, we may express br ot 291 in the’

following recurrence relation.

b- 1 J 23"py 3 4. bod, g-i- (4)
[2 y2"] = [2 2" [2 ye ]

We hypothesize that (44%) holds for all i < j; however, no closed form

solution 1s known for (44).
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i= 1 2 3 b 5 6 7 8

1 1 3 T 15 31 63 127 255
S 3 11 25 55 113 231 465 935

3, 7 25 63 133 277 567 1141 2293

4 15 55 133 295 605 1235 2493 5015

5 31 113 277 605 1271 2573 5197 10445

6 63 231 567 1235 2573 5271 10605 21315

7 127 L65 1141 2493 5197 10605 21463 413053

8 255 935 2293 5015 10445 21315 43053 86615

Table 2. Small values of brot ody
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m

Iv. (2 )-sorter Networks

The minimum number of comparators required by a network that

sorts N inputs is denoted S(N). Let G(N) represent the minimum

number of comparators required by an N-sorter network that makes

repeated use of the [g,d] strategy. In this section we examine

the asymptotic growth of G(N), restricting our attention to the

special case that N is a power of 2. (Results with [g,d] networks

m

for N 36 are given in [ 2 J.) If N = 2, then since N = gd,

g and d are also powers of 2. Clearly G(2") satisfies the

following recurrence relation.

m r m r r A m
62")= min 12 627) +2" 62) +t (2)]. (45)

O<r<im [27,2 ]

We have calculated G(2) for m <64 and give the results for
A A

m < 16 in Table 3, Note that since f , . (N) =f , . (N),
i J J Ai

we may restrict r to the range [ #m] <r <m, The column entitled Ta

gives those values of r€[l#4ml,m-1] that minimize the right-hand-side

of (45). For example, when m = 4 the minimum is achieved only for

r = 2, whereas when m =5 the minimum occurs for both r =3 and

r = 4.

When m is even, our results in the last section indicate that

A m
f (2 ) is minimized by rr = $m, We might expect, therefore,
[oF of=T1
that 'the right-hand-side of(45) should be minimized by r = [#m], so

m

that when m is even the optimal (2 )-sorter network should be

"square." However, we observe from Table 3 that the minimum almost

always occurs when r 1s a power of 2. This is explained as follows.
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A

m N=2 r, G(N) re S(N)

1 2 1 1

2 L 1 5 5

3 8 2 19 19

4 16 2 61 60

5 32 3sk 187 4 185

6 64 L 525 L 521

T 128 L 127 L 1419

8 256 4 3705 bh 3673

9 Sle 6 M57 5,8 9395

10 102% 6,8 23357 6,8 23229

11 2048 8 56787 8 56531

12 L096 8 135417 8 134649

13 8192 8 319827 8 318291

14 16384 8 T3421 8 T40349

15 32768 8 1714003 8 1707859

16 65536 8 3907497 8 3891113

Table 3. G(2') and S(2M) for m <16.
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m m
| A [g,d] (2 )-sorter network begins with 2  2-sorters. The

| remainder of the (2")-sorter is a succession of f-networks inter-

| spersed with 2-sorters. When m = 2, each of the f-networks in the

| (2™)-sorter can be one of the efficient square f-networks described

in the last section; therefore, the (2")-sorter networks are

| particularly efficient whem m = oK, Now we show below that
m 2,.m

G(2 ) ~ Zm 2 , whereas from Equations (8) and (41) we know that
| A m m

f r mer (27) ~ #r(m-r)2 . Since r 2 [#m7, this means that the
Ler,2n 7]

| m-r

dominant term in (45) is 2 c(2").- By choosing r to be a power

| of 2, we maximize the efficiency of the largest component of the

| m

(27) -sorter.

k m

| As noted above, when m = 2 the (2 )-sorter network can re-

| strict itself to the efficient square f-networks. This construction

leads to the following recurrence relation.

2m m+1 m A 2m m oF,
G2 )=2 "@6(2)+ £ (27), > 0 (46)

m. _.m k 0.
[27,27]

| Using (38)- (40) and the boundary condition G(2) = 1, we find

= that the solution to (46) is

Me? = +o dm + 2 om 2 m= 2%,| G(27) = qu” - (f * 9 3 3? xz o0. (47)

Where

1 -(2%+r)
O<r<k

Since Oy converges rapidly to .1l07, the asymptotic growth of

~ G(N) may be expressed as
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e /
G(N)= .250 N (1og,N)" - .357 N (log_N) + O(N). (49)

A

Let S(N) represent the number of comparators required by the
A

most economical N-sorter network known. For m <3, s(2") — a(2").

However, M. W. Green [3] has designed a l6-sorter network which

requires only 60 comparators, whereas G(16) =61.For m > 4, the most

m

economical (2 )-sorter network uses the [g,d] strategy, encorporating

many copies of Green's economical l6-sorter. Therefore, for m > 4,

A n
S(2") satisfies

Am r A m-4 m-r A x
s(27) = min 2° s(2” ")+2 s(2")

[#m]sr<m
A

m

m- m > : 0+ fof 5 rq(2 ) 4 (50)

A m
We have included S8(2) in Table 3, along with the values of r,

labeled Tes that minimize the right-hand-side of (50). Again we

observe that the minimum normally occurs when r 1s a power of 2, which

leads to the same recurrence relation obtained above for G.

A A A k
2m m+1 m 2my m= 2 ;

s(27) = 2 s(2 ) + from omy(2 ) k= 5. (51)

A

Using (38)-(40) and the boundary condition S(16) = 60 we find that

A k
m, “(1 2 17 4 m_ 5 m=2;
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A

The asymptotic growth of S(N) 1s given by

A 2
S(N) = .250 N (log, N) - .372 N (log N) + O(N). (53)
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V. Conclusion

Prior to the Lg,d] strategy, the most economical N-sorter network

known (for most values of N), used: 1) a [#N]-sorter; ii) a L&NJ-sorter;

and iii) a ([#N1,L#N]) merge network designed by K. E. Batcher [6].A

close examination of Batcher's N-sorter network for the set I =

{i51,; . sig}, where N = 2d, reveals the following. If I is
considered to be a 2 X d array, then Batcher's (2d)-sorter network

1th 2 d- f I d f foll d

begins wit d-sorters, one for (1,%) and one for Lio, x)’ ollowe

by d 2-sorters for I(x ji) 1 <j <d., Therefore, Batcher's (2d)-sorter’

network uses what we would call the [2,d] strategy. The [g,d] strategy

1s simply an extension of Batcher's strategy to include values of g > 2.

The number of comparators required by Batcher's N-sorter network

is denoted B(N). With the boundary condition B(l) = 0, Batcher shows

that

m 2 m

B(2 ) = (3m - 3m + 1) 2° - 1, m2 0; (54)

Using the Green's lb-sorter as a boundary condition, i.e. using

B(16) = 60 leads to

m 1 2 1 1 m

BP") = (pn -qm + 2 2-1, naz 4 (55)

Given the [2,2] f-network in Table 1, Theorems 2 and 3 guarantee

oA J - ~ om
the existence of [2,2] f-networks for arbitrary i,j. Let G(2 )

m

represent the number of comparators required by a [g,d] (2 )-sorter

that uses only the f-networks constructed according to Theorems 2 and 3

from the [2,2] f-network. Then the boundary condition G(1) = 0 leads to
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G2") = (3m® -3m + 1) 2" = 1, m2 0; (56)

which 1s exactly the same as (54). However, using the Green's 16-sorteyr

as a boundary condition leads to

G2") = ( n° - Hm +1 28-1, 02 iE, (57)

The savings of (57) over (959) is possible because the [g,d] (2")-sorter

can take better advantage of Green's l6-sorter, For example, the

[24 oy 25) corer can use OTK copies of the efficient 16-sorter,

whereas Batcher's [2,257 (25+K) sorter can only use Hk copies.

We have seen that the existence theorems for [2,2] f-networks

(1.e. Theorems 2 and 3) lead to N-sorter networks that require

~ z2 N(1og,N) fewer comparators than the best networks previously known.
In addition, we found that reordering the comparators in the [2",2"]

f-networks prescribed by the existence theorems leads to the more

substantial savings of ~ (0, + 2; ¥(1og N) comparators. (Compare
A m m :
S(2) given by (52) with B(2) given by (55).)
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Appendix A: Proof of Lemma 1

Lemma 1:

r

Let the set V = {visVos ees), where N = te2 and t is even
r

be considered a t X 2 array. Then we can construct an [r]

h-network for V using:

r

i -2 comparators V,. iV,i) the #(N-27) P (i, 2s) Vii+1,28-1)
-1

l<i1<t-1l, 1< 8% ot , that produce the 1inter-
A

mediate set V; followed by

. r-1 A r-1
11) one [2,27 7] f-network for v, and another [2,27 7]

A

f-network for Ves followed by
_ A

iii) one [2° 2) f-network for V.

Proof:

According to Definition 2, the comparators described by 1) through

iii) constitute an [rr] h-network 1f and only if they will complete the

ordering of V given that a) the four subsets of V defined by (12)-

(15) are each ordered and b) the number of O's in these subsets

satisfies (20)-(23).

Let us assume that the partial ordering in V satisfies a) and

b). Then, as noted in the text, to prove the lemma we need to show that

A A A A Co
VV, V.,, and V are all ordered and that the number of O's 1n
ol o2 el ez

A

these subsets ofV satisfies (24)-(26). If we let (V1 ); represent

the 5 th member of Vor then the comparators in 1) may be expressed as

: 1 £ J < ZN; 8(Ver; (Vool 2 J 4+) (5 )
| . —
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] : r-1
(Veo), : (Vo1) j4p7-1 ’ 1 <j < 28-2, (59)

(See Fig. 6.) Therefore,

A

(Ver ), = (Ver) AV) ys 1=3J= 1m; (60)

(Vo); = (Vo) 5 V(Voo) ys 1 <j < %N; (61)

A (V_,) AV 1) 4 ore 1< 5 < gn2"ly
e2’j r-1

(Veo) + 5 I-20 CT < Jos IN

r-1

(Vor) = . (63)
(Vo1)5 v (Veo) ypr-1 , 2" <3 < 3,

Here "A" and 'V" represent the boolean "and" and "or" functions,
A

so that, for instance, (Ver), = 1 iff (Ver) = (Vop) 4 =1.

It is easy to verify that, since V_ ;5 Vos Vgys and V_, are all
| | AT A A A

ordered, Equations (60)-(63) imply that Vo Voor Vero and V_, are
all ordered as well. Furthermore,

A r-1 r-1

Z(V,) =2 = + min [2(V_,) , Z(V,)-2 "1, (64)

z2(¥ ,) = min [2(V,,) , Z(V,,)] (65)02’ ~ el’ ’ 02/4’

2%) = max [2(V..) , Z(V_,)] (66)el’ = WAX e2’ ’ 02/7’

2(¥ ,) = max [2(v_,) , 2(V,;) - 2°] (67)e2’ ~ e2’ ’ ol y
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A A

From (65) and (66) we see that z(V_,) < Z(Vgy); also, (64) and
A A r-1

(67) imply that z(v_,) < Z(V_,) + 2° 7. We may use (20)-(23) and
A A A A

(64)-(67) to show that z(v,,) < Z(V, ,) and that Z(V,,) < z(V,,)-
These relations are all summarized by

A A A A A 1
2

ZV) = (Vy) = 2(Vg) 5 2(V,)) =2(Vpy) 27 (68)

‘Since Relation (68) embodies Relations (24)-(26), the lemma is proved.

Q.E.D.
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| Appendix B: Proof of Theorem 4

Theorem 4:

Let V be as in Lemma 1. Then we can construct an [r] h-network

for V using:

r

1) the %(N-2 ) comparators Vi1,2s) V(i+1,25-1) 1 £1 = t-1,
-1 A

1 <s=< of , that produce the intermediate set V; followed

by

r-2 A A
|] N-2 :11) the &( ) comparators Via, sre 1) V(i41 5)

l1<£ist-1, 1ss°*= rallied that produce the

intermediate set Vv: followed by

iii) an [r-1] h-network for V.

Proof:

r-2

We may use Lemma 1 and Corollary 1 to show that a [2,27 ~] f£=-

network will order Vv and that another [2,252] f-network will

order Veo Therefore, each of the four subsets Voy? Voor Vers and

V5 1s ordered. Furthermore, the number of O's in these subsets
satisfies

2®@) = 2) s z(¥,) + 27 (69)02 ol o2

z(V..) < z(V..) <z(V.,) + oT=2, (70)-e2 el el

In order to prove that an [r-1] h-network will complete the ordering of

v, we must show that the number of O's in the four subsets also satisfies
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z(V,) = z(V;) < 2(V,) +2

z(V.,.) < z(V.,) =< z(V.,) + Te, (72)e2 o2 e2 ’

Now the four subsets Vor’ Voor Vel’ and Veo of V are defined

by (12)-(15), with t replaced by 2t and with r replaced by r-1,
~ -1

so that V 1s considered to be a 2t X 2" array. However, since
A

the comparators listed in i) and 11) assume that V and V are

£ x 2 arrays, 1t is convenient to consider V to be t x 2°

as well. In this case the four subsets of V are given by

Va = UV Oo UV 0h (73)
1<i<t j odd g

: r-1 .
j <2

¥, = \U UY, pb (74)
i<i<t j odd ¢

. r-1
j>ze

1<i<t j even ’
’ r-1
j< 2

Vi, - UU UF (76)
1<is<t j even g: r-1

j> 2

(See Fig. 7.)

We may use the right-hand-sides of (73)=(T76), with v replaced by
A A

V, to define four similar subsets Zoi Xo x.’ and x) of v.

For example, we define

A

1<ist j oad, Pe
j <2



Ih

0 ®O ®E AGRA

C OOEEHARA13 15 16

CG Go ® Go [a A FH A

G ® ® EAEA

C&O EAB MA

GC OE ® EARA

GC®O®RA BA

CG & @ Go BA BA
| Fig. 7. The subsets of 7.

Key: Vy O Ve =O

| Vv, = O: Vv, = /\ .
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Using this notation we can express the comparators in 11) as

(X ,). +: (X.) r-2 1<j< aN-2"7% (78)02’j ° ‘Vol’ j+2 ’ 4 |

(X,), : (x) ,™2, 1sjsin2 (79)
e2’j el’ j+2

These comparators are illustrated in Fig. 8.
A A

. From the proof of Lemma 1 we know that the four subsets Vor? Voor
A A A

Vai and Veo of V are each ordered and that the number of O's in

these subsets satisfies (68). Let us represent the number of O's 1n
A

Vo1 as

N

r-1 r—2 802(V,,) = ® 1° + Bo1° + You’ (80)

where Coq Bol’ and Yo @re integers satisfying

< < t;0 = a, Bt;
< 1; (81)

© = Por ’
r-2

0 < Yo1 < 2

A LL .

We can represent Vo in terms of similar coefficients AN Bop? and
< +

Y,, Note that (68) implies that Go, SQ Sa, +1.
: A r-2

The subset Xa of V includes the first 2 members of each row
A r-2 A

of wv,, and the first 2 members of each row of V,,, (See Fig. 8).
A A

Since Voi and Voo are each ordered,
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| 5 6 7 8
; _ - _— -— - I -

: _.- _ 7 —_ TT

- -" - - A A A A

21 V22\ | V23 24

] 29 3 31

| - -— _ - - - ~ PE z 7
%

- _ - — - = / ~

- - 7 & “7 -~ 0 A A
v v

| - - 7 - "/7 - rs - 4

. - _ - _- - . = - 7

e = g = - Tr | | av

| | A A

Fig. 8, The comparators Vis o+or-1 1: V( 141 8)

. n [J = oKey: X , O ; Xo 1 ;
= id =Xg = 0 3 Xp = A.
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= (a, +a 2772 + A. +A2(X,,) = (@,) *%; 1 te? (62)

where

r-2

(a a) - A = Bo1° + (1-B51)Yo1? (83)
01 = 02 A _ oT-2 + (1- ) .2 Poo Poo Yop!

r-2
A = B_,2 + (1-8 > ’

(a a 1) = 1 02 o2’'02 (84)
01 = "02 \ _ oT-2 + (1-2 = Pol Bo1/Yo1°

The first Aq + Ao "rows" of Xg11 given by

A

Vybis tsa ra, (85)
J odd

j<2

each contain E72 O's. The next two "rows" contain A and As O's,
respectively. Note that if 0 < As S X1 < oT-2 then the subset X,1
1s not ordered.

A r-2

The sé&set Xo of V includes the last 2 members of each
A A

row of V1 and Voor (See Fig. 8.) Therefore,

z(X ,.) = (o a)" yu (86)02’ = YWo1 T Yo2 + H+ Hos

where

1 = Poi1Yol’
(a a _,) = ! (87)

Ho = Fo2'02’

(By = PopYop’
(a.. a +1) = 9 1 (88)

01 = "02 3by = Po1Yol®
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The first CO + QO "rows" of X are all O's; the next two
ol 02 02

"rows" contain Hq and Ho O's, respectively. Note that X 0 is
r—2

not ordered 1f Ho > 0, since Hy < 2

The comparators given by (78)-(79) transform the intermediate set

A x7 : : : : th n nV into the set V. As indicated in Fig. 8, the i row" of X09
' . t 1" n

is compared, item by item, with the (i+1)% "row" of X13 the row
th ' n 7 : " n

containing more Os becomes the 1 " row of Voo while the row

with fewer Osbecomes the (1+1) st "row" of Vo. Therefore,

r-2 .
= min ; 8z2(V_,) (+a 502 +A) + NTR (89)

2(V ) = (a ta) + max Ao) + uy. (90)02 ol o2 1°72 2

We may refer back to the definitions of Ag and My to verify

that (89)-(90) imply that

A~ r-2 r-2
— i - : 1

zZ(V_;) = 2 + min[Z(V_,) , zZ(V_,) 2° 7); (91)

A A r-2
_ z(v |) , z(v.) -2 “J. (92)z(V,) = max(z(V_,) (vq) ]

: _ 8 reduces toFor example, if O_; = Gos then ( 9)

2(Vg1) = (%51%,) + Pol 01/Yo1

in[ "2 | (1-g_, v0)+ imp1Yo1 2 Po2 + 02’ 'o2

A A pL=2= min{Z(V_,) ’ Z(V 5) ~“BooYo2 n Bol
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| A A r-2
Now Z(V_q) < z(V_,) + 2 implies that B_, = B,, and that

A A r-2

0 < z(V_;) - z(V_,) = Yo1 ~ Yoo < 2° 7, so that (93) becomes

| in[2(? 2%) + 25% - vy ]z(V 1) = min[z(V_,)» on! + ol

A

- 2(V;y)

A _2| A r .

= min[ Z(V _ ) ’ z(V_,) + 2h (9k)

A A r-2
whereas z(V_q) 2 Z(V_,) + 2 implies that B_; = 1, Boo = 0,

r-2

0 <Yo1 “Yoo <2 , So that (93) becomes

Z(V_,) = min{z(¥ ) 7.(V ) + oT"2, (95)ol’ ol’ ' 02

Equations (94) and (95) are equivalent to (91).

In a similar manner we can show that

27.) = 252 4 minfz(V .) . z(V_.) -2"2); (96)el’ ~ e2’ ’ el ’

N A r-2
= - 2 . 97z(V_,) = max[ Z(V_,) J zZ(V,,) ] ( )

Equations (91) - (92), (96) - (97), and (68) together imply (71)-(72);

as noted above, this 1s sufficlent to prove the theorem.

Q.E.D.



50

Appendix C: Proof of Lemma 3

Lemma 3:

r r

Let V = {visVoreeesvyls where N = t«2 > 2 and t 1s even.

Suppose that the four subsets Vol’ Von? Vel’ and Veo of V are

each ordered and that they satisfy (20)-(23),(28), and (29). Then

1f we apply the Lr] h-network described by Theorem 4 to V, the

subsets of the intermediate set V satisfy (20)-(23) and (28)-(31),

with r replaced by r—1.

Proof:

The proof of Theorem 4 indicates that if the subsets of V are

ordered and satisfy (20)=(23), then the subsets of V are also or-

dered and satisfy (20)-(23), with r replaced by r-1. We shall

prove that if the subsets of V satisfy (28) as well, then

2(V,) = 2(Vgy) + Z(Vop) tL (98)

r-2 < ~z(V,,) < 2 > z(V)) =< z(V,). (99)

The proof that (29) implies that the subsets of Vv satisfy (29) and

(31), with r replaced by r-1, follows from symmetry.

r-2

Suppose that z(V_q) = 2 . Then (99) does not apply. And since
the proof of Theorem 4 demonstrates that

2F) sa) + 27, (100)ol 02
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r-2

Equation (98) holds when z(V,,) Zz 2 .
~ r-2

Now suppose that (28) holds and that z(Vq) <2 Then from

(96) we see that

A r-2
- 2 . 101

2(Vgy) - 2(Vgy) < ( )

Equations (101) and (66) imply that

2(v_.) < 2°75; (102)el ’

Z2(V_.) < ot-2, (103)o2

And we may use (21), (28), and (102)-(103) to conclude that

r-z2, (104)z(V_,) <2 5

2(v_) <2" th. (105)
ol

Equations (102)-(105) categorize the distribution of O's 1n Vj;

we may use these values in (64)-(67) to show that

2(V ) = z(v..,) <z(v.,) + Z(v_,) + 1ol’ ol 02 el

A

savy) +2 7 (

A r-z, 107)Z(V_,) = min{Z(V_,) ’ Z(Vy,)] < 2 ’ ( 1
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| v (z(v_,) oT", 8Z2(v,) = maxlz(v ,) , 2(V,)] < ; (108)

A r-2

Z2(V,) = zZ(Vv,) < 2 (109)

| And finally, (91) -(92) and (96) = (97) then imply that

| AL
| z(V,) = 2(Vy) = 2(v,); (110)

| z(V_,) = 2(V,,) -= minlz(v_,) , 2(V,,)]; (111)

A

| z(V,,) = 2(V,,) = max{z(v_,), Z(Vgy)1s (112)

| | A

| z(V,) = 2(V,) = 2(Vg)- (113)

From (111)-(112) we see that z(V_,) < z(V_,) so that (99) holds, and

that z(V_,) + z(V_;) = Z(V_,) + Z(V 4), so that (98) holds as Well.
0.E.D.
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