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1. Introduction

The problem considered in this paper was suggested by Cristy Schade [7]
of the Department of Electrical Engineering at Stanford University. He is
designing a computer system to assist in the care of patients who have suf-
fered from cardiogenic shock. The treatment of such patients involves the
administration of a vasoconstrictor drug over a long period of time, and it
is rarely practical to always have a trained physician nearby adjusting the
flow rate of the drug. Schade envisions his computer system as controlling
the situation when a physician is unavailable. The computer would monitor
the patient's blood pressure (and perhaps other aspects of his condition),
update a mathematical model to correspond to the gathered information, and use
the new model to determine the flow rate of the drug to get a desired blood
pressure.

Schade has developed a system which treats a dog that has been injected

with a drug that disables his natural blood pressure regulating system. A
computer program has been written for the HP2116B computer which monitors

the dog's blood pressure and adjusts the apparatus administering the vaso-
constrictor drug to the dog. However, the algorithm employed to determine
the successive flow rates does not always determine the optimal set of flow
rates. By an optimal set we mean a set of flow rates over t intervals of
time which will produce a set of blood pressures {yj}§=l which minimizes

t

z (y.—r.)2
g=1 9 9

Here y.J is the blood pressure at time TJ and r. 1s the desired blood
pressure at time Tj set by the operator of the system. This paper develops

an algorithm to determine the optimal set of flow rates.



Schade's mathematical model is based on a transversal filter system that
weights the drug rates in the last n intervals of time to correspond to the

patient's behavior. Symbolically, it is given by

n
¥ = kf;wkxj-k+l + Yo?
where
x'j = drug rate at time tJ’
yJ = blood pressure at time TJ’

{wk]i_l is a set of weights.

In matrix form the model can be written:
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In practice, t is some positive integral multiple of n.

Since at time Tj+l the values Xj-n+2""’xj are known, we can rewrite

this system as y =W x + h, where

n-1
W
z Vsl Xj-ked + 07 £<n
w £ >n
and 0 ? -
;l.s 0 for jJ > 1
J 0 for i >n, j < i-n
w elsewhere.

it+l-j



Thus, W is in lower triangular form.

Given this model, we can easily determine the future values of the
blood pressure, y, for a given set of drug rates. Conversely, if we want
the blood pressure to attain a certain level, using a back substitution

i.e., flow rate
process we can determine the required drug rate schedule/of the drug for

the next t intervals of time. However, we must take several facts into

consideration:

1. A negative amount of drug cannot be administered.

2. The apparatus does not allow a drug rate of more than 50 drops
a minute.

3. The patient will die if his blood pressure exceeds certain bounds.
The last constraint is the one least often encountered but is, of course,
the most important.

From this information one can formulate the following mathematical
problem: Given r, W, a, b, ¢, 4, find x to

t
minimize & (yi- ri)z,

i=1
where

a.<x.<b.,
1 1 1

¢ S¥; =9

and r, is the desired blood pressure at time T Usually the desired
blood pressure is set to some goal so that actually ry is the same for

all i.



The problem outlined above is a quadratic programming problem that may
be solved in several ways; however, when choosing a method we must observe
the following criteria:

1) The method must be fast for systems whose number of variables is

greater than 20, and whose constraints are four times the number of variables.
2) This particular problem constitutes only a small part of the total
system. It is considered as a background job to which unused time cycles
are allotted. Thus, it is unknown whether the procedure will actually be
given sufficient time to complete the computation. Hence the method

should be iterati%e, and all iterates should be feasible, i.e. they

should satisfy the constraints.

3¢ Since the procedure is needed only when constraints are active,

i.e., when x must satisfy some equality constraint, the method should work

well in this situation.

The problem was approached in two ways, differing more in the actual
formulation of the problem than in the algorithms involved.

In the first case, a method proposed by Goldfarb [1] based on Davidon's

variable metric method for unconstrained optimization was applied to the problem

of finding x to minimize

£ = F (v an) T+ hop)

where



and

c-h<Wx<d-h.

~

(A discussion of the algorithm and the computational experience appears in
Section 3.)
However, it was discovered that a better approach was to set z = Wx + h-r,

1T

and consider the problem of determining z to minimize 5 z—-z, where

~ o~

c-r<z<d-r
and
a + W "(h-r) <W -1 <b+W "(h-1).

Section 4 contains a discussion of this approach. The method used is
similar to Goldfarb's, but less complex. In fact, the ideas motivating both

are the same, and it is these ideas which will be developed in the next chapter.



2. Basis of the Algorithms

Assume that we want to minimize a convex function

f(x) = £, + alx + xTGx, (1)

N

0

where x 1s of dimension t and must lie in the domain D defined by

n? x > £

i=1,2,.e0.,m
i FT=p) sM,

i’

where E? n, = 1. Note that f is a convex function if G is a positive
definite matrix.

Assume-that prior calculations have indicated that the solution
actually lies in the hyperplanes defined by

B$~x=%wi=l,2,...,<1, where 0 < g < m.

Let M denote the flat which is the intersection of these hyperplanes. If

g = grad (f(x)), then by the mean value theorem, for any xi’xi+1’

g(x; 1) - &%) = 0(x; ) - %). (2)
If we want f(fi+l)to be the global minimum of £ where §i+l is

in M, then g(xi must be orthogonal to M, i.e., g(fya)must be a

+l)
linear combination of the unit normals to the hyperplanes whose intersection

'is M. Thus, if the columns of N are those normals, then

and hence by substituting (3) into (2), we get



-7-
cHN o - (%)) = x, . - %, (4)
O <A ot | P53 RS |
Since X1 ~ % 1s parallel to M, we must have
0= N'(§i+l B fi)
or, from (2),
0= NGHN o - g(x,)).
This implies
a = (86w (Ve e(x,)-

Substituting this back into (4) we get

Xig0 =% ¢ In( v w7t Nt - et &l x,)
or ~ -1

X =% PO glx) (5)
where ~

P=1-ciN e ty) Mt
Thus far we have assumed that the global minimum of £, where~x is
constrained to D, corresponds to the minimum of £ in M. However, we can
distinguish two instances where this is not so:
Case 1: There is no guarantee that the point Xl does not violate

some other constraint of the problem. Hence, it would be preferable to write

X. = x, = A S,
~i+l ~i ~i’

where 5; = P G-l g(xi) and 0 <A < 1. If X is the minimum distance that
can be traveled in direction s before one of the inequality constraints becomes
an equality constraint, then \ = min(l,x)- If A =1, then the minimum of £

along s; has been found and hence the minimum in the corresponding hyperspace

has been located. If this is not the case, then the barrier 'hit' must be added

as a new constraint, and a new direction must be determined.



The value of X can easily be calculated. Assume that the point X;

lies in the interior of a region

E§ X, > Lj, J = gtl,...,m.

If xi+l is to lie in the closure of this domain, then

T = X
o (fi - Ei) > Lj, j = a+l,...,m,
which implies
= T .
-\ Ij? S: > »S/ - EJ Xi0d = q+l,...,m,
-~ X E? s; < E? X - IJ, j = q+l,...,m,
_ n} xi-z.
A< —%——-——l s Jjo=atl,...,m.
n, s
~J ~i
If we set T
n, x -4,
A, = :d—ﬁ?-l sy J = Q+l,...,m,
J n, s,
~J ~1
then
X= min [X.\KJ‘E 0} .
@l j <m0

Case 2: The global minimum for f where x € D actually lies in some
flat M' where MCM' and M # M', i.e., we have too many 'active' constraints.

To check whether this is the case, we consider

o = (vt N-g(x, ) . (6)

A necessary and sufficient condition that f(xi+l) be a global minimum



is that HPG-lg( x

~i+l)H =0 and u>6.

For a complete proof of this last statement see [1]. An intuitive idea

of the proof is given below.
Obviously, if H;G-lg(x M = 0, then £(x, .)
! =Vaiel ! ~1+1

for x € M. If Xl is not the global minimum, then we can proceed in the

is the minimum of £
direction -g(xi+l) to find a point X in D such that £(x) < f(x_ )
~ o~ ~L .
Since §(§i+l) = N @, we have
=L T T.\-1 T
(VN) ™ g(xy ) = (NW)H (wN)a
=a‘

and thus u = Q. Since the unit normals to the hyperplanes which constrain

x point towards the interior of the region, a point X can be found such

that f(x) < f(xi+1) if and only if at least one of the components of u

is negative.

Because of the above it is obvious that once x, has been computed

i+l
we should check if u > 0. If this is not the case, the constraint cor-
responding tothe most negative component of u should be dropped. Since there
are only a finite number of constraints, this process should terminate in a
finite number of steps. However, dropping constraints only after the minimum
of £ in M has been found might not be the best strategy. It might be

preferable to drop a constraint whenever we find that u has a negative

component. In this case, if x,

i+l has been reached without adding any new

constraints, then f(x

~i+l) must be the minimum value of f(x) for x € D.

Moreover, if r constraints are dropped before a move, it is likely that r-1

repetitions. of the algorithm have been saved. Thus, it seems that we should
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drop a hyperplane at the first opportunity. Unfortunately, there is a big

disadvantage to this strategy. Although the dropped constraint cannot be

picked up immediately, it is possible that after another constraint has been

added, the dropped constraint might have to be reactivated. This is clear

N\
AN oy !

from the following example: s
N

onstraint 1
. i §

onstrajined
¢ S r mum

)

s—constrained minimum

- constraint 2

In the above illustration, if constraint 1 is not deactivated, the

minimum can be found in one step; otherwise two steps have to be taken.

Thus, we need a strategy guaranteeing that the function will be less

if the constraint is dropped than if it is not. There is a w&l-known

estimate (see [6]) that if

]

le ot gll, <3, g2, (7)

‘where

T .\=1 :
g 2/l ™, and w; = min {u; a; <0},

then the ith hyperplane should be dropped.
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3. Goldfarb's Method

In our problem the function f, mentioned in section 2, is
f(x) = %@x + her)T (Wx + h-r)

Since W is lower triangular and wl is positive, f£(x) 1is certainly

convex. Its gradient is. given by
g(x) = WT(h-E + Wx),

and its inverse Hessian is G_1 =W -1 W -T. According to the theory developed

in section 2, if we are at a point X, and the columns of the matrix N are

the unit normals to the hyperplanes whose intersection defines a flat M,

then the minimum of £ in M is found at

R |
%ie1 = % - POTE(x ),
where

P-1-ct Nt G'lN)'lN.

5 Al L
In our case it is quite costly to actually compute =P G 7, and it might be

more practical to approximate it by some matrix H and set a5t H'§(§i)'

Donald Goldfarb in [2] presents an algorithm incorporating this idea. For a

.quadratic objective function in a system of dimension t, if the same g

. . . . -1
constraints are active for t-q iterations, his H is equal to -P G .

~

His algorithm is analogous to Davidon's variable metric algorithm when no
constraints are active.

The heart of Goldfarb's algorithm is his method for updating H.
Let Hq represent the matrix H when g constraints are active. If we want

to eliminate the qth constraint fram H, then
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T
P nn P
H = H +-31-9~d q-1 (8)
q-1 q nT P n
~q a-1 ~q
T -1 T

st
where Pq—l _I- Nq-l(Nq-l Nq-l) Nq-l' If we want. to add a q+l

constraint to the intersection, then

T
Hq5q+l Za+1 Hq
H = H - . (9)
q+l q nT H n
~q+1 q ~q+1

If the basis remains unchanged, then set I-Iq = Hq + A + B, where

o, o
A=- (10)
9 i
A yf H
B _-.3%_.;_3
Zi Hq Zl
where
O =My =X T %
and
y; = 8lx ) - elx).
The chief features of (8)- (10) are:
-1 - -1
. - P , . _ .
(a) if Hq q G ™, then Hq+l given by (9) is equal to Pq+l G 7;

(b) the term A in (10) insures that %_: -Pq ¢l after t-q steps

if f£(x) 1is quadratic;

~

(c) the term B insures that mutually conjugate directions are searched, 1i.e.,

iiT _%s, = 0,1# j where s, = Hqg()ﬁi);
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(d) The objective function will always be decreased at each iteration;
() H is a positive semi-definite matrix. Moreover, if v = N&},
then vTHv = 0;

~

(f) 4if Hq = PqG-l, then g1 given by (8) is not necessarily equal

to -P G

3.1 Observations

When none of the blood pressure constraints is active, which is true most

I.

of the time, each row in ﬁf has only one non-zero element and (NTN)_l
This means that the rows of H corresponding to active constraints on x are
zero. When the ith constraint is dropped, the update of H according to
equation (8) requires only adding 1 to h(i,i). Further, when only drug
constraints are active, the vector u = (NTN)-lNTS (refer to section 2) is
easy to obtain once g has been computed, and the quantity B in equation
(7) is just 1. Thus, we can use a strategy for dropping constraints which
assures us that we will not be deactivating a constraint which might have to
be reactivated in a short time.

If H = =P G_l and s = Hg(xi), then the minimum of f along s is

~ o~

found at Xia =% + s. However, if H only approximates »; G_l, then it
isnecessary to compute A such that X1 =% + %9 minimizes f along s.
Since
f(x+As) = f(x) + k§T§ + %ﬁ ETG§

the minimum of f along s occurs when

T T
g s g s

sTos  (Ws)(Fs)
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Since the computation of Ws is required anyway to determine if any of the
y constraints are active, the number of steps required to determine the
minimum of f along s 1s effectively negligible.

The main disadvantage of the algorithm is that whenever a ¥ (blood
pressure) constraint is active, we must update (NTN)_l‘ Goldfarb [1] gives
recursive relations for updating (NTN)':L which require approximately 2 a(aq+t)
operations every time a new column is added to N. We can do better by noting
that N can be written as N = QR, where QQQ = I and R is upper triangular
(see (4)). 1In this case, (NTN)_l -rRT Adding a new column to R, as

will be described in section 4.2, requires approximately 1 (gtt) operations.

2
Even this estimate is high when we consider the fact that, when blood pressure
constraints are active, many of the other constraints will be drug rate
constraints. Admittedly, in our formulation where the model is linear, the

y constraint is rarely active, but when it is a patient's life is probably

in peril.
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3.2 The Matrix H

Probably the largest problems in the implementation of the whole method
are the initialization and form of Hq' Several alternatives present them-

selves, none of which appears completely satisfactory.

Alternative 1: Since H, = W -1 W -T' Hqcan be initialized by deter-

0
mining the matrix W -1, forming the product W -1 WP-T and applying eq. (9)

g times. Because of the form of W (i.e., triangular with elements the

same on the subdiagonals and diagonals), only t2/2 steps are required to
form W _1.However, another t3/6 are needed to form the product. If we
then add another qt2 steps to obtain Hq’ using (9), we find that for a
20 X 20 system on the IBM 360/67 approximately 1/3 second has elapsed before
the routine has even been entered. This is entirely impractical, considering

the application of the procedure.

-]l - -
Alternative 2: The matrix %.can also be written as Hq =W ~Mdﬂ T;
where Mo = I and
T
= -T
M,
v o - ( lw l+l)(M W oo o)
idl T4 W T e (7 Lo (11)
S+l Mi 1+l)
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This last formula is derived from eq. (9).
To update the Hq matrix when the constraint matrix has not changed,

we use the formula

Mq+l = Mﬁ A+ B
where
=-T —-T T
- (MW g)(AM¥ g)
A= - [* q =
A ST
51 Y
and _ -T _ -T
- ¥y (MW Ty
b B = - 3
T
Zi q Ii
where
vy = &(x ) - alx).
Since the gradient 9 has the form g -’5 v, where v =(ﬁk~+ (h:{)),

the formula for A and B can be written even more succinctly as

X(M "V, )(M Vi)

= ]

(ngi)
_ (M z, )(M z, )
vy n_ v,
-iZq i
where
v, = W% +(h-r))
and

2., =V, - Vv,.
~1 ~141 ~1
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h .
To drop the qt constraint we set

- . T
_ (e, _y 2g)(WPy_; 1)
M M+ T (12)
q-l q n P n
~q g-1 <q

This alternative is not as impractical as it might appear, for the

following reasons:

(a) The function of the matrix H is to project g(x) into the correct
flat. In the algorithm it is used only to determine the correct direction

5( 1)' Since we know that g()ji)has the form W'Tvi, the s vector is simply
81 = W qu"ii. Although we now need t% more operations to compute Ei’ we

(e}
c . .
have also saved t°/2 operations since we never need to compute g(Xi)

explicitly. Moreover, since M v. is computed here,to update the formula
q~1

~.

for A requires fewer steps.

(b) If only the x constraints are active, the vector Pq-lnq is a

unit vector which has a 'l' or a '-1' in its qth component. Thus, no

work is required to form WP Further, because W is lower triang-

n .
q-1~q
ular, the first g-1 elements of W Pq-lnq are zero. Therefore, to drop
a constraint requires (t-q)2/2 operations, which admittedly is more than

in the previous alternative.

(c) If only the x constraints are active, the formula (11) for forming
'Mq initially can also be simplified. Since W -T is an upper triangular
matrix, if n. corresponds to constraining the ith component of X, then
the last (t-i+l) components of the vector W Tn will be zero. If the

~1

constraints on x are initially added so that.the last nonzero element of
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the i column of WT is above the last nonzero element in the i+l column

of Kﬁ then after i+l applications of (11) M will have the form

i+l
-
ETo R B 8

where A is a j X Jj symmetric matrix, and D is a diagonal matrix of
. . h . o
rank t-j and the 1+lt constraint corresponds to constraining X_.

J
Accordingly, forming the Mq matrix requires fewer steps than one might

have anticipated originally.

Calculatigg a vector a = W _lb is equivalent to finding the vector
a such that ﬁ%'= b. In our problem if t > n, where n is the dimension
of the filter system used to determine W, W "L is a full lower triangular
matrix with the same elements on the subdiagonal. However, W has a triangle
of size t-n in its lower corner that is zero. If b has just one nonzero
component, which is sometimes true when eq. (11) is applied, then naturally

we shoulciljse-hfl. In other cases we can do backsubstitution to find a
t-n e .
and save operations.

This formulation still suffers from the fact that approximately % qt2
operations are required to form the original matrix By It might seem
- better to start with no constraints active and encounter them one at a time,
but computational experience shows that most of the first constraints
activated are later deactivated, and that it doesn't pay to compute s

and minimize f along s each time a constraint is made active.
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Although the form of H Just presented is not that useful for our

particular problem, the idea might be worth considering for other problems
T
whose object function has the form (A{j?) (Ax-D) .
A

Alternative 3:If we set H =P @G - We have

g -i g Tt W Tt W oW T

If A=W -TN, then this becomes

gl -7 taat) e w T

- - - - -T
-7 1 - ATyt AT T

If we start out with the exact H, and change H just by updating A, then
A

H will always be equal to -P G (barring roundoff). Thus the update formulas
for H when the constraints are not changed will never have to be used.

=T . s
Since g 1is of the form W ¥V, then s = Heg simplifies to
s = W Hz-a(aTa) ATy

This looks horrendous, but if we put H = QR, where QQT = I, then RTR - ATA

. T,\-1
and computing (A"A)™"v requires only g’ operations. on the average the

: 2 .
calculation of s takes about +t“/2 + q(3/2t+q) operations. The update of
A' involves only updating R and is not prohibitive. Actually, using'this
alternative is the same as using the method to be described in the next

section, except that fewer steps are required there.

Alternative 4! Begin with H = I and forget that the inverse Hessian

is known. Applying eq. (9) g times when only x constraints are active

~

results in the matrix H where
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0 when i #j

ij
0 where constraint on X, is active and i = j
1 otherwise.
Consequently, the initialization procedure requires no computation, and
movement toward the required minimum begins immediately. This approach
seems best when there are many constraints active, since H will equal
;G-l after t-g iterations. However, usually about t/3 constraints are

active and progress is slow; 1t takes twice as long to get to any point

as 1t does in the method described in the next section.
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k., The Algorithm in the Transformed System

As mentioned in section 2, the problem can be reformulated by setting

Z = ﬁ~ + er. In this case we want to minimize
f(z) = L1 (5%,
L (z"2)
where
8<z<Db (13)
c<wlz<d (14)

Eg. (13) corresponds to the blood pressure constraints, and (14) corresponds

to the drug rate constraints.

In this situation the gradient of f is given by
g(z) =z
and the inverse Hessian of f is given by

G-l(Z) = I,
where I is the identity matrix.

The matrix P described in section 2 is then given by

P=1-n(nNN

where the columns of N contain the unit normals to the hyperplanes which
constrain z to a flat M. Therefore, according to (5), the minimum of f(z)

'"for z constrained to M is given by

ISR, SIS I
Ziy =2 - (I-N(NN) "N7)z,

(15)
If M is defined by the g relations
T .
n,z = Al" i=1,...,q

~12

(assuming g constraints 'active), where ﬂi is known for i =1,. ® *,q,
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eq. (15) can be rewritten as
Zigl T OT
where

s, =z, - N(NTN)'lz.
~L ~1

If (NTN)-l can be computed easily, then a matrix H to approximate
BT s unnecessary, Further, the minimum of f along s in M)which
is the minimum of f in M, can be determined immediately.

The main disadvantage to reformulating the problem is that now, when
only the drug\rate constraints are active, the matrix N is more 'full'
than in the previous situation. Also, (NTN)__1 is not the identity matrix
and we cannot easily obtain the upper bound on H(NTN)H;l that eq. (7)
required for a good criterion for dropping a hyperplane. Because of this
we decided to drop a hyperplane whenever -g(fi) pointed to the interior
of the region. This strategy had the disadvantage that constraints were

sometimes dropped and then reactivated.

4.1. Determining (NTI\I)-l L.
Assume NT is g x t. Since N can be written as N = QR where
QIQ = QQT = I and R is a g X g upper triangular matrix, we can write
(8'N) = RQTQR = R'R.
, Th -1, . .
In our algorithm we must compute the vector u=(N ) {: This is-equivalent

to determining u such that

(N'N)u = £ or RRu = £.
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Since R is an upper triangular matrix, u can be determined using two

backsolve operations; 1i.e.,

RTm = 8,
and
Ru = m.

Because each backsolve requires about q2/2 steps, we spend almost as much

time multiplying £ by (NT )_1 to determine u as we do working with R.

So instead of determining (NT )_1, all we need to do is determine R. This

can be done by performing g Householder transformations, which requires at

most (t-q/3)qz‘steps, where t is the dimension of the system. In actual

practice we can order the columns of N in such a way that the last o,

elements of the kth column are zero, and o, > oo for k =1,2,...,q-1.

In this case, it is necessary to perform about  2( % % (t-nk-i)) operations.
k=1 irk

In practice (t-nk-i) is small.

As shown in Gill and Murray [1], updating R when a new constraint is added
is not difficult. Let N represent the matrix whose columns are the unit
normals to the intersection of g-1 hyperplanes in which z 1ies. Assume
that a new constraint must be added.

Let N = [N:'nq]. If N = QR, then

NN NTn R'R . N
nTN: nin alN * nl
%a *q'q ~a ¢ “a~q
If we set R = R i r], then
0:ad
NN =RR= |RR. Rr
“R : rTr + d?
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Heace, to determine R we nced to find r and d, where

T T
R r= N Eq.
1/2 1/2
and d..—.(nTn -rTr) = (1- rTr)

Because g is orthogonal the above square root is real.

T , ) ) .
Since R- 1is a lower triangular matrix, Che process requires one vector

multiplication to find Nan and one backsolve to determine £ , and thus

takes about t-q + q2 /2 steps. In actual practice the nonzero elements of X

and n_ are known a priori and %( t+q) would be a more accurate estimate
~q

of the number of operations required.

When a constraint is dropped the corresponding column must be deleted

from R. The matrix then looks like

—

.th , . .
If the i~ column is eliminated-we have g-i elements below the diagonal
which must be annihilated. Using Given's rotation matrices as suggested

by Golub in [3] this can be done is 2(q-i)2 operations.
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4.2 The algorithm in detail.

Using the results of the previous section, the whole algorithm to solve
the problem can be written as follows:

1. Determine an initial guess x, with g constraints active, and

~0
- - -1 .
set Zy = W xo + h-r. Compute W if this has not been done previously.
Determine the bounds Ei, i =1,...,4t, for the transformed system.
2. Set up the constraint matrix Nq_ where Z, satisfies ETi Zy = zi,

1 <i<q. Using Householder transformations, form the matrix Rq where
T
N = R and @Q = TI.
Q?l.q Qqu

3. Compute the vector u where

and

(Note that if step 3is entered from steps 4 or 6,most of the elements of

m have already been computed.)
Let u, = min u..

1<y<aq?

th

b, 1f u, < 0, delete the i column from N, using Given's rotation

matrices, update R, set g = g-1, and go to 3.

If Uy > 0, then form §j=+2; - N-u.

5. Determine T

A.. = min A.j = = J =a+l,...,kt.
M2 0 25 5
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Here we are assuming that z 1is constrained to lie in the &main &fined by

n?z > L.

P 5 1<§ <ULt

Note that + n, is either one of the rows of W ~0or a vector with only

T
~J
one nonzero component.

6. If N < 1, add the corresponding column to Nq,forn1

Ry+1= [qu £] , where
0:4d RII‘ = NTIl.
a~ q~1
and
T
d=sqrt( 1 - r. r);

set q = a+l, z; ., = 2Z; - hi S:5 and return to 3.
= -1
7. Set z =12y - s and x =W (E + r-h).

x 1s the required drug schedule.
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In our program we have ordered the constraints on z so that the first
2t constraints correspond to eq. (lh), and the last 2t constraints cor-

respond to eq. (13). If we write the constraints as

T .
BJE >_';ej’ j = l,2,ooo,’+t,
we notice that
T T
n, = =-v, 1< <t
o ~J, _J > Y
T T .
= - 2t+l1 < < 3t
25 = "Sj-2t’ HIIs3%
B oT o gt t4l < J < 2t
=3 T TRt 3t+l < § < 4t.
" = - , , . .th
Here w? is the jth row of W L and ej is the unit vector in the jt

coordinate direction.

The fact that the matrix W -1 is part of the constraint matrix and
enters into the transformation of variables simplifies the programming.
Step 5in the algorithm just outlined'essentially requires'

the computation d%-lz_i and W _1%. We know that

~. ~.

20 = WEg + DT
and
2, = %49 A Ws._l, i>0,
which means
Wl —x + W 'l(h,r) (16)
-0 0 ~
and
= -1 = -1 = =1 .
W z; = w 2i.1 " AW Si.12 & > 0. (17)
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Since W -'(n-r) is needed to compute the bounds for eq. (14), every
quantity on the right-hand sides of (16) and (17) are known for i > 0.
Thus, the computation of W _12 in step 5 requires at most t multiplications.

Similarly, recovering x in step 7 does not involve a matrix multi-

plication. We are to set

_— %1 n —_
X =W Ei+1 W (q_;j
But this means that
X =W _lzi AW -lsi -W -1(2-3). (18)

Since every quantity in (18) is known, x can be obtained immediately.
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5. Obtaining an Initial Guess

On the average the program can run about 10 times before any of the data
is changed. Each time the drug values move up 1 time interval, so that the
time represented by X during the ith procedure call is the same time represented
by X; 4 on the (i+l)St procedure call. If neither r nor W has changed,
we may expect that the values Xs,.«.,Xy for the previous time interval might
be excellent guesses for Xpsee Xy g In fact, if we allow the process suf-
ficient time to attain the minimum in D during the last time interval, then

during the next time interval only a few iterations should be required. An

initial estimate for X, can be obtained by looking at

n

e = Wr-r- Tow.x_ ... )/w,.
0 120 17t-1+41 1

If e <0, set X, =0.If e >50, set Xy = 50; otherwise set x; = e.
Usually when W is updated the changes in W are not that large.

If the drug rate schedule from the previous call are still feasible, which is

very likely, they may be used as initial guesses. However, when r is changed

(which occurs much less often), it is wise to restart the process.
When restarting a process we have several options. We can set

X. "_jL J = 0,...,t. (19)
T oW
k=1 k

This is the steady state solution which was Schade's original algorithm.

These values are always feasible, put can be far from optimal. If other

methods give answers violating the blood pressure constraints, the values given

by (19) seem to be the only way to start.
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Another way to start the process 1S to take advantage of the triangular
shape of W and set Xy = (hi-riisaewai_J+l)/wl, where £ = min(i-1,n)

and n is the dimension of the filter system used to determine the W's.

= 0.
If at any time a constraint on the blood pressure is violated, then revert

to (16).

If x; is greater than 50, set X, =50; if x; < 0, set X,

'The main problem with the method above is that too many constraints

are usually activated that later must be dropped. 1he initialization

procedure has been modified in several ways to help alleviate this problem.

(1) If X, 0 and X1 =50, set x; = 10 and recalculate X,

i+l’
(2) If X, 50 and X = 0, set X, =40 and recalculate X,

(3) If the W matrix has been updated and X,

i+l”’

1 =5O or X._ = O,

i-1
and 0 < xi<<50,then the column corresponding to the constraint on

Xi-1
is not included in the N matrix.

If the same constraint (upper and lower) holds for the first p components
of x,

and the next t-p components are unconstrained, then there is no need

to call the function minimizing routine.
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5.1 Computational Experience

The algorithm described in section 4 has been implemented in Algol W on
the IBM 360/67. For a system of 20 variables and 80 constraints approx-
imately 1/3 second is required to determine the correct drug rate schedule
initially. When the matrix W has not been updated and the results of
the previous time through the algorithm are used, the procedure requires
less than 1/10 second. We think that the algorithm will be operationally
practical when it is integrated into the real time system already running
on an HP 2116B machine.

During the testing of the algorithm several facts were observed that
are worth mentioning:

When computing Aj we must insure that g;é > 0. If the jth hyperplane
has just been dropped, it is possible that because of roundoff error the
quantity fgf% - Lj will be slightly negative. . the quantity ETE is

tive, this constraint will be the first one encountered. Accordingly,
we must check the sign of égf before computing h3.

If the W matrix has not been updated and we use information from the
previous time interval, then 201 ? i=1,...,t-1, need not be recomputed.
However, it is still necessary to recompute R and the bounds on z. In

'fact, in this case more time may be spent computing R than in finding the

minimum.



Our solutions supported the ‘'bang bang' principle of control
theory. Often they indicated that the drug should be administered at
50 drops per minute for a period of time, then at 0 drops per minute,
and finally back to 50 drops per minute. This is unfortunate from a
computational point of view because it means that many constraints are
active and more computer time is necessary per iteration. It is also
unfortunate from an operational point of view. In this situation dif-
ferences often arise between what actually occurs and what the model
thinks has occurred. If an interval of time is considered to be 20
seconds, then a schedule of 50-0-50 is effectively a schedule of 50-3-50.
Updating the model smoothes out some of the inconsistencies between the
model and reality.

Roundoff error does accumulate but not catastrophically. Given
the uncertainties in our data and the imprecision in our apparatus, we
are obtaining solutions as accurately as we deserve.

Our solutions also verify the control theory principle that solu-
tions of the problem in two distinct time intervals do not solve the
problem when these two intervals are merged into one large interval. Of
course, 1if this principle were not true, we could solve the problem once,

and for successive time intervals tack on a local solution.
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The active constraints can only be linearly dependent if the patient
is dead, or if the person running thelprogram sets the desired blood pressure
outside the prescribed bounds. Therefore, linear dependence was not considered
in the implemented algorithm although it can easily be detected by checking
d when updating R.

When a blood pressure constraint is activated, only q? steps are required
to update R as opposed to the formulation presented in section 3. Also,
adding this constraint does not require added attention or code. This makes

the whole program shorter and, hence, it can be more easily translated into

HP assembly language so that it can be integrated into the system now running.
The procedure given in section 5 for determining z often activates too
many constraints which must be dropped. It was thought that if in the beginning
no constraints were activated, then the ones hit during the execution of the
main algorithm would still be active when the minimum of £ (z) for z €D
was found. This was not the case. Many times the constraints encountered
first were the ones later dropped. Furthermore, to construct R initially
takes fewer steps than to add one column at a time.
In the table below an idea of the number of multiplications required in

each phase of the program is given. 1p practice the quantity g is about

t/3. Calculations which involve o(t) operations have not been included.



Let t

q
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Operation Count

dimension of the system;
number of active constraints;

dimension of the filter system or the number

1. Needed when W and r are updated:

a)
b)
c)

initial guess of x

computing W

initial guess of z

2. Needed every time subroutine is called:

a)

b)

creating R

bounds for =z

3. Operations needed for first full iteration:

a) determining s

b)

determining A\

4. Dropping the ith constraint:

a)

b)

updating R

recomputing s and A

5. Adding a constraint:

a)
b)
c)

updating R for drug rate constraint
updating R for blood pressure constraint

recomputing s and A

of nonzero diagonals of W.

(t2 - n’ )/2
(n°)/2
(t2- n’)/2

(t-a/3 )a°/2

t2/2

q? + tg/2

(t-a)t/2

2(g-1)?

(q-i )2/2 + &°/2

2
tq/q + q/2
2

qQ°/2

q2/2 + t2/2
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