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Abstract

"A new method, called the QZ algorithm, is presented for the
solution of the matrix eigenvalue problem Ax = ABx with general
square matrices A and B . Particular attention is paid to the
degeneracies which result when B is singular. Wo inversions of B
or its submatrices are used. The algorithm is a generalization of the
QR algorithm, and reduces to it when B = I . A Fortran program and

some illustrative examples are included.
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1. Introduction %

We shall be concerned with the matrix eigenvalue problem of

determining the nontrivial solutions of the equation

where A and B are real matrices of order n . When B is nonsingular
this problem is formally equivalent to the usual eigenvalue problen
BlAx = Ax .

When B is singular, however, such a reduction is not possible,
and in fact the characteristic polynomial det(A-AR) is of degree less
than n , so that there is not a complete £ 5 of eigenvalues for the
problem. In some cases the missing eigenvalues may be regarded as
"infinite". 1In other cases the entire problem may be poorly posei. The
term infinite eigenvalue is justified by the fact that if B is perturbted
slightly so that it is ro longer singular, there may appear a number of
large eigenvalues that grow unboundedly as the perturbation is reduced to
zero. However, if det(A-AB) vanishes identically, say when A and B
have a common null space, then any A may be regarded as an eigenvalue.
Such problems have unusually pathological features, and we refer to them

as "ill-disposed" problems.
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In numerical work the sherp distinction between singular and non-
singular matrices is blurred, and the pathological features associated
- with singular B carry over to the case of nearly singular B . The
object of this paper is to describe an algorithm for computing the
eigenvalues and corresponding eigenvectors that is unaffected by nearly
singular B . The algorithm, the heart of which we call the QZ-algoritir,
is essentially an iterative method for computing the decomposition

contained in the following theorem [10].

Theorem. There are unitary matrices Q and Z so that QAZ and QB2

are Hoth upper triangular.

We say that the eigenvalue problems QAZy = MQBZy and Ax = ABx are
unitarily equivalent. The two problems obviously have the came eigenvalues,
and their eigenvectors are related by the equation x = Zy .

The algorithm proceeds in four stages. In the first, which is a
generalization of the Householder reduction of a single matrix to
Hessenberg form [4,5], A is reduced to upper Hessenberg form and at the

same time B 1. reduced to upper triangular form. 1In the second step,

which is a generalization of the Francis implicit double shift QR algorithm
(3,8], A 1is reduced to quasi-triangular form while the triangular form
of B 1is maintained. 1In the third stage the cuasi-triangular matrix is
effectively reduced to triangular form and the eigenvalues extracted. I:.
the fourth stage 1he eigenvectors are ob!.ined from the triangular matrices
- and then transformed back into the originel coordinate system.
The transformations used in reducing A and B are applied in such

a way that Wilkinson's gcneral analysis of the roundoff errors in unitary
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transformations [11] shows that the computed matrices are exactly unitarily
equivalent to slightly perturbed matrices A+E and B+ F . This means
that the computed eigenvalues, which are the ratios of the diagonal elements
of the final matrices, are the exact eigenvalues of the perturbed problen
(A+E)x = NM(B+F)x . If an eigenvalue is well conditioned in the sense that
it is insensitive to small perturbations in A and B (see [10] for a
detailed analysis), then it will be computed accurately. This accuracy

is independent of the singularity or nonsingularity of B .

The use of unitary transformations in the reduction also simplifies
the problem of convergence: a quantity may be set tc zero if z perturvaticn
of the same size can be tolerated in the original matrix.

Our computer program does not actuall:" nroduce the eigenvalies ki
but instead returns a& and 6i , the diagonal elements of <he triansular
matrices QAZ and QBZ . The divisions in A, = ai/Bi beccme the
responsibility of the program's user. We emphasize this point because
the ai and Bi contain more information than the eigenvalues themselves.

Since our algorithm is an extension of the QR algorithm, the well
known properties of the QR algorithm apply to describe the behavior of
our algorithm.

In their survey article [9], Peters and Wilkinson describe another
approach for the case when B is nearly singular. In their method one
computes an gpproximate null space for B and removes it from the probler.
The tecnnique is reapplied to the deflated problem, and so on until a well

conditioned problem is obtained. The method has the crucial drawback that
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one must determine the rank of B . If a wrong decision is reached,

the well-conditioned eigenvalues may be seriously affected.

- The special case where A 1is cymmetric and B is positive definite
has been extensively treated. For the case of well-conditioned B the
"Cholesky-Wilkinson" method [ 6 ] enjoys a well deserved popularity.

A mcdification of this algerithm for band matrices is given by Crawford [ 1.
A veriant of the Peters-Wilkinson method for nearly semidefinite B has
been given by Fix and Heiberger { 2]. Although our method does not

preserve symmetry and is consequently more time consuming than these
algorithms, its stability may make it preferable when B 1is nearly

semidefinite.
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2. Reduction to Hessenberg-Triangular Form

In this section we shall give an algorithm whereby A is reduced
to upper Hessenberg form and simultaneously B 1is reduced to triangular
form. While a treatment of the reductions in this and the following sections
can be given in terms of standard plsne rotations and elementary
Hermitian matrices, we find it convenient from a computationel point of
view to work exclusively with a modified form of the elementary Hermitians.
Aucordingly, we introduce the following notation.
By w}(k) we mean the cless of symmetric, orthogonal mutrices of
the ferm
I+ vuT
where vTu = -2, v 1is a scalar multiple of u , only components
kyktl,...,ktr-1 of u are nonzerc, and uk =1 . Given any vector x ,
it is easy to choose a member Q of %}(k) so that
Qx = x + (Wx)v
has its k+l,...,ktr-1 components equal to zero, its k-th component changed
and all other components unchanged. Since W = 1, the computation of
Qy for any y requires only 2r-1 multiplicatioans and 2r-1 additions.
{In particular, use of a matrix in ¥

2
instead of the 4 required by a standard plane rotation.)

requires only 3 multipiications

#or the moat part, we shsll use only matrices in “é anG yé .
When & matrix q 1in NB(k) premultiplies € matrix A only rows
k, ktl , and k+t2 in QA are changed. T7f the elements k , k+l,
- and k+2 in a coiumn of A are zZero, vhey remain zero in QA . Likewise,
if ZeyB(k) ; only columns k , kti , and k+¥Z2 are changed in AZ . If

some row has elemente k , k+tl , and I+2 zero, then they remain zero

in AZ . 3imilar considerations hold for the class wé .
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All our transformations will be denoted by Q's and 2Z's with
various subscripts. The Q's will always be premultpliers, that is
row operations. The Z's will always be postmultipliers, or column

cperations. The letter Q is being used in its traditional role to

denote orthogonal matrices. The letter 2 was chosen to denote orthogonal

matrices which introduce zeros in strategic locations.

The first step in the reduction is to reduce B +to upper triangular

form by ~remultiplication by Householder reflections. The details of

this reduction are well known (e.g. see [4,11]) and we confine ourselves

to a brief description to illustrate our notation. At the k-th stage of
the reduction (illustrated below for k =3 and n = 5 ), the elements

velow the first k-1 diagonal elements of B are zero.

x b'd x X b4

0 x b d X x

0 0 b'd b4 X
1

0 0] X X X
1

0] 0 b X X

Each x represents an arbitrary nonzero element. Each xl represents
an element to be annihilated in the next step. A matrix le&h_k+l(k)
i ilat ses i i

is chosen to annihilate bk+l,k’bk+2,k’ ’bn,k’ and B is overwritten

by Q,B, giving a matrix of the form illustrated below.
¥

X X X X X
0 b p 4 b4 b4
0 0 X X X
0 0 0 b d X
0 0 0 xl X

This process is repeated until k = n-1 . Of course A 1is overwritten

by Qn-lQn-E"'Ql .
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After this reduction, A and B have the form

A B
X X X X X X X X X <
X X b 4 X X 0 X X X X
X X X b:d X 0 0 X x it
X X X X b d 0] 0 0 X X
xl X b'< X X 0 0 0 0 X

The problem now is reduce A to upper Hessenberg form while

preserving the triangularity of B . This is done as follows (for k =5 ).

First Qe&é(h) is determined to annihilate 85y - The matrices QA and

QB , which overwrite A and B then have the form

X x X b'4 X bd b4 X X X
x X X X X 0 X X b'd X
b X x X X 0 0 X X X
b4 x X b4 b4 0 0 0 X bd
0 X b4 X b'd 0 0] 0 xl od

The transformation has introduced a nonzero element on the (5,4)-position
of B . However, a Zeyé(h) can be used to restore the zero without
disturbing the zero introduced in A .

This step is typical of all the others. The elements of A are

annihilated by Q's in the order illustrated below.

X X X X X
X x X X X

X b4 P X X
2

X X X X X
1 L 6

X X X X X

7
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As each element of A is annihilated, it introduces a nonzero element

on the subdiagonal of B » Which is immediately annihilated by a suitably

chosen Z . The entire algorithm, including the Householder trianguiari-~

zation of B may be summed up a8 follows.

1) Fork = L,2,...,n-1

1) Choose Qk€&h~k+l<k) to annihilate bk+1,k’bk+2,k""’s:,s .
2) B *'QkB y A~ QkA

2) FOI‘ k = 1,2, ooo,n'e
l) FOI‘ t = n-l,n-2, o.o,k+l

1) Choose Q et (1) to annihilate 2051,k

2) A h-leA » B -leB

%) Choose Zklcﬂé(z) to annihilate b

k) B*-szl ,A*—AZM

2+1, 2

A
The complete reduction requires about %g-n) multiplications,
%; n5 additions and n2 Square roots. If eigenvectors are also to ve

computed, the product of the 2tg must be accumulated. This requires

an additional g n3 multiplications and g n5 additions. The product

of the Q's is not required for the computation of eigenvectors.

.
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3. fThe Explicit QZ Step %%
In this and the next section we assume that A 1is upper Hessenberg
and B 1is upper triangular. In this section we shall propose an iterative
technique for reducing A to upper triangular form while maintaining the
triangularity of B . The idea of our approach is to pretend that B is
nonsingular and erxamine the standard QR algorithm for C = AEY . e
manipulations are then interpreted as unitary equivalences on A and 2 .
Specifically suppose that one step of the QR algo;ithm with ‘shift =&
is applied to C . Then Q is determined as an orthogonal transformation
such that the matrix
(3.1) R = Q(C-KI)

is upper triangular. The next iterate C' 1is defined as

¢ =rel + k1 = qcq” .
If we set

A' = QAZ
and

B' =QBZ ,

where Z is any unitary matrix, then
aB 7t - qazg’B T - qa it - ¢
The matrix Q is determined by the requirement that R be upper
triangular. We choose Z so that A' is upper Hessenberg and 3' is
upper triangular. This insures that the nice distribution of zeros,

intrcduced by the algorithm of Section Z, is preserved by the (QZ step.

Thus a tentative form of our algorithm might read

Q
p

B

PP PNy
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1) Determine Q so thet QC is upper triangular,

‘ t 2) Determine Z so that QAZ 1s upper Hessenberg and QBZ is upper

g ' trianguler,

3) A ~QAZ, B ~QBZ .

The problem is then to give algorithms for computing Q and 2 which do
-1

, not explicitly require C = AB
The determination Q dis relatively easy. For from (3.1) and the

definition of C it follows that

§
!
é
i
i
s
'é
|
;
{

¥

3 5 (3.2) Q(A-kB) =RB =8 .

Since R and B are upper triangular, so is S . Thus Q 1is the unitary
L
matrix that reduces A-kB to upper triangulsr form. Since A-kB 1is

upper Hessenberg, Q can be expressed in the form

Py A WIUTELPT

(503) G = Qn_lQn_e' . 'Ql ’

where le'Mg( k) .
To calculate 2 we apply Q in its factored form (3.3) to B and
determine Z 1in a factored form so that B stays upper triangular.

Specifically QB has the form (k = 5)

O O O KB W
O O O KB W
O O X K X
O K X =& »
LT T T

It QlB is postmultiplied by a suitaole Zleale(l) the nonzero element

below the diagonal can be removed. 3Similarly QngBZl has the form ;

(P PeTL
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b4 X X X X
0 X X X b4
0 xl b4 X X §
0 0 0 X X g
0 0 0 0 X 3

and the offending nonzerc element can be removed by a Zae&é(2) .

Proceeding in this way, we construct Z in the form

Z=ZZ A
n-

172 1’

where Zkeyé(k) .

Although QBZ is upper triangular, it is not at all clear that
QAZ is upper Hessenberg. To see that it is, rewrite equation (3.2)

ir the form

(3.4) QAZ = SZ + KQBZ .

From the particular form of Z and the fact that S is upper triangular,

h

it follows that SZ is upper Hessenberg. Thus (5.4) expresses QAZ as
the sum of an upper Hessenberg and an upper triangular matrix. 1In

fact (3.4) represents a computationally convenient form for computing QAZ .

PRSPV SSPTPUNNU PP SRVOPPIER S FIVTETELRLF 55T, S

e

We summarize as follows.

1) Determine @ = Qnrlgxr2'°’Ql (leué(k)) so that
S = Q(A-kB) is upper triangular.

2) Determine % = 225442 4

is upper triangula:

(2, cu(k)) so that B' = 532

3}  A* = 8Z + kB!
1
:
. If this algorithm is applied iteratively with shifts kj,k,,... , |

Lhere result sequences of matrices Al’Ae"” ’ Bl’BE"" , and

Cl’c2"" satisfying
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Ay =QAZ By, = QB2

_..T . al
Cv+1 B Q'CvQ‘ Cy = 4By ’

provided Bl is nonsingular. The matrices Av are upper Hessenberg
and the Bv are upper triangular. The Cv are the upper Hessenberg
matrices that would result from applying the QR algorithm with shifts
kl’ke" . to Cl . As Cv tends to upper triangular form, so must Av )
since B;l is upper triangular.

Most of the properties of the QR algorithm carry over to the QZ
algorithm. The eigenvalues will tend to appear in descending order as

one proceeds along the diagonal. The convergence of a(v to zero

)
n,n-1

may be accelerated by employing one of the conventional shifting stratezies.

Once a(v

non-1 becomes negligible one can deflate the problem by workirg
sn-

with the leading principal submatrices of order n-l . If some other

(v)
1,1

effect a further savings by working with rows and columns £ through n .

subdiagonal element of Av ys8y &, 4 0 becomes negligible, one can
Because we have used unitary transformations, an element of Av or Bv
can be regarded as negligible if a perturbation of the same size as the
element can be tolerated in A, or B, .

1 1
The algorithm given above is potentially unstable. If k is largse

Lo v AN § NI RIS DR A0 1 T 2 o i

compared with A and B , the formula (3.4) will involve subtractive
cancellation and A' will be computed inaccurately. Since the shift «
approximates the eigenvalue currently being found and the problem may
have very large eigenvalues, there is a real possibility of encountering
rge shift. Fortunately the large eigenvalues tend to be found last
so that by the time a large shift emerges the small eigenvalues will have

been computed stably. (The large eigenvalues are of course ill-conditioned

12
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{ and cannot be computed accurately.) To be safe one might perform the
|

first few iterations with a 7 ro shift in order to give the larger

eigenvalues a chance to percolate to the top.
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L.  Implicit Shifts

The potential instability in the explicit algorithm results from
the fact that we have used formule (3.4) rather than unitary equivalences
to compute A' . One way out of this difficulty is to generalize the
implicit shift method for the QR algoritlm to the QZ algorithm so that
both A' and B' are computed by unitary equivalences. The implicit
shift technique has the additional advantage that it can be adapted to
perform two shifts at a time. For real matrices this means that a double
shift in which the shifts are conjugate pairs can be performed in real
arithmetic.

Since we are primarily interested in real matrices, we will concentrate
on double shifts. The method is based on the following observation.
Suppose that A is upper Hessenberg and B is upper triengular and
nonsingular. Then if Q and 7 are unitary matrices such that QAZ
is upper Hessenberg and QBZ is upper triangular, then Q 1is determined
by its first row. In fact, a8t end QAB-lQH are both upper Hessenberg,
so that, by the theorem on page 352 of [11], Q is determined by its
first row.

Thus we must do two things. First, find the first row of & .
Second, determine Q and Z so that Q has the correct first row,

QAZ 1is upper Hessenberg, and QBZ is upper triangular. The first part
is relatively easy. The first row of Q is the first row that would be
obtained from a double shifted QR applied to AB'l . Since A is

upper Hessenberg and B upper triangular, it is easy to calculate the
first two columns of AB—l . But these, along with the shifts, compietely

determine the first row of Q . Only nonsingularity of the upper 2-by-2

1k
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submatrix of B is actually required here. If either bll or b22

is too small, so that this submatrix is nearly singular, a type of
deflation can be carried out. wWe will return to this point later.

The second part is a little more difficult, and is really the crux
of the algorithm since it retains the Hessenberg and triangular forms.
Only the first three elements of the first row of Q are nonzero. Thus,
if Ql is a matrix in w%(l) with the same first row of Q , then QlA

and QB have the following form (when n =6)

X X X X X X X X X X X X
X X X X X X x2 X X X X X
X X X X X X xl xl X X x X
O 0 x x x x ¢c 0 0 x x x
0O 0 0 x x «x 0 0 0 0 x x
0 0 0 0 x «x 6 0 6 0 o0 x .

As in the standard implicit shift QR algorithm, it is convenient to think
of Ql as the reflection which annihilates two of the three nonzero
elements in a fictitious "zeroth" column of A .

We must reduce QlA to upper Hessenberg and QlB to upper triangular
by unitary equivalences. However, we may not premultiply by anything which
affects the first row. This is done as follows. The matrix QlB has
three nonzero elements outside the triangle. These can be annihilated
by two Z's , a Z! in us(l) which annihilates the (3,1) and (3,2)

1

elements and then a 2" which annihilates the resulting {2,1) elemenz.

1
_ 1ttt . . .
Let Zl = ZlZl . Then Qlel is upper triangular. Applying Zl to
Q.8 gives Q.AZ with the following form
, © wl l (=]
15
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X X x X b4 x
b's X X b4 X X ’
xl X X b4 X X
xl X X b4 bd X
0 0 x X b4
0 0 0 0 b4 bd

This is multiplied by Q, in #-({2) that annihilates the (3,1) and

(4,1) elements. Then QQQlAZl and QQQJ_BZl have the forms

O O O O K ¥
O O K ¥ K X
O O K ®W KW X
O W XK ®M »w N
L T S B
Eo T o T T o
O O O O O N
Loy K ¥

O O K K »x 2N
O O K xK X X
~

Ea T T T T S

o O K

The first columns are now in the desired form. The nonzero elements
outside the desired structure have been '"chased" into the lower S-by-S
submatrices.

Now, postmultiply by 27, , a product of a matrix in ué(e) and a
matrix in yé(e) that reduces the current B to triangular form. Then
premultiply by Q3 in ﬂé(}) to annihilate two elements outside the
Hessenberg structure of the resulting A .

The process continues in a similar way, chasing the unwanted nonzero
elements towards the lower, right-hand corners. It ends with a slightly
simpler step which uses Qn_2 in ué(n-l) to annihilate the (n,n-2)
element of the current A , thereby producing a Hessenberg matrix, and
i Z,_, in yé(n~l) which annihilates the (n,n-1) element of the

current B , producing a triangular B but not destroying the Hessenberg A .

16
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The fictitious zeroth column of A is determined in part by the
shifts. 1In analogy with the implicit double shift algorithm, we take the

shifts kl and k2 to be the two zeros of the two-by-two problem

det (A-kB) =
) where
a'n-].,n-l a'n-l,n bn-l,n-l bn-l,n
A = ) 1-3 =
a'n,n-l a'n,n 0 bn,n ;

; It is not desirable to compute kl and k2 explicitly, or even to find

the coefficients in the quadratic polynomial det(A-kB) . Instead,
following the techniques used in " hgqr2 " [8 ], we obtain ratios of

the three nonzero elements of the first column of (AB"l

-1
-klI) (AB -kel)
directly from formulas which involve only the differences of diagonal
elements. This insures that small, but ncn-negligible, offdiagcnal

elements are not lost in the shift calculation. The formulas are

(m = n-1)
%m %11, % %11, %mn &m, , Pmn, 211, . 011
¢ mm 11 "nn 11 mm nn 11 21
815 817 Py
: M Ao
. 22 11 22
4 (b.1)
‘ ann all anm bwn
G— -5+ ) E—
11 “mm Tnn
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We are now in a position to summarize the double implicit shift
method. It is understood that A and B are to be overwritten by

the transformed matrices as they are generated.

1
1) Compute 3197 Bpg? and 350 by (h.1).
2) For k =1,2,...,n-2
: 1hi?
a) Determine qugé(k) to annihilate 841, k-1 and B4 0 k-1
. T Thilnt ( .
b) Determine ZR€N3(k) to annihilote bk+2,k+1 and %k+2,k

) s 1 P .
¢) Determine Zkeué(k) to annihilate bk+1,k

3) Determine Qn_lené(n-l) to annihilate an,n—2

L) Determine Zn_leué(n-l) to annihilate bn,n-l .

For each k , determination of Qk requires a few multiplications
and one square root. Application of Qk to both A and B requires
about 10(n-k) multiplications. The work involved with eacn Z& is
the same. Application of Zﬁ requires only about 6(r.-k) multiplications.
The number of additions is about the saae. Summing these for k from
1 to n-1 gives a total of abou: 13n2 multiplications, 3n2 additions
and 3n square roots per double iteration.

By way of camperison, for the double shift QR algorithm as implemented
in " hqr ", Z& becomes simply Qi and Zﬁ is not used. Furthermore, the
transformations are carried out on only one matrix. Consequently, each
double iteration requires about 5n2 multiplications, Sn2 additions and
n square roots. Thus the QZ algorithm applied on two matrices can be
expected to require roughly 2.6 times as much work per iteration as

the QR slgorithm on a single matrix.

18
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In order to obtain eigenvectors, the Q's are ignored and the 2Z's

accwrulated. This requires about 8n° more multiplications and 8n°

more additions per double iteration. ?
3 : pps /

There is one difficulty. The formulas for 810 ? 8sq » and a30 ;

+ : ] b

are not defined when bll and b22 are sero. Moreover, as bll and 4

b22 approach zero the terms that determine the shift (temms involving

ann 9 bnn s etc.) become negligible compared to the other terms, so that i

the effect of the shift is felt only weakly.

Part of the solution to this difficulty is to deflate from the top.
If bll is negligible it may be set to zero to give the forms for A
and B (n=214) ;

O O XX
O M X X
L T R
LT T S
O O O ©
S O K X
o X ®K ¥
L I B T

A Q in wé(l) can then be used to annihilate the (2,1) elemsat »f A,
which deflates the problem.

The rest of the solution lies in recognizing thet there ic .0t puun
of a problem. If bll and b22 are small then the problem has jarze
eigenvalues. We have already observed that the larger eigervslites tcend
to emerge at the upper left, and the larger the cigenvelne, the swiiter
its emergence. Moreover the speed will not be aflzcied by z small zhif..
This means that whenever the implicit shift is diluted by a small bil

or b2p » the algorithm is none the less profitably emnloved in finding

a large eigenvalue.

19
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5. Furtl.e. : 2duction of the Quasi-Triangular Form

The result of the algorithm described so far is in an upper
triangular matrix B and a quasi-upper triangular matrix A in which
no t40 consecutive subdiagonal elements are nonzero. This means that
the original problem decomposes into one by one and two by two subproblems.
The eigenvalues of the one by one problems are the ratios of the corres-
ponding diagonal elements of A and B . The eigenvalues of the two by
two problems might be calculated as the roots of a quadratic equation,
and may be complex even for real A and B .

There are two good reasons for not using the quadratic directly,
but instead reducing the two by two problems. First, wvhen A and B
are real, the calculation of eigenvectors is greatly faciiitated if all
the real eigenvalues are contained in one by one problems. A more
importurt second reason is that the one by one problems contain more
informati-n then the eigenvalues alcne. For example, if ay, and bll
are smell then the eigenvalue hl = ll/bll is 111 conditioned, nowever
reasonable it may appear. This reason obviously applies to complex
eigenvalues as well as real ones. Accordingly, we recommend that the
two by two problems be reduced to one by one problems and thal tie
diagonal eiazmenits, rather than the eigenvalues, be reported.

Without loss of generality we may consider the problem of reducins
two by two matrices A and B simultaneously to upper triangular form
by unitary equivalences. For our purposes we may essume that B is \

upper triangular.

Two special cases may be disposed of immediately. 1If h11 is zero,
then a anb(l) mey be chosen to reduce a21 to zero. The zero elements
20




of QB are not disturbed. Similarly, if b_. is zero, a Zevg(l)

22

may be chcsen to reduce a to zero without disturbing b

21 2l
In the general two-by-two case, it is not difficult to write down

formulas for the elements of A' =QAZ eand B! =QBZ for any Q and 2 .

. Moreover, these formulas can be arranged so that numerically one of a;l

or bé3 is effectively zero. It is not obvious, however, that the other

element is numerically zero, and the effect of assuming that it is by

setting it to zerc could be disastrous. Consequently, we must consider

a somewhat more complicated procedure.

The theoretical procedure for reducing A to triangular form may te
described as follows. Let A be an eigenvalue of the problem and form
the matrix E = A-AB . (*10se a Zeﬂé(l) to ;nnihilate either e

or e.. . Since the rows of E are parallel, it follows that whichever

21
of e or e is annihilated the other must also be annihilated.

11 21
Now choose Qené(l) so that either QAZ or QBZ is upper triangular.
Since the first column of QEZ is zero and QEZ = QAZ - N3BZ , it follows
that, however Q is chosen, both QAZ and @QBZ must be upper triangular.
In the presence of rouading error the method of computing A and
the choice of 2 and Q are critical to the stability of the process.
A rigorous rounding error analysis will show that, under a reasonable
assumption concerning the computed AN , the process described below is
stable. However, to avoid excessive detail, we only outline the analysis.
We assume that all computations are done in floating point arithmetic with
t base B digits and that the problem hes been so scaled that underflows
and overflows do not occeur. Ve further assume that 859
in the sense that |a21| < B-t"AH , where ||*|| denotes, say, the row

sSumn norme.

21
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The algorithm for computing A amounts to making an appropriate
crigin shift and computing an eigenvalue from the characteristic equation.

It goes as follows.

!
b1
81p = 835 " WPy
22 = %22 " kP
o - L S22 P12%21
2\ Pao  P13P
¢ = #21%12
®11P00
r o= P tg
(5.1) A = p+p+ sign(p) VT (complex if r <0)

We must now assume that the computed A satisfies the equation
i det(A* -AB') =0 ,
where [|a-A'|| <o |lAll and |[B-B'|| <o |lB]] with o, and o small
constants of order B-t . Define

E' = A' -N\B'

and let E denote the computed value
Then

s . A . 1. . . -t
with ([l < v max{jjAjj, |N| {iBjj} with o of order B .

We claim that, approximately,

(5:2) =i 8™ max{ial, r| IR} -

22
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f First we note that i
. | -t i
~« (53)  fEl 2 lepyl = eyl 2 8N S |
! ;
by the assumption that a21 is significant. Now assume that E
i’; e}l < B°t|h} Bl . Then subtractive cancellation must occur in the :
| i
FV§ computation of e;; , €, , and ey, . Thus &, ~ Aoj; 5 2, =~ My, %
: 4 end a,, ~ Mb,, . Hence we have [|A]| > |r|[[B]} , and, from (5.3), :
; =] 2»5-t|h|"B” , & contraction. 2
1 Now
0 = det(E') = det(E) + (ell+hll)h22 - (em+h12)h21+ hy €50 ~hyse0y 5 - ;
i
Hence g
1 2 z
4 |aet(E) | < pj [IE|| max{llall, MBI 3 + pplmax{llall, [A] 18]} 3]
LL; where Py and Po are.of order B-t . From (5.2) it then follows that §
1 laet(E) | < ollEl] max{jal, (7] II2l" 3
E where p is of order B't .
Now consider the determination of Z . Assume that the second row
of E 1is larger than the first. Then Zeﬂé(l) is chosen to annihilate ey
Let F = EZ . Then fél is essentially zero. Furthermore, since 2 is ;
unitary ;
If]_]_fggl = |det(E)| < P” E" max{“A", P"l”B“}
But |fégl = “e2“ and, since e, was assumed to be the larger row, 3

lle,ll = ||Ell . Hence we have approximately

AN
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and let fl s C

1? and dl be the first columns of * , C, and D .

Let qg denote the second row of Q . If |[jA|| > |M||B|| , we choose @

fr S oy e

to annihilate 4., . Numerically this means that

_“, 21
f T
4 lag 4,1 < o8l ;
!.;
4 where ¢ is a constant on the order of a't . We must show that qgcl
-3 is negligible. But
(3 T _ T T
3 g el = lap £ + 2 a4y
: T
’ < el + P e, 4l
< p max{Nall, (MBI} + o|2 Bl
< (p+ o)Al

If, on the other hand, |Al||B]| > ||A]| ; we choose Q@ so that

— bl

lag el < ol - |

It then follows that %
|q£ 4] = la £-aye |/ M i

< oM™ max(all IMIBIY + o2

< (o + o) B |

In summary, A is computed using (5.1), Z is chosen to annihilate
the first element of the larger of the two rows of A-AB and Q is chosen
to annihilate the (2,1) element of the smaller of the two matrices AZ
and ABZ . 1In this way, we can be sure that the computed (2,1) elements i
of both QAZ and @BZ are negligible.

In practice with matrices of any order, if the vransformations arc

real, they are applied to the entire matrices. If the transformations are
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complex, they are used to compute the diagonal elements that would result,
but are not actually applied. We thus obtain & quasi-triangular problem
in which each two-by-two block is krown to correspond to & pair of complex
eigenvalues.

The generalized eigenvectors of this reduced problem can be found by
a back~-substit . tion process which is a straightforward extension of the
methoa usel ix ™ hqr2 " [8 ]. The vectors of the original problem are

then found by applying the accumulated Z‘'s .

25
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6. Some Numerical Results

The entire process described above has been implemented in a Fortran
program [ 7]. There are Iour main subroutines: the initial reduction to
Hessenberg-triangular form, the iteration itself, the computation of the
final diagonal elements, and the computation of the eigenvectors. The
complete program contains about 600 Fortran statements, although this
c-uld be reduced somewhat et the expense of some clarity.

The numerical properties observed experimentally are consistent with
the use of unitary transformetions. The eigenvalues are always found to
whatever accuracy is justified by their condition. If an eigenvalue and
eigenvector are not too "ill-disposed", tnen they produce a small relative
residual.

Similar numerical properties can not generally be expected from any
algorithm which inverts B or any submatrix of B . This is even true of

2-by-2 submatrices, as illustrated by the following exemple due to

() -0

lere p 1is about the square root of the machine precision, that is, u is

Wilkinson.

not negligible compared to 1 , but pe is. There is one eigenvalue
near -2 . Small relative changes in the elements of the matrices cause
only small relative changes in this eigenvalue. The other eigenvalue
becomes infinite as | approaches zero. (reat care must be taken in
solving this problem so that the mild instability of the one eigenvalue

dozs not cause an inaccurate result for the other, stable eigenvalue.

26
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Of course, the use of unitary transformations makes our technigue
somewhat slower than others which might be considered. Dut the added
- cost is not very great. In testing our vwrogram, we solve problems of
order S50 regularly. A Tew problems of orders greater than 100 have
been run, but these become somewhat expensive when they are merely tests.
One typical exanple of order 50 requires 45 seconds on Stanford's

IBM 360 model 67. Of this, 13 seconds are spent in the initial reduction

29 seconds are used for the 61 double iterations required, and 3 seconds

are needed for the diagonal elements and eigenvectors. If the eigenvecters
are not needed an? so the transformations not saved, the total time is
reduced to 27 seconds. By way of comparison, formation of B-lA

a la Peters and Wilkinson [9] and use of Fortran versions [12] of "orties"
[5] and " hqr2 * [8] requires a total of 27 seconds for this example.

(A1l of these times are for code generated by the IBM Fortran IV compiler,

-T2

H level, with the optimization parameter set to 2 .)

In the examples we have seen so far, the total number of doubie
iterations required is usually zbout 1.2 or 1.3 times the order of
the matrices. This figure is fairly constant, although it is not difficult
to find examples whichk require many fewer or many more iterations. 4s a
rule of thumb, for a matrix of order n the time required on the rmodel 7
is about .36 n5 milliseconds if vectors are computed, .22 nj nilli-

seconds if they are not.
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The example in Table 1 is not typical, but it does illustrate

several interesting points. It was generated by applying non-orthogonal
rank one modifications of the identity to direct sums of companion matrices.
The companion matrices were chosen so that the resulting problem has

three double roots,

}\. =k = ™ F}

1 2
. 1.3,
7\3—K5—-2'+?1,
_ 1 /3.
}\.h—>\6—§"§1 .

The double root at « results from the fact that B has a double zerc
eigenvalue. All three roots are associated with quadratic elementary
divisors; i.e., each root has only one corresponding eigenvector. The
computed diagonals of the trisngularized matrices are given in the table.
Note that the four finite eigenvalues are obteined with a relative accuracy
of about 10-8 - This is about the square rvot of the machine precision
and is the expected behavior for eigenvalues with quadratic elementary
divisors. The singularity of B does not ceuse any further deterioration
in their accuracy. Furthermore, the infinite eigenvalues are obtained from
the reciprocals of quantities which are roughly the square root of the
mechine precision times the norm of B . Consequently we are somewhat

*
justified if we claim to have computed the square root of infinit".—/

*
Y This prompte us to recall the limericx which introduces George Gamow's
One, Two, Three, Infinity:

There was a young fellow from Trinity
Who tried /o

But the number of digits

Gave him such fidgits
That he gave up Math for Divinity.

28
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27 6 6
-7 5 5
-7 5 5
B =
-7 5 5
17 16 5
-17 5 16
x

25. 7168670843143

-12.821841071323
5.814535434181 + 10.071071345641 i
5.800765071150 - 10.047220375909 i
5.736511506410 + 9.935928843473 i
5.510879468089 9.545122710676 i

a/B

0.976972281.108

-0.976972290.108

0.49999999310489

0.50000000689511

Table 1

16

(o )N AN AN S

0.49999999310489 + 0.866025439242771
0.56602543924271
0. 5000000689511 + 0.86602536832617
0.86602536832617

5 5 5 -6 >

16 5 5 -6 >

5 16 5 -6 >

5 5 16 -6 >

5 5 5 -6 16

6 6 6 -5 6
P 6

.2637605112.10"

.13121;05807.10'6
11.629071028730
11.601530302268
11.473022854605
11.021758784186

[
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SUBROUTINE QZ(NDeNsAsBIEPSoALFRIALFIVBETAYITERIWANTX 9 X)
DIMENSION A(NDoND) oB(NDoND) JALFR(N) sALFTI(N) sBETA(N) s X{NDsND)

VIMENSION ITER(N)
LOGICAL wANTX

A AND B ARE N-BY-N REAL MATRICESs STORED IN ARRAYS WITH ND ROWS.
EPS IS THE RELATIVE PRECISION OF ELEMENTS OF A AND B,
FINDS N PAIRS OF SCALARSy (ALFA(M)+BETA(M)) SO THAT
BETA(M)®*A - ALFA(M)®*B IS SINGULAR,
THE EIGENVALUES OF A®X - LAMBDA#B#X CAN BE OBTAINED BY
DIVIODING ALFA(M) BY BETA(M)s EXCEPT BETA(M) MIGHT BE ZERC.
IF (wANTX) ALSO FINDS CORRESPONDING EIGENVECTORS.,
USES ONLY UNITARY TRANSFCRMATIONSs NO INVERSES
SO EITHER A OR B (OR BOTH) MAY 3t SINGULAR,

BETA(M) IS REAL.

ALFA(M) IS COMPLEXs REAL AND IMAGINARY PARTS IN ALFR(M) ANC ALFI(M).
COMPLEX PAIRS OCCUR WITH ALFA(M)/BETA(M) AND ALFA(M+1)/BETA(Me])
COMPLEX CONJUGATES EVEN THOUGH ALFA(M) AND ALFA(M+1) ARE NOT

NECESSARILY CONJUGATE.

USES ONLY REAL ARITHMETIC.
IF A AND B WERE REDUCED TO TRIANGULAR FORM BY UNITARY EQUIVALENCES,

ALFA AND BETA wOULD BE THE DIAGONALS.

A ANC 8 ARE ACTUALLY REDUCED ONLY TO QUASI-TRIANGULAR FORM WITH

1-68Y=1 AND 2~8Y=2 BLOCKS ON DIAGONAL OF A.

IF ALFA(M) IS NOT REALs THEN BETA(M) IS NOT ZERO.
ITER IS TROUBLE INDICATOR AND ITERATION COUNTER.,

IF (ITER(1)+EQ.0) EVERYTHING IS Ok,

ITER(M) 1S NUMBER OF ITERATIONS NEEDED FOR M-TH EIGENVALLE.

IF (ITER(1) THRU ITER(M) +EQ, =1) THEN ITERATION FOR M-Tr
EIGENVALUE DID NOT CONVERGE AND ALFA(1) THRU ALFA(M) AND
EETA(1) THRU BETA(M) ARE PROBABLY INACCURATE.

IF {(WANTX) X(esM) IS THE M-TH REAL EIGENVECTOR,

X{esM) AND X(eo9M+1l) ARE THE REAL AND IMAGINARY PAKTS

OF ThHE M-TH COMPLEX EIGENVECTOK.

X(eoM) AND =X(,9M+]1) AND THE REAL AND IMAGINARY PARTS

OF THE (M+1)~ST COMPLEX EIGENVECTOR.

VECTORS NORMALIZED SO THAT LARGEST COMPONENT IS lo OR les+0.@ o

USES FOUR PRIMARY SUBRCUTINESe QZHESs QZITs QZVAL AND GQZVEC.
USES FOUR AUXILLIARY SUBROUTINESs HSH3s .1SH2y CHSH2 AND CUIV.

USES TwO STANDARD FUNCTIONSs SQRT AND ABS.
AUTHCRS: C. Bs MOLERs STANFORDy AND Go We STEWARTs Ue OF TgXAS

THIS VERSION DATED 7/19/71.

aNeNelesNoNelaNoNeNeNeNaeNoNeNsRaReRaXsNeNoNeRelaisNeNe e kaisksRakeXakeie ke e ke R e

CALL GUZHES(NDsN9sAsBsWANTX e X)
CALL QZIT (NDeNoAsBsEPSIEPSALEPSBeITERGWANT X4 X)
CALL QZVAL INDeNsA9yBIEPSALEPSBeALFRIALFIIBETAsWANTXoX)
IF (WANTX) CALL QZVEC(NDsNsAstHeEPSAIEPSBIALFRyALFIsRETAX)
rt TURN
P ERD

33

FIRD W, R

PO S5 Y




p i

L. Al

¢
i
3
3
A
£
;
3
3

OO0

ooo

ST N R R R i 4 el LU Bl Ml oSl AN R 5 S S S i S e s § D IR St

SUBROUTINE QZHES(NDyNysAsBsWANTXsX)

DIMENSION A(NDyND) 9B (ND9ND) 9 X (NDyND)
LOGICAL wWANTX

INITIALIZE Xo USED TO SAVE TRANSFORMATIONS

2

3

IF («NOT.WANTX) GO TO 10
DO 3 I=]1.N
00 2 J=1sN
X(IeJ) = 0o
CONTINULE
X(IeI) = 1.
CONTINUE

REDUCE 8 TO UPPER TRIANRGULAR

10

20

25

30

40
50

€0

10
80

90

NM]l=N=]
00 100 L=1sNM]
Ll = Le+)
S = 0.
00 20 I=L1,N
IF (ABS(B(IsL))«GT«S) S = ABS(B(I.L))
CONTINUE
IF (S.EQ.0.) GO TO 100
IF (ABS(B(L+L))eGTLS) S = ABS(B(LsL))
R = 0.
DO 25 I=LoN
B(I,L) = B¢(
R =R « B(1]
CONTINUE
R = SQRT(R)
IF (R(LoL)olTe0es» R = =R
B(LeL) = BULoL) + R
RHO = R#*#8(L,L)
DO SO0 J=L1,N
T=ﬂ.
00 30 I=LeN
T =T s lIelL)*B(I,J)
CONT INUE
T = =T/RHO
DO 40 I=L.sN
B(led) = Biled) + THB(I,LL)
CONTINUE
CONTINUE
CO 80 J=1oN
T = 0.
DO 60 I=LsN
T =T + B(IsL)®A(1,J)
CONTINUE
T = -T/RHC
D0 70 I=LeN
A(lsd) = A(leJ) ¢ T&B(IsL)
CONT INUE
COMTINUE
Bllel) = =SSR
N0 90 IsL1leN
B¢IsL) = 0.
CONTINUE

I+L)/S
sL)ne2

»
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100 CONTINUE

c
C REDUCE A TO UPPER HESSENBERGy KEEP B TRIANGULAR
o

IF (N.LE.2) GO T0 170
NM2=N=-2
DC 160 K=],NM2
Kl = Ke]}
NK]l = N-K=}
DC 150 LB=]14NK]
L = N-LB
Ll = L}
CALL HSH2(A(LsK) 9A(LL4K)9sUL4U2sV1yV2)
IF (Ul.NFela) GO TO 125
DO 110 J=KsN
T = A(LoJ) ¢ U2%A(L]9J)
AlLod) = AlLsJ) + THV]
AlLLed) = A(LLoJ) + THy2
110 CONTINUE
A(L1eK) = 0,
DO 120 J=LsN
T = B(LodJ) ¢ U2*B(L1yJ)
BllLed) = B(LeJ) « TVl
B(L1leJ) = B(LleJ) + TRy
120 CONTINUE
125 CALL HSHZ(B(L1esL1)eB(L1sL)sUlosU2eVieV2)
IF (Ul.NEsle) GO TO 150
DO 130 I=1,L1
T = B(IsL1) + U2%B(]sL)
B(IsL1) = B(IsLl) + TV}
RUIsL) = B(IeL) o T#V2
130 CONT INUE
B{LlsL) = O,
DO 140 I=1sN
T = A(IsL1) + U2®A(I,L)
AlTIoLl) = A(IoLl) « THV]
ACTol) = A(IsL) o THY2
140 CONTINUE
IF (JNOT.,WANTX) GO TO 150
DC 145 1=1eN
T = X(IsL1) ¢ L2®X(Isl)
XCIeLl) = X(IelLl) +» T¥*y}
Xtiol) = K(Isl) o TRY2
145 CONT INUE
150 CONTINUE
160 CONTINUE

170 CON/;INUE .
RE TURN
END
C
C
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SUBROUTINE QZIT (NDeNosA9BIEPSIEPSAEPSB ITER(WANTX e X)

DIMENSION A(NDsND) 9B(ND9ND) 9 X (ND9ND)
OIMENSION ITER(N)
LOGICAL WANTXsMID

INITIALI7E ITERs COMPUTE EPSAEPSB

180

185

ANORM = ¢,
BNORM = g,
DO 185 I=]eN
ITER(I) = 0
ANI = 0.
IF (I1.NE.1) ANI = ABS(A(Js1I-1))
BNI = Oe

00 180 J=I.N
ANI = ANI + ABS(A(I.J))
BNI = BNI + ABS(B(I+J))

CONTINUE
IF (ANI<GT.ANORM) ANORM = ANI
IF (BNI.GT.BNORM) BNOKRM = BNI

CONTINUE
EPSA = EPS®ANOCRM
EPSB = EPS*BNORM

REDUCE A TO QUASI-TRIANGULARs KEEP B TRIANGULAR

200

220
230

2€0

270
2890
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