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A LOWER BOUND FOR SORTING NETWORKS

THAT USE THE DIVIDE-SORT-MERGE STRATEGY

by

David C. Van Voorhis

ABSTRACT

k+1 Co .

Let M (eg ) represent the minimum number of comparators
required by a network that merges g sorted multisets containing

k k+1

g members each. In thls paper we prove that M (ge ) 2
g M (g") in ‘il v8 l(4-1)g/L] From this relation we areg £=0

able to show that an N-sorter network which uses the g-way divide-

2

sort-merge strategy must contain at least order N( log,N)

comparators.
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A network with N 1nputs and N outputs is called an N-sorter

network, or simply an N-sorter, 1f for any multiset of inputs

I = {1y,1, 0,14] it produces as output the multiset 0 = {o,,0,,

| Al where: 1) 0 is a permutation of I; and 2) oF < Ok
if J < Kk. R. C. Bose and R. J. Nelson [ 2 ] have suggested con-

structing sorting networks using ranks of a basic comparator cell,

which is essentially a Z2-sorter, For example, Fig. 1 depicts a

b-sorter network that uses 5 comparators labeled A,B,C,D,E. (Note

that comparators A-D move the smallest input to 2 and the largest

input to 0), and then comparator E orders the remaining two

inputs.)

From an engineering viewpolnt it may be desirable to use as few

comparators as possible when constructing an N-sorter, (An alternate

design objective would be to minimize the delay required to sort N

items.) Let S(N) represent the minimum number of comparators re-

quired by a network that sorts N inputs. R. W, Floyd and D. E. Knuth

[ 3 ] have determined, S(N) for N < 8 by proving a lower bound for

S(N) that 1s precisely equal to the number of comparators actually

contained in the most economical N-sorter known. However, for N > §,

the value of S(N) and even the asymptotic behavior of the function

remain an open question. The strongest lower bound known for S(N)

increases as N( log,N), whereas the strongest upper bound known -—-
i.e. the number of comparators actually required by the most economi-

cal N-sorter yet constructed -- increases as N(1og,N)°. (See
D. Van Voorhis [4, 57.)

* A multiset is like a set except that it may contain repetitions of

- elements. See D. E. Knuth [ 1].
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Fig. 1. Y4-sorter network.
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Fig. 2. 1b-sorter that uses the Ub-way

divide-sort-merge strategy.
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For N > 34 the most economical N-sorter networks yet constructed

use the g-way divide-sort-merge strategy. That is, they consist of:

i) g sorting networks of size NysNpy ooo Ng where

N, = |(N+g-i)/g| , that also use the g-way divide-

sort-merge strategy; followed by

11) a network that combines the outputs of the N=» Ny-y

. oN -sorter networks into a single sorted sequence.
This network is called a g-way merge network. |

'The g-way divide-sort-merge strategy is illustrated in Fig. 2 for the

case N = 1k, g = L. In this paper we show that an N-sorter network

which uses the g-way strategy, g 22, must contain at least order

N(1og,N) comparators.

Let 5, (N) represent the minimum number of comparators required

by an N-sorter network that uses the g-way strategy. Then S,(N)
satisfies the recurrence relation

s,(N) = TSN) 4 mW), (1)
l<i<g

where Ng = | (N+g-i)/g J and M(N) is the minimum number of com-
parators required by a network that merges g sorted multisets of size

NysNoy oo No In order to determine the asymptotic growth of 8, (N)
we may restrict out attention to the values N = zg". From (1) we obtain

5,871) = ese) + Me). (2)

Theorem 1 below provides a lower bound for Mm (g"), which in turn allows
} us to bound s, (2°). It is convenient to use one lemma.
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Lemma 1: M (rg) 2 rT M (eg) > 2 L(#-1)e/ly. (3)o<f<r

Proof:

Consider the network T that contains M (rg) comparators and
that will merge g sorted multisets containing r members each. Let

the inputs to T, namely X = (xy,%5. 00x 1 be numbered so that
the g sorted multisets of inputs are

C, = UJ (x(1-1)g+337 1<j<g. (4)
1<i<r |

Note that if we consider X to be an r X g array, with X(1,3) =

X(i-1)g+j’ then the g columns of X are ordered. Fig. 3 illustrates
X for the case r =13,g=05.

The comparators in T may be divided into two distinct classes as

follows. A comparator 1s said to be in class A 1f it compares two ele-

ments in the same row of X and 1n class B if it compares elements 1n

different rows. We shall prove that the two terms in the right-hand-

side of (3) are lower bounds, respectively, for the number of class A

and class B comparators in T.

Since T 1s a g-way merge network, 1t must complete the ordering

of any r X g array X that has sorted columns. In particular, it

must order X when

0, 1 <4;

X(1,3) = 1,2,..., or g, i=4; (5)
g+l, i>4,



x, X, Xq X), Xs

*6 78 *9  ®o0

*1 *2 3 Xp Kis

Fig. 3. Inputs to T,
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Fig. 4, Possible values of

inputs to T.
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3 where { ¢€ [1,r]. That is, it must complete the ordering of X when

the first 4~1 rows of X each containr O's, the last r-~f rows

| th
each contain r (g+l)'s, and the L row contains values in [1,g].

| : (This situation is illustrated in Fig. L4(a) for the case r =3,g=5,

k = 2.) Since (5) may be satisfied when the 4 row of X contains

any permutation of the numbers 1,2,...,g8, T must contain at least

| th |
M (g) comparators that sort the £ row. And since no class B com-
g

i th
i parator that compares an element in the 4 row to an element 1n

| another row will cause an interchange, these M (eg) comparators must
| all be class A. Letting {£ vary from 1 to r we verify that T

| must contain at least «¢ My (g) class A comparators, Me) for each row.
Now suppose that the inputs to T are given by

| 0, i <4, =<E1)gl);

NT 1, otherwise,

where 4 € (g,r]. That is, suppose that the first4 rows of X

each contain | (£-1)eg/4 | O's and that the remaining elements of X

: are 1. Since X contains only L L (£-1)g/4] <({~1l)g 0's, all

| of the O's 1nX belong in the first £-1 rows. And since no com-

: parator will move a 0 from the L row to a higher indexed row, T

must contain at least | (-1)g/f] class B comparators that connect an

. element in the ph row to an element in a lower indexed row. Letting

L very from 2 to r we conclude that the second term in the right-

hand-side of (3) provides a lower bound for the number of class B

| comparators in T.

| : = Q.E.D.
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The second term in theright-hand-side of (3) is a function of the

two variables r and g, namely

o(r,g) = rs  L(E-1)e/d]. (7)
2<f<r

With this definition we are now ready to prove Theorem 1.

* 2

Theorem 1: M (re”) = g M (re) + r o(g,g). (8)

Proof:

Consider the merge network that contains M (re ) comparators
and that will merge g sorted multisets containing rg members each.

n- ALet the rg inputs X = EPL SERRE SS to be numbered so
that the g sorted multisets of inputs are

C. = J {x . 1) ib 1<j<g. (9)J 1<i<rg (i-1)e+]

If we consider X to be an rg X g array, with X(1,3) = X(i-1)g+j’

then the g columns X x iF C. are each ordered.(¥,7 J

It 1s convenient to partition the rg rows of X, given by

? 1<j<g ?

*¥ Theorem 1 1s a generalization of the following theorem proved by

R. W. Floyd [3 J]: M, (kn) > 2M, (2n) + n.
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into g partitions containing r rows each. We define these partitions

according to

H (u-1)r<i<pr ¢

so that P1 consists of the first r rows, . . . , and Pe contains
the last r rows of X. These partitions are illustrated in Fig. 5

forthecase rr =3, g =5.

The comparators 1n \ may be divided into two classes, according

to whether the two elements compared are 1n the same partition or in

different partitions. Now each partition, which contains r rows of

- X, may be considered to be an r X g array with ordered columns.

Therefore, ° must contain at least M (re) comparators within each
of the g partitions, which explains the first term in the right-hand-

side of (8). The second term in the right-hand-side of (8) is a bound

for the number of comparators that joln elements in different partitions;

the derivation of the term follows the proof of Lemma 1.

Q.E.D.

k-1

We may use Theorem 1, with r=g to obtain the recurrence

relation

k+1 k k+l (12)M = g M(g) + ag,Le) g z

where
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Fig. 5. Inputs to T
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2

_— o(g,g)/g". (13)

With the boundary condition

+ M = S = 12 (8) 2 (8) M, (14)

Equations (12) and (2) lead to

k+1 k+1

Mm (em) = [ak + (Ve)le (15)

k e k

s (eg) = [$ak” + ((WVe)- 22 )] & - (16)
| g g 8

- From (16) we observe that 5. (N) is bounded by L(N), where

L(N) ~ 2a N(log N)?
g g

= 2a (log g) ° N(1log nN). (17)
27g\T 72 2

From (7) and (13) we can easily verify that a, > 0, g=2 2. There-

fore, the minimum number of comparators required by an N-sorter network

that uses the g-way divide-sort-merge strategy grows asymptotically as

N(1o0g _N)°.
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