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LARGE [g,d] SORTING NETWORKS
by

David C. Van Voorhis

ABSTRACT

With only a few exceptions the minimum-comparator N-sorter networks
employ the generalized "divide-sort-merge" strategy. That is, the N
inputs are divided among g 2 2 smaller sorting networks -- of size
Nl’N2""’Ng’ where N = 2§=1 N __ that comprise the initial portion of
the N-sorter network. The remainder of the N-sorter is a comparator
network that merges the outputs of the Nl-, N2-, - . . . and Ng-sorter
networks into a single sorted sequence. The most economical merge
networks yet designed, known as the "[g,d]" merge networks, consist of d
smaller merge networks -- where d is a common divisor of NysN5 .. .:Ng‘m
followed by a special comparator network labeled a "[g,d] f-network."

In this paper we describe special constructions for [2r,2r] f-networks,
r > 1, which enable us to reduce the number of comparators required by a
large N-sorter network from .25N-(10g2N)2 - -25N(1052N) + O(N) to

.25N(log2N)2 - .37N(10g2N) + O(N).
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I. Introduction

A comparator network with 4 inputs is illustrated in Fig. 1l(a).

Each of the 5 comparators, labeled A, B, C, D, and E, compares 1its
two inputs and emits the smaller on its higher output lead and the larger
on its lower output lead. An abbreviated diagram for this comparator Let-
work is given in Fig. 1(b), where each comparator is replaced by a vertical
line connecting the two comparands.

A comparator network with N input and output leads is called an

*
N-sorter network, or simply an N-sorter, if for any set of inputs I =

{il’iE""’iN}’ the resulting outputs 0 = {01,02,...,ON} satisfy:

1) 0 is a permutation of I; and 2) Oj < oy if j < k. The net-
work depicted in Fig. 1 is a b-sorter, since comparators A through D
move the smallest input to 01 and the largest input to 04’ and then
comparator E orders the remaining two inputs.

The most economical general strategy known for constructing N-sorter

networks, the [g,d] strategy, is introduced in [ 2 ]. Although it rep-

resents an extension of the earlier paper, the present paper is self-
contained. The earlier paper describes the [g,d] strategy for arbitrary
g,d, and gives specific results for N-sorter networks with N < 36. The
present paper describes the especially efficient networks that have been

discovered for the case g = d = 2r.

¥ Since we wish to allow for the possibility that two or more inputs
have the same value, we probably should refer to I and 0 as

"multisets," rather than as "sets." And we should then refer to

1" Y "
particular members of I as a submultiset of I, rather than as
a "subset." (See D. E. Knuth [ 1 ].) However, we prefer to use the

more familiar terms "set" and "subset," and will do so consistently,
even when all members of I are required to have one of the values
0O or 1.



Fig. 1.

(b)

b-sorter network.



I11. [g,d] Sorting Networks
One way to determine whether a comparator network with N inputs
and N outputs is an N-sorter network is to verify that it will sort
all N. permutations of the numbers 1, 2, . . ..N as inputs. However,
N

the following theorem reduces to 2 the number of input patterns

required to test a comparator network.

Theorem 1: (Zero-One Principle)
A comparator network with N inputs and N outputs is an N~
sorter network if and only if it will sort all 2N combinations of

N inputs where each input is either 0 or 1.
Proof: See references 2,3, andk,

Although 2N grows much more slowly than N!, it is not feasible
to test large networks for 2N different combinations of inputs.
Therefore, 1f we desire large sorting networks, we must build them
in such a way that we can guarantee "by construction" that they will
sort all combinations of inputs. The most economical strategy known for
designing large sorting networks, the lg,d] strateqgy, is introduced in
[ 2]. 1In the remainder of this section we present a brief description
of the [g,d] networks.

The purpose of the [g,d] N-sorter network, where N = gd, is to

accept as input the unordered set I = {11:12:-.. ;N} and to produce
as output the set 0 ={01,02,. ..pwg, where 0 is a permutation of I,

and o1 < 02 < ... < oN. In order to specify the internal structure of



the [g,d] (gd)-sorter network precisely, we find it convenient to

consider I to be a g X d array, with I The g rows

(@,8) = *(a-1)asp’

and d columns of I are given by

‘o = M Veph 1sess @
foe) TS (1) T=p= (2)

Using this notation, we define the [g,d] (gd)-sorter network as
i) g d-sorters for I(a *), l1<qa<g; followed by

3
ii) d g-sorters for I(* B)’ 1 <pg<d; followed by

2

iii) a special comparator network called a [g,d] f-network,

which is defined below.

It has been shown [ 2 , 5] that the g+d small sorting networks
in i) and ii) leave the rows and columns of I sorted. In order to
distinguish the original unordered set I from the set with sorted rows
and columns, we relabel the latter V = (Vl’v2"°"vN}° The [g,d]
f-network is defined informally to be a network that contains whatever
comparators are sufficient to transform the partially ordered set V into
the completely ordered set 0.

The Zero-One Principle guarantees that a comparator network which
begins with g d-sorters and d g-sorters is a (gd)-sorter network if it
sorts I when each member of I is either 0 or 1. Therefore, when
designing a [g,d] f-network that will complete the ordering of V, we
may assume —-— without loss of generality -- that all members of V are
either 0 or 1. We make this assumption throughout the remainder of

this paper.




(*,3

If the number of O0's in V -) is denoted Z(V * ), then it can
b ( ,!j)

be shown that since the rows and columns of V are sorted,

2(V (g %)) S 2V gy x)) 5. o LSV ) S 20V ) & (3
Z(V(-x-’d)) < Z(V(*,d—l)) =, _._= Z(V(*,l)) < z(v(*’d)) g )

We are now in a position to make the following definition.

Definition 1:

A sequence of comparators is called a [g,d] f-network for N = td

items if and only if it will complete the ordering of the partially
ordered set V = {vl,vg,...,vN}, where a) the columns V(*,j)’ 1<j<d,

are ordered and b) the number of 0’s in V ) satisfies (4)

(*,3
The best f-networks known for g,d = 2,4 are given in Table 1.
Each of the tabulated f-networks is described by a sequence of templates

of the form Vv where 1 €£Q,B<d, j20, and @ < jd + B

(i,a):v(i+j,5) o
-— followed by a range for i, which is specified in terms of t = N/d.
Let f[g,d](N) represent the minimum number of comparators required
by a [g,d] f-network for N items. (This function is only defined when
N is a multiple of d.) Since we have not proved that the f-networks in

Table 1 are minimal, we have labeled the number of comparators they

. A : : : .
require a[g,d](N)' Note that f[g,d](N) is linear in N, i.e. that

a[éyd](N) = a[g,d] N - b[gyd]’ (5)

where a[g d] is (1/d) times the number of templates required by the
’

[g,d] f-network and b[ is a positive constant.

g,dj



[g d] f-network for N-sorter, N = td £ N
’ [g,d] ( )
[2,2] Vii,2)V(i+1,1)? 1 <1<t t-1 = 3N-1
V(1,3) Y (1+1,1)? 1 <1 st
[2,4] Via,u) V(1+1,2)? 1 <1< t-1; ht-3 = N-3
V. _\iV,, 1<ic<t
(1,2)"7(4,3)’ e
[4,2] Vi1,2)"V(1+2,1)’ 1 <4<t 2t-3 = N-3
V(i,g):V(i+1,1), l <1s t_l,
Vii,3)V(is2,1)? 1<i<t-2;
V(i,)-l-):v(i+2,2)’ 1 <1< t—2,
Vi1,2)V(1+1,1)’ 1< i< t-
[h,4] Vii,h) Vi, 3) 1<istl; 8t-11 = 2N-11
Y(1,3)V(1+1,1) 1sis el
V(i,h):v(i+1,2)’ 1 <1< t-1;
V(1,2)"(4,3) 2 <1<t
1<i<t-1.

V(i,u) Y (141,1)°

Table 1.

Small f-networks.




We may use the [g,d] strategy recursively to obtain N-sorters for
arbitrarily large N, provided we can construct [g,d] f-networks for
large N. Theorems 2 and 3 below, which are proved in [ 2 ], describe
two methods for constructing large f-networks using several copies of

smaller f-networks.

Theorem 2:

Let the set V = {vl,ve,...,vN}, where N = tsd, be considered a
i = . . Then we can
t x s x d array, with V(i,j,k) v(iei)sd+(3-1)d+k
construct a [g,sd] f-network for V using:
i) d [g,s] f-networks for V(* *,k)? 1<k sd;
y )
followed by

ii) one [g,d] f-network for V.

Theorem 3:
Let V be as in Theorem 2. Then we can construct an [sg,d]
f-network for V using:
i - . 1< jss;
i) s [g,d] f-networks for V(*,J’*);
followed by
ii) one [s,d]. f-network for V.
As an example of the constructions described by Theorems 2 and 3, ,
r
suppose that we desire to construct @ [2,27] f-network for the set
r .
v = {vl’v2’° "Y.é’ where N = t.2 . According to Theorem 3, we should

. r-1
consider V to be a t X 2 X 2 array, and use i) 2 (2,2] f-networks

- or=1
for Vv 1 <k < 2r 1, followed by ii) a [2,2r ] f-network for V.

(*,%,k)’
From Table 1 we find that the [2,2] f-network for V(*,*,k) requires the

. € 1 £ +-—
comparators V(i,2,k)’v(i+1,1,k)’ 1 1 t-1, so that all of the




comparators required by i) are described by V(i,2,k):v(i+l,l,k)’
l1<is<tl 1<ks2 L

It is not really necessary to consider V to be a t X s X d array
in order to apply Theorems 2 and 3, although this assumption does
simplify the description of the [g,sd] and [sg,d] f-networks. In the
next section we find it necessary to describe a [2,2r] and a [2r,2]
f-network for a t X 2" array. It is readily verified that the

comparators prescribed by Theorems 2 and 3 for these two f-networks

are those given in Corollaries 1 and 2 below.

Corollary 1:
r r
Let the set V = {vl,ve,...,vN}, N = t-2, 'be considered a t X 2
r
array. Then we can construct a [2,2 ] f-network for V using:
r
i)  the #(N-2 ) comparators V(i,s+2r l)'Yi+l,s)'
1<istl, 1sss2 ©; followed by

ii) one [2,2r-1] f-network for V.

Corollary 2:
r
Let V be as in Corollary 1. Then we can construct a [27,2]
f-network for V using:
r
i) the %(N—2 ) comparators V(1,28)3V(1+1’25_1):
l1<ic<t-l, 1<s< 2r—l; followed by
s r-1
ii) one [2° 7,2] f-network for V.
The number of comparators required by the best f-network that can
be constructed out of smaller f-networks using the construction of

Theorem 2 and/or Theorem 3 is given by



/15[ d](N) = min min F(g,d,N,q,p) , (6)
g l<qg<g l<sp<d
gmod g =0 2<q+0p .
d mod p =0
where
F(g,d,N,q,p) = q'p.?[g/q,d/p] (N/(q-p) )+ é[‘-’l:p] (¥)
+ q'a[g/q,p](N/q) * p'?[q,d/p](N/p)' (7)

Note that 3 g 1] (N) = QEI,d](N) = 0, so that: a) if g = 1, then (7)

J
describes a construction that uses only Theorem 2; Db) if p = 1, then
(7) describes the use of Theorem 3 alone; and c¢) if p,gq > 1, then (7) .
describes a network built using both theorems. The case p =g =1 is
not allowed, since it would reduce (6) to an identity.

We may use Equations (5)-(7) to show that the number of compar-

i
ators required by the best [2 ,23] f-network that can be constructed

according to Theorems 2 and 3 is given by

A
f[21,2j] = a[2i,2j]N - b[21’2j], (8)
where
i - . . . .
a[2 ,EJ] o Sm;n< L o Sm;n< 5 a[21 r;é] s] + a‘:2r’2s:| (9)
OL<r+s

a[gi-r,zs:| + a[2r,2j-s] :

r+s
br i 34 _ max max 27 "bp,i-r gj-s (109
(22 ) = 0<cr<t 0ss<y (27 %2 ]
O<r+s

r . S .
n b[zr’zs]e b[2_—r,2sj + 2 b[2r’23 S] .
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Starting with a[2,2] _ i,b[2’2] = 1, which we obtain from Table 1,
we may use (9) and (10) to show that the most economical [2,4],[4,2],
and [4,4] f-networks that can be constructed using Theorems 2 and 3 are

described by

82,u] = ®(u,2] =

Plo,u) = Pu,2] = 3

(a4 = &

Plu,u) = 7

The [2,4] and [4,2] f-networks listed in Table 1 are, in fact,
constructed according to Theorem 2 and Theorem 3, respectively. However,
the [4,4] f-network given in Table 1, which achieves b[h,h] = 11, is the
smallest example of ,a more economical construction that has been
discovered for [2r,2r] f-networks, r > 1. This construction is described

in the next section.
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III. Constructing [Er,2r] f-networks

In this section we describe a particularly efficient method for
constructing [2r,2r] f-networks, r > 1. The construction depends
upon the concept of a "redundant" comparator. Now the purpose of

the comparator is to compare v, and v and to interchange

VO‘:V‘3 B
the two if WJ > VB, which is to say, if Vo = 1 and VB = 0. The
comparator va;vB is said to be "redundant" if it can be shown that,
as a result of previous comparators, (v, = 1) = (Vﬁ =1). A

redundant comparator never makes any interchanges; therefore, the
network performance is not altered by removing any redundant com-
parators.

The method used in this section for constructing a [Er,2r]
f-network is: a) to determine the templates required by the
[2r,2r] f-network derived using Theorems 2and 3; b©) to reorder
the templates in such a way that, although the resulting network
still orders V, some of the comparators become redundant; and
¢) to remove the redundant comparators. The number of comparators
required by the efficient [2r,2r] f-network is just the number
determined by Equations (8)-(10), minus the number that become
redundant when the templates are reordered. Since the economical
construction does not reduce the number of templates, the linear
coefficient a[er,er:I is not changed from (9). We shall see that
the improvement is reflected by an increase in b[2r’2r] over (10).

Suppose that we desire to construct a [Er,2r] f-network for the
set V = {vl,vz,...,vN} , where N = t-2°. According to Theorem 2,

r .r r r-1
the [2 32 ] f-network can be constructed using: 2 (27,2 l
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f-network for the odd members of V, labeled Vo;a.[2r,2r_l] f-network
for the even members Ve; and a [2r,2] f-network. Furthermore, according
to Theorem 3, each of the [2r’2r-1] f-networks can itself be built out
of two [2r—l’2r—1] and one [2,2r-1] f-networks. The successive levels
of detail for the resulting [2r,2r] f-network are displayed in Fig. 2.
Considering V to be a t X oF array, we define the six subsets of V

appearing in Fig. 2 as follows.

Vo1 \~// \~’/ {V(i,j)} (12)

i odd j odd

Voo = \_/ / {V(i,j)} (13)

i even j odd

w s NN ) o)

i odd j even

Ve = / -/ {v(i:J)} (15)

i even j even

— 16
Vo = Volv V02 (16)

= 1
v, =V, \J Ve (17)
These subsets are illustrated for the case t = 2r =4 in Fig. 3, and
for the case t + 10, 2% =8in Fig. .

We may use Corollary 2 to express the [2r,2] f-network in

r-1
Fig. 2(b) as %(N—2r) comparators followed by a [2 ,2] f-network
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V1 01
V3 [21'.2:‘-1] P-—-—'Oz
* f-network . " 03
. for V, R .
r
Vit _ [27.2] .
f-network .
v, B for V .
: f-network .
. for Ve = .
VN ON
(a)
vV, — I:: %
1 . [21“'1 21"’ ] .
| ofor V) : 2,2 %2
f-netwolrk : 03
A'4 r " - *
2r+y .. [zr‘i 2 1 : for V, . .
—_— for Voz - [2!"21 .
f-network
f \Y%
v2 . I r 1 r-i n or »
[y [2 02 ] . r-1
. fOr Vei 1 ‘ [ 2.2 ] .
f-network .
Vor - - . .
2T+2 . [Zr 1'21' 1] X for Ve ,
1] for Ve2 . o
(v)

Fig. 2, [2r.2r] f-network constructed using

(a) Theorem 2 and (b) Theorem 3 twice.
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. r r . .
for V. The resulting [2 ;2 ] f-network contains the following
four groups of comparators, which appear sequentially.

r-1 r-1

o) -
1) Four [ ,2 7] f-networks for Vo1 Voor Ve1? an
r-1
2) Two [2,2 ] f-networks for Vv, and V_;

3) The %(N—2r) comparators V (18)

(1,25)"V(i+1,2s-1)’
l<sis<tl, 1s<ss<2

h) A [2r_1,2] f-network for V.

The economical [2r,2r] f-networks take advantage of the following
observation (which is proved below): If we interchange the order of
2) and 3), then not only does the resulting network still order V,
but also 2r-1 of the comparators in the [2r-1,2] f-network become
redundant.

Before proving this observation, we shall illustrate the con-
struction, using the [4,4] 16-sorter as an example. The partial
ordering in the intermediate set V is illustrated in Fig. 3(a),
with an arrow from va to VB representing the relation Va < VB.
The dashed lines in Fig. 3(b) represent the four [2,2] f-networks
required by 1) for the four sets vol’ Vo2’ vel’ Ve2' The dashed
lines in 3(c) through 3(e) represent, respectively: the 6 compara-
tors called for in 3); the [2,2] f-networks for Vo and Ve required
by 2); and the [2,2] f-network for V given in 4).

The comparators illustrated in 3(b) through 3(e) are exactly
those described for the [4,4] f-network in Table 1 --
plus two extra comparators in 3(e), namely v2:Vé and vlh:v15'

These two comparators are redundant. The partial ordering in V

depicted in Fig. 3(a) requires that vl = 0 if Z(V) 2 1, and that
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vy v, Vg vy, Fig. 3. f-network for
[4,4] 16-sorter.
V’5 6 V7 8
N Key: V&_)1 = O ;
V9 io)-¥ V11 )X V12 Vep = LJ
Vel © <:>;
V13—V V15 1 Vo = A

OO OO
5‘A‘,"7 A Vs A V7 /a\
Gt @ & @& @
& éﬁ o A A B A

@@,@ ® .o

P

T AT AN ] AN A

- - o > =

BOXD: ’Q () (i (0 Corl) (e

- " e e = T

] /'\ o A [ fasdnd s

v
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v, =0 orv3 =10 if z(v) 2 2, The comparator V,:V. in 3(e)

2 5
guarantees that v2 = 0 if Z(V) 2 2. Therefore,
(v2 = 1) = (z(v) <2)
= (V3 = 1)’ (19)
so that the comparator v2:v3 is redundant. By symmetry, the

t v i .
comparator Vlh 15 is also redundant
r._r . e .
Although the economical [2 ,e ] f-network is a modification of

the network depicted in Fig. 2 and described by (18L it still begins

. -1 -1
with four [2r ,2r ] f-networks for V \ \'

01' 02' ‘el’ In

and Ve2'

Fig. 4 we display successive levels of detail for a third possible con-

r r , . .
struction for a [2 ,2 ] f-network. Note that it, too, begins with

r-1 r-1

four [2 ,2 7] f-networks for V A% and Vé although

el’ 27

the remainder of the network differs from that in Fig. 2. All three

o1’ %2'

rr . . . .
[2 52 ] f-networks share the construction depicted in Fig. 5, namely

r—l]

four [2r—l,2 f-networks followed by a special comparator network

that we shall call an [r] h-network.

An [r] h-network is defined informally to be a network that
contains whatever comparators are sufficient to complete the
ordering in V. Fig. 2 and -Fig. 4 illustrate two different [r]
h-networks.

In order to define an h-network precisely, let us consider the

. . . . r-1 . r-1
partial ordering in V achieved by the four [2 52 ] f-networks.
Clearly they order the sets Vbl, V°2, Vel’ ve2' Since the construction

-1 .

of Fig. 2 and (18) guarantees that a [2,2r ] f-network will complete

the ordering of Vo, once V01 and VO2 are ordered,
1

2(v,) < 2Vgy) S 20eg) * 2 (20)



Vors2

17

(b)

v —1 — 0
1 [zr-l'zr] i
.| f-net for — 0
3
* V(ZS'i,*,*) *
s |l=v UV ‘
ol el [2'21'] .
f-network
Vor. for V
v2r+1 . [zr-l'zr]
22 f-net for
0 V(ZS,*,*) . ’
ARV 2Y
— — N
(a)
1ot | ot — %
o A A (22752 1, — o,
for I'oi'_, f-net for , _ 03
v - % %k .
et | ] (2871,%,%)
. for ’V : g = volu vei ' r
f-network
. for V
- 12"t A [2F1,2]
| for Vg F f-net for ,
— V * %k
: [zr-i o1 ) (28,%,%)
‘ ' : v,V '
' for V_, . 02 e2 o
vt | SL —— N

Fig. 4. [2",2"] f-network for V constructed using

(a) Theorem 3 and (b) Theorem 2 twice.
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[zr-l r—i]

for V1 .

' l:21'-1.21'-1:| ,

for! voZ

|

= r-li__‘

[2
for V el

h—network
for v

[zr-i '21'—1]

for V82 .

Fig. 5. [27,2"]

f-network,



-1
Similarly, since another [2,2r ] f-network will order V  once
el

Vel and Ve2 are ordered,

z(veg) < Z(Vel) < Z(Ve2) n gr-l (21)

) ) ) ) ) r-1
According to the construction depicted in Fig. 4, one [2 5 2]

f-network will order Vbi\_/}vel and another will order V0>\_/jVeT

once Vol’v62’vel’ and Ve2 are all ordered. Therefore,

r-1
2(Vy) s 2(V;) s 2(v,) + 2 75 (22)
r-1
+ 2 .
2(v,,) <2(Vyn) S Z(Vep) (23)
We are now ready for the following formal definition.

Definition 2:

A sequence of comparators is called an [r] h-network for N = te2

items if and only if it will complete the ordering of the partially
ordered set V = {vl,vg,...,vN}, where a) the four subsets of V
defined by- (12)-(15) are each ordered and b) the number of O's in

these subsets satisfies (20)-(23).

From out discussion of Fig. 2 we conclude that one possible
construction of an [r] h-network consists of items 2),3), and L)

from (18). Lemma 1 shows that we may interchange the order of 2) and

3) in (18).
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Lemma 1:

Let the set V = {Vl’v2""’vN}’ where N = t.2° and t is even, be
considered a t X 2 array. Then we can construct an [r] h-network for
V using:

i)  the %(N—2r) comparators V(i,ES):V(i+1,25-1)’
l<is<t-1, 1<s£< 2r—1, that produce the inter-
mediate set v; followed by

ii) one [2,2r_l] f-network for 06 and another [2,2r_l]
f-network for ve; followed by

iii) one [2r_l,2] f-network for V,

Proof:

The complete proof of Lemma 1 is given in Appendix A. Essentially
we show that the comparators in i) tend to move O's from V, to Vé:
while maintaining the partial ordering in the four subsets of V.

Specifically, we prove that 001, 002, 0;1, and Qe2 are all ordered and

that

-1
2 ,) < 2(8,,) sz(¥,,) + 27 (24)
2(®_,) = 2(V,)) sz(® ) + 277 (25)
z(Qe) < z(Qo) < z(oe) P (26)
Therefore, the [Q;Er_l] f-networks in ii) will complete the ordering

of V. and 0&, so that the [2r_l,2] f-network in iii) will then order V.
o

Q.E.D.
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We can use Corollary 1 to express the [2,2r_1] f-network for 00
L s r-1 A 1 A
in ii) of Lemma 1 as the #(#N-2 ) comparators V(i,s+2r_ )'v(i+1,s)’
, r-1 r-2
1<is<t-l, 1ss<2 ~,s odd, followed by a [2,2° "] f-network.
r-1
Similarly, we can use Corollary 1 to express the [2,2 ] f-network
- r-2
for Qe as é(%N—2r 1) comparators followed by a [ 2,2 °] f-network.

This leads to the following recursive construction for an Lrj

h-network.

Theorem 4:
Let V be as in Lemma 1. Then we can construct an [r] h-network
for V using:

i) the %(N-Er) comparators V(i;ES):V(i+1,25-1)’
1<i<t-1l, 1<s¢< 2r-1’ that produce the inter-
mediate set Vi followed by

ii) the %(N—2r) comparators Vki,s+2r_l):0(i+1,5)’
1<£i<t-1, 1<s¢< 2r-1, 1 £k £ 2, that produce

the intermediate set V; followed by

iii) an [r-1] h-network for V.

Proof:

Lemma 1 and Corollary 1 imply that the intermediate set V can be

r-2 ~ r-2

ordered by: a [2,2° 7] f-network for V, and another (2,2 ]
f-network for V;,|followed by a [2r_l,2] f-network for V. As noted
above, these three f-networks constitute one example of an [r-1]
h-network. (Simply replace r in Fig. 2 by r-1.) A complete proof of
Theorem 4, which shows that the number of 0's in the four subsets of
V satisfies (20)-(23) with r replaced by r-1, is given in Appendix B.

Q.E.D.



22

Consider the [r] h-network illustrated in Fig. 2, namely a
r-1 r-1
(2,27 7] f-network for vV, and a (2,27 7] f-network for Ve followed by
a [2r,2] f-network for V. We may use Corollary 1 to express the
r-1
(2,2 7] f-network for Vo as the sequence of templates ar_l,ar_e,...,al,

where a) ar 1 is the template V 1<i<t-1,

(1,s+2° 1)V (141,5)’

l <s < 2r—l, s odd; and b) the sequence ap,a

p_1,...,a1represents the

templates for the [2,2p] f-network for Vo' We may use Corollary 1 to
express the [2,2r-1] f-network for Ve as a similar sequence of templates
Br—l,Br-Q"”"Bl' Since the templates % and BP are identical except
that ap requires s odd and BP requires s even, we can combine the two
templates % and BP into a single template Tp'

In a similar manner we may use Corollary 2 to express the [2r,2]
f-network for V as the sequence of templates ﬂr’ﬁr-l”"’“l’ where a)

r-1
i : l1<i<t-1l, 1ss<2 ; and
nr is the template V(i,ES) ) i

V(i+1,2s-1)’

b) the sequence np,n FE.o] represents the templates for the [2p,2]

p_l’..
f-network for V. The [r] h-network illustrated in Fig. 2may then be

represented as the sequence Tr—l’Tr-Q" o T2 Moy 79... 0T However,

Theorem 4 embodies the following corollary.

Corollary 3:
Let V be as in Lemma 1; let the two sequences of templates
be as defined above. Then the

I‘r_l’I'r_z’ooo,Tl and ﬂr,ﬂr-l, .o n,ﬂl

following sequence of templates constitutes an [r] h-network for V.

(21)

o o oo 9T 49T .
T Tyoy, Tpm1 sT10%
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The partial ordering in the intermediate set V achieved by the
[2r,2r](hr)-sorter network is not completely specified by (20)-(23).
Since the odd rows of V contain members of Vbl alternated with members

of Vel’ while odd columns of V consist of members of vol separated by

members of Vbe, and since the rows and columns of V are ordered,
Z(v,,) < 2(Vgy) +2(v,) + 1. (28)

If the number of 1's in Ve is represented by IVeEI’ then we can show

2

by symmetry that when t is even,
|Ve2| < Ivell + |V02| + 1 (29)

We shall see that the additional ordering in V specified by (28) and
(29) guarantees that 2r - 2 of the comparators in the [r] h-network
for V described by Corollary 3 are redundant. To show this, it is

convenient to use two lemmas.

Lemma 2:

r r
Let V = {vl,v ,...;VN}, where N = t*2° > 2 and t is even.

2
Suppose that the four subsets vol’VBQ’Vel’and Ve2 of V are each

ordered and that they satisfy (20)-(23). Suppose also that
r-1 .
2(Vyy) <2 =2 2(V,) < 2(Vgy) 5 (30)

[oh <270 = vyl = [V, (31)



2L

Then if we apply the [r] h-network described by Theorem 4 to V, the
2r comparators V Vv i€ {1 t-l], 1 <8< 2r—l, are
(i,2s)" " (141,2s-1)’ ’

redundant.

Proof:
r
- : <1i=<t-1
The #(N 2" ) comparators V(i,QS)'v(i+l,2s-l)’ l1<1i<t-1,
1 <s < 2r—1’ are illustrated in Fig. 6 for the case t = 10, 2f =8.

th
The comparator V(l,ES):V(2,2S—1) compares the s member @f Vel’

. , th
written (Vel)s’ with the s member of V02' (vo2)s' Suppose that

(v =1, where 1 < s < 2r—1. Then, since Vé and V02 are ordered

el)s 1

we may use (30) to show that

(v -

el)s =1=2z(v

r
el) <s =2

= 2z(V ) < Z(Vy,) < s

5)

) =1. (32)

= (Vg4

Therefore, the comparators (Vel)s:(VOE)s or V(1,2s):v(2,2s-1)’
1 <s < 2r—1’ are redundant.

If t is even, then the comparator V(t—l,2s):v(t,25-1)’

l<s< 2r—1’ may be rewritten as (Vel)a+s:(v62)a+8’ where a = %N—Er_l
Suppose that (V02)a+s = 0, where 1 £ s £ 2 7. Then since V,o and Vel
are ordered, we may use (31) to show that
(v62)a+s =0 = |V62| < 2r_l-s+1 = Zr_l
= |v§1| < |v62| <2 lsn
> (Vy)4pg = O (33)
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The contrapositive of (33) is (Vel)a+s = = 1, so that

= (V02)a+s

-1
the comparators V(t-l 25):V(t 2s-1)" 1 <ss2’ , are also redundant.
> y &R

Q.E.D.

Lemma 3:
Let V ={v,,v v_}, where N » t-2" > 2% and t is even
= Vs Vos ey Vpdy .
Suppose that the four subsets Vol,Vbz,Vél,and Ve2 of V are each
ordered and that they satisfy (20)-(23),(28) and (29). Then if we
apply the [r] h-network described by Theorem 4 to V, the subsets of
the intermediate set V satisfy (20)-(23) and (28)-(31), with r replaced

by r-1.

Proof:

The proof of Lemma 3 is given in Appendix C.

Consider the [r] h-network described by the sequence of templates
given by (27), where T. operates on a set V, Tr 1 operates on 0, and

14 operates on V. 1If the subsets of the original set V satisfy the

r-1

hypotheses of Lemma 3, then Lemma 3 shows that V satisfies the
r-1
hypotheses of both Lemma 2 and Lemma 3. Lemma 2 shows then that 2

of the comparators in T are redundant; repeated use of Lemmas 2 and

1

3 shows that 2; comparators in nP are redundant, 1 £ p < r-1. This

inspires the following definition.
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Definition 3:

I

Let V = {vl,vg,...,vN}, where N = t«2", Dbe considered a

r
t X 2 array. Then a reduced [r] h-network or an [r]

&network consists of:

. ry .r
i) the #(N-2°)-2° comparators V(i,zs)'v

(i+1,2s-1)’
2<isgt-2, 1<s¢«g 2r-1, that produce the intermediate
A
set V; followed by
a) nothing, if r = 1; or
A A

r
b) the #(N-2") comparators V(l,s+2r 1)'v(i+1,s)’
l1<ic<t-1, 1<s<x< 2r—% that produce
the intermediate set V; followed by an [r-1] % -

network for V.

It is readily verified that the [r] % -network requires

2p = 2r+l - 2 fewer comparators than the [r] h-network.

r
2p:l

. . . r .r

Theorem 5 shows that if V is the intermediate set for the [27,27]
(4¥)~sorter network, then the [r-1] h-network in iii) of Theorem

4 may be replaced by an [r-1] {4 -network, thereby saving 2r—2

comparators.

Theorem 5:
We may complete the ordering of the intermediate set V achieved
in the [2%,2%] (4F)-sorter network using:

r-1 r-1

i) four [2° 7,2 7] f-networks for the subsets VOl'VCZ'
Vel‘veZ; followed by
ii) the [r] h-network described by Theorem L with the [r-1]

h-network for the intermediate set V replaced by an

[r-1] &network.
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This theorem summarizes the results of Theorem 4, Lemma 2, and

Lemma 3.

r.r
The number of comparators required by the economical (2 ,2]

f-network described by Theorem 5 is given by

A A
f[2r,2r](N) =4 t[2r—1,2r—1](hl) sn -2y £[r—1](N) (34)

where {[r_ll(N) is the number of comparators required by the [r-1]

&network. We may use Definition 3 to show that ftr—l](N) satisfies

the recurrence relation

(M) = A, () + N - o™, (35)

with the boundary condition

{Il](N) = #N - 3. (36)
The solution to (35) and (36) is

tq() = (=8) N - (27 -5,

A
We may use (37) along with the boundary condition f[2,2](N) =

N - 1 to solve (34). In the notation of the last section,

A
8
fter’zr](N) - a[2r,2r]N -b[Er,er], (38)
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where

I
o
L]

n
-
~~
w
O
S~—’

a[2r,2r] =
Sy _gor . 2
b[2r,2r] =3 b 3.2° + 3 (40)

When i # j and i,3j>1, the most economical [21,23] f-networks
known use the economical [2r,2r] f-networks as building blocks for
the construction of Theorems 2 and 3. The number of comparators
required by these networks is given by Equations (8)-(10). It is

readily verified (by induction) that

arpt oIy = #(i-3), (41)

which reduces to (39) when i = 3 = r. No closed form solution is

known for b[21 2j] with arbitrary i,j, and i # j, although the
’

following special result can be proved.

(2841
1) bret, 2ty (h2)

i ki =
Ch

Prat, 2

where br. i i, is given by (40).
[2,2] g Y( )
We have calculated b[2j 2j1 for i,j £ 32, and give the results
’

for i,j <8 in Table 2. The symmetry of (10) implies that

bret,ely = Prel,ety (43)
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which is observed in Table 2. For i < j £ 32 we find that the

right-hand side of (10) is minimized if and only if r =

=0 and s = j
(mod i). Therefore, for i € j £ 32, we may express b[2i 2j] in the
’
following recurrence relation.
b1 _J 231y 4 4. bod L g-in . (k)
[2 ,2] = [2 ,2] [2 )2 ]

We hypothesize that (44) holds for all i < j; however, no closed form

solution is known for (44).
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2 3 b 5 6 7 8

1 3 7 15 31 63 127 255

3 11 25 55 113 231 465 935
T 25 63 133 217 567 11 2293
15 55 133 295 605 1235 2493 5015
31 113 277 605 1271 2573 5197 10445
63 231 567 1235 2573 5271 10605 21315
127 465 1141 2493 5197 10605 21463 43053
255 935 2293 5015 10445 21315 43053 86615

Table 2.
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Iv. (Em)—sorter Networks

The minimum number of comparators required by a network that
sorts N inputs is denoted S(N). ©Let G(N) represent the minimum
number of comparators required by an N-sorter network that makes
repeated use of the [g,d] strategy. In this section we examine
the asymptotic growth of G(N), restricting our attention to the
special case that N is a power of 2. (Results with [g,d] networks
for N <36 are given in [ 2 ].) If N = 2m, then since N = gd,
g and d are also powers of 2. Clearly G(2m) satisfies the
following recurrence relation.

A

6(2") = min 2" 6(2" ) + T 6(2") + £ _ . Call (45)
O<r<m [2 s2 ]

We have calculated G(2m) for m <64 and give the results for
A
m < 16 in Table 3. Note that since f i3 (N) = f 5 N
(27,27] (27,27]
we may restrict r to the range f‘bn'] < r <m., The column entitled r
gives those values of r€[l4ml,m-1] that minimize the right-hand-side

of (1;5). For example, when m = 4 the minimum is achieved only for

r = 2, whereas when m =5 the minimum occurs for both r =3 and

r = 4.

When m is even, our results in the last section indicate that
A m
f (27) is minimized by «r = #m. We might expect, therefore,
[2r 2m-~r:I

that'the right-hand-side of (45) should be minimized by r = [#m], so
m

that when m is even the optimal (2 )-sorter network should be

"square." However, we observe from Table 3 that the minimum almost

always occurs when r 1is a power of 2. This is explained as follows.



m N=2" r, G(N) rg S(N)
1 2 1 1
2 L 1 5 5
3 8 2 19 19
L 16 2 61 60
5 32 3,4 187 L4 185
6 64 L 525 L 521
7 128 L T L 1419
8 256 L 3705 b 3673
9 512 6 5T 5,8 9395
10 1024 6,8 23357 6,8 23229
11 2048 8 56787 8 56531
12 4096 8 135417 8 134649
13 8192 8 319827 8 318291
14 16384 8  Th3h21 8  ThO349
15 32768 8 1714003 8 1707859
16 65536 8 3907497 8 3891113
Table 3. G(2") and 8(2™) for m <16.

33
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m m

A [g,d] (27 )-sorter network begins with 2  2-sorters. The

remainder of the (2m)—sorter is a succession of f-networks inter-
. k
spersed with 2-sorters. When m = 2, each of the f-networks in the
(Qm)-sorter can be one of the efficient square f-networks described
in the last section; therefore, the (2m)—sorter networks are
particularly efficient whem m = 2k. Now we show below that
m 2,m .

G(2 ) ~ im 2, whereas from Equations (8) and (41) we know that
A

f . omer (Em)'~ %T(m—r)Qm. Since r 2 [#m], this means that the

[2,’2 , , m-r ,.r
dominant term in (45) is 2° "G(2"). By choosing r to be a power

of 2, we maximize the efficiency of the largest component of the
m
(27)-sorter.
k m
As noted above, when m = 2 the (2 )-sorter network can re-
strict itself to the efficient square f-networks. This construction

leads to the following recurrence relation.

A k
om 1 2m =2
a(2™) = 2" G(e'“)+f2m_m(2 P (46)
P)
Using (38)- (40) and the boundary condition G(2) = 1, we find
that the solution to (46) is
o ]2 (1 + o )m + 4 M2 m= 2k;
G(27) = Jm” - (f *+ oy 3 3 k=20, (47)
Where
1 ~(2%+r)
% =Z z 2 : (48)
O<r<k

Since ok converges rapidly to .107, the asymptotic growth of

G(N) may be expressed as
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G(N) = .250 N (1og21~r)2 - .357 N (log.N) + O(N). (49)
A
Let S(N) represent the number of comparators required by the

most economical N-sorter network known. For m 513,2(2m) = G(2m),
However, M. W. Green [3] has designed a l6-sorter network which
requires only 60 comparators, whereas G(16) =61.For m > 4, the most
economical (2m)-50rter network uses the [g,d] strategy, encorporating
many copies of Green's economical l6-sorter. Therefore, for m > 4,

A .
S(2m) satisfies

A A A
s(2") =  min oF g(2"H) . T g(2F)
[#m]sram |
A
+ f[2r,2m-rj(2m) , m > 4. (50)

A
m
We have included S(2 ) in Table 3, along with the values of r,

labeled r that minimize the right-hand-side of (50). Again we

S}

observe that the minimum normally occurs when r is a power of 2, which
leads to the same recurrence relation obtained above for G.

A A

A
8(22111) _ 2m+1 S(2m-) N f[am,zm](QZm), Il: = (51)

L
n

A

Using (38)-(40) and the boundary condition 8(16) = 60 we find that

A . _ ok
R R IR S THANN
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A
The asymptotic growth of S(N) is given by

A
2
S(N) = .250 N (logeN) - .372 N (10g2N) + O(N).

(53)

o
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V. Conclusion

Prior to the [g,d] strategy, the most economical N-sorter network
known (for most values of N), used: i) a [ﬁN]—sorter; ii) a L&NJ-sorter;
and iii) a ([#N1,L#N]) merge network designed by K. E. Batcher [6]. A
close examination of Batcher's N-sorter network for the set I =
{11,12,. . .,iN},where N = 2d, reveals the following. If I is
considered to be a 2 X d array, then Batcher's (2d)-sorter network
begins with 2 d-sorters, one for I(l,*) and one for 1(2’*), followed

by d 2-sorters for I( 1 < j<d, Therefore, Batcher's (2d)-sorter

* 3 )

network uses what we would call the [2,d] strategy. The [g,d] strategy

is simply an extension of Batcher's strategy to include values of g > 2.
The number of comparators required by Batcher's N-sorter network

is denoted B(N). With the boundary condition B(l) = 0, Batcher shows

that
m 2 m
B(2 ) =(4m" -%m + 1) 2 -1, m20; (54 )

Using the Green's lé-sorter as a boundary condition, i.e. using
B(16) = 60 leads to

B(2m) = (l%mz - %m + -i'—g o1, ma2 4 (55)

Given the [2,2] f-network in Table 1, Theorems 2 and 3 guarantee
I ~ m
the existence of [21,231 f-networks for arbitrary i,j. Let G(2 )
m
represent the number of comparators required by a [g,d](2 )-sorter

that uses only the f-networks constructed according to Theorems 2 and 3

from the [2,2] f-network. Then the boundary condition E(l): 0 leads to
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2

TE™) - (GEn -3m + 1) 2" -1, m=zo; (56)

which 1s exactly the same as (54). However, using the Green's l6-sorter

as a boundary condition leads to

Y =@ -gm e -1, ] (57)

The savings of (57) over (55) is possible because the [g,d] (2")-sorter

can take better advantage of Green's l6-sorter. For example, the

[24’2h+k] (28+k)—sorter can use 25+k copies of the efficient l6-sorter,

8+k 8+k

1 (2

i3
We have seen that the existence theorems for [2 ,2°] f-networks

whereas Batcher's [2,2 ) sorter can only use 2“'+k copies.

(i.e. Theorems 2 and 3) lead to N-sorter networks that require

~ 3% N(10g2N) fewer comparators than the best networks previously known.
In addition, we found that reordering the comparators in the [2r,2r]
f-networks prescribed by the existence theorems leads to the more
substantial savings of n'(ck + B%)N(logzN) comparators. (Compare

A
S(2m) given by (52) with B(Em) given by (55).)
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Appendix A: Proof of Lemma 1

Lemma 1:

Let the set V = {Vl’v2’°"’vN}’ where N = t2° and t is even
be considered a t X 2 array. Then we can construct an [r]
h-network for V using:

i) the #(N-27) comparators v(i,eé):v(i+1,2s-1)’
l1<i<t-l, 1< s¢<g 2r-1, that produce the inter-
mediate set éx followed by

ii) one [2,2r_l] f-network for eb and another [2,2r_l]

A
f-network for Vé; followed by

-1 A
iii) one [2°7,2] f-network for V.

Proof:

According to Definition 2, the comparators described by i) through
iii) constitute an [r] h-network if and only if they will complete the
ordering of V given that a) the four subsets of V defined by (12)—
(15) are each ordered and b) the number of O's in these subsets
satisfies (20)-(23).

Let us assume that the partial ordering in V satisfies a) and
b). Then, as noted in the text, to prove the lemma we need to show that

A A A A

Vs Vos Vgq» and V_, are all ordered and that the number of O's in

A
these subsets of V satisfies (24)-(26). 1If we let (VOI)j represent

the jth member of Vb then the comparators in i) may be expressed as

1)

(Ver)y = (Vop)yo 1< 3 s 3N (58)



Lo

(Vea)y + (Vop)jypr-1 5 R (59)
(See Fig. 6.) Therefore,
A
(Vel )3 = (Vel)j A(v°2)39 1<j=< iN; (60)
A
(Voo )y = (Vgp) 5 V(Veo)ys 1< j <3N (61)
- . r-1
(/v\, ) _ (veQ)J A(VOJ.) J+2r-1 ’ 1<3Js *N-e ; (62)
2 - - .
. (V)  » g2l < 5 < ay
r-1
A (v 1) , 1<j=<2
(Vo) o (63)

(Vol)J v (ve2).j-2r"1 R 21‘-1 <3< -?;N.

Here "A" and 'V" represent the boolean "and" and "or" functions,
A

so that, for instance, (Ve1)3= 1 iff (Vel):] = (Voe)j = 1.
It is easy to verify that, since V j, Vo, Vo, 2and Vg are all
_ _ A° A A A
ordered, Equations (60)-(63) imply that Vo1 Voor Verr and V_, are
all ordered as well. Furthermore,
z(o ) = ol min[2(V_,) , 2(V_.) - 2r_11 (64)
ol e2’ ? ol ’
20 ) ='min [2(V_,) 5 2(V_,)] 65)
o2/ ~ el’’ o2/’
2(¥ ) = max [2(v_,) , Z(V_,)] (66)
el/ T maX e2’ ’ o2/7 7
2(¥ ) = max (2(v_,) , 2(v,,) - 2" (67)
e2’ < e2’ ’ ol .



L1

A A
From (65) and (66) we see that Z(Vo2) < Z(Vel); also, (64) and

A A _
(67) imply that Z(Vol) < Z(VeE) + 2"t We may use (20)-(23) and

A A A A
(64)-(67) to show that Z(Ve2) < Z(Vo2) and that Z(vel) < Z(Vol).

These relations are all summarized by

A
2 = 2l = 20,) = 2, ) sa(V,) 2 (68)

_Since Relation (68) embodies Relations (24)-(26), the lemma is proved.
Q.E.D.
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Appendix B: Proof of Theorem k4

Theorem 4:

Let V be as in Lemma 1. Then we can construct an [r] h-network

for V using:
T .
1) the %#(N-2 ) comparators V(i,zs)’v(iﬂ,es-l)’ 1 SAl < t-1,
l1<s< Er_% that produce the intermediate set V; followed

by
A A

- V(1,e+27-1) V(441 5)
r-l, that produce the

ii) the &(N—2r-2) comparators
1<ist-1, 1=s=2
intermediate set V; followed by

iii) an [r—-1] h-network for V.

Proof:

2
We may use Lemma 1 and Corollary 1 to show that a [2,2r- L

2

network will order v; and that another [2,2r_ ] f-network will

order Ve. Therefore, each of the four subsets Vol’ VoE’ Vel’ and
V;E is ordered. Furthermore, the number of O's in these subsets
satisfies
2@ ) < 2@ ) s z(¥ ) + 255 (69)
o2 ol o2
z(V.,) < z(V.) sz(V,) + 272, (70)
e2 el e2

In order to prove that an [r-1] h-network will complete the ordering of

V; we must show that the number of O's in the four subsets also satisfies
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2V,,) < 2(T,) s 2(F,) + 25 ()
2(¥,,) < 2(,) = 2(,) + 275 (72)

~ ~

~ ~ f ~ .
Now the four subsets V°1, V°2, vel’ and Ve2 of V are defined

by (12)-(15), with t replaced by 2t and with r replaced by r-1,

~/

r
so that V is considered to be a 2t X 2 array. However, since

A
the comparators listed in i) and 1ii) assume that V and V are

r L . . ~ r
t X 2 arrays, it is convenient to consider V to be t X 2

as well. In this case the four subsets of V are given by
¥ - U W) (v }; (73)
ol 1<ist j odd . (+,3)
js 2 )
1<i<t j odd ’
j>2
1<i<t j even ’
i< 2
I<icst J even . ’
> 2

(See Fig. T.)

We may use the right-hand-sides of (73)-(76), with V replaced by

A A
V, to define four similar subsets X01, X°2) xel’ and X, of wv.
For example, we define
A
X,y = U U { V(4,58 (77)
1<ist j od IS4y
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Using this notation we can express the comparators in ii) as

. r-2
(on)J : (X,;) j42T-2 1<) < 3iN-2 7 (78)
r-2
: - < j < 3N- .
(xe2)j . (Xel)3+2r 2 ) 1 J 4N 2 (79)
These comparators are illustrated in Fig. 8.
A A
From the proof of Lemma 1 we know that the four subsets vol’vb2’
A A A
URY and Ve2 of V are each ordered and that the number of O's in

these subsets satisfies (68), Let us represent the number of O's in

A
Vo, @s
A
r-l r_2 O
z(Vol) ST . Bor® + You (60)
where a01, 501, and Yo1 ar€ integers satisfying

0 =< aol < ﬁt;

0 < B, =L (81)

-2
0 < Yo1 < 2r

We can represent v02 in terms of similar coefficients a02’602’ and

Yy, Note that (68) implies that o S Q<0+ 1.
‘ A r-2
The subset xbl of V includes the first 2 members of each row
A r-2 A .
of Vo1 and the first 2 members of each row of VO2‘ (See Fig. 8).

A A
Since Vbl and V62 are each ordered,
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Key:

, = O

ATAY

V(1,e02t1 )3 V(441 ,6)
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r-2
Z(x ;) = (@, +oc°2)2 Ay +hy (82)
where
r-2
) - )‘1 = P 12 + (1-601)Y01’ (83)
(@1 - %z A, = 2™2 . (18 N .n
2 = Po2 Bo2/Yop?
' r-2
a) = 4T Poz®  * (17BoplVops )
(&), _ &5 v o2 (1-g .) {
2 = Pa1 Bo1/Yo1°
The first 051 + 052 "rows" of XOl' given by
A »
j %}d { Vii,5,1) Llsisa, +ap, (85)
j < 2r--l

each contain 2r—2 O's. The next two "rows" contain Xl and Xg O's,

respectively. Note that if 0 < Xg £ X1 < 2r-2’ then the subset X01

is not ordered.

A r-2
The sé&set Xo2 of V includes the last 2 members of each
A A
. g. 8. ,
row of VOl and V62 (See Fig ) Therefore
z(x ) = (@ a )Er_z + By + Hos (86)
02’ ol T Yo2 1 2
where
1 = PoiYor’
(0, _a,) = ! (87)
01 = “o2 BN
Ho = Fo2'o2’
VR = BooYor’

(ag) = %otl) = (88)
Z Mo = Po1Yo1®
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The first & + Q "rows" of X are all O's; the next two
ol o2 02

"rows" contain My and Ho O's, respectively. Note that Xc‘2 is

r-2
not ordered if u2 > 0, since H; < 2 .

The comparators given by (78)-(79) transform the intermediate set

A s 3 3 s s 'th n n
V into the set V. As indicated in Fig. 8, the i row" of X,
. . t 1"
is compared, item by item, with the (1+1)S "row" of X ,; the row"
. th ' " 3 : " n
containing more Os becomes the 1 " row of Vo2 while the row
with fewer Osbecomes the (i+1) st "row" of "701' Therefore,
r-2
= min ; 8
z(V ;) (@t )2 =+ + NN (89)
r-2
= + Ao 0
Z(VOE) - (aol-KxOE)a + ma'x[ul,)‘e] |-|-2 (9 )

We may refer back to the definitions of )‘i and My to verify

that (89)-(90) imply that

2

2(V,) = 2" . min[z(eoe) , 2(v ) -2 (91)
2(V,) - mex{z(v ) , a(V,) 277, (52)

- _ 8 reduces to
For example, if Q7 = @y 0s then (89)

Ir-

r-2 2
(O‘ol-"aol)2 + Bol2 + (1‘501)'Y°1

ACAY

r-2
+minlB Yoy 0 Bo?  * (1-Bo2)¥op]

A A r-2
min{Z(V_ ;) , Z(Von) ~BooYor + Bo1?

I

- (1_E01)Y01 ] . (93)
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A A r-2 . .
Now z(vol) < z(v02) + 2 implies that B, = B, and that

r-2

A A
0 < Z(Vol) - Z(Vog) = Yo1 ~ Yop <2 7, so that (93) becomes

z(w‘r’ol) = min[z(eol) ’ Z(/V\'og) + 2% - Yo1 1
= z(col)
= min[Z(ool) ’ Z(/‘>02) + 21'-2]; (94)

A A r-2 .
whereas Z(Vol) 2 Z(Vo2) + 2 implies that B_; =1, By = 0,

r-2
0 =<v,, "Y°2<2 , so that (93) becomes
A A r-2
z(?r'ol) = min{Z(V_) , 2(Vp) + 2 7). (95)

Equations (9’4) and (95) are equivalent to (91).

In a similar manner we can show that

2G) = 252 4 minlz(Vy) . 2(V.,) -27); (96)
z(\‘fee) = max[z(o.ez) , z(%\rel) —2r'2]: (97)

Equations (91) - (92), (96) - (97), and (68) together imply (71)-(72);

as noted above, this is sufficient to prove the theorem.
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Appendix C: Proof of Lemma 3

Lemma 3:
r b .

Let V = {vl’VE"°"VN}’ where N = t¢2° > 2 and t is even.
Suppose that the four subsets Vol’vo2’ve1’ and Véz of V are
each ordered and that they satisfy (20)-(23),(28), and (29). Then
if we apply the [r] h-network described by Theorem 4 to V, the
subsets of the intermediate set V satisfy (20)=(23) and (28)-(31),

with r replaced by r-1.

Proof:

The proof of Theorem 4 indicates that if the subsets of V are
ordered and satisfy (20)-(23), then the subsets of V are also or-
dered and satisfy (20)=-(23), with r replaced by r-1. We shall

prove that if the subsets of V satisfy (28) as well, then

2(V ) < 2(Vyy) +2(Vp) + L (98)
z2(¥,,) < o2 z(Voz) < z('\‘fel). (99)

The proof that (29) implies that the subsets of Vv satisfy (29) and
(31), with r replaced by r-1, follows from symmetry.
r-2 .
Suppose that Z(Vel) 2 2° “. Then (99) does not apply. And since

the proof of Theorem 4 demonstrates that

~ r-2
z(ffol) <z(V,) + 25, (100)
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-2
Equation (98) holds when Z(Vel) 2 2777,

~ r-2
Now suppose that (28) holds and that Z(Vel) <2 . Then from
(96) we see that
A r-2
= . 101
Z(vel) B Z(vel) <2 ( )
Equations (101) and (66) imply that
2(v ) < 2575 (102)
el !
(v ) < 25 °. (103)
o2

And we may use (21), (28), and (102)-(103) to conclude that

Z(v,,) <2 5 (104)
2(v ) < o™ 1, (105)

Equations (102)-(105) categorize the distribution of O's in V;

we may use these values in (64)-(67) to show that

z(eol) = z(vol) sz(voz) + z(vel) + 1
< z(902> y 2572 (106)
Z(/\>02) = min[Z(V_,) , 2(V,)] < 28, (107)
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2

A -
z(v ma.x[Z(Voe) s z(vel)] < 27 5 (108)

]

1)

e

z(<\re2) = z(v,) < ™2, ( 109)

And finally, (91)=(92) and (96) =(97) then imply that

z(ir‘ol) = Z(Qol) = 2(v,,); (110)

z(?r'og) = z(/\>02) -= min[Z(Voe) s z(vel)]; (111)

z('\‘fel) = z(C'el) = ma.x[Z(Voz),Z(Vel)]; (112)
A

z(V,) = 2(V,) = 2(Vgp)- (113)

From (111)-(112) we see that Z(Voz) < Z(Vel) so that (99) holds, and

that Zﬁoz) + Z(‘\fel) = Z(Vol) + Z(Vel)’ so that (98) holds as well.

Q.E.D.
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