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l. Introduction

The problem considered in this paper was suggested by Cristy Schade [7]

of the Department of Electrical Engineering at Stanford University. He 1s

designing a computer system to assist in the care of patients who have suf-

fered from cardiogenic shock. The treatment of such patients involves the

administration of a vasoconstrictor drug over a long period of time, and it

1s rarely practical to always have a trained physician nearby adjusting the

flow rate of the drug. Schade envisions his computer system as controlling

the situation when a physician is unavailable. The computer would monitor

the patient's blood pressure (and perhaps other aspects of his condition),

update a mathematical model to correspond to the gathered information, and use

the new model to determine the flow rate of the drug to get a desired blood

pressure.

Schade has developed a system which treats a dog that has been injected

with a drug that disables his natural blood pressure regulating system. A

computer program has been written for the HP2116B computer which monitors

the dog's blood pressure and adjusts the apparatus administering the vaso-

constrictor drug to the dog. However, the algorithm employed to determine

the successive flow rates does not always determine the optimal set of flow

rates. By an optimal set we mean a set of flow rates over t intervals of

time which will produce a set of blood pressures (v; )i2 which minimizes

: (y.-r.)°.
j=1 J J

Here yo 18 the blood pressure at time Ts and r. 1s the desired blood

pressure at time Ts set by the operator of the system. This paper develops
an algorithm to determine the optimal set of flow rates.
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Schade's mathematical model is based on a transversal filter system that

weights the drug rates in the last an intervals of time to correspond to the

patient's behavior. Symbolically, it is given by

n

Yj = TWX Wns
k=l k j=-k+1 + 0

where

X = drug rate at time ty

Ys = blood pressure at time Tyo
n

(we leq is a set of weights.
In matrix form the model can be written:

rT ew]Y541 Yo Wpeeeon¥y x
Co “ J+2-n

|

Ny EN { J+

AN

''W “a, !
; W Wo

aid Lo _—__ 0, ee 1 *3+t+l-n|

In practice, t is some positive integral multiple of n.

| t1 (3 ‘eos |Since at time +1 the values Xs ne’ xy are known, we can rewrite
this system as vy = W x + h, where

n-1

X W

5 Wiel Xj-ke + 0’ £<n
h, = k=4
y

W £ >n
and 0 ’ =

Ww. = 0 for J > 1
] 0 for 1 > n, J < 1-n

Viel; elsewhere.
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Thus, W is in lower triangular form.

Given this model, we can easily determine the future values of the

blood pressure, y, for a given set of drug rates. Conversely, 1f we want

the blood pressure to attain a certain level, using a back substitution

‘ i.e., flow rate

process we can determine the required drug rate schedule/of the drug for

the next t intervals of time. However, we must take several facts into

consideration:

1. A negative amount of drug cannot be administered.

2. The apparatus does not allow a drug rate of more than 50 drops

a minute.

, 3. The patient will die if his blood pressure exceeds certain bounds.

The last constraint is the one least often encountered but 1s, of course,

the most important.

From this information one can formulate the following mathematical

problem: Given r, W, a, b, c, d, find x to
~~ ,

minimize & (y.- r.)%,
. } i i

i=1

where

J = Wx + h ,

a, < x, < b,,
i i i

¢; SV; = 9

and r, 1s the desired blood pressure at time Tre Usually the desired

blood pressure 1s set to some goal so that actually ry 1s the same for

all i.
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The problem outlined above 1s a quadratic programming problem that may

be solved in several ways; however, when choosing a method we must observe

the following criteria:

1) The method must be fast for systems whose number of variables 1is

greater than 20, and whose constraints are four times the number of variables.

2) This particular problem constitutes only a small part of the total

system. It 1s considered as a background job to which unused time cycles

are allotted. Thus, 1t 1s unknown whether the procedure will actually be

given sufficient time to complete the computation. Hence the method

should be iterative, and all iterates should be feasible, 1.e. they

should satisfy the constraints.

| 3 Since the procedure 1s needed only when constraints are active,

i.e., when x must satisfy some equality constraint, the method should work

well 1n this situation.

The problem was approached in two ways, differing more in the actual

formulation of the problem than in the algorithms involved.

In the first case, a method proposed by Goldfarb[1] based on Davidon's

variable metric method for unconstrained optimization was applied to the problem

of finding x to minimize

where

a < Xx <b
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and

c -nh <Wx<d - h.

(A discussion of the algorithm and the computational experience appears in

Section 3.)

However, 1t was discovered that a better approach was to set z = Wx + h-r,
Co 1 mT

and consider the problem of determining z TO minimize 5 Z7Zy where

and

a + W "(h-r) <W <b + W "(h-1).

Section 4 contains a discussion of this approach. The method used is

similar to Goldfarb's, but less complex. In fact, the ideas motivating both

are the same, and it 1s these ideas which will be developed 1n the next chapter.
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2. Basis of the Algorithms

Assume that we want to minimize a convex function

f(x) = £. + a’x + L Tex, (1)
O ~~ 2 =~

where x 1s of dimension t and must lie in the domain D defined by

T

n, X > Ls; 1 = 1,2,...,0m,

where nn, = 1 Note that f 1s a convex function 1f G 1s a positive
definite matrix.

Assume-that prior calculations have indicated that the solution

actually lies in the hyperplanes defined by

n x =4.,1i=1,2,...,q where 0 <q<m.

Let M denote the flat which 1s the intersection of these hyperplanes. If

g = grad (f(x)), then by the mean value theorem, for any Xi0 X70

- = - X.). 2g(x; 41) - a(x) = 6x, = 5) (2)

; If we want f(x, Jo be the global minimum of f where Xx, , is

in M, then gf Xp) must be orthogonal to M, i.e., g( x, ,) must be a
linear combination of the unit normals to the hyperplanes whose intersection

'is M. Thus, if the columns of N are those normals, then

and hence by substituting (3) into (2),we get
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THNa - g(x.) = x, = x, (14)~ mel ~14l 1

Since Xi ~¥ is parallel to M, we must have

0 = N(x;,5 = %)

or, from (2),

0 = NG o! - g(x; )).
This implies

a = (Fem) (ve a(x)
Substituting this back into (4)we get

x = x, + (GN NTN) NG - 67) gf x, )
or ~ 1

X41 =F FC ASW, (5)

mere p=1 - on nlatw) “Ll.

Thus far we have assumed that the global minimum of ff, where x 1s

constrained to D, corresponds to the minimum of f in M. However, we can

distinguish two instances where this 1s not so:

] Case 1: There 1s no guarantee that the point X41 does not violate

some other constraint of the problem. Hence, it would be preferable to write

Xi41 = 5 7M Spo

where 5, = p at g(x) and 0 <A <1. IfA is the minimum distance that
can be traveled in direction s before one of the inequality constraints becomes

an equality constraint, then A = min(1,)\). If A = 1, then the minimum of f

along s. has been found and hence the minimum in the corresponding hyperspace

has been located. If this 1s not the case, then the barrier 'hit' must be added

as a new constraint, and a new direction must be determined.
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The value of A can easily be calculated. Assume that the point Xs

lies 1n the interior of a region

nlx, > L., J - gil eo. M.
~J ~i Nj ’ ’

If X: 1 1s to lie 1n the closure of this domain, then

nt (x, = XA s,)>4, Jj =a+l,...,m,
~j V~i ~i7 ="

which implies

- 7 T :
he . = , XK. = 1 «eo 411A onys; 24 Dy Zid qQ+i, »1,

- - T T

A or 8: < ny Xx, = Ly Jj = Q+l,...,m,
T

_ ny x-h
NH, j=atl,...m

n, s,
~J ~i

If we set
T

n, x =-4,

A. a nl J = gQ+l,...,m,
J n, s,

then

j A= min ~~ (A,|r, > 0}.JVd =
lS Jj Sm

Case 2: The global minimum for f where x € D actually lies in some

flat M' where MCM' and M # M', i.e., we have too many 'active' constraints.

To check whether this 1s the case, we consider

Toy-1

A necessary and sufficient condition that £(x; 7) be a global minimum
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is that [ecg(x, | =0 and u>®9.
For a complete proof of this last statement see [1]. An intuitive idea

of the proof 1s given below. |

Obviously, 1f pe g(x, ,,)l = 0, then £(%; 1) is the minimum of f
for x € M. If X41 1s not the global minimum, then we can proceed in the

direction -8(%, ,,) to find a point x in D such that f(x) < Fle, 1).
Since g(x; 1) = N @, we have

(vN)™H Ng X; 9) = ( Nn) (va
= Q

and thus u - a. Since the unit normals to the hyperplanes which constrain

X point towards the interior of the region, a point x can be found such

that £(x) < £(x; if and only if at least one of the components of u
1s negative.

Because of the above 1t 1s obvious that once X41 has been computed

we should check if 4 > 0. If this 1s not the case, the constraint cor-

responding tothe most negative component of u should be dropped. Since there

are only a finite number of constraints, this process should terminate in a

finite number of steps. However, dropping constraints only after the minimum

of £ in M has been found might not be the best strategy. It might be

preferable to drop a constraint whenever we find that u has a negative

component. In this case, 1f Xi 41 has been reached without adding any new

constraints, then Eg; 1] must be the minimum value of f(x) for x € D.

| Moreover, 1f r constraints are dropped before a move, it is likely that r-1

repetitions. of the algorithm have been saved. Thus, it seems that we should
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drop a hyperplane at the first opportunity. Unfortunately, there is a big

disadvantage to this strategy. Although the dropped constraint cannot be

picked up immediately, 1t 1s possible that after another constraint has been

added, the dropped constraint might have to be reactivated. This is clear
AY

from the following example: pr |
vd

wo constraint 1AX,
~ J"

consgrethsd

= S ne constraint 2
X
~141

s—constrained minimum

In the above illustration, 1f constraint 1 1s not deactivated, the

minimum can be found 1n one step; otherwise two steps have to be taken.

Thus, we need a strategy guaranteeing that the function will be less

1f the constraint 1s dropped than if it 1s not. There is a w&l-known

: estimate (see [6]) that if
LJ

© = 1 -1/2
IPG gl,<5 wu, 875, (7)

‘where

T \=1 :
u, = min du, lu, <O8 >[l(v) |, and vw {u, lu, <0},

. Th
then the 1 hyperplane should be dropped.
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3. Goldfarb's Method

In our problem the function f, mentioned 1n section 2, 1s

f(x) = 3 fix + hor)’ (Wx + h-r) .

Since W is lower triangular and Wy is positive, f(x) is certainly

convex. Its gradient 1s. given by

g(x) = Wi(h-r + Wx),

-1 = -1=-T
and its inverse Hessian is G = = W W . According to the theory developed

in section 2, if we are at a point X. and the columns of the matrix N are

the unit normals to the hyperplanes whose intersection defines a flat MV,

then the minimum of £f in M 1s found at

S|

ra = 50 POE)
where

. - -1 \~-1
P=1-c"t NN N) TN.

Sarl
In our case it is quite costly to actually compute =P G 7, and it might be

. more practical to approximate it by some matrix H and set X= 5 7 H-g(x, ).

Donald Goldfarb in [2] presents an algorithm incorporating this idea. For a

quadratic objective function in a system of dimension t, if the same g

co-1
constraints are active for t-q iterations, his H is equal to -P G

His algorithm is analogous to Davidon's variable metric algorithm when no

constraints are active.

The heart of Goldfarb's algorithm is his method for updating H.

Let Hy represent the matrix H when gq constraints are active. If we want
to eliminate the gh constraint fram H, then



-12-

T
P nn P

aml (8)q-1 d Nn P n
~q4 9-1 ~q

T 1. T st

| where Py-1 = I - Nya (Ng N,.1) Ny-1 If we want. to add a q+l
constraint to the intersection, then

: | T

Hylar1 Boer Mg; H ,. =H - (9)
q+l q nt H n

~q+1 "q ~q+l

If the basis remains unchanged, then set 2 = Hy + A + B, where

5, of
A= - (10)

9% Ji

Hy. yr H
g~i ~i gB = -

T HyIi q =i

where

0, = NS; =X341 "54

and

yy = glx) - 8lx)

The chief features of (8)- (10) are:

1 - -1
f = ~ P G - .(a) i Hy q , then Hyp given by (9) is equal to Pal G ;

(b) the termA 1n (10) insures that i = -P, G after t—g steps
if f(x) 1s quadratic;

(c) the term B insures that mutually conjugate directions are searched, i.e.,

5 ho = 0,1 # j, Where 5: = Hog(x, );
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(d) The objective function will always be decreased at each iteration;

(e) H is a positive semi-definite matrix. Moreover, if v = N,&

then v Hy = 0;

(f) if Hy = pa, then Hyo1 given by (8) is not necessarily equal
to B67
3.1 Observations

When none of the blood pressure constraints 1s active, which 1s true most

of the time, each row in Ww has only one non-zero element and (vn) = I.

This means that the rows of H corresponding to active constraints on x are

zero. When the th constraint 1s dropped, the update of H according to

equation (8) requires only adding 1 to h(i,i). Further, when only drug

constraints are active, the vector u = Nw) lg (refer to section 2) 1s

easy to obtain once g has been computed, and the quantity Bf in equation

(7) is just 1. Thus, we can use a strategy for dropping constraints which

assures us that we will not be deactivating a constraint which might have to

be reactivated in a short time.

If H = _p cg! and s = He(x, ), then the minimum of f along s 1s

found at Xia 5% 7 s. However, 1f H only approximates p ct, then it
isnecessary to compute A such that X. = X. + AS minimizes f along s.

Since

f(x+ As) = f(x) + AGS + N s Gs,
the minimum of f along s occurs when

gs gs



!

-1kh-

Since the computation of Ws is required anyway to determine if any of the

y constraints are active, the number of steps required to determine the

minimum off£ along s 1s effectively negligible.

The main disadvantage of the algorithm 1s that whenever a y (blood

pressure) constraint 1s active, we must update (vin) Goldfarb[1] gives

recursive relations for updating (vn) which require approximately o) a(a+t)

operations every time a new column is added to N. We can do better by noting

that N can be writtenas N = QR, where NR) = I and R 1s upper triangular

(see (4)). In this case, wy) 7 = RIRT Adding a new column to R, as

will be described in section 4.2, requires approximately 2 (qgtt) operations.
Even this estimate 1s high when we consider the fact that, when blood pressure

constraints are active, many of the other constraints will be drug rate

constraints. Admittedly, in our formulation where the model is linear, the

y constraint 1s rarely active, but when it is a patient's life is probably

in peril.
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3.2 The Matrix H

Probably the largest problems in the implementation of the whole method

are the initialization and form of i Several alternatives present them-
selves, none of which appears completely satisfactory.

Alternative 1: Since H, = W -1 W T Hy, Con be initialized by deter-
mining the matrix W - , forming the product W -1 wT and applying eq. (9)

gq times. Because of the form of W (i.e., triangular with elements the

same on the subdiagonals and diagonals), only 2/2 steps are required to

form W  wwever, another 3/6 are needed to form the product. If we

then add another qt steps to obtain Hy using (9), we find that for a
20X 20 system on the IBM 360/67 approximately 1/3 second has elapsed before

the routine has even been entered. This is entirely impractical, considering

the application of the procedure.

Alternative 2: The matrix % can also be written as Hy =W Md “1,
where M, = I and

— - _ T

M. = M - OF ny 04H a) (11)
Ht Gh GT)~l+l ~141
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This last formula is derived from eq. (9).

To update the Hy matrix when the constraint matrix has not changed,
we use the formula

= M A+B
Mp1 a + A+B

where T-" —-T \T

(MMW g)(AMW “g)
Aeeed~ Qo

A = N T

and
= -T ==T 4\T

Cpl Og0Gyy)- B = - 3

Tr
Ii q Ii

where

yi = 8x) - 8lx)

Since the gradient g has the form g(x) = Vv, where v = (Wx + (h-r)),
the formula for A and B can be written even more succinctly as

T

MrOg)
Asm ——7F >

(Mv; ) 21
T

_ (M z, )(M z, )

Vv, n_ Vv,
~1 2q 1

where

vi = (Wx +(h-r))
and

Zy = lis TY
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To drop the gh constraint we set

(we, n )(we, on)"
I aa (12)

~q Fa-1 ~q

This alternative 1s not as impractical as it might appear, for the

following reasons:

(a) The function of the matrix H is to project g(x) into the correct

flat. In the algorithm 1t 1s used only to determine the correct direction

Ss = Hg(x, ). Since we know that g(x, )has the form wry, the s; vector is simply

8i = Ww TH Although we now need £9 more operations to compute Sy we
have also saved t°/2 operations since we never need to compute g(x, )

explicitly. Moreover, since MI 1s computed here,to update the formula
for A requires fewer steps.

(b) If only the X constraints are active, the vector Pe-129 is a

unit vector which has a 'l' or a '-1' in its q component. Thus, no

work 1s required to form W Pq-12q" Further, because W is lower triang-

) ular, the first g-1 elements of W Pe-1%9 are zero. Therefore, to drop
a constraint requires (tq )2/2 operations, which admittedly 1s more than

in the previous alternative.

(c) If only the x constraints are active, the formula (11) for forming

M, initially can also be simplified. Since W -T 1S an upper triangular
matrix, 1f n. corresponds to constraining the pth component of X, then

the last (t-i+l) components of the vectorW “n, will be zero. If the

constraints on X are initially added so that .the last nonzero element of
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the gt column of 1° is above the last nonzero element in the 1i+l column

of N, then after i+l applications of (11) Ma will have the form

,d

where A is a J XJ symmetric matrix, and D 1s a diagonal matrix of

rank t-7J and the 14100 constraint corresponds to constraining x, -
Accordingly, forming the My matrix requires fewer steps than one might

have anticipated originally.

Calculating a vector a = hb 1s equivalent to finding the vector

a such that Wa = Db. In our problem if t > n, where n 1s the dimension

of the filter system used to determine W, W “Lis a full lower triangular

matrix with the same elements on the subdiagonal. However, W has a triangle

| of size t-n in its lower corner that is zero. If b has just one nonzero

component, which 1s sometimes true when eq. (11) 1s applied, then naturally

we should use W -. In other cases we can do backsubstitution to find a

and save (ta) operations.
This formulation still suffers from the fact that approximately 3 4"

operations are required to form the original matrix Hg It might seem

- better to start with no constraints active and encounter them one at a time,

but computational experience shows that most of the first constraints

activated are later deactivated, and that 1t doesn't pay to compute s

and minimize f along s each time a constraint 1s made active.
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Although the form of H just presented 1s not that useful for our

particular problem, the idea might be worth considering for other problems
T

whose object function has the form (Ax-D) (AX-D).
A

-1

Alternative 3: If we set H =P G + We have

I - <]1— -T7 \=1 T., = -1= -T
H=[I-i 1g T(nt W a N) "N]W SL

If A=W “Ty, then this becomes

—- = -1 TT, = -1= -T
He=[I-# anata) vv iW

= = -1 ,Ty = -T
= W Lr - a(ata) ATW OT.

If we start out withthe exact H, and change H just by updating A, then
A

H will always be equal to =P G (barring roundoff). Thus the update formulas

for H when the constraints are not changed will never have to be used.

—T : Co

Since g is of the form W~  V, then s = Hgsimplifies to

- - -1

s = W Lrr-a(ata) ali

This looks horrendous, but if we put H = QR, where Qt = 1 ik T; us, bu pu = MR = +r thenRR = AA

T,\-1

and computing (A A) v requires only 9 operations. On the average the

calculation of s takes about 2 fo + q(3/2t+q) operations. The update of
A' 1nvolves only updating R and 1s not prohibitive. Actually, using'this

alternative 1s the same as using the method to be described in the next

section, except that fewer steps are required there.

Alternative4! Begin with H = I and forget that the inverse Hessian

1s known. Applying eq. (9)g times when only x constraints are active

results in the matrix H where
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by, = 0 wheni # J
0 where constraint on X; 1s active and 1 = J

1 otherwise.

Consequently, the initialization procedure requires no computation, and

movement toward the required minimum begins immediately. This approach

seems best when there are many constraints active, since H will equal

pct after t-g iterations. However, usually about t/3 constraints are

active and progress is slow; 1t takes twice as long to get to any point

as 1t does in the method described in the next section.
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yy. The Algorithm in the Transformed System

As mentioned in section 2, the problem can be reformulated by setting

7 = WX + h-r. In this case we want to minimize

f(z) = 1 (572)
2 ~~

where

a<z<b (13)

c < Wiz < d (14)

Eg. (13) corresponds to the blood pressure constraints, and (14) corresponds

to the drug rate constraints.

In this situation the gradient of f 1s given by

g(z) = 2

and the inverse Hessian of f 1s given by

cz) = I,

where I is the identity matrix.

The matrix P described in section 2 1s then given by

P=1I-N(NN NW

where the columns of N contain the unit normals to the hyperplanes which

constrain z to a flat M. Therefore, according to (5), the minimum of f(z)

"for z constrained to M 1s given by

Zi 41 =z, - (1-8(N"N) Mn0)z,
) ) ) (15)

If M 1s defined by the g relations

2 = = 1n.z = Ay 1 =1,...,0

(assuming gq constraints 'active), where L is known for 1 =1,. ® *,q,
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eq. (15) can be rewritten as

Zigl T ZiT W5

where

-1
s. = 2, - NNTN)TMa.

T,.\-1
If (N'N) can be computed easily, then a matrix H to approximate

Be is unnecessary, Further, the minimum of f along s in M, which

is the minimum of f in M, can be determined immediately.

The main disadvantage to reformulating the problem is that now, when

only the drug rate constraints are active, the matrix N is more 'full'
Ton —1

than in the previous situation. Also, (NN) = is not the identity matrix
T -1

and we cannot easily obtain the upper bound on IC wm) ol, that eq. (7)
required for a good criterion for dropping a hyperplane. Because of this

we decided to drop a hyperplane whenever -g(x,) pointed to the interior

of the region. This strategy had the disadvantage that constraints were

sometimes dropped and then reactivated.

CL T \-1
; 4.1. Determining (NN) = 4.

Assume Nt is g x t. Since N can be written as N = QR where

ala = qq” = I and R 1s a g X g upper triangular matrix, we can write

(NTN) = RQ IQR - R'R.

Ty -1,In our algorithm we must compute the vector u=(N1 ) L. This 1s-equivalent

to determining u such that

(NTN)u - 2 or R'Ru= 4.
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Since R 1s an upper triangular matrix, u can be determined using two

backsolve operations; 1i.e.,

Rm = £,

and

Ru = m.

Because each backsolve requires about q°/2 steps, we spend almost as much

time multiplying £ by (NTN) 1 to determine wu as we do working with R.

So instead of determining (NI) 1 all we need to do is determine R. This

can be done by performing g Householder transformations, which requires at

most (t-a/3)0° steps, where +t is the dimension of the system. In actual

practice we can order the columns of N in such a way that the last n,

elements of the k C0 column are zero, and n, > no for k = 1,2,...,3~-1.
In this case, it is necessary to perform about  2( 3 5 (t-n, -1)) operations.

k=1 1rk

In practice (t-n, -1) is small.

As shown in Gill and Murray [1], updating R when a new constraint is added

1s not difficult. Let N represent the matrix whose columns are the unit

normals to the intersection of g-1 hyperplanes in which z lies. Assume

that a new constraint must be added.

Let N = [Nin 1. If N = QR, then

NN Nn RR. Nn
a oo oe = oy . ae |
2g" + 2g" oR

If we set R = [5 1] , then0: d

NN=RR= |RR. Rr

rR : rr + 3°
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Hence, to determine R we nced to find r and d, where
T T

= In

Rir=Nng :
1/2 1/2

and d=(nTn rir) = (1- rir)

Because @ is orthogonal the above square root is real.

Since rR is a lower triangular matrix, CD€ Process requires one vector

multiplication to find Nn ng and one backsolve to determine I , and thus

takes about t+q + - /2 steps. In actual practice the nonzero elements of Jy

and n are known a priori and =( t+q) would be a more accurate estimate
~q -

of the number of operations required.

When a constraint is dropped the corresponding column must be deleted

from R. The matrix then looks like

I

NC
If the 1 column is eliminated-we have 9-1 elements below the diagonal

which must be annihilated. Using Given's rotation matrices as suggested

by Golub in [3] this can be done is 2(g-1)? operations.
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4.2 The algorithm in detail.

Using the results of the previous section, the whole algorithm to solve

the problem can be written as follows:

1. Determine an initial guess X, with gq constraints active, and
— - a1 |

set Zy = 1Y Xs + h-r. Compute W 1f this has not been done previously.

Determine the bounds Ls 5 i =1,...,4t, for the transformed system.
: T

2. Set th t t tr =
et up e constraint matrix Ny where 25 satisfies n, 2, £;

1 <i < gq. Using Householder transformations, form the matrix Ry where
T

N=QR and @Q = I.“fq 2nd Gg
3. Compute the vector u where

Ru=m
q~

and

I
R m= J.
Gq ~

(Note that if step 3 is entered from steps 4 or 6, most of the elements of

m have already been computed.)

Let u, = min Uu..
1<i<q?

hb. If us < 0, delete the j th column from N, using Given's rotation
matrices, update R, set gq = g-1, and go to 3.

If u. > 0, then form Sy= +2; = N-u.

5. Determine
T

| n.z. - £.
A = min A = med J o=Q+l,...,ht.

A>O0 UY n. 8,J ~d ~
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Here we are assuming that z 1s constrained to lie in the &main &fined by

T Cea
nz > 4., 1 <j <ht.
~~ = J = =

T - —1

Note that + , is either one of the rows of W ~or a vector with only
one nonzero component.

6. If NS 1, add the corresponding column to Ny» form

Ra+l= | | , where: T
0: d Ror = Nn,

Q~ Q~1

and ] |
T

d= sgrt( 1 - r. xr);

set q = aq+l, z,, = 2; - Ny Sis and return to 3.

= -1

T. Set Zz =2; - 8, andx = W (z + r-h).

Xx 1s the required drug schedule.
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In our program we have ordered the constraints on z so that the first

2t constraints correspond to eq. (14), and the last 2t constraints cor-

| respond to eq. (13). If we write the constraints as

nz > 4. J = 1,2,...,4t,
~~ TJ

| we notice that

T J.
n, = -w, 1<Jj<+t
23 ¥35 Sd SU

T T

h JT pT t+l < J <2t
~J  =d-t’ 3t+4l< J < 4t.

} — - th

Here Ws 1s the 5 th row of W L and ey 1s the unit vector in the i!
coordinate direction.

The fact that the matrix W “1 1s part of the constraint matrix and

enters into the transformation of variables simplifies the programming.

Step 9 in the algorithm just outlined'essentially requires’ :

the computation of a, and W Ts, We know that

2 = WE TROT

and

2p = Ha TAM 120

which means

Wl ox + W “1(h-r) (16)
-0 0 ~~

and

= -1 —= =1 = =-1

Woz = Wo tM ep 220 (17)
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Since W -'(n-r) is needed to compute the bounds for eq. (14), every

quantity on the right-hand sides of (16) and (17) are known for i > 0.

Thus, the computation of W 1, in step HS requires at most t multiplications.

Similarly, recovering x in step / does not involve a matrix multi-

plication. We are to set

x=W tz, <7 "(h-r)
~141 ~~

But this means that

h — -1 = -1 = -1
x=W "z, -AW "s, -W (h-r). (18)

Since every quantity in (18) is known, x can be obtained immediately.



|
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5. Obtaining an Initial Guess

On the average the program can run about 10 times before any of the data

1s changed. Each time the drug values move up 1 time interval, so that the

time represented by X.) during the i UP procedure call 1s the same time represented
by X51 on the (i+1)5° procedure call. If neither r nor W has changed,
we may expect that the values Xpse oes Xy for the previous time interval might

be excellent guesses for Xj,eeerXi Jv In fact, 1f we allow the process suf-

ficient time to attain the minimum in D during the last time interval, then

during the next time interval only a few iterations should be required. An

initial estimate for x, can be obtained by looking at

n

e = lpr RAS ERAY

If e <0, set X, =0. If e >50, set X, = 50; otherwise set x; = e.

Usually when W is updated the changes in W are not that large.

If the drug rate schedule from the previous call are still feasible, which 1s

very likely, they may be used as initial guesses. However, whenr 1s changed

* (which occurs much less often), 1t 1s wise to restart the process.

When restarting a process we have several options. We can set

Ti+l
Xi41 =n , j= 0,...,t. (19)

a "x

This is the steady state solution which was Schade's original algorithm.

These values are always feasible, put can be far from optimal. If other

methods give answers violating the blood pressure constraints, the values given

by (19) seem to be the only way to start.
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Another way to start the process 18 to take advantage of the triangular
a

shape of W and set X, = (y-ry= 200152) where 4 = min(i-1,n)
and n is the dimension of the filter system used to determine the W's.

If x, is greater than 50, set X; =50; if x; <0, set x; = 0.

If at any time a constraint on the blood pressure 1s violated, then revert

to (16).

"The main problem with the method above 1s that too many constraints

are usually activated that later must be dropped. Ine initialization

procedure has been modified 1n several ways to help alleviate this problem.

(1) If X; = 0 and Xi 01 = 50, set X, = 10 and recalculate X%; -

(2) If x; = 50 and Xi, = 0, set x, =40 and recalculate X: 9

(3) If the W matrix has been updated and X: =50 or X; 1 = 0,

and 0 < X, < 50, then the column corresponding to the constraint on x4-1
1s not included in the N matrix.

If the same constraint (upper and lower) holds for the first p components

of x, and the next t-p components are unconstrained, then there is no need

to call the function minimizing routine.



|
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5.1 Computational Experience

The algorithm described in section 4 has been implemented in AlgolW on

the IBM 360/67. For a system of 20 variables and 80 constraints approx-

imately 1/3 second is required to determine the correct drug rate schedule

initially. When the matrix W has not been updated and the results of

| the previous time through the algorithm are used, the procedure requires

less than 1/10 second. We think that the algorithm will be operationally

practical when it 1s integrated into the real time system already running

on an HP 2116B machine.

During the testing of the algorithm several facts were observed that

are worth mentioning:

When computing A, we must insure that ns > 0. If the 5 th hyperplane
has just been dropped, 1t is possible that because of roundoff error the

quantity B.z. - Ls will be slightly negative. . the quantity ns 1s
tive, this constraint will be the first one encountered. Accordingly,

we must check the sign of ns before computing h..
If the W matrix has not been updated and we use information from the

previous time interval, then Za 1 = Lees t-l, need not be recomputed.

However, 1t 1s still necessary to recompute R and the bounds on z. In

"fact, in this case more time may be spent computing R than in finding the

minimum.
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Our solutions supported the 'bang bang' principle of control

theory. Often they indicated that the drug should be administered at

50 drops per minute for a period of time, then at 0 drops per minute,

and finally back to 50 drops per minute. This is unfortunate from a

computational point of view because 1t means that many constraints are

active and more computer time 1s necessary per iteration. It 1s also

unfortunate from an operational point of view. In this situation dif-

ferences often arise between what actually occurs and what the model

thinks has occurred. If an interval of time 1s considered to be 20

seconds, then a schedule of 50-0-50 is effectively a schedule of 50-3-50.

Updating the model smoothes out some of the inconsistencies between the

model and reality.

Roundoff error does accumulate but not catastrophically. Given

the uncertainties in our data and the imprecision in our apparatus, we

are obtaining solutions as accurately as we deserve.

Our solutions also verify the control theory principle that solu-

tions of the problem 1n two distinct time intervals do not solve the

problem when these two intervals are merged into one large interval. Of

course, 1f this principle were not true, we could solve the problem once,

and for successive time intervals tack on a local solution.
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The active constraints can only be linearly dependent i1f the patient

1s dead, or if the person running the program sets the desired blood pressure

outside the prescribed bounds. Therefore, linear dependence was not considered

in the implemented algorithm although it can easily be detected by checking

d when updating R.

When a blood pressure constraint 1s activated, only 0 steps are required

to update R as opposed to the formulation presented in section 3. Also,

adding this constraint does not require added attention or code. This makes

the whole program shorter and, hence, 1t can be more easily translated into

HP assembly Language so that 1t can be integrated into the system now running.

The procedure given in section 9 for determining Z4 often activates too

many constraints which must be dropped. It was thought that if in the beginning

no constraints were activated, then the ones hit during the execution of the

malin algorithm would still be active when the minimum of f(z) for z € D

was found. This was not the case. Many times the constraints encountered

first were the ones later dropped. Furthermore, to construct R initially

takes fewer steps than to add one column at a time.

In the table below an idea of the number of multiplications required 1n

each phase of the program 1s given. 1p practice the quantity gq is about

t/3. Calculations which involve q(t) operations have not been included.



a

Operation Count

Let t = dimension of the system;

qQ = number of active constraints;

n = dimension of the filter system or the number of nonzero diagonals of W.

1. Needed when W and r are updated:

a) initial guess of x (t° - n° )/2

b) computing W -1 (n%)/2

c) initial guess of z (£°- n’ )/2

2. Needed every time subroutine 1s called:

a) Creating R (t-a/3 Jao /2
b) bounds for z 2/2

3. Operations needed for first full iteration:

: a) determining s Q° + tq/2
b) determining A (t-a)t/2

| 4. Dropping the j BO constraint:

a) updating R 2(q-1)°

b) recomputing s and A (g-1i 2/2 + a“/2

5. Adding a constraint:

a) updating R for drug rate constraint ta/q + a“ /2

b) updating R for blood pressure constraint a°/2

c) recomputing s and A WE + 5/2
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