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Abstract

We consider the wal univariate linear model E(y) = Xy , V(y) = oT .

In Part One of this paper X has full column rank, Numerically stable

and efficient computational procedures are developed for the least squares

estimation of y and the error sum of squares. We employ an orthogonal

triangular decomposition of X using Householder transformations. A lower

bound for the condition number of X 1s immediately obtained from this

decomposition. Similar computational procedures are presented for the

usual P-test of the general linear hypothesis L'y = 0; L' =m is

also considered for m £ 0 . Updating techniques are given for adding to

or removing from (%, ¥) a row, a set of rows or a column.

In Part Two, X has less than full rank. Least squares estimates are

obtained using generalized 1inverses. The function Ly 1s estimable

whenever it admits an unbiased estimator linear in y . We show how to

computationally verify estimability of Ly and the equivalent testability

of L'y = 0 .
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PART ONE: UNIVARIATE LINEAR MODEL WITH FULL RANK

1. Least squares est.mation and error sum of squares

We consider the univariate general linear model |

(1.1) E(y) = X 75 V(y) = 01, :

where E(°) denotes mathematical expectation and V(+) the variance- |

covariance matrix. We take the design matrix X to be nxg of rank i
g<n and-known; 1n part two we relax this assumption of full column E

rank. The unknown vector vy of 4 regression coefficients 1s estimated

by least squares from an observation y by minimizing the sum of squares }

(1.2) (v =X)(y - X7) =

Prime denotes transposition; bold-face capital letters denote matrices 4

and bold lower-case letters vectors, with rows always appearing primed. k

In the case where V(y) = 0 A in (1.1), with A known and positive

definite, we may replace y PY EY and X by FX where F satisfies

FAF* = I . The matrix F is not unique but it is possible to find an F

which 1s lower triangular from the Cholesky decomposition of A (cf. e.qg., ;
~ |

Healy, 1968).
i

It is well known that the least squares estimate y satisfies the :

normal equations 3

and is unique when X has full rank. The matrix X'X is greatly :
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influenced by roundoff errors and is often ill-conditioned: by this

| we mean that a relatively "small" change in X will induce a correspondingly

"large" change in (xx) and in the solution y = (xx) "xy to (1.3).
For these reasons we prefer to work with X directly rather than LL

[cf. e.g., Longley (1967), Wampler (1969, 1970)1].

It 1s possible to find an nxn orthogonal matrix p such that

R R

(1.k4) X = (;) ; P'X -(:) ,"\ 2 oT J

where R 1s upper triangular of order gxq . This orthogonal triangular

decomposition (OTD) may be made in various ways; a very stable numerical _

procedure (Golub, 1965) is to obtain P as the product of g Householder

transformations.

A square matrix of the form H = I-2uu' , Where uu = 1, 1s defined

to be a Householder transformation. Clearly Rs = H' and

HH! = H'H = 1 =I , so that H 1s a symmetric and orthogonal matrix.

All but one of the characteristic roots of ); are unity, the simple

root being -1 .

A vector x may be transformed by a Householder transformation to

a vector with each element zero except for the first, 1i.e.,

(1.5) Hx = re;; rr f£0 ,

say, where ©: is an nxl vector with each component 0 except for
the j-th which is 1 (3 = 1,2,...,n) . Premultiplying (1.5) by its

transpose yields
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Substituting H = I -2m' in (1.5) gives

(1.7) x -2(u'x)u = re, ;

premultiplication by u! yields -utx = Tuy where Uy = eju , the

f'irel element inu . Substitution in (1.7) gives x+ eru,u = req ,

so that with x = {x} ,

Ce 2 SN TV SR SE . _ op

"ie first expression will always be computed positive 1f the square root

1 (1.6) is taken as

(1.0) r ~sen (xg) = (11x) ,

where oomf{x) =+L1 +41 =z, >0 and -1 otherwise. Then

(1.11) s = +(x'x)7

2 ANI - I 2 a :

This ives u'u = 1, for 2ul = x./(2sul) = x/(s"+sl,]) , i =2,..0,n.
~~ 1 1 1 1 1

noo, IS 0 2
enc T= (g- ts = 1- = -Hence 2Y uy (s x1) /(s s |x |) 1 (f= 1/5) 2(1 uy) . We note

i=2

that II need not be computed explicitly as Hx = x-2(u'x)u , for which

we need only u and ux In the above form, it 1s necessary to compute

two square roots per Householder transformation; 1f, however, we write

? -1 1H=1I-u(uu) "u then only one square root need be calculated (Businger

and Golub, 1965;.



Applying this procedure with x replaced by Xe; , We obtain

(1.12) HX = (rppep8y)

where r., replaces r , and X, is nx (q-1) such that

= KX. . = d U i = sees = Xa . |Xe, iil (ux, ; Ju » J =1,4.e59=-1 and x1 Xe iin This

procedure 1s now repeated with X,& as X and a Householder transformation
Hi, = 1 - 1¥ ith ule = . -
Gy I UU » say, with use 0 The last n-2 elements of X,€

are now annihilated. ou Ho HXe, = ry Hie = T8 while Hes = HX eg

has its last n-2 components zero. The product HH 1s orthogonal.

irther repetitions, annihilating at the j-th stage the last n-j elements

in the j-th column of the matrix X transformed previously by Jj-1

Householder transformations (j = 1,...,4) , realizes P as the product

of' gq Householder transformations. The matrix P is not computed

expliv it ly . Details of thiz algorithm are given by Golub (1965), and

Businger and Golub (1% 5) who also give a program in Algol 60.

Partitioning P = (P,,P,) , with P, nxq and P, nx (n-q) gives

from (1.4)

(1.15) PIL =R , PX =0 ,

with PP, = Ly ’ PP = O and PAP, = Liq , since P'P = L . If, in
the above algorithm, we simultaneously apply the gq Householder transfor-

mations to the observation vector y , then we have

' 4
Py “1

 {

Poy Zo

say. Thus 2, = Ply has expectation E(PLy) = PLXy = 0 and covariance

In



matrix V(PLy) = PLP = Tg . Hence z, is an easily computed
| vector of uncorrelated regrossion residuals and may he used to test for

serial correlation (cf. e.g., Grossman and Styan, 19/0). It follows that

0,5 cach term on the le’, “hand. 51 le iz idempotent and their cross-product

ig 0 3 their sum ie i emnotent with rank the sum of the ranks n-g and dg.

feo PBs I= The Tl Ai. (y-x7)t(y -%7) is

. the crror sun of squares 5, , say -- the minimum of (1.2). It is simply

computed here as the oom of squares of the n-q elements in Zo = Pry .

The vector of (correlated) residuals r= y - Xy is often essential _
for analysis of the livear wodel (cf. e.g., Draper and Smith, 1966).

Thouet. Lhe matrix Pav not io computed explicitly it can be retrieved

ag Mtaorow ob 8 a8 hLwl der transformations when the corresponding

qa uw vechbore have bees stovad (which we recommend). Hence we compute

© Pn, eince PTF reo TT (XY) “Lrg = y-Xy = r . However,

it has been observed b Gentleman (1970) that computing r in this fashion

may be numerically unstable.

We also find fron (1.4) that

ae

(1.16) X'X = (R%,0)P' ] = R'R .~~ - 0 ~~

Substitution in (1.3) ields R'Ry > (R*,0)P'y = Rfz, , so that solving

(1.17) Ry= 2,

gives y . This is expedited by R being upper triangular.



We note that R'R 1s a Cholesky factorization of Xx, for which

Healy (1968) has given a Fortran program.

The estimator y has covariance matrix v(7) = 0° (XX) 1 ; an

unbiased estimate is 5 (XTX) “L/(n-q) which is easily computed using

(1.17) as (232,)R(R™) '/(n-q) . The generalized variance (cf. e.g.,
Anderson, 1958) is |v (7) I = °Y/ [xx | , where | | denotes determinant.
In optimal design thec~y a problem is to choose X so that xix] 1s

maximized thus reducir v(7) | as much as possible. Again using (1.16)
12

we see that xx | = [RR] = TT 7a , as R is upper triangular. Hence
5)

|v(7) | is estimated b, [zz / (n-q) 1% / TT rs .
i=1

A measure of the ill-conditioning of a matrix is its condition number

which we define as thc ratio of the largest and smallest nonzero singular

values of the matrix. The singular values of a (possibly rectangular)

matrix A are the positive square roots of the characteristic roots of

AYA or AA' . When the condition number far exceeds the rank we find

(cf. Wilkinson, 1967) “hat the matrix is extremely ill-conditioned.

A lower bound for the condition number u(X) of the design matrix X

1s the ratio of the la-gest and smallest (in absolute value) diagonal

elements of R . To see this we note first that X and PX have the

same singular values, due to the orthogonality of P . As PX 1s merely

R bordered by zeroes, sg(X) = 59 (R) , where sg(+) denotes singular

value. For any square matrix A of order nxn ,

(1.18) sg,(8) < lens(4) | < sg (A) 5 J = Leen

with ch(*) denoting characteristic root. The subscript j indicates
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j-th largest. To prove (1.18) when A has real roots, let A = ch (4)
with Av = AM . Then

(1.19) se’ (A) = ch, (A'A) = max[x'A'Ax/x'x] > v'AtAv/viv =-. ~~ wx mm ~ oo or

2

= NIAtV/viv = NT

2 2

Similarly sg (A) < NM. Thus

(1 20) 584 (X) sg, (R) mex |ch(R) | max |r. |
~° a 58, (%) a sg,(R) min {ch R a minfr_. | .

Other properties of (A) are given by Wilkinson (1967).

Why 1s the condition number important and how can we use the

relationship (1.20)? Let y be the computed approximation to 7 which

satisfies (1.3). Suppose that we wish to determine an upper bound for

the norm of the relative error of y :

(ren) fy - 70/00

a Ly 1/2
where I a || indicates the Euclidean norm (a'a) . Define

(1.22) r=1y -Xy,

which we can compute quite accurately. Then

(1.23) r-r = X(r-7)

and hence

(1.24)  xx( 7 -y) = X'T,

7



since X'r = 0 . Thus

VY ' “Loo 7 ' -1 Frall = 't e(1.25) ly -2 0 =x) Xrfl < en (xX) THR rl] = fxrrll/ se (X)

From (1.3), fret = |IX'yl| , so that

6 ty! 5 se(1.26) [X'yll < | 7 llsel(X) .

Combining (1.25) and (1.26), we have

A ~ A 2 —~

(en) 7-707 070 = Use (X) / sg (0) Hxrz|| / [| xy

2 ' t
= WIRE ey

Thus we see that the condition number may be used for determining an

upper bound for the relative error of IE | . This upper bound is the
2 Lo

product of two factors; the first of which, » (X) , is independent of y

However, the lower bound provided by (1.20) would in some circumstances

give 1nsight into the relative error. Hence, 1if

D ~
an! ‘ 3 .  { f(1.28) [max fr. | / minir |] Ix f/x ||

is large, then it is likely that the relative error in ||7 | is large.

The numerical efficiency of the above orthogonal triangular

decomposition is enhanced (cf. Golub, 1965) if the column selected for

each of the g Householder transformations maximizes the corresponding

sum of squares. That is, at the j-th stage (j = 1,...,q) we transform

that column of the g-j+1 possibilities which maximizes the sum of

squares of its last n-j+l components. The interchanges may be

summarized in a permutation matrix T postmultiplyingX . Thus (1.4)

becomes

3



R R

(1.29) X = [7 m5 PXN ~ :
~~ T"10}” -== 0

The vector z does not change and hence neither does 5S. . The solution

(1.17) changes however; substituting (1.29) into (1.3) now gives

TR'RT'Y= MR'z, , so that

(1.30)  R(mty) = 2; = RO

1s solved for © , and y = Me . As these interchanges only rearrange

d 2

the r.; Wwe still find [X'x| = Tr. . The lower bound for the condition
- 7 i=1

number simplifies, however, as with these interchanges max |r. | = rq | ’ -

and min |r, | = Tq so that »(X) > 711/704 |
Given the nxn matrix

1, -1r, -1, ...,-1

co, 1, -1, ...,-1

(1.31) A = ’

EF a=) a. a=) a. a=) ¢ MX 2] 1

we see that mex |r. | = min|r,., | = 1 , and so (A) >1 , since A =R
when no column interchanges are made. However, if column interchanges

are performed then for‘ n = 10. say, EN = 3,162, lr, | = .00%383

and (A) > 934.8. The actual value of w(A) = 1918.5 .

The For-ban IV programs LLSQ and DLLSQ (double-precision) in the

Scientific Subroutine Package (SSP) of IBM (1968) solve the least squares

problem as described above. The SSP library is available at many IBM 360

computing centers. The SSP manual gives a write-up of the procedure and

| B -



indicates how ¥ and Se are output. In addition we note that the q
diagonal elements of R are output as , AUX(g+1l,e.0y2q) ! , with

max |r. | = AUX (g+1l) and min |r. . | = AUX(2g9) in absolute value. The
remaining nonzero elements of R are overwritten in corresponding

positions of X (input as ' A '). The vector z is overwritten on ¥

(input as ' B ') and S, appears in! AUX(1)*. The solution 7 is
output as ' X '.

The number of multiplications to obtain R 1s about ng® —q°/3 ’
whereas approximately ng°/2 multiplications are required to form the

normal equations (1.3) with about °/6 multiplications needed to solve

them. Thus when n-g 1s small, the number of operations is roughly the ]

same for both algorithms, but when n-g 1s large, 1t requires about twice

as many operations to use the orthogonalization procedure.

The orthogonal triangular decomposition (1.4) or (1.29)is very

similar to the Gram-Schmidt decomposition. Indeed if n = g and there

is no roundoff error and all L.y are taken positive, then the Householder

and Gram-Schmidt algorithms yield precisely the same transformation.

Although the modified Gram-Schmidt process (cf. e.g., Golub, 1969) may be

used for solving linear least squares problems, the computed vectors may

not be truly orthogonal! The Householder transformations, however, yield

vectors which are more nearly orthogonal (Wilkinson, 1965) . Furthermore,

not only do the first gq columns of Pspan the same space as the

columns of X but the last n-g columns of P span the complement of

the space spanned by the columns of X . As we have seen above, this 1s

quite useful.

10



2. Hypothesis testing and estimation under constraints

Let us consider the general linear hypothesis

! —_(2:1) fy

for the linear model of Section 1. The contrast matrix L' 1s taken as

sxq of full row rank s <q . If we assume that y 1s normally

: : tS t CNS -1 : 5 = t “Lysdistributed then L'y is N(L'7,0 L*'(X'X) "L) , with y = (X'X) Vv

The numerator of the usual F-test for (2.1) 1s then well known to be

St t(y? -1 loa _
(2.2) y'LIL'(X'X) "L] "L'y= 8,

say, the "hypothesis sum of squares". Substituting (1.16) and (1.17)

into (2.2) gives

e(n=1yi LT -1_,.-1
(2) 8, AEDHLER EL) IE

We compute RH = ¢ , say, by solvingR'G = L , withR' lower

triangular. We then obtain an orthogonal triangular decomposition ofG

qQxs (a > s) ’

-1 B
(2.4) G=(RL =qf"~ ’

~ ~ ~ "10

say, where B is upper triangular s xs and the orthogonal matrix Q

is the product of s Householder transformations. Then G'G= B'B ;

partitioning Q = (Q4,Q,) , Where Q 1s gx s and Qs aX (g—s) gives

G= QB from (2.4). Substitution in (2.3) yields

— t |

(2:5) sy =HuUH

11



which we compute by applying the s Householder transformations of (2.4)

to Zq simultaneously with G and then summing the squares of the

first s components of" the transformed Zq

If we test the hypothesis

(2.6) L'y =m ,

where m is a given ¢ X1 vector, not necessarily 0 , then we proceed

by computing Ly -m = h , say, and sum the squares of the components of

(37H) th ; we find the latter by solving Ly -m = h = B® , say, for t ,

with B' lower triangular.

The described procedure can be improved upon when s > g-s . We

first obtain an orthogonal triangular decomposition of L ,

U

(2.7) L=T|"
- 710

say, where T 1s orthogonal and U upper triangular. Partitioning

T= (0.,T,) , where T, is gx s and T, is ax (g-s) leads to~L 2 “iL 2

' — oT —

(2.8) Ly = USL, = 0

Thus L'y = 0if and only if y = IN for some © , now unconstrained.

Hence

(2.9) min (y-X7)'(y ~%X7)  _ min(y- XT)!(y - XI,0)
t ~ - ~~ -_ ~ rrrrs Cos ~ nsL'y =0 a _

Using (1.4) and (1.1%), we see that (2.9) reduces to

: - ? -  ]

(2.10) min(z RT8) ' (2) -RIS0) + 217, ,

12



so that Sy equals the first term in (2.10) which is easily computed

as 1n Section 1 with Hq replacing y and RT, replacing X . Since

(cf. e.g., Good (1965). p. 89),

(2.12) sg, (XT) < 8st (XT) < 58,5 (XTp) ,

we have

(2.12) (XT) < wi XT) = u(x) -

Thus, by eliminating tlie constraints, the linear least squares problem

may become better conditioned.

The least squares estimate y* , say, of y subject to L'y = 0 is

obtained from the solution @ to (2.10) by

* ~

If the constraints have nonnull righthand side m as in (2.9) then

the procedure is changed as follows. Evidently L'y = m holds if and |

only 1f y = r+ 1, (UT) 'm = T,0 + Iw , say. We obtain w by solving

m = Uw, with U' lower triangular. Thus y is replaced by y - LL, w

and hence Zq by 2, = RL,W the resulting value of Sp 1s therefore

_ _ ¢ _ _

(2.15) | RI,W - RT.9) *(z, - RT, - RT 9)

which we compute as in Section 1 with 2, -RT,W replacing y and RT,

replacing X .

15



The relevant F-test for the hypotheses (2.1) or (2.6) is then

computed as

; 8, /sCelt F =

( ) _ 5./(n-q) ,

with the critical region formed by values of (2.16) exceeding the corres-

ponding tabulated value of F with s and n-g degrees of freedom.

In some special, “hough common, situations the above computations

simplify considerably.

If we test a single contrast in y equal to 0 we obtain (2.1)

with s = 1 . Let us write this as

(2.17) Ly = 0

A particular case might be testing a single regression coefficient equal

to 0 . Then R71) = K becomes rR 1) = k , say, found by solving

£ = R'k as before. Then (2.3) becomes

1512 / tk — S(2.18)  (4')"/k'k = 8 ,

and we compute the denominator in (2.18) by summing squares of components

in k . The one-sided t-test for

(2.19) 2ry >0

J : J to ' 1/2
has critical region large positive values of £'%/ [k'k §./(n-q)] .

Another special case occurs with s = g-1 when L'y = 0 if and

only 1if

(2.20) 7 = ot ,

1h



where © is now a scalar. The vector t is often found upon inspection

(without transforming L ). For example in testing for homogeneity of

coefficients of y , we have t = e , the vector with each component

unity. Substituting t for I, in (2.10) yields

(2.21) © = z§ Rt / t'R'Rt ’

and

(2.22) S, = zlza, - (z Rt)< / t'R'REN h “101 J ee or rae ei 1 4

with the denominators computed by summing squares of elements of Rt .

15



Se Updating procedures

After a particular set of data has been analyzed 1t 1s often

pertinent to add to or remove from X and y a row (or set of rows

or to add to or remove from X a column. This happens when new informa-

tion becomes available or when existing experimental units have been

classified as extreme, Or independent variables insignificant.

We begin by considering the addition of data from m , say, further

experimental units. Let - and Yin be the corresponding data of order

mxq and mxl1l respectively. Following (1.4) and (1.14) we may write

] . y
~0 ~N

X

L 0) [%n Ya |
(3.1) = RB A

0) Pt X y

° 5 |

Applying g Householder transformations of order m+g to the first mtg

rows of (3.1) yields

X R *
~~ Tm ~1 20

R 7 ° A

* *

say, where R, 1s gxgq upper triangular, Zy 1S axl and Z, 1s
~ ol ~ ~

mx1l . Hence

R *
“1 Zo

X Nj
~m lm *

(3.3) PB} =f 2 =
X y

°0

where

| 16
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(3.4) PL = |

0 Ing °F

1s an orthogonal matrix formed from 2g Householder transformations, and

has order mtn . The new residual sum of squares 1s z) tz} + 2525 ,

i.e., the previous sum of squares, Z4Zs , augmented by the sum of squares

of the m components of 2) ,these components themselves give m
additional uncorrelated residuals.

Next, suppose we wish to add a (q+l)-t21 variable whose n values

constitute a vector X . We first compute Pix by applying in turn the

gq Householder transformations determined by the stored vectors u

(cf. residual calculations in Section 1). We need then only one further

Householder transformation, H , say, of order n—-g to annihilate the

last n—-g-1 elements in P'x , i.e.,

n° ROBx BBX
(3.5) P'(X,X) = 1. = ’

of 0 HEX 0 bh

where 3 = (52) , as in 81, and h = x'P FX the sum of squares of

the last n—g components of Pix .

The procedure for removing an experimental unit 1s more complicated.

The method given previously by Golub and Saunders (1970), may under

certain circumstances prove unstable. We now give a new method which

should provide a more accurate solution.

17



Suppose we want to remove x: , the i-th row of X . We seek an

upper triangular matrix S , say, so that

*X— 2 = R'R— 2 = Q'S = R(T -tt?

(3.6) X*X-x.x? =R'R-x.x7 =S'S  RT(I-tt JR ,

say, where R't= Xo ; the vector t is easily computed since R' is

lower triangular. We now construct an orthogonal matrix Q so that

Of = ce, ; thus ec” = t't = x! (R'R) "x, = elX(X'X) “re, <1l . We define<i 1 - J ~1 ~~~ ~ ~L

the quasi-diagonal matrices of order gxq :

T-1

(3.7) Ze _ oO > k = 1,..059-1 ,

Tq-k-1

where

COS Op 1 sin 0

-sin Oy COS Oy

Clearly Z, and o, are orthogonal. Let

with t. = t and R, = R . We choose ©, so that Z annihilates
~0 0 ~ k ~q-£

? : t . — - :

Cq-1+1°1-1 and hence eq-1+108 = 0 ; £=1eee39-1 . Then the matrix

(3.10) Q= i h- RLO |

satisfies Qt = ce, and is orthogonal. From (3.6) we may write

18



(3.11) s’s =R'Q'(I-cTeje])QR

2

which is positive definite if and only if c¢ > 1 . It follows that

Wop 2 Yop 2 xr Wogu1 2 Yoq

(3.12) QR =W =| 0, Wyn, | Wyo 5 Ws

[fe f= «@h «@h «@h WwW Ww
| 4,9-1 ° "aq

is an upper Hessenberg matrix. Thus (3.11) becomes S'S = WIDW , With

(1-c2)1/2 01
(3.13) D = )

which 1s real when c? <1. We compute S by applying orthogonal

transformations to the upper Hessenberg matrix DW . Let

*

with 8; = DW and Z, formed as Zz, in (3.7) but with 6, replacing
7 i i) |*

[] - _  §

0, and so chosen that- Zo annihilates Crt 1 SOx Sx = Ere DWE and thus
—

C41 Pk Sx = 0 . Then

* * z Z. DW
(3.15) S = ~q-1 = 49-1 29-2 *e =x So a2 n F)

This procedure requires about 99/2 multiplications and 24-1 square |

roots. |

19



The above algorithm can also be used for adding an observation but

about twice as many numerical operations are required as in the procedure

given by (3.3) and (3.4). We also note that the problem of deleting an

observation is numerically delicate. Since

(3.16) S's = RY(I-tt')R ,

it follows that

2 1/2(3.17)  «(8) < x(R)/ (1-1) 2

Thus if t%t is close to 1 , then x(8) could be quite large as the

right-hand side of (3.17) is attainable.

Finally suppose we wish to remove an independent variable or

column of x . If it 1s the last then no further calculations are

required; but suppose 1t 1s the first. Let

11 Tio... Tig

0 r Tr
22... 2 =

(3.18) R = a = (ry18 ’ R)

0 . css T
aq

where R is qX (g-1) and has one more row than an upper Hessenberg

matrix. We annihilate the elements just below the main diagonal of R,

1e€Coy x00 | 44410 by applying orthogonal transformations of the type
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= R I 1 t —

and R, R we choose on in Ly so that +1 Br-1 Sx Tit, ket 1

1s annihilated; thus Cpr1 Bx Sk = 0 and Ri-1 1s the new triangular

matrix sought.
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PART Two: UNIVARIATE LINEAR MODEL WITH LESS :

THAN FULL RANK

4, Least squares estimation and error sum of squares

We consider now the univariate general linear model (1.1),

2

(b.1) E(y) =%r , V(y) =01I,

with the design matrix X of rank r < g <n . We obtain the same normal

equations as (1.3),

(4.2) X'Xy = X'y

which are consistent; their solution, however, may not be unique. Consider

a solution to (4.2) which we may write

(4.3) 7 = (X'0)X'y

where (+) denotes generalized inverse. We follow Pringle and Rayner (1971)

and define a generalized inverse of a matrix A , mXn , as any matrix A-

satisfying

(4.4) AA-A = A .

Evidently A- has order nxm +. Such a generalized inverse exists but 1s

not unique in general; if, however, A- satisfies (4.4) and

(4.5) A-AA- = A- ,

(4.6)  (AAT)' = AA i:

(4.7) (AA)* = A-A , ,
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then we write A= = A , the pseudo-inverse of A . When we only require

that (4.4) 1s satisfied we will write A- = g, (4) -— a g,-inverse of A .

Similarly when (4.4) and (4.5) are satisfied, A = g15(4) ys (ko), (k.5),

and (4.6): A = 8153 (A) . The pseudo-inverse A = 81031, (A) . The
solution 7 , say, to (4.3) which minimizes 7'y equals X'y as is
shown, for example, by Peters and Wilkinson (1970). Our concern, however,

focuses more on estimable functions of Y rather than y per se so we

will not discuss here computation of 7 . We define an estimable function

of Y as a vector L'7 which admits an unbiased estimator of the form

K'y , where Lt is s x gq , say, and K! , 8xn . The least squares

estimate is then Ly = L'(X*X) X'y so that K! = L*(X'X) X' . We shall

see (Section 5) that when L'y is estimable, L* (X*X) X* is unique for

all (X*X)' = g, (X'X) . Rather than form x*X, find a g,(X'X) and then

postmultiply it by X' , we compute a 813%) directly, noting that G

is a g, (A) if and only if it can be written as (AtA) Ar for some

5 (ATA) = (ATA) [Pringle and Rayner (1971), p. 26].

We proceed as in Section 1 to orthogonally transform X by Householder

transformations with column interchanges. 1f X has rank r then after r

Householder transformations we obtain, cf. (1.29),

§ | t |(4.8) x =p[~~ |r ; Pxw=(> ~ ,

where R is upper triangular, TI XT , S is rx (g-r) , and m is a

permutation matrix of order gxq . We now claim that

. 8 3;(h9)  X=mf 7 TR = gps(X)
O 0p”
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I O x R ©
We have XX* =P| ~ 7 |P', clearly symmetric. Hence XXX =P| ~ “| =X,

— {0 07 mT “10 0” ~

-1

while XXX =1 P' =X so that (4.9) is proved. The solution

A *

y = Xy to (4.2) afforded by (4.9) is often called a basic solution as it

contains at most g-r nonzero elements.

Thus (4.9) accomodates our purposes; moreover we do not have a

stronger g-inverse than 1s needed. As in Section 1 we partition

P =(P,,P,) , but now let P, be nx r and P, nx (n-r) . From (4.8)
it follows, cf. (1.13), that

(4.10) PI XT = (R,9S)

(Lh.11) Pp. X = 0 :

Following (1.14) we now write

|

| hy Zq
(4.12) Py = = = yA 3

~~ . -

boy Zo

where Zq is now rx1l and Zp (n—-r) x1 . Thus Zp 1s again a vector

of uncorrelated residuals; moreover

1 + tv) wrt — )
(h.13) By PR AX(X') X= I

as in (1.15), with P, Pp. idempotent rank n-r and X(X*X)-X* symmetric

- ldempotent rank r . By (4.11) their cross-product is 0 and so their

sum 1s 1dempotent rank (n-r)+r = n and hence L as claimed. Thus

ol



(b.1h) zh z, =y'(I -X(X'X) X')y

is the residual sum of squares, computed as the sum of squares of the

n-r components 1n Zn

The vector of (correlated) residuals T¥ = y-X7 = (I - X(X'X) X')y = P, PLY

as in Section 1, and using (4.13) it follows that (4.14) equals r'r.
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5. Estimating estimable functions and testing testable hypotheses

As mentioned in Section 4 we are not directly concerned with the

estimation per se of y . We define L'yY to be an estimable function

of y whenever 1t admits an unbiased estimator which is linear in y ,

K'vy , say. Thus

(5.1) L'y = E(K'y) = K'X »

holds for all » . Hence

(5.2) L' = K'X

Ac in Section 3 we take L' to be s xq, but now relax the assumption of

full row rank taking r(L) =%t <r . We obtain

I!

(5.7) vi” = r(0)
x ~

directly from (5.2). Substituting (4.8) into (5.3) gives

LT bys Lo
(hb) r - r = r(R) = r(X) =r,

R, 5 R, o ~ ~
pl ~~ ~~

“10,0

where we partition

(5.5) L'T = (LY, 11) E)

with Ly sxr , and L} sx (g-r) . The matrix LT is the contrast

matrixL' with its columns permuted according to the interchanges which
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rearrange the columns of X to make the first r columns linearly

independent. Then Ly are the corresponding r columns of L* or LT.

We apply v > r Householder transformations of order str , whose

product is V'! , say, so that

|] |
bo bo TU

(5.6) mo= | 7 ;
~ R, S J” O O

where my 1s a permutation matrix, and T 1s upper triangular vxVv .

If (5.0) is achieved at the r-th stage, i.e., v =r, then Lily is
estimable. If not, then L'y is not estimable.

An alternative procedure which 1s often easy to verify theoretically

follows and 1s included for completeness.

THEOREM 5.1. The function L'y 1s estimable if and only if

(5.7) L'(X'X) X'X = L'

for any (X'X) = g, (XX) :

Proof. We show that (5.2) and (5.7) are equivalent. Clearly (5.7)

implies 5.2); conversely

(5.8) L(X'X) X'X = K'X(X'X)X'X = K'X = L' ,

since X(X*X) -X*X = X [cf. Pringle and Rayner (1971), p. 26].

Q.E.D.

We may use (5.7) to computationally verify estimability as follows.

Substituting (4.8) and (4.9) into (5.7), with X* = (X'X)X' gives

2



mm RS
(5.9) Lp ~~ Tp = LU.

~ ~1 000 0 ~ ~

Substituting (5.5) into (5.9) yields

(5.10) LIR TS = L!
’ ~Ll~ 2 ~l

To verify (5.10), therefore, we solve RW = S for W , say, which equals

RTs , with R upper triangular. We then examine LW -L and 1f close
enough to 0 conclude L'y estimable.

For the remainder of this section we will assume L'Y estimable.

From (4.3),

A - *

(5.11) L'y = L'(X'X) X'y = L'X vy ,

*

where X = (X*X)-X' = 8103 (X) , cf. (4.9). Thus

. RT 0 9
(5.12) Ly = Lr © ~ |P'y =LYR "2, ,

0 O

using (4.12) and (5.5). We compute Ly , therefore, by solving Rw = Zq

for w , say, which equals Ra, » with R upper triangular. We then
premultiply by Li which contains the r columns of L' corresponding

to the r linearly independent columns of X which yielded R . We note

that L'Y is uniquely determined by (5.11) for any (X*X)- = g, (XX) :

To see this, set L' = K'X from (5.2),s0 that L'(X'X)X!' = K'X(X*X)X' =
+ +

KrX(X'X) X' = L*'(X'X) X', since X(X*X)-X* is unique [cf. Pringle and

Rayner (1971), p. 25].
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We define the general linear hypothesis

(5.13) L'y =0

as testable whenever L'Y 1s estimable. The numerator of the usual F-test

for testable (5.13) is then, cf. (2.2),

1k ILL (XX)LILY= 8,(5.1%)  7'LIL*(X'X) L] L'Y n

To see that (5.14) is invariant over choices of (X*X)- , notice that

- - + ant

LY(X'X) IL = K'X(X'X) X'K = K*X(X*X) X'K = L*(X'X) L. from (5.2). Moreover,

(5.14) is also-invariant over choices of [Lt (XX) L] ; writing
* -

X = (x*x) X' we find that (5.14) may be written

*, ¥ - _*

(5.15) y'(X)'LIL'X (X )'L] LX y = Sy

using (5.7) and (5.11). Sh 1s uniquely defined since for any A ,

A(A'A)A' is unique [cf. Pringle and Raymer (1971), p. 25].

To compute 8, we see from (4.9) and (5.11) that (5.15) maybe written

-1 -1,_-1 - -1
= 1 t ' t 1

(5.16) 8 =z] (R)'LILIR T(R )' Ly] LIR "zy

We obtain an orthogonal triangular decomposition of

1 B C
(5.17) G=(R7)'L, =0f 7 Tm

ad Ea dd ~~ 0. 0 ~~

say, where B is upper triangular t xt , with t = r(L) = r(Ly) by (5.10).

. The orthogonal matrix Q is the product of t Householder transformations,

while the permutation matrix 1 rearranges the columns of Ly y IXSs,
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to make the first t linearly independent. Substituting (5.17) into

(5.16) yields

»

(5:28) 8, -z2100z,

where G = 8103(C 1s glven by

N 37 0
(5.19) G6 =m|~ ~]q

~ = O O0]}~

We partition Q = (Q1,Q,) , where Q, is rxt and Qs rx (r-t) .

[If t=1r, Q, = Q .] Then (5.18) reduces to

— t H

(5:20) 8, = 21497

as at (2.5). We compute (5.20) by applying the t Householder transfor-

mations of Q in (5.17) to Zq simultaneously with G and then summing

the squares of the first +t components of the transformed Zq .

If we test the hypothesis

(5.21) L'y =m

and L' is s xq with row rank t < s then m must satisfy the same

s-t restrictions that apply to the rows of L', i.e., (5.21) must be

consistent. Then the numerator sum of squares is uniquely given by

(5.22) (P'L -m") [L'(X'X)TL] (LY -m) = S,

following (5.15) and (5.16) we see that

NY —
(5.23) L'(X'X) L = IIR (R )'Ly = G'G
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for which we want a gl-inverse. We use

LEMMA 5.1. If A" = 8153 (A) , then

x, *

(5.2k) ATA) = gy(ATA)

Proof. From (4.4), (4.5) and (4.6) we have

*

(5.25) AA*A = A , A*AA* = A* , AA* = (A )'A' .

* OK *, *

Hence A (A )'A'A = A*AA*A = A*A . Thus A'A[A (A )'A'A] = A' AA*A = AA
*, * *, * LE EE *, *

and [A (A )'A'A]JA (A )' = A Ap (A Yt =4A(A)'.
Q.E.D.

From Lemma 5 .1 we obtain

*, ¥ -—

(5.26) ¢ (G7) = [L*(X'X) L]

_ -1 -1\ 4p
= Tp (37) "My

from (5.19), where we partition ms = (M515 Tp0) , with Moy y, Ssxt,

identifying t linearly independent columns of Ly , TX..Hence

(5.27) S. = (3'L =m"), B(BN)ME (L'5 -m)’ h ~ om oe R210 MS ~21NS Lh

First AL -m is computed and rearranged to form ms, (LY -m) = h , say.
Then h = B'k 1s solved for k , where B' is lower triangular. Finally

Sy 1s found as the sum of squares of the components 1in

k = (37) 'n = CERI (L'Y -m) .

The relevant F-test for the hypotheses (5.13) or (5.21) is then |
computed as



S, /t :
(5.28) F=—p

5_/(n-1) ¢

cf. (2.19, with the critical region formed by values of (5.28) exceeding

the corresponding tabulated value of F with t and n-r degrees of

freedom.

The above procedures simplify slightly when the contrast matrix L',

sXq , has full rank s <r =r(X) . In that case (5.23) becomes non-

singular and the results of Lemma 5.1 are not needed. We use

LEMMA 5.2. When, L'y 1sestimable, -

(5.29) r(L*(X'X)L] = r(L) ,

where 1r(+) denotes rank.

Proof. Using (5.7), r(L) = r[L*(X'X) X'X] < r[L'(X'X)X'] =

r[Lt (XX) X'x{(x*x)I'L] = r[L*(X'X)L] < r(L) .

Q.E.D.

When Lt , s xq , has full row rank s <r the decomposition (5.17)

becomes

B

— ~ t

(5:30) Gc = af ~ my0

say, where Moy 1s now 8X s and may equal La (no column interchanges).

Formula (5.27) applies with essentially no change.

We defer discussion of updating techniques for the less than full rank ;
:

case and extensions to multivariate models to a further paper. A computer |
program in Fortran IV for the IBM 360 is being developed for the procedures

discussed 1n this paper.
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