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. 8 Abstract

f- £7 "A new method, called the QZ algorithm, is presented for the

2-3 solution of the matrix eigenvalue problem Ax = ABx with general

EE square matrices A and B . Particular attention is paid to the

E § degeneracies which result when B is singular. WNo inversions of 3B

EE or its submatrices are used. The algorithm is a generalization of the

8 QR algorithm, and reduces to it when B =I . A Fortran program and
¢ Ie

= some illustrative examples are included.
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7 1. Introduction :

BE We shall be concerned with the matrix eigenvalue problem of
3 :

determining the nontrivial solutions of the equation ;

: Ax = ABx , :

3 where A and B are real matrices of order n . When B is nonsingular

3 this problem is formally equivalent to the usual eigenvalue problen

RE When B is singular, however, such a reduction is not possible,

& and in fact the characteristic polynomial det(A-AR) is of degree less

than n , so that there is not a complete ¢ > of eigenvalues for the

problem. In some cases the missing eigenvalues may be regarded as

"infinite". In other cases the entire problem may be poorly posed. The

, term infinite eigenvalue is justified by the fact thal if B is perturbed

By slightly so that it is no longer singular, there may appear a number of

¥ large eigenvalues that grow unboundedly as the perturbation is reduced to

/ zero. However, if det(A-AB) vanishes identically, say when A and B

3 have a common null space, then any A may be regarded as an eigenvalue. |

E Such problems have unusually pathological features, and we refer to them
|:

as "ill-disposed" problems.
8 v 2
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In numerical work thre sherp distinction between singular and ncn-

singular matrices is blurred, and the pathological features associated

- with singular B carry over to the case of nearly singular B . The

i object of this paper is to describe an algorithm for computing the

eigenvalues and corresponding eigenvectors that is unaffected by nearly

singular B . The algorithtm, the heart of whichwe call the QZ-algoritixr,

is essentially an iterative method for computing the decomposition

contained in the following theorem [10].

Theorem. There are unitary matrices Q@ and Z so that QAZ and QBZ

are Hoth upper triangular.

We say that the eigenvalue problems QAZy = MQBZy and Ax = ABx are

unitarily equivalent. The two problems obviously have the came eigenvalues,

and their eigenvectors are related by the equation x = Zy .

The algorithm proceeds in four stages. In the first, which is a

generalization of the Householder reduction of a single matrix to

Hessenberg form [4,5], A is reduced to upper Hessenberg form and at the

same time B 1. reduced to upper triangular form. In the second step;

which is a generalization of the Francis implicit double shift 9R algorithm

[3,8], A is reduced to quasi-triangular form while the triangular form

of B is maintained. 1In the third stage the auasi-triangular matrix is

effectively reduced to triangular form and the eigenvalues extracted. I:.

the fourth stage ‘he eigenvectors are ob! .ined from the triangular matrices

. and then iransformed back into the originel coordinate system.

The transformalions used in reducing A and B are applied in such

a way that Wilkinson's g:neral analysis of the roundoff errors in unitary

2
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transformations [11] shows that the computed matrices are exactly unitarily

equivalent to slightly perturbed matrices A+E and B+F . This means

- that the computed eigenvalues, which are the ratios of the diagonal elements

of the final matrices, are the exact eigenvalues of the perturbed problem

(A+E)x = NM(B+F)x . If an eigenvalue is well conditioned in the sense that

it is insensitive to small perturbations in A and B (see [10] for a

detailed analysis), then it will be computed accurately. This accuracy

is independent of the singularity or nonsingularity of B .

The vse of unitary transformations in the reduction also simplifies

the problem of convergence: a quantity may be set tc zero if z perturvaticon

of the same size can be tolerated in the original matrix.

Our computer program does not actuall:- nroduce the eigenvalues Ms

but instead returns a, and Bs , the diagonal elements of the triansular

| matrices QAZ and QBZ . The divisions in A, = a. /B, become the

responsibility of the program's user. We emphasize this point because

the a. and Bs contain more information than the eigenvalues themselves.

Since our algorithm is an extension of the QR algorithm, the well

known properties of the QR algorithm apply to describe the behavior of

our algorithm.

| In their survey article [9], Peters and Wilkinson describe another

approach for the case when B is nearly singular. In their method one

computes an approximate null space for B and removes it from the probler.

The tecnnique is reapplied to the deflated problem, and so on until a well

- conditioned problem is obtained. The method has tne crucial drawback that

5
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: one must determine the rank of B . If a wrong decision is reached, :

X the well-conditioned eigenvalues may be seriously affected. {
Fa L

- J The special case where A is cvmmetric and B is positive definite «

Ee has been extensively treated. For the case of well-conditioned B the :

"Cholesky-Wilkinson" method [6] enjoys a well deserved popularity.

i A mcdification of this algorithm for band matrices is given by Crawford[ 1). .
.: }

3 A veriant of the Peters-Wilkinson method for nearly semidefinite B has ;
3

: 1

" been given by Fix and Heiberger [ 2]. Although our method does not !

a preserve symmetry and is consequently more time consuming than these :

! algorithms, its stability may make it preferable when B is nearly

a semidefinite. ;
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2. Reduction to Hessenberg-Triangular Form

In this section we shall give an algorithm whereby A is reduced

a. to upper Hessenberg form and simultaneously B is reduced to triangular

FE form. While a treatment of the reductions in this and the following sections

v can be given in terms of standard plane rotations and elementary

h Hermitian matrices, we find it convenient from a computational point of
1

: view to work exclusively with a modified form of the elementary Hermitians.

IE Accordingly, we introduce the following notation.

3 By ¥_(k) we mean the class of symmetric, orthogonal matrices of
the form

E .
fi I + vu

k where vu =-2, v is & scalar multiple of u , only components

i kK,k+l,...,ktr-1 of u are nonzerc, and Ww, = l . Given any vector x ,

i 4 it is easy to choose a member Q of # (k) so that

: x =x + (Wx)v
x

BE has its kti,...,k+tr-1 components equal to zero, its k-th component changed

and all other components unchanged. Since w= 1 , the computation of

Qy for any y requires only 2r-1 wmultiplicstioas and 2r-1 additions.

{In particular, use of a matrix in Ys requires only 2 multipiications

>. instead of the 4 required by a standard plane rotation.)

IE zor the moat part,we shall use only matrices in v, ané

1 When a matrix Q in ¥3(k) premaltiplies & matrix A only rows

| 5 k, ktl, and k+t2 in QA are changed. Tf the elements k , k+l,
gt - and k+2 in a co.umn of A are zero, they remain zero in QA . Likewise,

EE it Gen (k) » only columns k , k+i , and k+v2 are changed in AZ . If

» ; some row has elements k , k+l , and kt2 zero, then they remain zero
a:

ENE in AZ . Similar considerations hold for the class LIN .7 \ 2

: "y
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; ! All our transformations will be denoted by Q's and 2's with
: 8 various subscripts. The Q's will always be premultpliers, that is
s 3 ] row operations. The Z's will always be postmultipliers, or column

3 E cperations. The letter Q is being used in its traditional role to
Px £5

Ef denote orthogonal matrices. The letter 2Z was chosen to denote orthogonal |

4 ; matrices which introduce zeros in strategic locations.
EZ

LL The first step in the reduction is to reduce B to upper triangular |
E |

yr : form by ~remultiplication by Householder reflections. The details of |
2 this reduction are well known (e.g. see [4,11]) and we confine ourselves
£
5 ¥ . - » . i
i: to a brief description to illustrate our notation. At the k-th stage of

EE the reduction (illustrated below for k = 3 and n =5 ), the elements

po velow the first k~1 diagonal elements of B are zero.

sc x X x x X

3 0 x X X p.¢

E 0 0 Xx X X
y 1
Ee 0 0 X X X

E 0 0 x+ x x

4 | Each x represents an arbitrary nonzero element. Each x represents
oy

| an element to be annihilated in the next step. A matrix UH perp (K)
A is chosen to annihilate b b eoesyb d is overwritten
4 kt1,k Okt,Kk’ * 00 On, x? ONG Bis overwrl

§ i by QB , giving a matrix of the form illustrated below.
.

e |
at 1 X X X X X

A | 0 le X x x
X 0 0 x x X

:: | 0 0 0 X xX| 0 0 0 xt x

| ; This process is repeated until k =n-1 . Of course A is overwritten- Y S12

:
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After this reduction, A and B have the form

A B

X X X X X X X X xX x

X X X X X 0 X X X X

) X xX X X Xx 0 0 X x N

X X xX X X 0 0 0 X X -
1

X Xx Xx X X 0 0 0) 0 X |

| The problem now is reduce A to upper Hessenberg form while
|

- - -* - - h |
preserving the triangularity of B . This is done as follows (for k =5 }.

First Qe,(4) is determined to annihilate 85 The matrices QA and
QB , which overwrite A and B then have the form

X x x X X X x xX X X

X xX X xX X 0 xX X X X

X X X X X 0) 0 xX xX X

Xx X X X xX 0 0 0 X x
]

0 X X X X 0 0 0 X Re

The transformation has introduced a nonzero element on the (5,L4)-position

of B . However, a Zex, (1) can be used to restore the zero without
disturbing the zero introduced in A .

This step is typical of all the others. The elements of A are

annihilated by Q's in the order illustrated below.

X X X X X

X X X X X

x7 Y. x x X
2X x” X X X

) 1 L 6
X xX X X x

7

2
¥
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a
2 )| x: As each element of A is annihilated, it introduces a nonzero element +
2 7 . . [3 * . . []2 E on the subdiagonal of B , which is immediately annihilated by a suitably 3
| ZI chosen Z . The entire algorithm, including the Householder trianguiari-~2 9 .

- zation of B may be summed up a8 follows.
i -

BR Choose k) to annihilate b PE .8 4 UH pir! ) aiiliate k+1, k’ Pier, ? Tn,xFul

eB 2) B~@RB, A «~

EH 1} Ch ShsRe BB oose 2) to hil a» J Quep Ws ( ) annihilate 141, k
EB 2) Ae-Q_ A, B B
b er 2) Choose € £) to annihilate b || ) Zyey Hp (2) ninil 2+1, |
LO Lk) B «BZ - AZ,EB ) kg ? A 2

$k The complete reduction requires about 3 n multiplications, i
= 3 17 3 - . 2 - “.23 5 on additions and n square roots. If eigenvectors are also to pe

4 : computed, the product of the Z's must be accumulated. This requires
E. dd 1t4 1 3 3 4 » - 3 3 -» -47 an additiona 5 0° multiplications and 5 n° additions. The product

E- Or f t ? . » . .
: 8 of the Q's is not required for the computation of eigenvectors. l: ;3 7 i
EE
[Y {

i 4 5

= 8 |
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| i 3. The Explicit Qz Step \
3 In this and the next section we assume that A is upper Hessenberg
i :

g i and B is upper triangular. Ia this section we shall propose an iterative

; 5 technique for reducing A to upper triangular form while maintaining the
: triangularity of B . The idea of our approach is to pretend that B is

nonsingular and examine the standard QR algorithm for C = AR~t . he

) ; manipulations are then interpreted as unitary equivalences on A and 2 .
: : Specifically suppose that one step of the QR algorithm with shift *

; is applied to C . Then Q is determined as an orthogonal transformation

such that the matrix

: (3.1) R = Q(C-KI)

: is upper triangular. The next iterate C' is defined as Co

ct = rT + kI = qeQT

3 If we set

4 : A' = QAZ
.

k | where 2 is any unitary matrix, then
3 : ast = qazz'3RT = qari = cr
E The matrix Q is determined by the requirement that R be upper
xz

y E triangular. We choose 2Z so that A' is upper Hessenberg and 3B' is

. upper triangular. This insures that the nice distribution of zeros,

: ; introduced by the algorithm of Section Z, is preserved by the QZ step.
} 2
i 8 Thus a tentative form of our algorithm might read

d — a

Lk: =u , : YA 2, oS RTPI Ir
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& 1) Determine Q so that QC is upper triangular,

> 2) Determine Z so that QAZ is upper Hessenberg and QBZ is upper

{4 triangular,

of 7 4

3 3) A ~QAZ, B ~QBZ . i

) The problem is then to give algorithms for computing Q and Z which do |

| 3 not explicitly require C = AB = . i4 =3 . . . 3

- E The determination Q is relatively easy. For from (3.1) and the :3

% definition of C it follows that !
¥ {

t MN

‘£ (3.2) Q(A-kB) =RB = S . :

E Since R and B are upper triangular, so is S . Thus Q is the unitary {
2

 E matrix that reduces A-kB to upper triangulsr form. Since A-kB is

E upper Hessenberg, Q can be expressed in the form

v. 4 / —_
£. ¥ (3.3) © = U-1p-2° ‘ Qh ’

3 3 where Qu EH, ( kK) . :

EE To calculate Z we apply Q in its factored form (3.3) to B and

E 3 determine Z in a factored form so that B stays upper triangular.

Ex Specifically QB has the form (k = 5)

r £ X X xX X x

E § X X x X X

EE 0 0 x x X |
2 ;

gE | 0 0 0 X X ;

E | 0 0 0 0 x

= If QB is postmultiplied by a suitaole 2,ex,(1) the nonzero element :
2 ~ )

" below the diagonal can be removed. Similarly QQ,BZ, has the form |
p} {

5 10

2

;

3 7
i
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X X xX X X

5 0 X xX X x
g: 0 = x x x
. 0 0 0 X X :

x 0 0 0 0 X ;

3 and the offending nonzerc element can be removed by a Zex,(2) .
i 2 1

2 Proceeding in this way, we construct Z in the form i

3 where Z ex, (K) |
3 1 Although QBZ is upper triangular, it is not at all clear that
2 i 3

: 3 QAZ is upper Hessenberg. To see that it is, rewrite equation (5.2)
; in the form

t (3.4) QAZ = SZ + KQBZ
i From the particular form of Z and the fact that S is upper triangular,

g it follows that SZ is upper Hessenberg. Thus (5.4) expresses QAZ as
i;

3. the sum of an upper Hessenberg and an upper triangular matrix. In

| fact (3.4) represents & computationally convenient form for computing QAZ .
0 We summarize as follows.

| 1) Determine Q = Q 10, 0+ Q (Q, ex ,(k)) so that
¥: E S = Q(A-kB) is upper triangular.

3 1 y, fs “ t = - H
Ex 2) Determine 4 2925442, 4 (2, cv (k)) so that B yA :
FN is upper triangular

ES 5) A* = SZ + kB!
gf 1

2 If this algorithm is applied iteratively with shifts ki,k,,... , |

EX: there result sequences of matrices Arh ves 3 B1,B,s «oe. , and |

: 4 CsCps--- satisfying
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3 provided By is nonsingular. The matrices A, are upper Hessenberg
FE and the B, are upper triangular. The C , are the upper Hessenberg
: matrices that would result from applying the QR algorithm with shifts

; SELEY . to Cy . As Cy tends to upper triangular form, so must A, ’
3 since B is upper triangular.
3 Most of the properties of the QR algorithm carry over to the QZ

| algorithm. The eigenvalues will tend to appear in descending order as
1 one proceeds along the diagonal. The convergence of al’) 1 to zero

may be accelerated by employing one of the conventional shifting stratezies.

: Once AN becomes negligible one can deflate the problem by working
: with the leading principal submatrices of order n-l1l . If some other

: subdiagonal element of A, s Say ey) .1? becomes negligible, one can
{ effect a further savings by working with rows and columns { through n .

; Because we have used unitary transformations, an element of A, or B,y
; can be regarded as negligible if a perturbation of the same size as the

| element can be tolerated in Ay or By .
: ; The algorithm given above is potentially unstable. If k is large
i : compared with A and B , the formula (3.4) will involve subtractive

; : cancellation and A' will be computed inaccurately. Since the shift «

L approximates the eigenvalue currently being found and the problem may

: 3 have very large eigenvalues, there is a real possibility of encountering
¢ 4 & large shifv. Fortunately the large eigenvalues tend to be found last
| 3 so that by the time a large shift emerges the small eigenvalues will have

3 been computed stably. (The large eigenvalues are of course ill-conditioned

: i
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|

and cannot be computed accurately.) To be safe one might perform the

first few iterations with a 7 ro shift in order to give the larger

) eigenvalues a chance to percolate vo the top.

a
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: 4. Implicit Shifts

: 4 The potential instability in the explicit algoritlm results from

: : the fact that we have used formula (3.4) rather than unitary equivalences
: to compute A' . One way out of this difficulty is to generalize the

| implicit shift method for the QR algorithm to the QZ algorithm so that
| both A' and B' are computed by unitary equivalences. The implicit

: shift technique has the additional advantage that it can be adapted to

: : perform two shifts at a time. For real matrices this means that a double
A

3 : shift in which the shifts are conjugate pairs can be performed in real
3 arithmetic.

Sincewe are primarily interested in real matrices, we will concentrate

i | on double shifts. The method is based on the following observation.
1 Suppose that A is upper Hessenberg and B is upper trisngular and
2 nonsingular. Then if Q and 7 are unitary matrices such that QAZ

3 | is upper Hessenberg and QBZ is upper triangular, then Q is determined
3 by its first row. In fact, AB™t and QAR Qt are both upper Hessenberg,
k so that, by the theorem on page 352 of [11], Q is determined by its

first row.

3 Thus we must do two things. First, find the first row of & .
4 Second, determine Q and 2 so that Q has the correct first row,
; QAZ is upper Hessenberg, and QBZ is upper triangular. The first part
3 1s relatively easy. The first row of Q is the first row that would ve

3 | obtained from a double shifted QR applied to AB™L . Since A is
| | upper Hessenberg and B upper triangular, it is easy to calculate the
fl first two columns of AR . Bit these, along with the shifts, compietely

] | determine the first row of Q . Only nonsingularity of the upper 2-by-2

EE i ns rot i a ca i
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submatrix of B is actually required here. If either bq or Db,
is too small, so that this submatrix is nearly singular, a type of

; deflation can be carried out. We will return to this point later.

The second part is a little more difficult, and is really the crux

of the algorithm since it retains the Hessenberg and triangular forms.

Only the first three elements of the first row of Q are nonzero. Thus,

if Qq is a matrix in #3 (1) with the same first row of Q , then QA

and QB have the following form (when n = 6)

X X X X X Xx X X X X XxX X

X X X X x XxX x% X X xX xX X
1 1

X X X X XxX X XT XT x XxX x Xx

9 0 x x x Xx Cc 0 0 x x «x

O 0 0 x x x O 0 ¢ 0 x x

60 0 0 0 x «x oO 0 ¢ oO oO x .

As in the standard implicit shift QR algorithm, it is convenient to think

of Q as the reflection which annihilates two of the three nonzero

elements in a fictitious "zeroth" column of A .

We must reduce QA to upper Hessenberg and QB to upper triangular

oy unitary equivalences. However, we may not premultiply by anything which

affects the first row. This is done as follows. The matrix QB has

three nonzero elements outside the triangle. These can be annihilated

by two Z's, a Zz; in W5(1) which annihilates the (3,1) and (3,2)

elements and then a A which annihilates the resulting {2,1) element.
- 7171 . . .

Let 24 = 2124 . Then Q,BZ, is upper triangular. Applying 24 to
Q.A gives Q_AZ with the following form

»1 [9 ] “Ny1 1 _— a Sram me

15
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3

’ X x ye X X x

X X X X x X ’

: xt X X X X X

xT X X X x X

; 0 0 0 X X X

: 0 0 0 0 xX X
!

This is multiplied by QU in ¥z (2) that annihilates the (3,1) and

(4,1) elements. Then QQ,AZ, and QQ, BZ, have the forms

x X x X X X X X X X x x

X X X xX X X 0 X X X X X

0 X X X X X 0 xX x X X X

0 X X xX X X 0 xt x1 X X X
0 0 0 X xX xX 0 9) 0 0 x X

0 0 0 0 x X 0 0 0 0 0 Xx

| The first columns are now in the desired form. The nonzero elements

} outside the desired structure have been "chased" into the lower S-by-S

submatrices.

Now, postmultiply by Z, , a product of a metrix in ¥5(2) and a

matrix in %,(2) that reduces the current B to triangular form. Then

premultiply by Qz in #5 (3) to annihilate two elements outside the
Hessenberg structure of the resulting A .

The process continues in a similar way, chasing the unwanted nonzero

elements towards the lower, right-hand corners. It ends with a slightly

. simpler step which uses Q _, in ¥,(n-1) to annihilate the (n,n-2)

} element of the current A , thereby producing a Hessenberg matrix, and

) Z,.0 in ¥,(n-1) which annihilates the (n,n-1) element of the

current B , producing a triangular B but not destroying the liessenberg A .

16
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: 3 The fictitious zeroth column of A is determined in part by the
; 3 shifts. In analogy with the implicit double shift algorithm, we take the

| shifts k, end 5 to be the two zeros of the two-by-two problem
EE det (A-kB) = 0
ry -
5 where

5 & *n, n-1 *n,n 0 an

7 It is not desirable to compute k, and k, explicitly, or even to find

EE} the coefficients in the quadratic polynomial det(A-kB) . Instead,

3 | following the techniques used in " hqr2 " [8 ], we obtain ratios of
FE: the three nonzero elements of the first column of (aB™ ok, I) (AB -k, 1)
z

3 | directly from formulas which involve only the differences of diagonal
4 elements. This insures that small, but ncn-negligible, offdiagcnal

3 | elements are not losv in the shift calculation. The formulas are¥ (m = n-1)

3 | a 8.. a a a a a ba b
. 1; of (Tm 11, , nn 11 mn, , nm nm, , many, 11,, 11E 81 = lg= - 5) G— 57) - IE) + EOE (GT)
z mm 11 "nn 11 nn mn mm nn 11 21

x 12. nn, C12
Ef to (+=) (=)
: ’ 22 11 22

3 : (h.1)
| J 2 B11 821, 10 am 211 in 11 “nm, , “ian
£8 8 = (=~ 77) - EE) -G—-57)- = 5) + (EF)
3 22 11 11 22 mn 11 nn il mm nn

5 : 30 © b,,

| E 17
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We are now in a position to summarize the double implicit shift

method. It is understood that A and B are to be overwritten by

; the transformed matrices as they are generated.

1) Compute 147 Bop? and 8x by (4.1).
2) For k = 1,2,...,n-2

a) Determine Q Hz (K) to annihilate 841, k-1 and Bi, ko]

b) Determine Zy 8x (k) to annihilate byen, kr1 and opin x .

c) Determine Zy eH (k) to annihilate Pyr1, .

| 3) Determine Q,_1¥,(n-1) to annihilate B02 °

4) Determine 2 _165(n-1) to annihilate — .
|

| For each k , determination of Qe requires a few multiplications

| and one square root. Application of Q,_ to both A and B requires

about 10(n-k) multiplications. The work involved with eacn zp is

the same. Application of zy requires only about 6(r.-k) multiplications.

a The number of additions is about the sae. Summing these for k from

1 to n-1 gives a total of abou® 13n° multiplications, 13n° additions

and 3n square roots per double iteration.

: By wayof camperison, for the double shift QR algorichm as implemented

* in " hgr ", Zy becomes simply a, and Zy is not used. Furthermore, the
; transformations are carried out on only one matrix. Consequently, each

: double iteration requires about 5n° multiplications, Sn° additions and

| n square roots. Thus the QZ algorithm applied on two matrices can be

E expected to require roughly 2.6 times as much work per iteration as

J. the QR eslgorichm on a single matrix.

18
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In order to obtain eigenvectors, the Q's are ignored and the Z's ;
: . 2 cas . 2 i

3 accwrulated. This requires about 8n“ more multiplications and 8n :

. more additions per double iteration. 2

There is one difficulty. The formulas for a.. , 8,. , and a ;
E 10 20 30 ;

are not defined when b, and by are sero. Moreover, as 014 and :

3 b,, approach zero the terms that determine the shift (terms involving )
. 3

: a b , etc.) become negligible comparedto the other terms, so that :

5 the effect of the shift is felt only weakly.

Part of tre solution to this difficulty is to deflate from the top.

; If by, 1s negligible it may be set to zero to give the forms for A

: and B (nn =b)

E: X X X X 0 X Xx X
: X X X X 0 X X X

0 x x X 0 0 x x

& C 0 X x 0 0 0 X

| A Q in ¥,(1) can then be used to annihilate the (2,1) eclemaat »f A,

which deflates the problem.

The rest of the solution lies in recognizing thet there ic 0% muon

of a problem. If by and bs are small then the problem has large

eigenvalues. We have already observed that the larger eigenvesliies tend |

to emerge at the upper left, and the larger the c¢igenvelie, tre swiilter

| its emergence. Moreover the speed will not be aflzcied by a smell shifl.

: This means that whenever the implicit shift is diluted by 8 small b ,

or bss » the algorithm is none the less profitably em.love¢ in findinw

a large eigenvalue.

- »
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| 5. Furc.e.; 2duction of the Quasi-Triangular Form

The result of the algorithm described so far is in an upper

|. triangular matrix B and & quasi-upper triangular matrix A in which

E no tJo consecutive subdiagonal elements are nonzero. This means that

the original problem decomposes into one by one and two by two subproblems.

} The eigenvalues of the one by one problems are the ratios of the corres-

ponding diagonal elements of A and B . The eigenvalues of the two by

two problems might be calculated as the roots of a quadratic equation,

and may be complex even for real A and B .

There are two good reasons for not using the quadratic directly,

: put instead reducing the two by two problems. First, when A and &

: are real, the calculation of eigenvectors is greatly faciiitated if all
9 the real eigenvalues are contained in one by one problems. A more

~ importent, second reason is that the one by one problems contain more

Li informati~-n then the eigenvalues alone. For example, if 814 and Liq
Ls are smell then the eigenvalue My = 811/014 is ill conditioned, ncwever
x reasonable it may appear. This reason obviously applies to complex

2: eigenvalues as well as real ones. Accordingly, we recommend that the
.

5 two by two problems be reduced to one by one problems and thai il.e

2 diagonal eli=zments, rather than the eigenvalues, be reported.
; Without loss of generality we may consider the problem of reducins
oe:

; two by two matrices A and B simultaneously to upper triangular form

x Ly unitary equivalences. For our purposeswe may assume that B is |».

0: ; upper triangular.

Two special cases may be disposed of immediately. If bq is zero,

then a Qex, (1) mey be chosen to reduce 8, to zero. The zero elements |

Be — Ee



2 of QB are not disturbed. Similarly, if b,, is zero, a Zev, (1) |

| v may be chcsen to reduce 859 to zero without disturbing by .
: : In the general two-by-two case, it is not difficult to write down
5S ) formulas for the elements of A' = QAZ and B! =QBZ for any Q and Z .

: 1 . Moreover, these formulas can be arranged so that numerically one of a5q |
£ or 05, is effectively zero. It is not obvious, however, that the other
: element, 1s numerically zero, and the effect of assuming that it is by
i. setting it to zerc could be disastrous. Consequently, we must consider :
ik a somewhat more complicated procedure.
| 4 The theoretical procedure for reducing A to triangular form may ce |
1 described as follows. Let A be an eigenvalue of the problem and form ;
: 1 the matrix E = A-AB . C»»0se a Zew,(1) to annihilate either e,, |
| : or e,, - Since the rows of E are parallel, it follows that whichever
1 of e, or e, is annihilatedthe other must also be annihilated.
1 Now choose Qe,(1) so that either QAZ or QBZ is upper triangular.

| Since the first column of QEZ is zero and QEZ = QAZ -NQBZ , it follows
3 that, however Q is chosen, both QAZ and QBZ must be upper triangular.

In the presence of rounding error the method of computing A and

the choice of Z and Q are critical to the stability of the process.

A rigorous rounding error analysis will show that, under a reasonable

| assumption concerning the computed A , the process described below is

i} stable. However, to avoid excessive detail,we oniy outline the analysis.

| We assume that all computations are done in floating point arithmetic with

t base B digits and that the problem has been so scaled that underflows

and overflows do not occur. We further assume that 8,9 is not negligible

: in the sense that lay, | < 87a] , where ||*|| denotes, say, the row
sum norm.

21
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The algorithm for computing AN amounts to making an appropriate )
3

crigin shift and computing an eigenvalue from the characteristic equation.

It goes as follows.

, = *11 |
|. P11

Bla = Bp "Bhp

Bap = pp ~ Wb :

b= 1 “op ta
2\ P22 P11Peo

0 = 821%12
419700

r = p° + q

(5.1) AN = p+ p+ sign(p) Jr (complex if r <0)

We must now assume that the computed A satisfies the equation

where [[A-A'l] <0 |All and ||B-B'|| <0 |lB] with o, and oo. small
constants of order gt . Define

E' = A' - AB!

and let E denote the computed value

E = fl{A-AB) .

Then

E* = E+H

] 1 11 fo.) - lm 1S - so. - -t
With fiat < U max.{jlAjj, In IiBlj} with © of order B .

) We claim that, approximately,

. . -t
(5.2) fief > 87" max{yall, A] BI}

22
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| £ First we note that :

y (53) El 2 leyl = logy] > BIA ]E = 21 21! = ’ .
bd }

Ek. by the assumption that 851 is significant. Now assume that :

3 Ell < gt [AM A[Bll + Then subtractive cancellation must occur in the :

; 3 computation of e,, , e, , and e,, « Thus a, x Noy; 5 2, = Aby, :
XE. i

| : and a,, ~ Ab,, . Hence we have ||A]| > [A]||B}} , and, from (5.3), ;
4 El > gr [IM |iBll , a contraction.

{ 0 = det(E!) = det(E) + (eg+hy1)hy, = (ey5thy5)hy) + hygep ~ hynny 5 ;
3 3 Hence :

1 |aet (8) | <p, ['E|| max{llall, M113 + p Imax {ljall, [M }B]| 3] :

- : where Pq and Ps are.of order gt . From (5.2) it then follows that
3; |aet(E)| < pllEl| max{llal, [M IIB] 3

EL where p is of order gt .

; Now consider the determination of Z . Assume that the second row |
of E is larger than the first. Then Zex, (1) 1s chosen to annihilate e,,; . :

R i]

Let F = EZ . Then £51 is essentially zero. Furthermore, since Z is

; i
; :

i £25551 = laet(®)| < oll 2] max{afl, [AB - |

3 But £51 = lle, ll and, since e, was assumed to be the larger row,

13 let = ||E}l . Hence we have approximately ;
i

5 230) <p mala Mil |: BE :

; To choose Q , let ;
y

| -

: 4
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and let £) > ©» and 4 be the first columns of ¥ , C, and D .

; Let a, denote the second row of Q . If |All > [MI|B|| , we choose Q
;

b to annihilate d,, . Numerically this means that

3 lay 4,1 < alll :

4 where o is a constant on the order of 8 t We must show that ase, :
2 is negligible. But |

{= T T T |
3 lage; = lap £3 + Ma; 4]

1 < JE + IM flag all

<p max{ljall, [A |IB|} + or |(B]

1: < (p+ Al - |
: ki If, on the other hand, |Ml||B|| > ||A]| , we choose Q so that :
Ny

z It then follows that ;

3 I T I
: Co d, | = lay r- 9 cq | / IM |
g. 1 -1< pln max{ilall, [MUBY + on] lal

< (p+ o)iBii - |

3 In summary, A is computed using (5.1), Z is chosen to annihilate |

: the first element of the larger of the two rows of A-AB and QQ is chosen

1 to annihilate the (2,1) element of the smaller of the two matrices AZ

1 JE and ABZ . In this way, we can be sure that the computed (2,1) elements |

4 of both QAZ and GBZ are negligible.
In practice with matrices of any order, if the transformations arc |

: ; real, they are applied to the entire matrices. If the transformations are

3 2h
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complex, they are used to compute the diagonal elements that would result,

but are not actually applied. We thus obtain & quasi-triangular problem

- in which each two-by-two block is krown to correspond to a pair of complex

) eigenvalues.

The generalized eigenvectors of this reduced problem can be found by

a back-substit tion process which is a straightforward extension of the

method usel ix " hqr2 " [8 ]. The vectors of the original problem are

then found by applying the accumulated Z's .

4

| |
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3 6. Some Numerical Results

} The entire process described above has been implemented in a Fortran

| - program [ 7]. There are {our main subroutines: the initial reduction toi Hessenberg-triangular form, the iteration itself, the computation of the

| final diagonal elements, and the computation of the eigenvectors. The
E : complete program contains about 600 Fortran statements, although this

c-uld be reduced somewhat at the expense of some clarity.

: The numerical properties observed experimentally are consistent with

| the use of unitary transformations. The eigenvalues are always found to

: whatever accuracy is justified by their condition. If an eigenvalue and

| eigenvector are not toc '"ill-disposed", tnen they produce a small relative
residual.

Similar numerical properties can not generally be expected from any

3 algorithm which inverts B or any submatrix of B . This is even true of

: 2-by-2 submatrices, as illustrated by the following example due to
3 Wilkinson.

A = B=

3 3 kh 0 1
x

E

3 lere pis about the square root of the machine precision, that is, u 1s

: not negligible compared to 1, but 1° is. There is one eigenvalue
r near -2 . Small relative changes in the elements of the matrices cause

: only small relative changes in this eigenvalue. The other eigenvalue

E ) becomes infinite as |p approaches zero. Great care must be taken in
3 solving this problem so that the mild instability of the one eigenvalue

do=2s not cause an inaccurate result for the other, stable eigenvalue.



IY

Of course, the use of unitary transformations makes our technique

somewhat slower than others which might be considered. Dut the added

. cost is not very great. In testing our program; we solve problems of

order 50 regularly. A Tew problems of orders greater than 100 have

| been run, but these become somewhat expensive when they are merely tests.
One typical exwaaple of order 50 requires 45 seconds on Stanford's

IBM 360 model 67. Of this, 13 seconds are spent in the initial reduction

29 seconds are used for the 61 double iterations required, and 3 seconds

are needed for the diagonal elements and eigenvectors. If the eigenvectors

. are not needed an? so the transformations not saved, the total time is

reducedto 27 seconds. By way of comparison, formation of Ba

a la Peters and Wilkinson [9] and use of Fortran versions [12] of "orties"

[5] and " hqr2 " [8] requires a total of 27 seconds for this example.

(A11 of these times are for code generated by the IBM Fortran IV compiler,

H level, with the optimization parameter set to 2 .)

In the exampleswe have seen so far, the total number of double

: iterations required is usually zbout 1.2 or 1.3 times the order of

: the matrices. This figure is fairly constant, although it is not difficult

to find examples which require many fewer or many more iterations. 4s a

: rule of thumb, for a matrix of order n the time required on tie medel «7

is about .36 n milliseconds if vectors are computed, .22 n’ milli-

seconds if they are not.

7
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1] The example in Table 1 is not typical, but it does illustrate

3; several interesting points. It was generated by applying non-orthogonal

g: rank one modifications of the identity to direct sums of companion matrices.

; : The companion matrices were chosen so that the resulting problem has

§ three double roots,

2 = = — +4 —=

k. B= "6 "2 2 )

a. The double root at oo results from the fact that B has a double zerc

x: | eigenvalue. All three roots are associated with quadratic elementary
divisors; i.e., each root has only one corresponding eigenvector. The

7

2 computed diagonals of the triangularized matrices are given in the table.

1 | Note that the four finite eigenvalues are obtained with a relative accuracy
: of about 1678 - This is about the square rvot of the machine precision
; and is the expected behavior for eigenvalues with quadratic elementary

1 divisors. The singularity of B does not ceuse any further deterioration

: | in their accuracy. Furthermore, the infinite eigenvalues are obtained from

E: the reciprocals of quantities which are roughly the square root of the

4 machine precision times the norm of B . Consequently we are somewhat
: *
2 justified if we claim to have computed the square root of infinity.

A This prompts us to recall the limerick which introduces George Gamow's
k One, Two, Three, Infinity:

E | There was a young fellow from Trinity
Who tried Jo

; . But the number of digits
2 Gave him such fidgits
¥: That he gave up Math for Divinity.

| 28
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23 50 -60 50 -27 6 6 6 5 5 5 -6 5

1 3 -28 27 -17 5 5 516 5 5 -6 5
3 27 -17 27 -17 5 5 5 516 5 -6 5
EE. A = B=

3: 27 -28 38 -17 5 5 5 5 5 16 -6 5

: : 27 -28 27 -17 16 5 5 5 5 5 -6 16

1 : 27 -28 27 -17 5 16 6 6 6 6 -5 6

: : 25. 168670843143 .2637605112.10°°
i: B -12.821841071323 .1312405807.10™°

1 : 5.814535434181 + 10.071071345641 i 11.629071028730
EE 5.800765071150 - 10.047220375909 i 11.6015303022¢8

; : 5.736511506410 + 9.9359288L43473 i 11.473022854605
: 5.5L0879468089 - 9.8451227710676 i 11.021.758784186

E a/p

E | 0.976972281.10
% | -0.976972290.10°
g: 0.49999999310489 + 0.8660254392k271 i

3 : 0.49999999310489 - 0.5660254392L271 i
"5 0.50000000689511 + 0.86602536832617 i
: 0.50000000689511 - 0.86602536832617 i

3 | Table 1
| 29
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3 SUBROUTINE QZ(NDeNsA9BIEPSIALFRoALFIIBETAyITERIWANTX9X) :
3 3 DIMENSION A(NDsND) 9B (ND9ND)  ALFR(N) yALFT(N) 9BETA (N) 3 X(NDsND)
LE DIMENSION ITER(N) |
2 9 LOGICAL wANTX |

; § C
EK C A AND B ARE N-BY-N REAL MATRICESs STORED IN ARRAYS WITH ND ROWS. ;

| C EPS IS THE RELATIVE PRECISION OF ELEMENTS OF A AND B.FE C FINDS MN PAIRS OF SCALARSy (ALFA(M)BETA(M)) SO THAT
EE C BETA(M)®#A - ALFA(M)*B IS SINGULAR, :
EC C THE EIGENVALUES OF a®X ~ LAMBDA®#HB#X CAN BE OBTAINED BY :
A C DIVIDING ALFA(M) BY BETA(M)e EXCEPT BETA(M) MIGHT BE ZERG. :

: C IF (wANTX) ALSO FINDS CORRESPONDING EIGENVECTORS,
C USES ONLY UNITARY TRANSFCRMATIONSs NO INVERSES,

| C SO EITHER A OR B (OR BOTH) MAY 3t SINGULAR. |C |

| C BETA(M) IS REAL, |
: E C ALFA(M) IS COMPLEXs REAL AND IMAGINARY PARTS IN ALFR(M) ANC ALFI(M).
3 C COMPLEX PAIRS OCCUR WITH ALFA(M)/BETA(M) AND ALFA(M+1)/BETA(Me])

: C COMPLEX CONJUGATES EVEN THOUGH ALFA(M) AND ALFA(M+1) ARE NOT: | C NECESSARILY CONJUGATE.
¢ C USES ONLY REAL ARITHMETIC.
Cd C IF A AND B WERE REDUCED TO TRIANGULAR FORM BY UNITARY EQUIVALENCES,

FE - C ALFA AND BETA wOULD BE THE DIAGONALS.

| C A ANC 8 ARE ACTUALLY REDUCED ONLY TO QUASI-TRIANGULAR FORM WITH |
: C 1-6Y=1 AND 2~BY=2 BLOCKS ON DIAGONAL OF A.

E : C IF ALFA(M) IS NOT REALs THEN BETA(M) IS NOT ZERO. |
EF - C ITER IS TROUBLE INDICATOR AND ITERATION COUNTER.
EF - C IF (ITER(1)+EQ.0) EVERYTHING 1S Ok,
E C ITER(M) IS NUMBER OF ITERATIONS NEEDED FOR M-TH EIGENVALUE.

rE C IF (ITER(1) THRU ITER(M) JEQ. -1) THEN ITERATION FOR M-Tk
: | C EIGENVALUE DID NOT CONVERGE AND ALFA(1) THRU ALFA(M) AND |

: C EETA(1) THRU BETA(M) ARE PROBABLY INACCURATE.
Et C IF {WANTX) X(eoM) IS THE M-TH REAL EIGENVECTOR, |
3 C X{esM) AND X(o9M+1l) ARE THE REAL AND IMAGINARY PARTS

1 C OF THE M-TH COMPLEX EIGENVECTOK. |
2 C K(eoM) AND =X(o.9Me1) AND THE REAL AND IMAGINARY PARTS |

= C OF TRE (Me1)=ST COMPLEX EIGENVECTOR.
Bx C VECTORS NORMALIZED SO THAT LARGEST COMPONENT IS le OR le.+0.l
si C

| C USES FOUR PRIMARY SUBRCUTINESs QZHESs QZITs QZVAL AND QZVEC. |
= C USES FOUR AUXILLIARY SUBROUTINESs HSH3s .1SH2s CHSH2 AND CUDIV.

Vy C USES TwO STANDARC FUNCTIONS, SQRT AND ABS.
gE C AUTHGCRS: C. Be MOLERs STANFORDs AND Go We. STEWARTs Ue OF TEXAS
2 C THIS VERSION DATED 7/19/71.
h C

5 CALL GZHES(NDsNoeAsBIWANTX9X) |
: CALL QZIT (NDoNsAsBIEPSIEPSALEPSByITERIWANT Xo X)
1 CALL QZVAL (NDsNsA9BsEPSA-EPSByALFRyALFIsBETAIWANTXsX) |
3 IF (WANTX) CALL QZVEC(NDsNsAstsEPSA+EPSBeALFRyALFIsRETAX)
3 Rt TURN
SEE END
vo C

2 I c
33
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EC SUBROUTINE QZHES (NDyNsA9sBsWANTXeX)

5: DIMENSION A(NDyND)9B IND9ND) ¢X (ND¢ND)
3 c LOGICAL WANTX
3 C INITIALIZE Xo USED TO SAVE TRANSFORMATIONS
a. c

[3 IF («NOT .WANTX) GQ TO 10
ZI DO 3 I=],N ;
A : DO 2 J=1+N

x 2 CONTINUE

4 x(Is1) = 1.
3 3 CONTINUE
x: C

{ 3 C REDUCE 8 TO UPPER TRIANGULAR
$3 C ;

: 4 10 NM1=N-} |
id D0 100 L=1sNM]

3 Ll = Le}

I D0 20 I=L1,N |

3 3 IF (ABS(B(IsL))OT<S) S = ABS(B(I,L)) ;
2 5 20 CONTINUE

3 3 IF (S.EQ.0s) GO TO 100| IF (ABS(B(LsL)) GTS) S = ABS(B(LsL))
33 R = (Oe. |
14 DO 25 I=LsN |
q 9 B(IsL) = B(IsL)/S ,
i R = R + B(IoL)®®D :

i 25 ~~ CONTINUE j
3 R = SQRT(R) ,

3 IF (R(LoL)eLTe0es» R = =R |
33 B(LsL) = B(Lol) + R
1] RHO = R®*R(L,L) :
Hi NO SO J=L1,N j

i T = Oo |1: D0 30 I=LoN
3 T = 7 + BULsLI*B(I,J)
Lg 30 CONTINUE173 T = =T/RHC

HE DO 40 I=LsN |
-§ 3 Bl(led) = Billed) + THB(I,L)
3: 40 CONTINUE

4 3 50 CONTINUE

pF CO 80 J=1lN |

3 3 DO 60 I=LsN
$4 T=T + 8(IsL)*A(1,J)
A €0 CONTINUE |
2 ZH T = «T/RHG |

RE - DO 70 I=LeN |
i 3 Aled) = AlIeJd) + T#B(I,L) |

LE 80 COMT INUE
9g BlLeL) = =S#R

2 9; 00 90 I=L1eN

1: BE¢IsL) = 0. |
3 3 90 CONTINUE

3 3
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|: 100 CONTINUE
i REDUCE A TO UPPER MESSENBERGs KEEP B TRIANGULAR ;
3% IF (NoLE.2) GO TO 170 ;
4 3 NM2=N=2
% DO 160 K=],NM2 :
£ Kl = Kel :
5B. NK] = N-K=)
E DO 150 LB=1,NK]
FE L = N-LB i
gS Ll = Le} ;
¥ CALL HSHZ2(A(LoK) 9A(L1sK)oUlsU29V19V2)

» § IF (UL.NFols) GO TO 125 !
8 DO 110 J=KsN
: § T = A(LeJd) + U2%A(L]J)
: kb AlLed) = ALJ) +o T#V] ;
: k AlLLed) = A(LLeJ) + THV2
i. 110 CONTINUE

: § A(L1+K) = 0, |
: DO 120 J=L oN

5 EB T = B(Led) + U2%B(L1yJ) |: ¥ B(Led) = B(LeJ) « TV]

- E B(L1eJ) = R(L1lsJ) « T®y2 ;
Bs 120 CONTINUE
3 125 CALL HSH2(B(L1sL1)9B(L1oL)sUl9sU2¢V1ieV2)
A: IF (Ul.NEele) GO TO 150
Ef DO 130 I=1,L1 :
EE ¥ T = B(IsL1l) + U2#B(IsL)
EB B(IsL1l) = B{(IslL1l) + T®V] :
2 AlIsL) = B(IsL) o T#V2
q; 130 CONT INUE
E B(L1sL) = 0,
EX DO 140 I=1sN
gk T = A(IsL]1) + U2®A(]I.L)
gE ACToLl) = AlIoL]l) + TH®V]

< § A(ToL) = A(IsL) » THY?
= 140 CONTINUE
x IF (JNOT.WANTX) GO TO 1590

: & DO 145 1=1N
T = X(IeL1) + U2®X (Isl)

. X(IeL1l) = X(IeL1l) +» TV]

 ¥ XCisl) = X(IsL) » T#V2
4 145 CONT INUE
g 150 CONTINUE
; 160 CONTINUE
4 170 CONyINUE ‘
: RE TURN

i ¥ END

2 C
EE C

; 35 :
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LE SUBROUTINE QZIT (NDeNsA9BIEPSIEPSAIEPSBeITERWANTX0X)
: DIMENSION A(NDoND) oB(NDeND) 9sX(ND9ND)

| DIMENSICN ITER(N)B LOGICAL WANTXsMID
: c

- k C INITIALIZE ITERs COMPUTE EPSAJEPSB
, § C

i . ANORM = 0,
3 . BNORM = ¢,
: E DO 18S I=1eN
is ITER(I) = 0
bs ANI = Qe

3 IF (I.NE.1) ANI = ABS(A(TeI=1))

{ DO 180 J=IeN
: ANI = ANI + ABS(A(I+J))

3 BNI = BNI + ABS(B(I+J))
5 180 CONTINUE
: b IF (ANI<GT.ANORM) ANORM = ANI
5 IF (BNI.GT.BNORM) BNOKM = BNI

3 185 CONTINUE
: EPSA = EPS®ANORM

3 EPSB = EPS®*BNORM
: C

3 C REDUCE A TO QUASI-TRIANGULARs KEEP B TRIANGULAR
; C

: M = N

2 200 IF (MJLE.2) GO TO 390
| C

1 C CRECK FOR CONVERGENCE OR REQUCIBILITY
4 C

1 DO 220 LR=1+M
3 L = M+]-LB
4 IF (LeEQe1) GO TO 260

E IF (ABS(A(L+sL=1)) LE. EPSA) GO TO 230
; 220 CONTINUE
3 230 atLsL=1) = 0,

3 IF (L.LT.M=1) GO TO 260
KE M = L=-1
i: GC TO 200

C

y: C CHECK FOR SMALL TOP OF 8
FE C

3 260 IF (ABS(B(LsL))GT.EPSB) GO TO 300

3 Ll = Le]

3 CALL HSH2(A(LoL)sA(LYoL)2yUL9U29V19V2)
IF (UleNEJle) GO TO 280

= 0C 270 J=LoN
A Y = A(LeJ) + U2®A(L]14J) :

el AlLeJ) = A(LeJ) + THyl

E AlLLIeJ) = A(LLoJ) +» THY?

1 T = B(LeJ) + U2%*B(L1yJ)

3 B(LoeJ) = Billed) ¢« THY]
: B(L1sJ) = B(L1gJ) o Tev2

“3 270 CONTINUE
280 L = L1

: 60 10 230

} 3¢
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: EB C BEGIN ONE QZ STEPy ITERATION STRATEGY
: C

EE 300 MI = M - 1
ye Ll = L +]

ei CONST = 0.75

EB ITER(M) = ITER(M) + 1}
EE. IF (ITER(M).EG.1) GO TO 30S

BE IF (ABS(A(MyM=1)) ,LT.CONST*OLDl) GO TO 305
J IF (ABS(A(M=]1yM=2)),LT.CONST*0LD2) GO TO 305

5 If (ITER(M).EG.10) GO TO 310

3 IF (ITER(M).GT.30) GO TO 380
- c

E & C ZEROTH COLUMN OF A
EX C

305 Bll = 2° ,L)

LE B22 = B(L1sL1)
Eb IF (ABS(B22).LT.EPSB) B22 = EPSB

EE B33 = B(M]eM])
3 IF (ABS(B33).LT.EPSB) B33 = EPSB
Ei B44 = B(MM)
3 IF (ABS (B44) .LT.EPSB) B44 = EPSB
; All = A(L,L)/B11

EE} Al2 = A(LsL1)/B22
] A21 = A(L1sL)/BI11

3 A22 = A(L1sL1)/B22
ef A33 = A(M]}eM])/B33
es A34 = A(M]eM)/Bb4é
: A43 = A(M,M]1)/B33
= A44 = A(MoM)/B4G4

| 812 = B(L,L1)/sB22
Eo B34 = B(M1+M)/Bbé
= A10 = ( (A33=A11)%(A44-A11) = A34%A43 + A43%BI4*AL1 )/A2]
E | 1 + Al2 - All®Bl2

go A20 = (A22-A11-A21%B12) ~- (A33=A11) = (AkL4=All) + A43%B34
“2 A30 = A(L+2+L1)/822
E GC 10 31S

: C
A C AD HOC SHIFT

C

gE 310 Al0 = 0.

yg A30 = 1.1605
E: C

E | 315 OLD = ABS(A(MsM=1))
3 | OLDZ2 = ABS(A(M=1oM=2))
5 IF (JNOT.WANTX) LOR] = L

5 | IF (WANTX) LOR] = }
Eo IF (JNOT.WANTX) MORN = M

: | } IF (WANTX) MOKN = N2 ] C

; C BEGIN MAIN LOOP
3 C

3 LO 360 K=LoM]
3 MID - KeNE oM1

; | Kl] = Ke}a Ke = Ke2

3 | K3 = Ke3F 37
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2 IF (K3.GTeM) K2 = M
hil KM] = K=)
¢ i IF (KM1oLToL) KMI = Lir IF (KeEw.L) CALL HSH3(A109A209A309U)sU2sU3eV1eV2,V3)
y 2 IF (KeGTeLoANDeKeLToM1)
3 1 CALL HSHI(A(KoXM1) 9A (KL 9KM1) 9A (K29KM1) oy) 9U2+U3oV1eV29V3)
3 4 IF (KJ.EWeM}i CALL HSH2 (A{KoKM]) 9 ACK) sKM]) ol) sU29V]9V2)
1 IF (Ul.NE.l.) GO TO 325

LE . DO 320 J=KM1sMORN
¥. T = A(KyJ) + U2%A(K]vJ)
x IF (MID) T = T + U3®%A(K2sJ)
2 Aled) = A(KeJ) + Tay)
i A(K1vJ) = A(KleJd) + T#V2

%: IF (MIN) A(K2sJ) = A(K29J) + T#y3
x T = B(KeJ) + U2%B(K]oJ)
¥ IF (MID) T = T + U3%B(K24J}
¥ B(KeJ) = B(Ked) + THY]
3 5 B(KlyJ) = B(KloJ) + T#y2

g If (MID) B(K2+sJ) = B(KZ29J) + T#V3
% 3 320 CONTINUE
1 3 IF (KeEQeL) GO TO 32%
3 3 A(K]osK=]) = Oo
i IF (MID) A(K2+K~1) = 0.

q 32S IF (KeFQeM1) GO TO 340
§,] CALL HSH3 (B(K29K2) 9B (K29K1) 53 (K29K) sUlsU2,U39V]}sV2,V3)

1 i IF (Ul eNE ole) GU TO 340
& DO 330 I=LOR1sK3
13 T = ACIsK2) + U2%A(T9K1) + U3%A(],K)
EE A(TsK2) = A(I9K2) + fav]
3 A(TeK1l) = A(IoK1l) + Tay?
x A(IoK) = A(I4K) + Twy3

| I= B(IsK2) + UZ2*R(14K1) + U3*B(]K)i B(IsK2) = B(IeK2) + Tay]
+ B(IeK1) = B(IeK1) + Tay?
i B(IeK) = B(IsK) + [uy3
a 330 CONTINUE

C IF (oNOT.WANTX) GO TO 340
nO 335 I=1.0

- T = X(IsK2) + U2%X(1eK]1) + U3RX(I:K)
| K(TeRK2} = X(I9K2) + Tavi}

Cy X(ToK1) = X(JeKl) + Tay?
, X(IsK) = X(IsK) + Tay)
= 335 CONTINUE
x 340 caLL HSH2 (BK) 9K1) oB(K1 9K) sUlyU2yV14y2)
(2 IF (Ul.NE.ls) GO TO 360
i NO 350 1=LOR].K3
© T = A(ToK]I) ¢ U2®A(]4K)
aE A(TeK1) = A(IeK1) + Tuv]
- AlTsK) = A(IoK) « Toy?

| T = B(IsKL) + U2%B(1,K)
| BIIeK1) = B(JoX]1) + Tov]
: B(IsK) = B(I4F) «+ THY?
; 350 CONTINUE

a. H(KlsK) = 0,
IF (JNOT,WANTX) GO TO 360

| DO 355 I=].

1 Jb
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T = X(TeKL1) + U2¥X (IK) 3
X(IsKL) = X(IsK1l) + T2V] %
X(IeK) = X(;9K) + T®y2 :

355 CONTINUE }

g 360 CONTINUE
C

C END MAIN LOOP

g . C ,
5 GO TO 200

C .

LL - C END ONE QZ STEP
; C

380 DC 385 [=],M :
: ITER(I) = =]
| 385 CCNTINUE

of 390 CCNTINUF >
: RE TURN

: END ]
C

C

|

39
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SUBROUTINE QZVAL(NDoeNgAsBeEPSAIEPSBIALFRIALFI+BETAIWANTXX)

DIMENSION A(NDeND) oBI(NDeND) sd ALFR(N) oALFIIN) oBETA(NY 9 X(NDsND)

4 LOGICAL WANTX FLIP
k C

E C FIND EIGENVALUES OF QUASI-TRIANGULAR MATRICES

C DO 400 THRU 490 FOR M = N STEP {(~=1 OR «2) UNTIL 1

A - C

k M = N

ce 400 CONTINUE
1 IF (M,EQ.1) GO TO 410
: IF (A(MeM=1) NEOs) GO 10 420
- C

2 C ONE-BY=-ONE SUBMATRIXe ONE REAL ROOT

C

: 10 ALFR{M) = A(MeM)
k BETA(M) = B(MeM)

. ALFI (M2 = 0.
M = M=]}

3 GO TO 490

» C TWO-BY=TW0O SUBMATRIX

: C
: 420 L = M=]

: IF (ABS(B(L+L))GT,EPSB) GO TO 425
B(LeL) = Oo

8 CALL HSH2(A(LeL) sA(MolL)9UloU29V]1,eV2)
3 GO TO 460

p 425 IF (ABS(B(MeM))eGTLEPSB) GO TC 430

CALL HSHZ2(A(MoeM)oA (Mel) oUloU29V1eV2)

; GO TO 435
430 AN = ABS(A(LsL))*ABS(A(LIM))+ABS(A(MoL))+ABS(A(MsM))

BN = ABS(B(LsL))+ABS(BILIM)) +ABS(B(MoeM))

Al} = A(LeL)/AN

) Al2 = AfLe«M)/AN
“ A221 = A(MeL)/AN

A222 = A{M«M)/AN

Ril = B(L.L}/BN

$12 = BR(Ls+v)/BN

B22 = B(MeM)/BN

C = (A11#%#B22 + AZ2#%#B11 - A21#812)/2.

E D = (A22#%B11 ~~ Al1%B22 ~ A2i*Bl2)#*%*2/4.

: 1 + A21%B22%#(A12%81]1 ~- All1*®B12)

k IF (CeLTe0e) GO TO 480
. C

Er C TWO REAL ROOTS
3 C ZERO BOTH A(MeL) AND B(M,L)

- {

. IF (C.GE.0.) E = (C + SQRT(D))/(B11#B22)

] IF (CelTe0e) E = (C = SORT(D))/(B11%822)
) All = All - t%R11

: Al2 = AlZ2 ~- t#Bl2

A22 = A222 ~ E#B22

FLIP = 4ABS(A11)+ABS(A12))«GE (ABS(A2]1)+ABS(A22))

1v (FLIP) CALL HSH2(A129A1190U10U23V1eV2)
IF («NOT.FLIF) CALL HSH2(AZ229+A219Ul4U2eV1,9V2)

40
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i 435 IF (UleNEsle) GO TO 450
EW DO 440 I=14M
> T = .(1sM) + U2®A(I4L)

: 8 A(ToL) = A(IoeL) + voHY

E T = B(I+M) + U2#B(1.L)

an B(IsM) = B(IoM) + VI#7
: 3 - B(IsL) = B(1lel) + voy
3 ) : 440 CONTINUE
2 IF (JNOT.WANTX) GO TO 450

* NO 44S [=]1.N

\ T = X(IeM) » U2%8X(1sL)

£ X(IeL) = X(IgL) + V2]
é 44S CONTINUE

SE) 450 IF (HNeEW.0.) GO TO 47S
A FLIP = AN eGLE o ABS (5) #8N
2 IF (FLIP) CALL HSHZ2(B(Lol)oB(MoL)oUleU29eV1seV2)

BE IF (.NOT.FLIP) CALL HSH2(A(LsL) 9A(MsL)sUlsU24V19V2)
= 460 IF (UleNEels) GO TO 47S
: et DO 470 J=LN
3 ig T = AlLeJ) + UHRA (My)
2 A(Led) = AlLeJ) + VI®#Y
0B A(MeJd) = A(MeJ) + VoHT

T = B{LeJ) + U2%B(MeJ)

: B(LedJ) = B(LeJ) + VI#T

: 3 B(MoJ) = B(MeJ) + V2RTpy 410 CONTINUE

: : 47S A(MsL) = 0,3 ) {Mol) = Oe
. LE ALFR(L) = ALL)
3 i ALFR(M) = A(MoM)
Eb BETA(L) = B(LeL)
EE BETA(M) = B(MsM)

y | ALFI(M) = 0,EK ALFI(L) = 0.
EL M = M=-2

3 : 60 TO 490
A C TWO COMPLEX ROOTS
p

3 « 480 Ex = C/(811%r22)rE El = SGRY(-D)/(B11%622)

gE: Ai1k = All - ER®BI]
3 1 A111 = EI®#@]]N : A12R = A12 = ER®HI?
Fk a121 = E1%B12
= © A21r = A2l

A A22R = A22 = LR®B22
EF. 8p2i = ti%kes

: { FLIP = (ABS(A11R) +ABS(A111)+ABS(A12R)*ABS(A121)) Gt.
: : ) (ABS (A21R) «ABS (AZ2R) «ABS (A221))sk IF (FLIP) CALL CHSH2(A12R9A1219-A11Re=A111+C29SZR4SZ1)
3 IF (JNOTLFLIP) CALL CHSH2 (A22R+A2214+=A21R9=A2119CZeS2R¢SZI

% FLIP = AN +GEe (ABS(ER)+ABS(EI))*BN

EE 3 IF (FLIP) CALL CHSH2(CZ*B11+SZR®#B12, SZI®#B12,
I. ! SZR®B22, SZI®*R2Z, CG, SQR, SQI)
J

P: 41



LET Te ARI th ef SADEteEP TLE a Lo EER EER SECSECS ES SE SS aPOET SETTLRIL RT TTey

|

IF (JNOT.FLIP) CALL CHSH2(CZ¥A11+SZR®*A12s SZI®Al2,

i = i CZ#A21+SZR*A22, SZI®A22y CAs SQRy SQI)
: BE SSR = SUR*SZR + SQI*SZI
EE SSI = SQR*SZI ~ SQI*SZR
7 TR = CQ®CZ*All + CO®SZR*A12 + SQR®*CZ*A2]1 + SSR#A22

TI = CQ#SZI®A12 - SQI#CZ#A21 + SSI#A22

LE BDR = CQ#CZ#B]1 + CQ#SZR#B12 + SSR*B22
EE BDI = CQ#SZ2I#B12 + SSI#B22: \ R = SQRT(BDR*BDR + BDI*BDI)XL BETA(L) = BN*R

5 ALFR(L) = AN®(TR*BDR + TI*BDI)/R

\ ALF 1:1.) = AN#*(TR*8DI = TI*BDR)/R

: ~ TR = SSR®A]11 ~- SQR®CZ#A12 - CQ#SZR¥*A21 + CQPCZ*A22
of TI = =~ SSI®A]] ~ SQI*CZ#Al12 + CQ#*SZI*A2}

BOR = SSR*B]] - SQR¥CZ*B12 + CQ*CZ#B22
BDI = = SSI®#B11 - SQI#CZ#B12

zk R = SQRT (BDR#8DR + 8D1I#8DI)
BETA(M) = BN®R |

ALFR(M) = AN®(TR®*BDR + TI®#BDI)/R

ALFI(M) = AF-(TR*BDI ~- TI#BDR)/R |

M = M=2

| C RE TURN

| EAD
| C

a C

3

“BR |

2

¥

3 i

Pp 42
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SUBROUTINE QZVEC(NDsNsA»BsEPSAYEPSBeALFReALFI+BETA9X)

5 DIMENSION A(NDsND) 9 B(NDsND) ¢ ALFR(N) ALF I(N) BETA (N) ¢ X (INCsND)

; ] LOGICAL WANTX,FLIP
C FIND EIGENVECTORS OF QUASI-TRIANGULAR MATRICES

: C USE B FOR INTERMEDIATE STORAGE
C

- C DC S00 THRU S90 FOR M = N STEP (~] OR =2) UNTIL 1
: C

; ] S00 CONTINUE
IF (ALFI(M).NEo,Oe) GO TO S550

C

: | C REAL VECTORC

¥ ALFM = ALFR(M)
: BETM = BETA (M)
: ¥ IF (ABS (ALFM) .LTLEPSA) ALFM = g,

: B(MeM) = 1,
3 C

E | C DO S10 THRU S40 FOR L = M=1 STEP (~-] OR =2) UNTIL 1]C

E : L = M=}

| IF (L.FQe0) GO TO S540
= 510 CONTINUE
y Ll = Le)

: | DO S15 J=L1.M
EE | SL = SL + (BETMRA(LsJ)=ALFM#B(LoeJ))#B(JeM)
| 515 CONT INUE
- IF (L.€EQ.1) GO TO S20
gE IF (A(LsL=1)eNEeO.) GO TO S30
g | 520 D = BETM#A(LsL)~ALFMH#B(LoL)
E IF (D.,EQ.0.) D = (EPSA+EPSB)/2,
5 B(lLM) = -SL/D
3 L = L-)
KE GO TO S40

K: C

E 530 K = L=-]

4 SK = 0.
Fo DG 535 J=L1M

FE SX = SK + (BETM#A(KeJ)~ALFM#B(KeJ})#B{JsM)

gE 515 CCNTINUE
= TKK = BETM#A(KsK) =~ ALFM28(K4K)
x Tro = BETM®A(K,L) ~ ALFM¥B(K,.L)
LE TLK = BETM®A(L+K)

i TLL = BETM#A(LosL) ~ ALFM®B(LsL)
FL D = TKK®TLL - TXL#TLK

| - IF (D.EGeCe) D = (EPSA+EPSB)/7.

y |: H(L«M) = (TLK®SK - TKK#SL)/D
i FLIP = ABS(TKK) .GE. ABS(TLK)

EC IF (FLIP) B(KyM) = =(SK + TKL#*B(LsM))/TKK
E IF (oNOTSFLIP) B(KeM) = =(SL + TLL*B(L+M))/TLK
ZI L = L=-?

Ef 540 IF (L.GT40) GO TO S16
JI Mo= M-]
yo GO 10 590

ho 43
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Br: C COMPLEX VECTOR |
¥ C

n S550 ALMR = ALFR(M=-])
. ALMI = ALFI (M=})

} 3 BETM = BETA (M~-1) |
1 (J MR = M-]}

EC MI = M

1. C NORMALIZE SO THAT M=TH COMPONENT = fo=ls*I |
L % C (M=1)ST = =(BETM%A (MM) ~ALFM#E (MoM) )¥ (M-TH) / (BETMH#A(MsM=1)) |
. Xi C

i B(M=1sMR) = ALMI#B(MsM)/ (BETMEA(MeM=~1))
A: B(M=14MI) = (BETMH#A(MoM)=ALMRH#B(MoM) )/ (BETMH#A(MesM~]))
2B H(M¢MR) = OQ.
CB R(M¢MI) = -~}o.

CE C DO S60 THRU S85 FOR L = M=2 STEP (-1 OR =2) UNTIL 1
: C

: kB L = M=2
; k IF (L.EQ.0) GO TO 585
- § 560 CONTINUE
: § Ll = Le]

SLR = Qe

: SLT = 0.
t DO 565 J=L1M

TR = BETM#A(LeJ) = ALMR®#8 (LJ)

> 3 T: = =ALMI®#3(LeJ)
EE: SLR = SLR + TR#B(JJMR) = TI#B(JeMI)
E SLI = SLI + TR#B(JMI) + TI®B(JsMR)

565 CONT INUE

3 IF (L.EQs1) GO TO 570

3 IF (A(LsL=1)eNE.0.) GO TO S75
: 570 DR = BETM®A(LsL) = ALMR®B(LL)
Ei DI = -ALMI®B (LoL)3 | CALL CDIV(=SLRs =SLIs DRs DIs B(LWMR)s B(LsMI))
Ev L = L=}

E § G0 TO s8%
3 C
3 575 K = L-1]
A SKK = Os
4 SKI = 0

DC 580 J=L}M
: TR = BETM#A(KeJ) = ALMR#B (KJ)

1 TT = =ALMI®*B(KeJ)
2 SKR = SKR + TR#*B(J4MR) ~- TI#*B(JsMI)
Ef SKI = SKI + TR#8(J.MI) + TI®*B(JeMR)
. ; 580 CONTINUE
E § TKKR = BETM#A(KoK) = ALMRH¥B (KK)
HS TKKT = =ALMI®B (KK)

Ve ©: TKLR = BETMPA(KeL) = ALMR®BI(KsL)
2 I TKLI = -ALMI*B(K,L)

x : TLKR = BE TM#A (LK)
3 TLKI = 0.

BB TLLR = BETM®A(LoL) = ALMR#B{LoL)
ES TLLY = ~ALMI®*2(L.L)
y § DR = TKKR®TLLR = TKKI®TLLI = TKLR®*TLKR

3 i DI = TKKR®TLLI + TKKI®TLLR = TKLI®#TLKR

hh
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FE IF(DREQGe0e «ANDe DICEQeOes) DR = (EPSA+EPSB)/2.
§ CALL COIV(TLKR®*SKR=-TKKR*SLR+TKKI#SLIs
N\A 1 TLKR®#SKI~TKKR#*SLI-TKKI*SLR
3 Vd DRy DIs B(L4MR)y B(LoMI))
; BN FLIP = (ABS(TKKR)+ABS(TKKI)) GE. ABS(TLKR)
3 5 IF (FLIF) CALL CDIV(=-SKR-TKLR*B(LMR) +TKLI#*R(LsM1)s

: ] “SKI-TKLR®B(LMI) =TKLI*B(L MR) «
4 - 2 TKKRe TKKIs B(KeMR)ys B(KIMI))

EE. IF (NOT. FLIP) CALL CODIV(=SLR=TLLR®*B(LyMR) +TLLI®B(LoMI),
3 ] “SLI=TLLR*B(L ¢MI)~-TLLI*B(L oMK)
1 > TLKRy TUKI, 6(KsMR)s B(KoMI))
a 25 L = Lp
8 585 If (L.GT40) GO TO 560
A 4 M = M=?

Bs 590 IF (4.GT.0) GO TO S00
Ef C

: C TRANSFORM TO ORIGINAL COORDINATE SYSTEM
2 C
= B M = N |

3 600 CCNTINyUE |
E © 00 620 I=1.N |
gg D0 610 JU=1M :
FE S = S + X(led)#B(JgM)
CE 610 CONTINUE |
: a X{IeM) = S

= EB 620 CONTINUE :
gE M = M=}

E If (M.GT.0) GO TO 600 |
: EB C

: & C NORMALIZE SQ THAT LARGEST COMPONENT = 1}.
: EF C

3 M = N
3 5 630 CONTINUE

EE IF (ALFI(M).NE.Os) GO TO 650
EE 20 63S I=1N
39 R = ABS(X(IsM))
3 If (R.LT.S) GO TOU 635

E E D = X(I¢M)
a 635 CONTINUE

3 X(IeM) = X(IeM)/D
Eq 640 CONT INUE
a3 M = M-]

3A GO TO 699

c: 650 NO 655 I=1.N
3 R = X{(1M=1)%82 + x(I,M)"#2
7 IF (R.LT.S) GO TO £66 |

a OR = X(IeM=])
3 VI = X (eM) |
12 655 CONTINUE
3 : NO 660 I=1.N
ta CALL CDIV(X(IoM=1)oX(19M) 9DReDIoXiloM=1)9X(IeM)) |
3 660 CONT INUE |47 |
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690 IF (MeGT.0) GO TO 630 :
C {

700 RETURN :

END :
C t
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4 SUBROUTINE HSH3(A19A24A34U1sU29U39V]19V24V3)

Ee § C FINDS HOUSEHOLDER TRANSFORMATION THAT wiLL ZERO A2 AND A3
| C P= 1 ¢ (VIeV24VII*(ULsU2sU3)#uT
3 :
2 : ’
 § IF (A2-EGe0o «ANDs A34EQe0s) GO TO 10 |
: § S = ABS(A]) + ABS{A2) + ABS(A3) |

fF - Ul = Al/S |
TE U2 = az2/s

. § U3 = A3/S :
Ff R = SORT (U1#U)+L2#U2+U3%U3)

: IF (UleLTs0.) BH = =R |
= VI = =(Ul + R)/F |

: Ve = =U2/R |

| V3 = -U3/R

u2 = va2/vl

; \ Ul = V3/svl
4 RE TURN |
: 10 Ul = 0. |

: RE TURN »
] END »

C 3

i i.
5
|
=
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$ SUBROUTINE HSH2 (Al 9A24ULsU2yV]1eV2)

; re C FINDS HOUSEHOLDER TRANSFORMATION TRAT Witt ZERO A?

4 : P = 1 ¢ (V1eV2)®(ULlsUR)8*T
EE IF (A2.EQ.0.) GO TO 10
: ZN S = ABS(A]l) + ABS(A2)

L- y Ue = A2/¢S
: a . R = SURT(U]®*U}+U28U2)

3 = Vi = =(Ul + R)/R
. V2 = -U2/R
2 2 U2 = V2/Vvi
7 2 RE TURN
2 3 10 ul = 0.
: RE TURN
3 END

C

Ef

2



RSXean eo trate De Hi Sh Ses de A LL i Ea aNAR SS Ze at A RC ERE SUE SE
pe
4 Dalen Cn LT I om ame ea — . wn mn arms

4 SUBROUTINE CHSH2(AIRvAL1eA2RoA2Is(CeSR,SI)
 ] ¢

: 3 C COMPLEX HOUSEHOLDER THAT WILL ZERO A?
I C (C S#)

A C P= (5S =C) 4 C REAL S COMPLEX
. Kk IF (A2R.EQe0e «ANDe A2I.EQe0e¢)} GO TO 10
EE - IF (A1R,EQ.0+ «AND. A11.EQ.0.) GO TO 20
: FE Ww R = SQRT(AIR*AIR+AL1I®*ALI)
A . C = Rr

: § * SK = (AIR#*A2R+A1I®*A2I)/R
¢ © SI = (AIR#A21-A1I%A2R)/R
FB R = SORT (C*C+SR#*SR+SI*S])
EB C = C/R
EB SR = SR/R
Lk SI = SI/R
: 3 Rt TURN

Al Sk = 0.

3 RETURN
: : 20 C = 0.

END

3 ¢
4 C

7a

ki 49 :
: [
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: TET —— ee + mr TT sn a -

3 : SUBROUTINE CDIV(XReXIsYRsYI92ZRsZI)

: : C COMPLEX DIVIDE. Z = X/Y
4 ; C
b- 1 IF (ABS(YR).LT.ABS(YI)) GO TO 10
5 : WR = XR/YR

_ wl = XI/YR
w Vi = Y1/YR

Eat D = 1. ¢ VI®#V]
; Sa Ik = (WR + WI*v1)/D

: ZI = (Wl = WR#vI)/D
] RE TURN

10 wk = XR/YI

wi = XI/Yl

; VR = YR/YI
D = VR*VR + 1,

: ) lk = (WR#VR + WI)/D
J1 = (WI*VR = WR)/D

3 ~ RE TURN
: / END

E |
= i

: .

| 50
|
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