SLAC-133
STAN-CS-71-226
UcC-32

(MISC)

SIMPLE -- A SIMPLE PRECEDENCE TRANSLATOR WRITING SYSTEM *

JAMES E. GEORGE
STANFORD LINEAR ACCELERATOR CENTER
AND
COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

Stanford, California

PREPARED FOR THE U.S. ATOMIC ENERGY
COMMISSION UNDER CONTRACT No. AT(04-3)-515

July 1971

Reproduced in the USA. Available from the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia 22 151.
Price : Full size copy $3.00; microfiche copy $0.95.

“Supported in part by the National Science Foundation, Contract No. 2SFGJ687.

ABSTRACT

SIMPLE is a translator writing system composed of a simple precedence
syntax analyzer and a semantic constructor and is implemented in PL/I It
provides an error diagnostic and recovery mechanism for any system implemented
using SIMPLE. The removal of precedence conflicts is discussed in detail with
several examples.

The utilization of SIMPLE is illustrated by defining a command language
meta system for the construction of scanners for a wide variety of command

oriented languages. This meta system is illustrated by defining commands from

several text editors.

- iii -

TABLE OF CONTENTS

Introduction - - - « « « . e e e
Input Data to Simple’s Executive
Syntax Analyzer and Parser. L
3.1 Definitions and Notation
3.2 Transforming a Grammar to Simple Precedence

3.2.1 Removing Precedence Conflicts

3.2.2 Transforming a S-Precedence Grammar to Simple
Precedenceo oo

3.2.3 Transformation Examples
3.3 Input Conventions for the Syntax Analyzer
3.4 Syntax Analyzer Output
3.5 Parser. oo oo e e e e
3.5.1 Declarations in the Parser.
3.5.2 Declarations and Initialization Inserted by the Syntax
Analyzero
3.5.3 Symbol Recognition.
3.5.4 Parsingo
3.5.5 Error Recovery and Diagnostics.
Semantic Constructoro 000000 oo
Possible Extensions - - - . -o oo o000
5.1 Automatic Syntax Correction « « « « « « « v v v w = = = = « = «

5.2 Parser Modification to Allow Simple Manipulation of the
Parsing Stack by the Semantic Procedure

- v -

10
11

18
18

27
28
29
32

32
34
35
39
i)
43

43

6. Example Applications of Simple - - - - -o
6.1 Semantic Constructor. - - - « - « « « « o . ..o

6.2 A Command Language Meta System
6.2.1 The Model - . . - « « « o o o oL oL

6.2.2 The Table Generator.

6.2.3 The Scanner. - . « « « « o oo w e e

6.2.4 Examples Using the Command Language Meta System

Bibliography. .

Appendix A. . .
Appendix B. ..
Appendix C. . .
Appendix D. . .

Appendix E. . .

6.2.4.1 WYLBUR Example.

6.2.4.2 CRBE Example

Appendix F. o oo

Appendix G L L L L L L e e e e e e e e e e e e

70
15
81
85
89

LIST OF FIGURES

SIMPLE block diagramEaZgg
Example SIMPLE application o 3
Basic parsing algorithm. 31
Symbol recognition. 36
Flow chart for LOOK - the get next symbol procedure 37
Parser flow chart 38
Command language meta system - table generation 51
Command language meta system - scanner.............. 51

-Vi -

1. INTRODUCTION

SIMPLE is a specialized translator writing system designed to aid the im-
plementation of an experimental graphic meta system in PL/I (George 1969 a & b).
Although intended for writing preprocessors for PL/I, experience has demonstrated
that these techniques can be used to implement various specialized languages
(George 1967 a & b; George and Saal 1971).

SIMPLE is composed of three components: an executive, a syntax analyzer,
and a semantic constructor as illustrated in Fig. 1.

The executive reads a block of data (i.e., variable initialization) and then
passes control to the syntax analyzer and then to the semantic constructor.

The syntax analyzer reads the input syntax and constructs parsing tables which
are then merged as data in a general skeleton parser, in source form (PL/I); this
merged program is a specific parser for the language defined by the syntax and
includes a parser, automatic error recovery and error diagnostics. The syntax
analyzer has two output files: the specific parser, in source form (PL/I), and
diagnostics related to the syntax.

The semantic constructor reads the semantics to be associated with the previous
syntax and constructs a semantic procedure compatible with the specific parser; it
also has diagnostic output for errors. The semantic constructor is defined using
the syntax analyzer and a skeleton parser containing a short, hand-coded semantic
procedure.

A language defined using SIMPLE functions is illustrated in Fig. 2. The input
text is processed by the parser which calls the semantic procedure at appropriate
times. The language processor has access to two output files: a source output

and a diagnostic output. Roth of these files are available to the parser and the

SYNTAX

DATA

SIMPLE

EXEC

SYNTAX™

GENERAL
SKELETON

PARSER

- -
SYNTAX DIAGNOSTIC DIAGNOSTIC SEMANTIC
ANALYZER [| OUTPUT OUTPUT CONSTRUCTOR [| SEMANTICS

‘ |

 J
SPECIFIC SPECIFIC
PARSER SEMANTIC
PROCEDURE

FIG. I--SIMPLE block diagram.

1534B5

INPUT SPECIFIC ____J DIAGNOSTIC

SPECIFIC l/ R l
SEMANTIC +—— s} SOURCE

PRC)CEDURE '| | outpuT

1534A2

FIG. 2--Example SIMPLE application.

semantic procedure. A typical application would be to process input text and
generate an equivalent source text (say PL/I)and error diagnostics, if any.

The source output can then be compiled using a standard language processor.

2. INPUT DATA TO SIMPLE’S EXECUTIVE
The executive program initializes variables to be used by both the syntax
analyzer and the semantic constructor. Any of these values may be changed by

name value pairs appearing in the data file, SYNDATA (the data is read using the

data directed input option in PL/1 and, hence, consists of the variable name, an

"= and the value as a legal constant in PL/1),

NAME TYPE DEFAULT EXPLANATION
ERRORSCAN CHAR(2 0)VAR *END* That symbol in the syntax which
is used in error recovery. When
an error is detected when parsing,
all current and future text until
the first occurrence of this symbol
is erased.
FILE 1 CHAR(8)VAR SYNTAX Syntax equations input file.
FILE2 CHAR(8)VAR SPARSER Skeleton parser input file,
FILE3 CHAR(8)VAR PARSER Parsing program output file.
FILE4 CHAR(8)VAR PSYNTAX Syntax diagnostic output file.
FILES CHAR(8)VAR SYNDATA Input file for SIMPLE executive.
FILEG6 CHAR(8)VAR SEMANTICS Semantic input file.
FILE7 CHAR(8)VAR PSEMANT Semantic diagnostic output file.
FILES CHAR(8§)VAR SEMANT Semantic program output file.
INTEGER CHAR(20)VAR INTEGER That symbol used in the syntax
for an integer.
MLIM FIXED BIN 20 Maximum number of symbols in

The variables are:

the syntax,

NAME

MMLIM

NLIM

PARSER-NAME

QUOTES

RLIM

SCAN-START

. SCAN-STOP

SEMANT NAME

SEND

SEQUENCE

SINIT

SSEMANT

TYPE

FIXED BIN

FIXED BIN

CHAR(8)

CHAR(2 0)VAR

FIXED BIN
CHAR(2 O)VAR

CHAR(2 0)VAR

CHAR(8)

CHAR(2 0)VAR
CHAR(2 0)VAR

CHAR(2 0)VAR

CHAR(2 0)VAR

DEFAULT

20

20

SEMANT

"

END

CODE

CODE-OUT

END-SYNTAX

SEMANTICS

SYNTAX

NO-SEMANT

EXPLANATION

Maximum number of non-
basic symbols in the syntax.

Maximum number of
productions in the syntax.

Name to be substituted for
PARSER in FILEZ2; the
procedure name for the
parser procedure.

That symbol used for quotes
to force the STRING class.

Maximum number of symbols
on the right side in any pro-
duction in the syntax.

That symbol not in the
syntax which will restart
the parsing,,

That symbol in the syntax
which, upon entry into the
parsing stack, causes all
input to be ignored by the
parser until the symbol
after SCAN-START.

Name to be substituted for
SEMANT in FILE2; the
name of the semantic pro-
cedure to be called by this
parser,

Terminator for syntax.
The initial symbol of the
syntax; when it occurs in
the stack, the parsing is
terminated.

Initiator for syntax analyzer.

Indicates no semantics for
this production.

NAME TYPE DEFAULT EXPLANATION

SSEP CHAR(2 0)VAR ¥ =X Separator for left-right
sides.
STERM CHAR(20)VAR * ok Terminator for syntax
) equations.
STRING CHAR(2 O)VAR STRING That symbol in the syntax

used for the string class,

SYM(*) CHAR(2 0)VAR SYM(1)="SEMANT' Used for error recovery;

) ' those symbols which are
SYM(2)='CODA expected to reside in the

SYM(3)="INTERPRE- ith position of the parsing
TATIONS' stack.

SYM(4...20)=""

TERMINAL CHAR(20)VAR *END-SEMANTICS * That symbol used to force
the parsing to be completed.

WORD CHAR(20)VAR WORD That symbol used in the
syntax for the WORD class.

A listing of the executive is given in Appendix A.

3. SYNTAX ANALYZER AND PARSER

A simple precedence syntax analyzer was chosen for its simplicity, power

and availability in a form suitable for modification. The basic analyzer was trans-

lated to PL/1 from an ALGOL listing obtained from N. Wirth (Wirth and Weber,

1966 a & b). Many sections were modified to take advantage of features of PL/1,

The changes to the analyzer are:

1.

The input section was modified to be free field and to mark productions
with no semantics;

Maximum number of right part elements is variable;

Three terminal classes are recognized rather than two (this holds in
the parser also);

The output section inserts PL/1 declarations into a skeleton parser

rather than punching tables.

A complete listing of the syntax analyzer is given in Appendix B.

The skeleton parser is also a translation of an ALGOL parser (Wirth and Weber,

1966a, Shaw 1966) with the following modifications:

1.

2.

The parser uses precedence tables rather than precedence functions;
Three terminal classes are recognized rather than two;

An additional input scanner allows direct code emission independent of
the parsing section;

Error recovery and diagnostics are provided and related to the grammar;
The semantic procedure is not called for those productions with no

semantics.

Thus the output of the analyzer is a PL/1 program containing the parsing tables,

error recovery and diagnostics; a listing of the skeleton parser is given in

Appendix C.

3.1 Definitions and Notation

The formal definitions are included here for completeness (Wirth and Weber
1966a, Shaw 1966, Feldman and Grieé 1967).

Upper case letters, special characters (*,+...) or a string of these enclosed
by <and >represent symbols.

Lower case letters represent strings of symbols.

Script letters represent sets.
An individual statement of the syntax is called a production and has a left side
and a right side separated by "::=".

Terminallor basic symbols are those which appear only in right sides.

Nonterminal or nonbasic symbols are those which occur in left sides.

A grammar is a set of productions.

A grammar is a simple precedence grammar if:

1. The productions contain exactly one nonterminal symbol which appears
only as a left side (i. e. , the goal);

2. All left sides are single nonterminal symbols;

3. The productions contain a nonempty set of terminal symbols;

4. No two right sides of any pair of productions are identical;

5. Between any two symbols of the grammar one and only one of the
precedence relations (<, =,> or no relation) holds.

The precedence relations are defined by:

1. A =Biffthereis a production of the form U: := XxABy in the grammar;

2. A<Biff there is a production of the form U: : = XxAVy and B @(V);

3. A> B iff either
there is a production of the form
U::=xVBy and A&?(V), or
there is a production of the form
U::=xVWy and Ae &#(V) and Be¥Z (W),
where,
L(U) = |S|Hz(U::= Sz) or (Az(U::= Vz)
and Se £(V))
AU) = |8 Hz(U: := z8) or
(Hz(U::= zV) and SeZR(V))
where z may be the null string.

3.2 Transforming a Grammar to Simple Precedence

In many cases, the grammar for a given language must be manipulated
before it is a simple precedence grammar. The problem areas are the
requirement for unique precedence relations between any two symbols of the
language and that no two productions have identical right sides. Within the
literature, many formal properties about precedence languages are discussed
and each uses his own definitions. For presenting these results, the definition
of a simple precedence grammar is given in Section 3.1 and S-precedence is
defined by :

Simple precedence = S-precedence plus unique right sides

Some of the formal properties are:

1. Wirth and Weber's parsing algorithm yields a unique canonical
parse for any sentence of any simple precedence language
(Wirth and Weber 1966a, Shaw 1966).

2. A context free grammar can be transformed to a simple precedence
grammar but the terminal language may be altered (Presser 1968;

Gray 1969; Presser-and Melkanoff 1969).
-10 -

3. Any context free grammar can be transformed to a S-precedence
grammar, and there is no deterministic parsing algorithm for all
S-precedence grammars (Fischer 1969). The transformation proof
requires Chomsky normal form of a grammar and is not useful as a
practical algorithm.

4. Any context free grammar can be transformed to a S-precedence
grammar without modification of the terminal language (Learner and
Lim 1970; McAfee and Presser 1970). These proofs are different
but both are directly useful as practical techniques.

5. Any context free grammar with unique right sides can be transformed
into™a S-precedence grammar with at most two duplications of any
right side of any production (Learner and Lim 1970).

I had also studied these transformations using methods similar to Learner

and Lim’s but was unable to complete the formal proof (George 1969c). The

proof is short with the proper form but does not lead to a practical algorithm

(Fischer 1969); Learner and Lim’s approach results in a more difficult proof
but yields a practically useful algorithm; it is also intuitively easier to under-
stand.

3.2.1 Removing Precedence Conflicts

Precedence conflicts* can be removed by several means, however the
method presented here will be restricted such that it does not cause a change
in the terminal language or require a change in the associated semantics of
any production of the grammar. The changes of interest are those which could

be incorporated in the syntax analyzer of SIMPLE and be invisible to a user.

*
A precedence conflict means that more than one of the precedence relations
holds between two symbols of the grammar.

-11 -

From the formal work, this can not always be accomplished for an arbitrary
context free grammar, but if the terminal language is altered or the associated
semantics must be modified, then the user must make these changes before
SIMPLE can be utilized. However, many times the changes required are
significant and the user should be conscious of them.

The techniques presented are intended to be intuitive and easy to under-
stand.

An artificial production is a production with no associated semantics and

only one element on the right side (Shaw 1966, p. 145; also called an inter-
mediate production, Feldman and Gries 1967, p.28).

A left restricted expansion (LRE) of A replaces A in the right sides of

all productions , except where it is the left-most symbol, by the same new
non-terminal Ai and adds the artificial production Ai: :=A tothe grammar
(Learner and Lim 1970).

A right restricted expansion (RRE) of A replaces A in the right sides of

all productions , except where it is the right most symbol, by the same new
non-terminal Ai and adds the artificial production Ai 1 :=A to the grammar
- (Learner and Lim 1970).

Lemma 1: The precedence relation =between two symbols A and B (i.e. A = B)
can be changed to < by a left restricted expansion of B.
Proof: Let A = B, then productions of the form

U :'=x A B y exist

By the LRE these become

U = x A B1 y

and B1 ;2= B is added to the grammar

Thus, A = B1 and A< B.

-12 -

Lemma 2: The precedence relation = between two symbols A and B (i. e. A = B)
can be changed to > by a right restricted expansion of A.
Proof: Let A = B, then productions of the form

U ::=x AByexist

By the RRE these become

U.:'=x A1 By

and A1 ::=A1is added to the grammar

Thus, A, = B and A > B.

1
Lemma 3: The precedence relation < between two symbols A and B (i.e. A < B)
can be changed to > by a right restricted expansion of A.
Proof: Let A. < B, then there exist productions of the form

U ::==xAVyand BeZ (V)

By the RRE these become

U ::= xA1VyandBe£’(V)

and A1 1= A is added to the grammar

Thus A1 =V, A1< B and A > B.

These lemmas provide the techniques for removing precedence conflicts
between two symbols; the changes in the grammar do not affect the terminal
language or the associated semantics. The precedence conflicts which can
occur between any two symbols are (=, <), (=,>), (<, >) and (5,<, >).

Th 1: The precedence violation pair (=, <) between two symbols A and B
(i.e. A=B and A <B) can be removed by a left restricted expansion of
B (i.e. change the = to < by Lemma 1); however, new violations may be

introduced.

-13 -

Proof: Lemma 1 for removal of the original conflict.

No left sets are altered by the expansion and some right sets

may have the new symbol Bi included, hence relationships between

symbols other than A, B or Bi are unchanged. The only symbols
whose relationship may cause vioiations are those adjacent to a
B in the original grammar.

Let the symbol Z occur to the left of B and Y to the right of Bin

the original grammar, then

Orig. relation new relation (after LRE)
Z=B Z=Bi Z<B
7Z< B Z<B
Z>B Z>B Z>B; (possible)
B=Y B=YorB; =Y &B>Y
B<Y B<YorB, <Y&B>Y
B >Y B>Y

Thus, the conflicts which could be introduced are
B (=,>) Y from productions of the form
U:=B Yd andW:i=eVBYTf

and
B (<,>) Y from productions of the form
U ::=BTd and Y €Z(T)

Wii=eVBT{f and Y €e£(T)

One might consider removing the violation pair (=, <) by applying a right

restricted expansion to A (i.e. changing the = to > by Lemma 2 and the

<to>by Lemma 3); however, this leaves the original violation pair between

A. and B.
i

-14 -

Th 2: The precedence violation pair (=, >) between two symbols A and B
(i.e. A=B and A>B)can be removed by a right restricted expansion of
A (i.e. change the =to> by Lemma 2); however, new violations can be
introduced.
Proof: Lemma 2 for removal of the original conflict
No right sets are altered by the expansion and some left sets
may have the new symbol Ai included, hence relationships between
symbols other than A, B or Ai are unchanged. The only sumbols
whose relationships may cause violations are those adjacent to an
A in the original grammar.
Le\f the symbol Z occur to the left of A and Y to the right of A in

the original grammar, then

orig. relation new relation
A=Y Ai =Y A>Y
A<KY Ai <Y A>Y
A>Y Ai<YorAi= Y and A>Y
Z =A Z =Aor Z=A&Z<A
Z <A Z <A Z < Ai (possible)
Z > A Z > A Z>Ai (possible)

Thus the conflict (=, <) could be introduced between Z and A from
original productions of the form
U:=d ZA andW li=e ZAVI{.
Th 3: The precedence violation pair (<, >) between two symbols A and B
(i.e. A<B and A > B) can be removed by a right restricted expansion of A
(i. e. change the < to > by Lemma 3); however, new violations can be

introduced.

-15 -

Proof: Lemma 3 for removal of the original violation.
Second part of Theorem 2 for rest.
Th4: The precedence violation triple (=, <, >) between two symbols A
and B (i.e. A =B, A<B and A > B) can--be removed by a right restricted
expansion of A (i.e. change the = to > by Lemma 2 and the <to> by
Lemma 3); however, new violations can be introduced.
Proof: Lemmas 2 and 3 for removal of the original conflict.
Second part of Theorem 2 for rest.
Th 5: A context free grammar with unique right sides can be transformed
to a S-precedence grammar with at most two duplications of any right side.
Proof: Find all the violations between two symbols A and B.
Case 1: A (=, <) B
Theorem 1 substitutes B1 ::= B and the only B's remaining are
B1 =B, and
U :+= BY where y may be null
The only violation which can be introduced is one between
B and C, where C occurs immediately toright of B in some
production.
Case A: B (=, >) C

Theorem 2 adds B, ::= B and changes U (=B VytoU:I=B

20

Thus, the only B's remaining are

o VY-

B1 = B (Th 1)
B, := B (Th 2)
U «% B (from original grammar)

The only violations from Theorem 2 involve symbols immediately
to the left of a B after applying Theorem 1, of which there are
none. Therefore, after two levels no new violations will be

-16 -

introduced. Further, for an expansion to be required for
B, B would have to occur adjacent to some symbol to generate
some precedence conflict; since it does not, only two duplications
are possible.
Case B: B(<, >)C
Theorem 3 adds B2 ::= B and becomes same as Case A.
Case 2: A (=, >) B

Theorem 2 leaves the following productions with A's

Al::=A , and
U ::=y A

The only violations which can be introduced is one between
A and C where C occurs immediately to left of A.
C(= <A
Theorem 1 adds A2 ::= Aandchanges U :i= y AtoU li=y A2
Thus the only A's remaining are

A= A (Th 2)

Ayii= A (Th 1)

U :=A (from the original grammar).
By Theorem 1, the only new violations which can be introduced
must occur with a symbol immediately to the right of an A
after the application of Theorem 2; since there are no symbols
of this type, no new violations will be introduced by Theorem 1.
Further, for an expansion of A to be required, A would have to

occur adjacent to some symbol to generate some precedence

conflict; since it does not, only two duplications result.

-17 -

Case 3: A(<,>) 13
Theorem 3, then same as Case 2.
Case 4: A (5,<,>) B

Theorem 4, then same as Case 2.

Learner and Lim's algorithm is recursive, but since the grammars are
finite, the number of duplicates of right hand sides is at most two, I suspect
that the algorithm does not need to be recursive, but perhaps related to the
total number of symbols of the original grammar.

3.2.2 Transforming a S-Precedence Grammar to Simple Precedence

Section 3.2. l-shows how to transform any context free grammar to a
S-precedence grammar. If the transformed grammar is only S-precedence,
it must be transformed to simple precedence before being useable within SIMPLE.
Generally, this requires a change in the terminal language or splitting of
productions and the corresponding change in the associated semantics. These
changes must be specified by the user and an example is given in the next
sec tion.

3.2.3 Transformation Examples

1. Violation pair (=, <) (Shaw 1966, example 4 pp. 139-141).

S::= E
E:= E + T
E::= T
T::= T*F
T::=F
F:i= (E)
F "= <VAR>

The violations are + = < T and (=<E.
- 18 -

For + and T,
+= T results from E:= E+T
+ < T results from E: : = E +T and Te#AT)
Using Th 1, change T to <’i‘T> resulting in the grammar;
S::=E

E::=E + <TT>

E: = <TT>

<TT>::=T

T::=T*F

T : = F
F: =)

F: := <VAR>

This removes the violation pair (=, <) between + and T, but not
the pair for (and E.

For (and E,

(= E results from F: : = (E)

(< E results from F: := (E) and EeZ(E)

Using Th 1, change E to < EE >resulting in the grammar;

s::= <EE>
<EE>::=E

E: =E+<TT>
E::=<TT>
<TT>::=T
T::=T*F
T::=F

-19 -

T::= (<EE>)

F::

<VAR>
Which is a simple precedence grammar.

Violation pair (=, >).
Consider the above grammar modified to be right recursive instead of
left recursive.
S:=E

:=T+E

=T

:=F _

E

E

Ti=F *T
T

F::=(E)
F: :=<VAR>

the violations are T = >+ and E =>).

For the T and +,use Th 2 and change T to <TT >; for the E and), use

Th?2 and change E to <EE >, resulting in the grammar:

S::= <EE>
<EE>:= E

E: .= <TT>+E
E: =<TT>
<TT>::=T
Tu=F*T
T::=F
F::=(<EE>)
F::=<VAR>

Now the grammar is a simple precedence grammar.

-20 -

Violation pair (<,>).

Consider the grammar:

N:= R

N: =S
R::=WATZX
s::=YUBZ
T:= B
U::=MA

The violation is A ><B.
A <Bresults from R:: = WATX and Be#T)
A >B results from S: := YUBZ and AeZ(U).

" Using Th 3, change A to C resulting in the grammar:

N::=R
N::=S
C::=A
R::=WCTX
s::=YUBZ
T:.:=B

U::= MA

Which is a simple precedence grammar. Note that the A in U: := MA was

not changed.

Consider the grammar:

N::=R
N::=S
Ri:=WATX
s::=YUVZ

-21 -

T:= B
U:= MA
V::=B K
The violation is A ><B.
A < B results from R: := WATX and BeZ(T)
A > B results from S: := YUVZ and Ae#(U) and BeZ(V)

Using Th 3, change A to C resulting in the grammar:

N::=R
N:: =S
C::fA

R::=WCTX

s::=YUV Z
T: =B
U::=MA
V::=BK

Which is a simple precedence grammar. Note that the A in U: := MA
was not changed.

Consider the syntax for simple assignment statement.

<STAT>::= <VAR><:=><EXPR>

<EXPR>::= <EXPR> + <TERM>

<EXPR>::= <EXPR> - <TERM>

<EXPR>::=- <TERM>

<EXPR>::= <TERM>

<TERM>::= <TERM> X <FACTOR>
<TERM>::= <TERM> / <FACTOR>
<TERM>: := <FACTOR>

22 -

<FACTOR>::= < FACTOR >* <PRIMARY 7~
<FACTOR 7: : =< PRIMARY 7
<PRIMARY >::= (<EXPR>)
<PRIMARY>::= <VAR>
< PRIMARY 7:: = <NUMBER 7~
The violations are:
<:=> =< <EXPR>
(=< <EXPR>
+ =< <TERM7
=< <TERM> two cases
X =< < FACTOR?7
/ =< < FACTOR7
This example suggests that the symbols which have been replaced must
be recorded to prevent future redundant substitutions.
Using Th 1 repeatedly, the grammar becomes:
<STAT>::= <VAR> <:=><EXPRA>
<EXPRA>::= <EXPR>

<EXPR>::= <EXPR> + <TERMA>

<EXPR>::=<EXPR> - <TERMA>
<EXPR>::= - <TERMA>
<EXPR>::= <TERMA >

<TERMA>::= <TERM7

<TERM>::= < TERM7 x <FACTORA?

<TERM>: := <TERM7 /<FACTORA>

<TERM>::= < FACTORA 7

<FACTORA7: : =< FACTOR ~

-23 -

<FACTOR>::= < FACTOR7 *< PRIMARY 7~
<FACTOR 7:: =< PRIMARY 7
<PRIMARY >::= (<EXPRA>)
<PRIMARY >::=<VAR> .
<PRIMARY 7.:= <NUMBER7
which is a simple precedence grammar.
Consider an early version of the syntax for SPIRES, an information
retrieval system (George 1967b; Parker 1967).
<SEARCH>::= <FIND7 <REQLIST >; <END>
<REQLIST >::= < CQMPSEARCH 7~
<REQLIST>:: = <REQLIST7; < COMPSEARCH >
<REQLIST > ::= < REQLIST > ; <OR> < COMPSEARCH >
< COMPSEARCH >::=<FACTOR >
< COMPSEARCH >::= < COMPSEARCH 7<OR >< FACTOR >
<FACTOR>::= < SIMPSEARCH >
<FACTOR>::= < FACTOR > < AND 7 < SIMPSEARCH >
<PHRASE>::= <WORD>
<PHRASE>::= < PHRASE > <WORD >
<SIMPSEARCH >::=(< COMPSEARCH 7)
< SIMPSEARCH >::= < AUTHOR 7< PHRASE 7

< SIMPSEARCH >::= <DATE 7< BETWEEN 7< PHRASE ~

<AND7 <PHRASE7
The violations are:
a. <FIND7 =< < REQLIST >
b. ; =< < COMPSEARCH ~
c. (=< < COMPSEARCH 7~

-24 -

d. <OR»> =< < COMPSEARCH 7~

e. <OR> =< < FACTOR >
f. <AUTHOR7 =< <PHRASE >
g. < BETWEEN?7 =< < PHRASE 7
h. <AND7 = < <PHRASE 7~

i. <PHRASE <AND7

Il
N

a. Changing < REQLIST 7to < REQLIST- 7 as specified by Th 1 will
result in the violation pair (=, 7between < REQLIST 7 and '';"" as discussed
in the theorem. This is an error which requires a production to be
split.)
b, cand d. Using Th 1, change < COMPSEARCH 7 to < COMPSEARCH- 7.
e. Using Th 1, change < FACTOR 7 to <FACTOR- 7 .
Thus, two productions with a right side of <FACTOR 7 result; the solution
is a different terminal symbol for one of the <OR >'s.
f,gand h. Using Th 1, change <PHRASE 7to <PHRASE- 7.
i. Using Th 2, change only one < PHRASE- 7 to <PHRASE+ 7.

H the correction for i is made before f, g and h, then the steps
would be:
Change <PHRASE 7 after < BETWEEN 7 to < PHRASE+ 7 and add
<PHRASE+>::- < PHRASE 7; do not change other < PHRASE >'ssince

this would remove < PHRASE 7 € R(< FACTOR 7) as specified in the theorem.

Change < PHRASE > after <AUTHOR > to < PHRASE ->,
<PHRASE+>::= <PHRASE 7to < PHRASE + 7: : = <PHRASE =-rand all
of the <PHRASE 7+to <PHRASE-~7except those where < PHRASE 7is
the left side.

The corrected grammar is:

<SEARCH>::= < FIND > < REQLIST- 7< END >

<REQLIST- >: := <REQLIST >;

<REQLIST > : := < COMPSEARCH-
<REQLIST > : := < REQLIST 7:< COMPSEARCH- 7
<REQLIST >::= < REQLIST 7.< ORA7< COMPSEARCH- >~

< COMPSEARCH- 7:: =< COMPSEARCH 7

< COMPSEARCH 7::=<FACTOR- >

< COMPSEARCH 7::= < COMPSEARCH 7< OR >< FACTOR- >
<FACTOR- 7:: =<FACTOR >

<FACTOR>: :

< SIMPSEARCH 7~

<FACTOR>::= < FACTOR 7<AND 7< SIMPSEARCH >
<PHRASE+>::= <PHRASE->

<PHRASE->::= <PHRASE>

<PHRASE>::= <WORD>

<PHRASE>::= < PHRASE 7<WORD 7~

< SIMPSEARCH 7::= (< COMPSEARCH- 7)

< SIMPSEARCH 7::

<AUTHOR 7< PHRASE -7

< SIMPSEARCH 7:: = <DATE 7< BETWEEN > <PHRASE + >

<AND 7< PHRASE- 7

*
This production was split.

*
This <OR > was changed. 26

3.3 Input Conventions for the Syntax Analyzer

The input for the syntax analyzer (i. e. , the productions) is contained in a
file whose default name is SYNTAX (setting this name is explained in Section 2).
The formal definition of the syntax is:
<SYNTAX7 : := <SINIT7<PRODUCTIONS 7< SEND 7~
< PRODUCTIONS 7:: =< PRODUCTION 7
:: =< PRODUCTIONS 7< STERM7 <PRODUCTION >
< PRODUCTION 7::= <LEFT-PART 7< SSEP 7< RIGHT-PART >
:: = <LEFT-PART 7< SSEP 7< RIGHT-PART >< SSEMANT 7~
< LEFT-PART 7: : =< SYMBOL ~
< RIGHT-;ART 7:: =< SYMBOL 7~
: : = <RIGHT-PART 7< SYMBOL ~
<SYMBOL>::= any string excluding blanks
The default values are:
<SINIT > = *SYNTAX*
<SEND 7= *END-SYNTAX*
<STERM> = **
<SSEP> = *;.=*
< SSEMANT 7= *NO-SEMANT*
The input is free field card images using blanks or a new card to separate symbols;
only the first 20 characters of a symbol are used.
In actual use there are two additional limits:
1. Upper limit on number of productions;
2, Upper limit on number of symbols in any right part.
If more productions than the limit of productions are used, then those productions

between the limit less one and the last productions are lost; similarly, for more

27 -

symbols in the right part than the limit, Note that both of these are input parameters

to SIMPLE (Section 2).

If the left part has more than one symbol then the last symbol in the left part

is used.

3.4 Syntax Analyzer Output

In addition to inserting the necessary declarations and initialization into the
skeleton parser, the syntax analyzer generates a file (FILE4 whose default name
is PSYNTAX) which contains information about the syntax and any errors. This
output consists of:

1. Productions — The productions are numbered in the order that they are
read in and-this number is used to select the applicable portion of the
semantic procedure.

2. Basic and nonbasic symbols — The basic and nonbasic symbols are
assigned a unique number,

3. KEY and PRTB tables (Shaw 1966a p. 194) — These are used by the parser
in determining the production number and the left part of the production
of a reducible substring. ‘|KEY(i) represents for the e symbol (i cor-
responds to the number assigned in 2) the index in the production table
PRTB, where those productions are listed whose right part string begins
with the ith symbol. For each production, the right part is listed without
its leftmost symbol, followed by the production number (negative) and the
left part symbol.of the production. The end of the list of productions
referenced via KEY(i) is marked with a 0 entry in PRTB. "If a production
has no semantics then the production number in PRTB is adjusted to be
out of range (by the number of productions).

4. Right and left symbol sets — These are sometimes useful in removing

conflicts.
28 -

5. PRECEDENCE Matrix — Two symbols x and y are related (either x=y,
X<y, x>y or norelation) by the entry in the iE-hrow (where i is the number
corresponding to x) and j!:-h eolumn (j corresponding to y) of the matrix,

6. DIAGNOSTICS
a. For a correct syntax

NO PRECEDENCE VIOLATIONS OCCURRED
b. For an incorrect syntax
1. PRECEDENCE VIOLATIONS OCCURRED
HINTS REGARDING PRECEDENCE VIOLATION
~ The most recent production number which causes a violation
followed by the two symbols separated by the two relations.
c. Incorrect input file
¥¥%*x ENDFILE SYNTAX INPUT - NO
followed by the value of SEND (Section 2).
SEND missing generally causes no problems. If there is no additional
syntax output, then the symbol SINIT was never encountered (Section 2)
3.5 Parser
. One of the principal advantages of the simple precedence system is the parser,
which, for a correct syntax, yields a unique canonical parse with no backtracking
-(Wirth and Weber 1966a; Shaw 1966). This permits the syntactical analysis
(parsing) to be separated from the semantics; this is both a blessing and a headache.
The advantage of this separation is that the parser can be protected from
interference (or modification) from the associated semantics. This protection is
very important when a complete parser is supplied to any user; it limits debugging

faults and permits confident use without a detailed knowledge of the internal methods.

-29 -

However, this separation also limits the power of the applications. Namely,
no semantic process can alter or change the parsing (i. e. , the system is entirely
syntactically driven); this sometimes results in an awkward syntax or may not
be applicable toa class of desirable languages. Section 5.2 discusses this further
and illustrates an extension which relaxes this requirement, still preserving an
acceptable level of protection.

The parsing algorithm depends upon the precedence relations <, =and >
(Wirth and Weber 1966a; Shaw 1966) according to:

1. The relation = holds between all adjacent symbols within a symbol which

is directly reducible;

2, The relation < holds between the symbol immediately preceding a reducible

string and the leftmost symbol of that string;

3. The relation > holds between the rightmost symbol and the symbol imme-

diately following that string.

The basic parsing algorithm consists of locating a string § ---- Sk such that
S£= S!Z+1 for £=j, j+1, --- k-1 and S]_1<Sj and Sk>sk+1' This string SJ. --- Sk is
then a reducible substring and corresponds to some production U : : = % --- Sk.

The semantics for the production may then be performed and then the string
SJ.——— S.is replaced by the left side of the production. This is illustrated in
Fig. 3.
. The parser consists of five parts:
1. Declarations in the parser;
2. Declarations and initialization inserted by the syntax analyzer (i. e. ,
dependent upon the grammar);
3. Symbol recognition;
4. Parsing;

5. Error recovery. ~
-30 -

FIND k @
Sk > Sk+1

!

j=k—I
Decrement j until
Sj..‘ # Sj
NO . Q
Syntax Pi & °j—|<°j
Error
‘YES

Find Production U

Error if noI o E[U::=Sj---3k
Production

is a production

!

Apply semantics for U

!

Reduce §j . . . Sk

1534A3

FIG. 3--Basic parsing algorithm.

- 31 -

3.5.1 Declarations in the Parser

These declarations reside in the parser since they are related to the parsing

technique and not to the individual grammar.

NAME TYPE
ANS FIXED BIN
ERROR BIT(1)
J FIXED BIN
K FIXED BIN
INPUT CHAR(100)VAR
INPUT CHAR(T)VAR
OUTPUT CHAR(T)VAR
POUT CHAR(7)VAR
SYM FIXED BIN
SYMS CHAR(400)VAR
- §0:50) FIXED BIN
V(0:50) CHAR(400)VAR

VALUE
initially 0

initially '0' B

SOURCE

OUTPUT
DIAG

initially set
to 0

initially null

_ EXPLANATION

For use in the semantic routine

For use in the semantic routine to
indicate an error; upon return to the
parser, if ERROR true ('1'B) then
parsing is terminated.

Left hand stack pointer; copy of it
passed to semantic routine,

Right hand stack pointer; copy is
passed to the semantic routine.

Input string buffer.

Input file identified as /GO. SOURCE.
Contains the input to be parsed.

Output file identified as //GO.OUTPUT.

Diagnostic output file identified as
/IGO. DIAG.

Numerical form of the current input
symbol.

String form of the current input symbol.
Parsing stack (numerical form)

Associated value stack to the parsing
stack.

3.5.2 Declarations and Initialization Inserted by the Syntax Analyzer

The declarations and values for these variables are inserted by the syntax

analyzer since they are determined by the grammar.

-32 -

NAME

BASSYM(*)

BASVAL(*)
ERRORSCAN
H(0:*, 0:%)

HINITIAL

HLIM

KEY(0:¥)

M
N

PRTB(0:*)

QUOTES

TYPE

CHAR(2 0)VAR

FIXED BIN

CHAR(2 0)VAR

CHAR(1)

Procedure

FIXED BIN

FIXED BIN

FIXED BIN
FIXED BIN

FIXED BIN

CHAR(2 0)VAR

SCAN-START CHAR(2 0)VAR

XINTEGER

FIXED BIN

EXPLANATION

Contains the basic symbols of the grammar
with the three types WORD, INTEGER and
STRING removed and the value of TERMINAL
added,

The associated numerical form of BASSYM,
Termination symbol for error recovery.

The precedence matrix; each entry is =,
<,> or blank.

This procedure is automatically called upon
entry to the parser to initialize the matrix
H. Within the procedure, the variable J
contains triples indicating the nonblank
entries in H; Row, Column, [0, 1,2] where
0 means =, 1 means <, 2 means >.

This solution was forced by the PL/I compiler
due to maximum string length in the INITIAL
statement.

Upper limit for each dimension of the H
matrix and KEY matrix,

Index in PRTB for those productions whose
right part string begins with the ith symbol.

DIMENSION of BASSYM and BASVAL
Number of productions

Contains the productions without the left-
most symbol of the right part and with the
production number (negative) and the left
part symbol of the production. Productions
with the same leftmost symbol of the right
part are together and these groups are
separated by 0%.

That symbol which turns on and off the
string class recognition,

That symbol which terminates the alternate
scanner and returns to the parsing section.

Numerical form of the symbol in the grammar
used for the integer class.

-33 -

NAME TYPE

XSCAN_STOP FIXED BIN

XSEQ FIXED BIN
XSTRING FIXED BIN
XSYM(10) FIXED BIN
XTERM FIXED BIN
XWORD FIXED BIN

3.5.3 Symbol Recognition

EXPLANATION

Numerical form of the symbol in the syntax
which activates the alternate scanner just
before it is inserted into the parsing stack.

Numerical form of the goal. When this
appears as the rightmost element of the
parsing stack, the parsing is terminated
and control is returned to the calling
program.

Numerical form of the symbol in the grammar
used for the string class.

Used for error recovery. (See error
recovery section,)

Numerical form of the symbol whose pre-
cedence is such that it will force all parsing
to be completed and prevent scanning across
the beginning of the parsing stack.

Numerical form of the symbol in the grammar
used for the word class.

The function of the symbol recognizer is to scan the input file for the next

syntactical unit and to assign this symbol the unique number originated by the

syntax analyzer. The recognizer classifies all symbols into four classes:

: 1. INTEGER CLASS
2., WORD CLASS
- 3. STRING CLASS
4. RESERVED WORDS

The integer class is defined by:

INTEGER : := DIGIT

: = INTEGER DIGIT

DIGIT : := 0j1|2!13|4|5|6]7]|8]9

- 34 -

The word class is any string of characters starting with a non-digit and
excluding blanks, single character reserved words and QUOTES if it is a single
character,

The string class is any string of characters including reserved words and
surrounded by QUOTES; the string corresponding to QUOTES is erased.

Reserved words are those words contained in the BASSYM matrix.

The separators for the word class are blanks, a single character QUOTES
and single character reserved words. The separators for the integer class are
any non-digit character. The entire character string enclosed in QUOTES is
recognized as a string as it appears; the QUOTES are removed since they are not
part of the syntax. A flow chart of the symbol recognition is given in Figs, 4
and 5.

3.5.4 Parsing

The parser is a modification of the basic parsing algorithm given at the
beginning of Section 3.5. The flow chart for the parser is given in Fig. 6. "8"
is a stack which contains the partially reduced string at any time, The input
string is copied one symbol at a time into SYM and SYMS. If the rightmost
element of S is > SYM then S is scanned to the left from the current right end
until Si 1;4 Si; at this point if Sil <Si then we are guaranteed (if the string is in
the language) that there is a production whose right side is Si - SJ.. We then
perform a “semantic reduction” on the value stack Vi - Vj (i. e., call the
semantic procedure) and then reduce the string Si - Sj by replacing it by the
left side of the corresponding production.

Input to the parser is in a file named SOURCE; the parser has two output
files, one for diagnostics (internal name, POUT, external name DIAG) and one
for semantic output (internal name OUTPUT, external name OUTPUT). Both

output files are used by the parser and both may be used by the semantics.

-35 <

9¢

GET.NEXT
SYMBOL

READ UNTIL

NEXT QUOTES
*RETURN ENTIRHE

STRING AND

STRING TYPE

SYMBOL=QUOTES NO
YES /l
RETURN SYMBOL
AND
INTEGER TYPE
NO

RETURN SYMBOL
AND
WORD TYPE

FIG. 4--Symbol recognition.

NTEGER TYPE

RETURN SYMBOL

AND
BASIC SYMBOL

TYPE

1534A4

Entry Variables

S Output string
Input character pointer

T is set to False if integer else true

> =3

if X true then Blanks removed

True Using NEXT increment
I until SYM not blank

True Call CON
T = true

TSpec (SYM,
QUOTE)

—> Exit

is SYM a digit

1

Call CON
SYM=Next

Spec (SYM,

Yes |
QUOTE) S

Caii CON

SYM= next Exit
1

| Exit 153446

* SPEC returns true if first argument is not a separating character.

*CON concatenates SYM to end of S and increments 1.

* NEXT returns the character pointed at by I in the input string. If I > length
of input string, 80 more characters are read, a blank is concatenated to end
and I is set to 1.

FIG. 5--Flow chart for LOOK — the get next symbol procedure.

-37 -

INITIALIZATION

$(*)=0, V(*)=NULL
S(0)~XTERM, OPEN I/0 FILES
=1, INPUT=NULL, J=0

QUOTE~FALSE, FETCH NEW SYM, SYMS

YES
J=g41, K=J
S(J)-8YM, V(J)-8YMS

8(J)=XSCAN_sTOP >-LES.

FETCH NEW SYM, SYMS

FOUND PRODUCTION

¥
I1=J(LEFT POINTER)
R=K(RIGHT POINTER)
I13=-PRTB(L) (PROD #)

CALL SEMANTIC
PROCEDURE

Y.

H(SW), SYMED>! D

CALL 8CANZ — —
|
|

RETURN |

LOCATES REDUCIBLE SUBSTRING

~<

NO | g

EXIT PARSER

HES(-1),)=
J>1

NO

L=KEY(8(J))

YES

J=J-1

FIND PRODUCTION

NO
STACKOK

CALL ERROR_RECOVERY

L=0

al YES

L=0

CALL ERROR _RECOVERY

YES

KK<=K &
S(KK)=PRTB(L)

KK>K &
PRTB(L) <0

SCAN OVER THB
RRODUCTION

8(J)=PRTB(L+1)(LEFT SIDE OF PRODUCTION)
L=0 (INDICATES SUCCESS)

PRTB(L)>0

1534C)

FIG. 6--Parser flow chart.

- 38 -

When the SCAN-STOP symbol is moved to the parsing stack, procedure
SCAN2 is activated, SCAN?2 simply reads the input and copies it to the output
file (this is the only use of the OUTPUT file in the parser) until the SCAN-START
symbol is detected (the SCAN-START symbol is effectively erased). This facility
allows the mixture of special code and the normal output code within one input
string.

3.5.5 Error Recovery and Diagnostics T

“There has also been very little effort on the problems of automatic error

detection and recovery in syntax-directed processors. Once again, even a

bad system would be of great value to users. " (Feldman and Gries 1967, p. 111)

After using the syntax for implementing several different languages (George
1967b, 1969b) a simple method for error recovery and useable automatic diagnostics
has finally evolved. This has primarily resulted from careful analysis of the
parsing stack and the classification of the input symbols.

With a simple precedence system, the earlier an error is detected (i, e., with
the least amount of parsing) the easier it is to recover and issue meaningful diag-
nostics. Precedence functions were utilized in an earlier system (Wirth and
Weber 1966a, b) and led to complications for error detection, With the precedence
functions, the blank relation is effectively removed and several steps of parsing
can occur before an error is detected; in fact, the only type of error to be detected
is an illegal production (i. e., no production matches the string to be reduced).

The problem of restoring the parsing stack after several illegal reductions is
complex; further, one cannot automatically restore the actions performed by the
associated illegal semantic activations. Also, automatic diagnostics were impos-

sible since the blank entries were missing.

fLeinius (Leinius 1970) analyzes and classifies syntax errors in simple
precedence and LR(K) languages. He developes general techniques for

detecting errors (equivalent to the detection methods used here) and specifying,
syntactically, error recovery for any language of these classes. His techniques
are more general than those presented here, but are not needed in simple
languages. The techniques presented here have proven adequate for applications
involving simple languages. 39

The solution was to try to detect syntax errors as soon as possible and
keep the blank entries for diagnostic purposes. With a change of Wirth and
Weber's parsing algorithm, the errors can be detected earlier (i. €., use
the precedence matrix and not the functions). When searching for a reducible
substring, the search is only started when a '>' relation exists between the
rightmost symbol of the stack and the next symbol. A scan is then initiated
to scan to the left in the stack while the '=" relation holds between adjacent
symbols; this scan terminates at the leftmost symbol of the candidate re-
ducible substring.

At this point the relation '<'is required (STACKOK in parser flow chart)
otherwise the stack is incorrect and production look-up and semantic calls are
not performed and a diagnostic message is issued. The error recovery mechanism
is activated by either an incorrect stack or the nonexistence of a production to
match the candidate reducible substring.

The error recovery procedure first outputs the current contents of the stack.
The stack is then examined from the leftmost symbol and compared to a recovery
stack of maximum length 10 (this stack was processed by the syntax analyzer as
SYM(1) --- SYM(10) and represents what is normally expected to reside in the
stack). The symbols in the parsing stack (and their associated value) are kept as

long as they match the recovery stack.

After the stack has been corrected, the input scanner is reset to the beginning
of the current input file and the symbols are read and checked to see if they may

occur adjacent; if they may not occur adjacent, a diagnostic message is issued

-40 -

giving the symbols and how they were classified (WORD, STRING, INTEGER
or RESERVED). This scanning continues until the SCAN-STOP symbol is detected.
The symbols thus processed are erased from the input file and normal parsing

1s resumed.

Although this method is simple, it has proven quite useful for the types of
languages implemented to date. It provides automatic diagnostics and recovery

related to the input grammar with little effort of the user.

-41 -

4. SEMANTIC CONSTRUCTOR

The semantic constructor processes its input text, which is a mixture of
keywords and PL/1 statements, and genéfates a program which is compatible
with the parser. Its purpose is to provide the standard procedure and parameter
declarations and to construct the branching logic for selecting that portion of the
code applicable for a particular production; the overall branching structure
cannot be affected by the code for any production. The specification of the
semantic constructor is given in Appendix D.

The syntax for the semantic constructor follows:

SEMANTICS x = *SEMANTICS* PROG-NAME CODA PRODUCTIONS

PROG-NAME : := procedure name to be given to these semantics

CODA::= *CODE* <block of PL/1 code > *END*

PRODUCTION : : = INTERPRETATION

: : = PRODUCTION INTERPRETATION

INTERPRETATION : : = *PRODUCTION* INTEGER CODA

As the syntax illustrates, the basic unit is an INTERPRETATION, which is
the keyword *PRODUCTION* followed by an integer followed by the keyword
CODE followed by a block of PL/1 code terminated by *END*. For this unit,
an if test on the integer is constructed and a label (L' followed by the integer)
attached to form a DO group for the block of PL/1 code. The end of the PL/1
block causes an END label to be generated, thereby closing the DO group.

The semantic constructor is implemented using the syntax analyzer and a
skeleton parser with a hand coded semantic section, It will be used to illustrate

the use of the SIMPLE system in Section 6.

42 -

5. POSSIBLE EXTENSIONS

5.1 Automatic Syntax Correction

Some grammars require the insertion of several artificial productions and
renaming of variables in different parts of the grammar to be a simple precedence
grammar. Thisresults in the grammar’s being longer and not in a form easily
useable by users of a special language.

The methods of removing precedence violations discussed in Section 3.2
were developed with the idea of possible inclusion into the syntax analyzer; in
fact, the organization of the syntax analyzer was modified to permit this insertion
in an easy straightforward manner. Removing the conflicts automatically would
make the grammars shorter and more readily useable. [see no problem in doing
this, but haven’t had the time to do s0.

5.2 Parser Modification to Allow Simple Manipulation of the Parsing Stack by

the Semantic Procedure

As discussed earlier (Section 3.5) the parser and semantics are separate
and the semantics may operate only upon the value stack and not the associated
parsing stack. This means that the system is entirely syntax driven and the parsing
cannot be affected by any semantic meaning, Situations do arise where the parsing

must be affected by the semantic meaning.

Consider for example the evaluation of an algebraic expression where the
variables may stand for a numeric value or for some other algebraic expression.
The parser only recognizes symbols and cannot determine whether a symbol
represents a primitive or an intermediate expression; only the semantics can
determine this. At this point the semantics need to defer a reduction and alter
the stack (i.e., the semantics would like to replace the variable by its equivalent
expression). This particular problem originated in the Graphic Description

Language of GEMS (George 1969a, b).
- 43 -

The problem was to allow a form of stack manipulation which would still
preserve a reasonable level of protection, From my work with and modification
of the parser, I knew that all the error recovery and error diagnostics are based
upon the symbol recognition; thus, the manipulation should be upon the input string
so that the symbol recognizer can process the input string and thus preserve error
recovery and diagnostics; this would provide the “reasonable level of protection, "

The solution is to provide an external switch and string to both the parser
and the semantics, When the semantics wants to erase the effect of a whole pro-
duction and insert a string into the current input string (i.e., this new string is
to be processed before the rest of the old string), the semantics leaves the string
in the external string variable and sets the switch. Upon return from the semantics,
the parser checks the switch and performs the ordinary reduction if the switch has
not been set. If the switch has been set, the parser inserts the external string
into the proper place of the current input string, resets the switch and erases
the current production from the stack; it performs no reduction but resumes the
normal parsing.

This solution not only provides a substitution facility for intermediate or non-
basic primitives, but also allows grammars to be used with apparently disjunct
productions. These disjunct productions can represent shortened or alternate
forms of a production; these sometimes cause precedence violations and cannot
be resolved in any other manner, For example in SPIRES (George 1967b;

‘Parker 1967) it is desired to have

AUTHOR name AND name
to be equivalent to

AUTHOR name AND AUTHOR name.

This disjunct production method can be used for search classes other than AUTHOR

by remembering the last search type and performing a substitution.

-44 -

6. EXAMPLE APPLICATIONS OF SIMPLE

6.1 Semantic Constructor

For an example consider the semantic constructor. The syntax in simple
precedence form and the data for SIMPLE’s executive follow:
/IGO. SYNDATA
SEMANT NAME='SEMANT'
/*
/IGO. SYNTAX DD*

- *SYNTAX*
SEMANTICS o= SEMANT CODA PRODUCTIONS *;*
PRODUCTIONS * =X INTERPRETATIONS *NO-SEMANT* *;*
SEMANT ¥ o=X *SEMANTICS* WORD *;*

INTERPRETATIONS *::=* INTERPRETATION *NO-SEMANT* * %

X=X INTERPRETATIONS INTERPRETATION
NO-SEMANT *;*

INTERPRETATION *::=%* INTERP *CODE* *;*

INTERP ¥ o= *PRODUCTION* INTEGER *;*

CODA Ko g=X* *CODE*

END-SYNTAX

/*

- 45 -

The semantics are:
//GO. SEMANTIC DD*
SEMANTICS SEMANT *CODE* *END*
PRODUCTION 1 *CODE*
PUT FILE (OUT) EDIT (END’ || VS§(3)|*;")
(Col (10), A);
CLOSE FILE (OUT);
END
PRODUCTION 3 *CODE*
PUT FILE (OUT) EDIT
(VS (K)||': PROC (N, VS, J, K, ANS, ERROR);)
(Col (2), A);
PUT FILE (OUT) EDIT
(DCL (N, J, K, ANS) FIXED BIN, ',
'V8(0:50) CHAR(400) VAR, ',
ERROR BIT(1)3")
(Col (10), A, Col (20), A, Col (20), A);
VS() = VS(XK);
END
PRODUCTION 6 *CODE*
PUT FILE (OUT) EDIT
(RETURN;, END’ 'L'| V8(J) | ;"
(2 (Col (10), A));
END
PRODUCTION 7 *CODE*
PUT FILE (OUT) EDIT

(IF N=', VS(K),' THEN’, L’ | VS(K)[|':',
- 46 -

'DO'; /*PRODUCTION NUMBER ',
VS(K), "™*/*)
(Col (10), 3 A, Col (2), A, Col (20), 3 A);
V§(J) = VS(K);
END
END-SEMANTICS
/%
An example input to this language is:
/IGO. SOURCE
SEMANTIC S SEM *CODE*
/* ANY PL/1 CODE CAN BE HERE*/
END
PRODUCTION 1 *CODE*
PUT FILE (OUT) EDIT
(PUT LIST (N) SKIP;9
(Col (10), A);
END
PRODUCTION 2 *CODE*
PUT FILE (OUT) EDIT
(PUT LIST (N, J) SKIP;)
(Col (10), A);
END
END-SEMANTICS
/*

-47 -

And the output is:
SEM: PROC (N, VS,J, K, ANS, ERROR);
DCL (N, J,K,ANS) FIXED BIN,
VS(0:50) CHAR(400)VAR,
ERROR BIT (1);
/* ANY PL/1 CODE CAN BE HERE */
If N=1 THEN
L1: DO; /*PRODUCTION NUMBER 1*/
PUT LIST(N) SKIP;
RETURN;
END L1;
IF N=2 THEN
L2: DO; /*PRODUCTION NUMBER 2*/
PUT LIST (N, J) SKIP;
RETURN;
END L2;

END SEM;

- 48 -

6.2 A Command Language Meta System

During the Spring Quarter of 1970, a computer laboratory (CS 293) was
organized by Professor W. F. Miller to allow small groups of students to
participate in projects involving substantial programming tasks. Dr. Harry J.
Saal and I led a group to study and implement a text editor system; the students
were Howard Cohen, David Wyeth and Marice Schlumberger.

During the initial process of reviewing existing text editors, we arrived
at the following conclusions :

1. No existing text editor had all the features desired;

2. We could not agree on a universal text editor language;

3. There was no existing’system in which we could experiment

with different text editor languages in an economical manner;
4. Generally, only one text editor was available in a computer system.
At this point, we realized that we were really talking about command
languages rather than just text editor languages. The sentences of these
languages are a command and consist of a command keyword followed by a list
of parameters . Thus, we decided to design a meta system for defining command
languages of this type.
The characteristics desired were :
1. The defined command language should be easy to change;
2. The system should be, able to service various command languages.
The meta system developed for describing, scanning and implementing command
languages (George and Saal 1971) has been used to define and implement two text
editors (Schlumberger and Wyeth 1971) and will now be presented in detail.
6.2.1 The Model

The meta system consists of a table generator and a scanner. A specific
command language is defined by a command description and the inclusion of any

additional subroutines into. the primitive library; the command description is

49 -

translated by the table generator to a form useable by the scanner as illustrated
in Figure 7. The tables describe how a standard parameter list is to be con-
structed, thus allowing the primitive library members to be shared by various
applications. The table generator provides a construction aid to a user with

error diagnostics and some consistency checking.

To use a specific command language, the user designates to the scanner
which table is to be used; this table is then obtained and saved in the user’s
work area. Commands can now be syntactically analyzed by the scanner using
the specified table and the semantics of a command can be performed through
activation of the appropriate subroutine in the primitive library. This is
illustrated in Figure 8.

This model pro:/ides the versatility desired and allows command languages
to be developed or modified modularly. New or modified commands can be
tested without the other users of that particular command language system being
aware of or affected by this testing. Further, each command language can be
tailored to a user or group of users. This tailoring could provide simplified
commands for less sophisticated users or could limit their actions or capabili-

ties in items such as, read only systems, file access restrictions, etc.

6.2.2 The Table Generator

The Table Generator is implemented using SIMPLE and its definition is
given in Appendix E. As indicated in the appendix, a command table consists
of a set of options followed by a list of commands.

The options consist of the table name to which the table generator adds the
current date and time for identification (this line is usually typed out when a
user selects a table and, thus, indicates the version of the command system to
the user), a separator to mark fields in the table (*PERIOD*) and a character

which will inclose strings to indicate type <STRING> , (*QUOTES¥).
~ -50-

TABLES

COMMAND > TABLE

DESCRIPTION

“GENERATOR

1534A7

FIG. 7--Command language meta system - table generation.

TABLES

44—

SCANNER [¢—»

TERMINAL

PRIMITIVE
LIBRARY

1534A8

FIG. 8--Command language meta system - scanner.

- 51 -

The list of commands is composed of subroutines used by the commands
and the commands, all are recursive. Commands are indicated by an identifier
list followed by a parameter list; an identifier list is a list of identifier
specifications ; e . g.

KEYWORD? LIST *RTN* SUBI *DL-EX-LIST* "/" *DL-SKIP* ", "
specifies a command whose name is LIST and whose semantic routine is
named SUBIL.

Normally, all special characters are treated as delimiters by the scanner;
when scanning for the next item, the scanning proceeds until a delimiter is found
and then the delimiter is deleted. In the above example, '"/'" is not to be deleted,
but is to be returned as the following item; "."is not to be treated as a delimiter.
Thus, 2/3 would_be\écanned as three items 2, / and 3 whereas 2 :3 would be
scanned as two, 2 and 3. Further, 2.3 would be scanned as one item 2.3.

Each parameter may be one of the following types

NUM type number

STRING type string

*NAME * first letter alphabetic followed by
alphanumerics

<STRING > Call the table subroutine specified by

{STRING)>to obtain the parameter T
t The table subroutine calling mechanism is assumed to work by concatenating
this <STRING> to the current unscanned input string and then activation of the
scanner. This results in not only the subroutine activation, but character strings

can be appended to the string. For example, if the current input pointer is at

ABC)
and the subroutine call is “SUBS ("

then, the input becomes SUB5 (ABC)
’ t

-52 -

Further, parameters may be restricted by the options:

* p*

* Kk

No parameter before the one with this
option can be filled in after this parameter
This parameter can only be filled in after

recognition of its key

and parameters may be initialized. A parameter may have multiple keys of

the types:

VALUE

-

VALUE (STRING)

Take the next item after the key in the
current input string and assign it to the
parameter if it is of the proper type
Take everything up to the occurrence of
<STRING), assign it to the parameter

and then delete <STRING) from the input

VALUESHORT (STRING) Take everything up to the occurrence of

SELF (STRIN G)

CALL (STRING)

(STRING) and assign it to the parameter;
do not delete <STRING> from the input
Assign <STRING> to the parameter

Call the table routine named in <STRING);
same functioning as the previous subroutine

call

For example, if the desired command is:

LIST

. <Nvum)y {7 vumy

where,
[.
{.

IN {FILENAME)

] means one of the options must be used; and

} means the contents are optional

- 53 -

The command description is:

QUOTES = 0
PERIOD * =k
TBL-NAME* *¥=* " EXAMPLE” -

KEYWORD LIST *RTN*SUBI*DL-EX-LIST*"/"
KEYWORD L. *RTN* SUBL *DL-EX-LIST* "/"
PARM *NUM* *INITIAL*"-1" *END*

PARM *NUM* *K* *P* *INITIAL* 1~
KEY / *VALUE* *END*
PARM *NAME* *K* *P* *INITIAL"""
KEY | N *VALUE* *END*
~END-TABLE*

6.2.3 The Scanner-.

The original scanner was designed to test the model and the design of the
tables produced by the table generator (George and Saal 1971; the table generator
is the author’s work, the scanner work was done by H. J. Saal and the command
description language and the tables were a joint effort). This scanner was then
modified to perform the subroutine linkages to complete the meta system model
as discussed in Section 6.2.1 (Schlumberger and Wyeth 1971). The original
version of the scanner accepts an input string from the user and builds a parenthe-
sized expression indication which subroutine is to be activated, number of
characters scanned and a parameter list; if an error occurs, a diagnostic is
given with a pointer to the offending character. This original version does
provide a convenient testing vehicle for checking out the syntax of a command
language and will be used for illustration.

6.2.4 Examples Using the Command Language Meta System

The system has been used to define and implement two text editors
(Schlumberger and Wyeth 1971) and found to be an efficient way to experiment

with different text ‘editor languages. In particular, the syntax is easily debugged

- 54 -

and commands may be modified or added easily. Some example commands from
each of these languages will be used for illustration.

6.2.4.1 WYLBUR Example

WYLBUR (——-WYLBUR- 1969) is aulocally available text editor and several
commands from it will be used as an example. The commands are :
1. List Command
LIST
{L } [CARANGE)] [1N] [<{NRANGE)]

2, Change Command

CHANGE
c [<ARANGE>] TO [<sTRING>] [IN] [<NRANGE>]
H
3. Copy Command
COPY
[{NRANGE) | 70 [<{VALUE) | sy [<NUMBER>]
CcO

4, Set Command

SET [LENGTH =NUMBER)] [peita = (NUMBER) |

[UPLOW | UPPER | VERBOSE | TERSE |
where,
. {STRING>
{ARANGE) = (ommmme [(NUMBER) [/ {NUMBER)]] [(<NUMBER>)]
STRING>

{vranee = (VALUE) | <vawve> / {VALUE)| {NRANGE)> , <VALUE) |

{NRANGE) , <VALUE)/ <{VALUE)-

(VALUEp= <NUMBER) | FRST | wmsr | END | am
<strinG>= ' {CHARACTER STRING> ' | " {CHARACTER STRING) "
[1 means optional

{ . } means one of the options must be present

- 55 -

The specification of the syntax of these commands is given in Appendix F
with the resultant generated table. An example conversation with the scanner

using the tables follows :

UNIT#?13

WYLBUR EXAMPLE---GEORGE 07/17/7014:335:48,260
LIST TABLES?no

LIST COMMANDS?yes

LIST

L

CHANGE

CH

COPY

co

SET

COMMAND?list

(suB1,5,¢(,),(0,0),)

COMMAND?T 1,2
(suBi,6,(,((1),,((2),,))),(0,1),)
COMMAND?11/4
(suB1,6,(,((1),(8),)),(0,1),)

COMMAND?1 all

(suB1,6,(,((-4),,)),(0,1),)

COMMAND?1 'y
(suB1,6,(((,(Y,-1,-1,-1))),),(1,0),)
COMMAND?1'y"' 1/8(9)in all
(suB1,21,(((,(Y,1,8,9))),((~-4),,)),(1,1),)
COMMAND?list everything

ERROR |

COMMAND?set terse

(sus4,10,(,,4),(0,0,1),)

COMMAND?set delta=12
(suB4,13,((12),,0),(1,0,0),)

COMMAND?set delta=1 length=2 terse
(suB4,27,((1),(2),4),(1,1,1),)
COMMAND?change 'sk' to 'wk' in all
(suB2,27,(((,(SK,-1,-1,-1))),(WK),((-4),,)),(1,1,1),)
COMMAND?ch ~'t'4/9 (8)to"e"in all
(suB2,32,(((",(T,4,9,8))),(E), ((-4),,)),(1,1,1),)
COMMAND?copy 1/5to 16.2
(suB3,17,(((1),(5),),(16.2),-1),(1,1,0),)
COMMAND?*RESTART*

-56 -

6.2.4.2 CRBE Example.

CRBE (Wells 1970a and b) is another locally available text editor and
several commands from it will be illustrated. The commands are:

1. List Command)

ILIST

L

2. Save Command

| <NRANGE)] [CARANGE) |

SAVE
s % [<FNAME) | [(QNUMBERY [, {NUMBER)])]

[KEEP | PURGE J[REPLACE| REPL]
3. Bring Command .

BRING]" ({NUMBER)
NAME)
{B f % [D| DSNAME] = (FNAME) [(NAMEY)][, [V | vOL] =<(NAME)]

[SEQ| NOSEQ]

I

4. Change Command

CHANGE
CH

[{NRANGE)] [-(STRING) | (STRING] [(STRING>]

[CcOL = ({NUMBER) | ,

<NUMBER)])]
[NOTEXT | NOLIST |

where,
{NRANGE) = [{NUMBER) | FIRST] [<NUMBER> I LA ST] [((NUMBER))]

+ §TRING)
[COL = (<NUMBER) [, <NUMBER>])]
STRING
[SEQ | NOSEQ]
{FNAME) = <NAME) | (FNAME) . <NAME)

<N AM E> =

{STRING) =

{ARANGE) =

First character alpha rest alpha-numeric

' <CHARACTER STRING> ' | " {CHARACTER STRING> "

[1 means optional

{. . } means one of the options is required

- 57 -

The specification of the syntax of these commands is given in Appendix G
with the resultant generated table. An example conversation with the scanner

using the tables follows:

UNIT#?215 -
CRBE EXAMPLE---GEORGE 07/22/70 12:50:25.960
LIST TABLES?no
LIST COMMANDS?yes
LIST
L
SAVE
S
BRING
B
CHANGE
CH
COMMAND?list
(suB1,5,(,),(0,0),)
COMMAND?1dst 1/4 .
(suB1,9, (((1),(4),-1),),(1,0),)
COMMAND? 11,4
(sus1,6, (((1),(®),-1),),(1,0),)
COMMAND?1 'y' in all
ERROR |
COMMAND? 1'y'
(suB1,6,(,((,(Y,,0)))),(0,1),)
COMMAND?1 first last
(sus1,13,(((0),(-2),-1),),(1
COMMAND?11,2,(9),™"k",col=(
(suB1,25,(((1),(2),(9)),(™,
COMMAND?1 12(9)""K"col=
(suB1,25,(((1),(2),(9)),(("
COMMAND?save ,rep!l
(sus2,11,((ACTIVE,),,-1,0),(1,0,0,1),)
COMMAND?save ss.dd.ff,v=wy1003,(200,500)
ERROR |
COMMAND?save ss.dd.ff,vol=wy1003,(200,500)
ERROR |
COMMAND?save ss.dd.ff,repl
(suB2,19,((ss,(pD,(FF,))),,-1,0),(1,0,0,1),)
COMMAND? 123
(suB3,6,(,-1,,123),(0,0,0,1),)
COMMAND?b jegxx123
(sus3,11,(,-1,JEGXX123,),(0,0,1,0),)
COMMAND?b d=ss.dd(member),v=wy1003
(suB3,27,(((ss,(DpD,)) MEMBER, ((WYLOO3))),-1,,),(1,0,0,0),)
COMMAND?ch1,2,'y','u',nolist
(SsuBy4,22,(((1),(2),-1),(,(Y)),w,,1H,(,1,1,0,1),)
COMMAND?*quit*

GOODBYE!
?

)

1

.0),

2,3)

(K,€€2,3)),0)))),(1,1),)
(2,3)
,(K,((2,3)),0)))),(1,1),)

’

- 58 -

BIBLIOGRAPHY

. Feldman, Jerome A. and Gries, David (1967). Translator
Wri tthg Systems. Computer Science Department, Stanford
University, Technical Report No. CS 69. Also appeared
in Comm. ACM, 11(1968),2(February), 77-113.

Fischer, Michael J. (1969). Some Properties of
Precedence Languages. ACM Symposium on Theory of
Computing, 181-190,

George, J.E. (1967a). SARPSIS: Syntax Analyzer,
Recognizer, Parser and Semantic Interpretation System.
Stanford Linear Accelerator Center, CGTM 34, November
15, 1967.

George, J.E. (1967b). The SPIRES Scope Demonstration
Sys tern. Stanford Linear Accelerator Center, CGTM 33,
November 15, 1967.

. George:' James E. (1969a). The System Specification of
GLAF: A Linear String Graphical Language Facility.
Stanford Linear Accelerator Center, GSG-61, February,
1969.

George, J.E. (1969b). GEMS: A Graphic Experimental
Meta-System. Stanford Linear Accelerator Center, GSG
63, June, 1969.

George, J.E. (1969¢c). Rules for Transforming a Grammar
to a Simple Precedence Grammar Utilizing Artificial
Productions. Stanford Linear Accelerator Center
Computation Group, GSG-62, July, 1969.

. George, James E. and Saal, Harry J. (1971), A Command
Language Meta-System. Fourth Hawaii International
Conference on System Sciences , 48&2-485, Also Stanford
Linear Accelerator Center, SLAC-PUB-84L,

. Gray, James (1969). Precedence Parsers for Programming
Languages. Department of Computer Science, University
of California.

Learner, A. and Lim, A.L. (1370). A Note on
Transforming Context-Free Grammars to Wirth-Weber
Precedence Form. The Computer Journal, 13, 2(May),
142-144.

.Leinius, Ronald Paul (1970). Error Detection and

Recovery for Syntax Directed Compiler Systems.
University of Wisconsin.

-59 -

12.

13,

14.

15.

16.

17.

18.

19.

20.

21,

22.

McAfee, J. and Presser, L. (1970). An Algorithm for

the Designh of Simple Precedence Grammars. Department

of Electrical Engineering, University of California at
Santa Barbara.

Parker, Edwin B. (1967). SPIRES 1967 Annual Report.
Insti tute for Communication Research, Stanford
University, December, 1967.

Presser, L. (1968). The Structure, Specifications and
Evaluation of Translators and Translator Writing
Systems. Department of Engineering, University of
California at Los Angeles, Report No. 68-51.

Presser, L. and Melkanoff M.A. (1969). Transformat ion
to Simple-Precedence. Second Hawaii International
Conference on System Science, 695-698.

Schlumberger, Maurice and Wyeth, David (1971). A

Multi-Editor System. Computer Science Department,
Stanford Universi ty, CS 293 Report. Also, Stanford
Linear Accelerator Center, CGTM 127.

Shaw, Alan C. (1966). Lecture Notes on a Course in
Systems Programming. Computer Science Department,
Stanford University, Technical Report No. 52,

Wells, J. (1970a). CRBE Command List. SLAC Facility,
Stanford Computation Center, Stanford University, User
Note 39.

Wells, J. (1970b).CRBE Commands. SLAC Faci 1 i ty,
Stanford Computation Center, Stanford University.

Wirth, Niklaus and Weber, Helmut (1966a). EULER: A
Generalization of ALGOL, and its Formal Definition:
Part I. Comm, ACM, 9, 1(January), 13-25.

Wirth, Niklaus and Weber, Helmut (1966b). EULER: A
Generalization of ALGOL, and its Formal Definition:
Part Il. Comm, ACM, 9, 2(February), 89-99.

______ (1969). WYLBUR Reference Manual.” Campus

Facility, Stanford Computation Center, Stanford
University, Appendix E, User’s Manual.

- 60 -

APPENDIX A
SIMPLE*S EXECTIVE

SIMPLE: PROC CPTI CNS (MAIN);
D C LFILELCHAR(B)VAR, /*SYNTAX EQUATIONS INPUT FILE+/

FILE2 CHAR(8) VAR, /=PARS ING PROGRAM INPUT FILE*/

FILE3 CHAR(8) VAR, /*PARSING PROGRAM OUTPUT FILE*/

FILE4 CHAR(8) VAR, /*SYNTAX OUTPUT FILE*/

FILESCHAR{BIVAR, /*SYNTAX DATA OPTIONS*/

FILE6 CHAR(B) VAR, /*SEMANTIC INPUT FILE*/

FILE7 CHAR{8) VAR, /*SEMANTIC DIAGNOSTIC OUTPUT FILE*/

FILERCHAR(8)VAR, /%*SEMANT |C PROGRAM OUTPUT FILE*/

SINITCHAR(20) VAR, /*INITIATOR FOR SYNTAX ANALYZER*/

SSEP CHAR(20) VAR, /*SEPARATOR FOR LEFT-RIGHT SIDES*/

STERY CHAR(20) VAR, /*TERMINATOR FOR EQUATIONS*/

SEND CHAR{20) VAR, /*TERMINATOR FOR SYNTAX*/

SSEMANT CHAR{20) VAR, /*INDICATES ‘JO SEMANTICS FOR THIS

PROOUCT ION*/
PARSER-NAME CHAR(B) » /4 NAME TO BE SUBSTITUTED FOR
PARSER [N FILE2*/
SEMANT,NAME CHAR(8)),/* NAME TO BE SUBSTITUTED FOR
SEMANT [N FILE2*/
INTEGERCHAR(2C) VAR, /*THAT SYMBOL USED IN SYNTAX FOR
AN INTEGER*/

WORD CHAR(20) V AR, /*THAT SYMBOL USED IN SYNTAX FOR WORD*/

STRING CHAR(20) VAR; /*THAT SYMBOL USED FOR STRING */

QUOTES CHAR(20) VAR, /*THAT SYMBOL USED FOR QUOTES*/

SEQUENCE CHAR(20) VAR, /*THE INITIAL SYMBOL OF THE SYNTAX

- WHEN IT OCCURRS IN THE STACK THE PARSING
IS TERMINATED */
TERYINAL CHAR(20) VAR, /*THAT SYMBOL USED TO FORCE PARSING
TO BE COMPLETED */
ERRORSCAN CHAR(20) VAR, /*THAT SYMBOL IN THE SYNTAX WHICH
ISUSED IN ERROR RECOVERY..THE TEXT BETWEEN
TWO OF THESE SYMBOLS IS EFFECTIVELY DELETED™/
SYM(1C)CHAR(20) VAR, /*THOSE SYMBOLS WHICH ARE EXPECTED
TO RESIDE IN THE I-TH POSITION OF THE PARSING
STACK */
SCAN-STOP CHAR(20) VAR, /*THAT SYMBOL IN THE SYNTAX WHICH
UPON ENTRY INTO THE PARSING STACK CAUSES
ALL INPUT TO BE IGNORED BY THE PARSER
UNTIL THE SYMBOL AFTER SCAN_START */
SCAN-START CHAR(20) VAR, /* RESTARTS THE PARSING AFTER THE
APPEARANCE OF THIS SYMBOL*/

MLIM FIXED BIN, /7*MAXIMUM NUMBER OF SYMBOLS*/

MMLIM FIXED BIN, /#MAXIMUM NUMBER OF NON-BASIC SYMBOLS*/

NLIM FIXEO BINy /*"MAXIMUM NUMBER OF PRODUCTIONS+/

RLIM FIXED BIN; /*@'AX TMUM NUMBER OF RIGHT ELEMENTS*/

DCL | FIXED BIN:

O N ENDFILE(SYNDATA) GO TO XXX:
FILEL="'SYNTAX*;FILE2=*SPARSER*;FILE3='PARSER!; FILE4="PSYNTAX*;
FILES=*SYNDATA'; FILE6='SEMANTICS'; FILE7='PSEMANT*'; -
FILEB=*SEMANT'; PARSER_NAME='SEMANT'; SEMANT_NAME='CODE_OQUT';
SINIT='%SYNTAX*?; SSEP='*22=x%; STERM='*;x%x"';
SEND=**END-SYNTAX*?; SSEMANT='*NO-SEMANT=*'3

INTEGER=*INTEGER*; WORD=*WORD'; QUOTES="""; MLIM=203

MMLI =203 NLI M=20; RLIM=83 STRING=" STRING’ 3}
SEQUENCE='SEMANTICS*; TERMINAL='*END-SEMANTICS**;
ERRORSCAN=**END** ;

DOI=1TO 10; SYM(I)=*¢*3 END;

SCAN-START= *END**; SCAN_STOP='*CODE*";
SYM(1)=*SEMANT'; SYM(3)='INTERPRETATIONS*; SYM(2)=*CODA*;
OPEN FILE (SYNDATA)TITLE(FILES) INPUT STREAM;
GETFILE(SYNDATA) DATA:

XXX: CALL SYNTAX (FILEL)FILE2)FILE3,FILE4)SINIT,)SSEP)STERMy SEND,
SSEMANT »PARSER_NAME, S EMANT_NAME,
INTEGER)WORD ySTRING) QUAOT ES »SEQUENCE, TERM INAL y ERRORSCAN,
SYM)SCAN_STOP SCAN_START) ML IM, MML IM, NL IMy RL IM);
CALL SEMANT(FILE6,FILE8,FILET);
END SI MPLE;

- 61 -

APPENDIX B

SYNTAX ANALYZER

SYNTAX: PROC(FILEL yFILE2,FILE3) FILE4)SINIT,SSEP,STERM,SENDySSEMANT,
PARSER_NAME S EMANT _NAME,
INTEGER)WORD)STRING, QUOTES »S EQUENCE, T ERM INAL ERRORSCAN
SYM,SCAN_STOP)SCAN_START p ML IM)MML IM) NL IM,RLIM)
DCLFILEL1CHAR(B) VAR, /*SYNTAX EQUATIONS INPUT FILE+/
FILE2 CHAR(8) VAR, /*PARSING PROGRAM INPUT FILE*/
FILE3 CHAR{8) VAR, /*PARSING PROGRAM OUTPUT FILE+/
FILE4 CHAR(8) VAR, /*SYNTAX OUTPUT FILE*/
SINITCHAR(20) VAR, /*INITIATOR FOR SYNTAX ANALYZER*/
SSEP CHAR1201 VAR, /*SEPARATOR FOR LEFT-RIGHT SIDES+/
STERMCHAR(20) VAR, /*TERMINATOR FOR EQUATIONS*/
SEND CHAR(20) VAR, /*TERMINATOR FOR SYNTAX*/
SSEMANT CHAR(20) VAR, /*INDICATES NO SEMANTICS FOR THIS
PROOUCT ION*/
PARSER-NAME CHAR(81},/*NAME TO BE SUBSTITUTED FOR
SPARSER* IN FILE2 */
SEMANT,NAME CHAR(8}y /*NAME TO BE SUBSTITUTED FOR
*SEMANT® | N FILE2 %/
INTEGER CHAR({20) VAR, /*¥THAT SYMBOL USED IN SYNTAX FOR
o AN INTEGER™/
WORD CHAR(20) VAR, /*THAT SYMBOL USED IN SYNTAX FOR WORD*/
STRING CHAR(20) VAR, /*THAT SYMBOL IN SYNTAX FOR STRING */
QUOTES CHAR(20) VAR, /*THAT SYMBOL USED FOR QUOTES*/
SEQUENCE CHAR(20) VAR, /*THE INITIAL SYMBOL OF THE SYNTAX
WHEN IT OCCURRS IN THE STACK THE PARSING
IS TERMINATED */
TERMINAL CHAR(20) VAR, /*THAT SYMBOL USED TO FORCE PARSING
TO BE COMPLETED */
ERRORSCAN CHAR(20) VAR, /*THAT SYMBOL INI‘ THE SYNTAX WHICH
IS USED IN ERROR RECOVERYeoTHE TEXT BETWEEN
TWO OF THESE SYMBOLS IS EFFECTIVELY DELETED*/
SYM(10)CHAR(20) VAR, /*THOSE SYMBOLS WHICH ARE EXPECTED
T ORESIDE IN THE I-TH POSITION OF THE PARSING
STACK */
SCAN-STOP CHAR(20) VAR, /*THAT SYMBOL IN THE SYNTAX WHICH
UPON ENTRY INTO THE PARSING STACH CAUSES
ALL INPUT TO BE IGNORED BY THE PARSER
UNTIL THE SYMBOL AFTER SCAN-START.+/
SCAN-START CHAR(20) VAR, /* RESTARTS THE PARSING AFTER THE
APPEARANCE OF THIS SYMBOL*/
MLIM FIXED BIN, /*MAXIMUM NUMBER OF SYMBOLS*/
MMLIM FIXED BIN, /*MAXIMUM NUMBER OF NON-BASIC SYMBOLS*/
NLIM FIXED BINy /*MAXIMUM NUMBER OF PRODUCT IONS*/
RLIM FIXED BIN; /7®*MAXIMUM NUMBER OF RIGHT ELEMENTS*/
DCL XINTEGER FIXED BIN, /*NUMBER FORM OF INTEGER*/
XSCAN,STOP FIXED BIN, /®*NUMBER FORM OF SCAN_STOP*/
XSEQ FIXED BIN, /*"NUMBER FORM OF SEQUENCE®*/
XSYM{10) FIXED BIN, /*NUMBER FORM OF SYM(*)%/
XTERM FIXED BIN, /*"NUMBER FORM OF TERMINAL*/
XSTRING FIXED BIN, /*“NUMBER FORM OF STRING #*/
XWORD FIXED BIN: /*"NUMBER FORM OF WORD*/

DCLM FIXED BINARY: /* NUMBER OF SYMBOLS %/

DCL MM FIXED BI NARY: /% NO NON-BASIC SYMBOLS */
DCL N FIXEO BINARY: /¥ NUMBER OF PRODUCTIONS*/

D CLSYT(O:MLIMICHAR(20) VAR;/*SYMBOL TABLE */

- =62 -

CLPRD{NLIMyO:RLIM) FIXEO BIN; /*¥ PRO IN NUMBER FORM*/
CLP(NLIMO:sRLIM) CHAR(201 VAR /*PRODUCT IONS IN STR ING FORM*/
C

L SEMANT(NLIMIBIT(1)s /*TRUE IF NO SEMANTICS FOR ITH PROD*/

CLH(O:MLIMyO:MLIMICHAR(1); /*PRECEDENCE MATRIX */

DCL L{O:MMLIM,0:MLIM) BIT(1))R(O:MMLIM, O:MLIM) BIT(1);
/*¥L{1,J) TRUE MEANS THAT SY-J OCCURS IN THE */
/% LEFT SYMBOL SET OF SY=I.R(IyJ) MEANS THAT */
/*¥ SY-J IS IN RIGHT OF SY-1*/

DCL(KEY(OSMLIM) ,PRTB(OSS®NLIM))IF | X E OBIN;

DCLBASVAL(MLIM) FIXED BIN;

DCLBASSYM{MLIM)CHAR(20) VAR:

READ-SYNTAX-1 NPUT: PROC;

DCLINBUFCHAR(100) VAR, BUF CHAR{100) VAR, (I,K)FIXEO BIN:
/*READS SYNTAX INPUT ANO MAKES UP P MATRIX AND SEMANT*/
DELETE: PROC(INBUF) RETURNS(CHAR(100) VAR);
/*DELETES LEAD1 NG BLANKS--RETURNS NULL IF ALL BLANK™*/
O CLUINBUF,STR)CHAR(100)VAR:
STR=1 NBUF:
| FSTR=** | STR=' *THENRETURN('');
D OWILE (SUBSTR(STR1,1¥="");
STR=SUBSTR(STR,2)3,
END:
RE TURN(STR]) ;
END DELETE:
NEXT: PROC RETURNS(CHAR({100) VAR);
DCL CCTA CHAR(100) VAR;
/*FETCHES NEXT SYMBOL FROM INPUT*/
O N ENDFILE(DATA) BEGIN:
PUTFILE(OUT)EDIT (* %%k ENDFILE SYNTAX INPUT--NO *,
SEND) (SKIP,2A)3
GO TO EXIT;
ENO;
IFINBUF=** THEN DO;
LOOP: G E TFILE(DATA)YEDIT (INBUF)(A(80));
INBUF=INBUF| |* *3;
INBUF=DELETE(INBUF);
IFINBUF=** THEN GO TO LOOP;
END:
I=INDEX(INBUF,* *);3
OLTA=SUBSTR(INBUF,1,I-1)3
INBUF=DELETE(SUBSTR(INBUF, I+1)19;
RE TURN{OUTA);
END NEXT:
DCL NEXT INTERNAL ENTRY RETURNS {(CHAR(100) VAR),

DELETE INTERNAL ENTRY(CHAR(100) VARIRETURNS{CHAR{ 100) VAR}
K=03; N=13 BUF=*'*; INBUF=*¢;
DOI=1TONLIM;P(I,0)="*;SEMANT(I)='0'B;END:

CPEN FILE(DATA)TITLE(FILEL) INPUT STREAM:
D OWHILE (BUF ~=SINIT);
BUF=NEXT:
END;
BUF=NEXT 3
DO WILE(BUF-~=SEND);
| FBUF=SSEP THE N K=13
ELSE |IFBUF=STERM THE N 003
DO I-K TO RLIY; P{NyI)=123 END:
IF N< NLIM THEN N=N+1;
K=03
END;
ELSE IFBUF=SSEMANT THEN SEMANT(N)=?1?8;

D
D
D
D

- 63 -

ELSE 00:
- PUN,K)=BUF;
IF K< RLIC THEN. K=K+13
‘END3
BUF=NEXT;
END;
EX T CLOSE FILE(DATA);
DOI=2TO N: I FP(LyQ)I=** THENP(I,0)=P(I~-1,0); END3
END READ-SYNTAX-I NPUT;

BASIC: PROC 3
/*MAKES SYMBOL TABLE AND NUMERICAL PRODUCTION TABLE PRD*/

DCLUCI¢JyK)YFIXED BIN:
M=0; SYT(O)='*;
DO K=0O TO RLIM;

DOI=1TO N;
DOJ = O0TOM; IFP(I4KI=SYT(J) THEN GO TO FF: END;
H
K H

M=M+1 3 J=M; SYT(M)=P(I,K);
FF: PRO(I yK) =J
END;
IF K=O THEN MM=M;
END: '
END BASIC:
COMP-KE Y-PR TB : PROC ;

/*COMPUTES KEY AND PRTB TABLES eeoeKEY(I) REPRESENTS, FOR THE
ITH SYMBOL THE INDEX INTO PRTB WHERE THOSE PROOUCTION ARE
LISTED WHOSE RIGHT PART BEGINS WITH THE ITH SYMBOL..

FOR EACH PRODUCTION, THE RIGHT PART IS LISTED WITHOUT
ITS LEFTMOST SYMBOL, FOLLCWEO BY THE NEGATIVE OF THE
PRODUCTION NUMBER(IF NO SEMANTICS OPTION SELECTED N
IS SUBTRACTED FROM THE PRODUCTION NUMBER) AND THE LEFT
PART SYMBOL OF THE PRODUCTION. ALL SYMBOLS ARE IN NUMERIC
FORWM, THE END OF A LISTOF PRODUCT IONS REFERENCED BY KEY(I1}
IS MARKED WITH A 0 ENTRY IN PRTB. x/
DCL(IyJyKyUyV) FIXED BIN;
K=03 V=03 KEY(0)=0; PRTEB(0)=0:
DCI=1T OM+l;
IFV~=0 THE NKEY(I-1)=V;3
v=03;
| FPRTB(K)~=0 THEN K=K+13
PRTBIK} =03 KEY (I)=K3
DOJ=1TO Ny;
IFPRD({Jy1)=I THEN 00:
IF V=0 THEN V=K+13
00U=2T ORLIM;
| FPRD(J»U)~=0 T HE N DO3
K=K+13 PRTB(K)=PRD(JyU); END:
END;
K=K+13
| F SEMANT(J) THE N PRTB(K)I==N=-J3
ELSE PRTB(K)==J3

K=K+13; PRTE(K)=PRD(J,0);
END3
END:
END:
END COMP-KEY-PRTB;
SYNTAX_OUTPLT: PROC$

/*OUTPUTS SYNTAX INFORMAT ION*/

DCLA{I¢JeK)FIXEO BIN:
/*OUTPUT PRODUCTIONS IN STRING FORM*/
P U TFILE(OUT)EDIT(*PRODUCTIONS? »* ¢ J(PAGE A SKIP A)

DO I-1 TO N;
TFILECOUT)EDIT(I,P{L,0))SSEP)(SKIPyF(4),X(2)yAyXL2),

A) 3
DO J-I1TORLIM:
| FPUIpJ)=='*THEN PUTFILE(QUTIEDIT(P(I,J))
(X(2),A)3
END:
| FSEMANT(I) THEN PUTFILE(OUT) EDIT (*#NO-SEMANTICS**)
(X(5))A)3
END:
/*0UTPUT BASIC AND NON-BASIC SYMBOLS*/
PUTFILE(OUT)IEDIT(*BASIC SYMBOLS®*NON=-BASIC SYMBOLS’,' *)
(PAGE)ApCOLUMNIS0) ,A,SKIPy A);
0 0I=1T0 MAX(MMyM=MM);
IFI+MMC=M THEN PUT FILE(OUT)EDIT(MM+T, SYT(MM+]I))
(SKIP F(4) X (2}, A);
IFIK=MM THEN PUTFILE(OUT)EDIT(I,SYT(I))
(COLUMNI{S50), F{4),X(2),A);
END3
/*OUTPUT KEY AND PRTB*/
PUTFILE(OUT)EDIT(YI® ,*KEY(I)?,'PRTBIKEY(I))I*)*)
(PAGE,A)COLUMN(109,A,COLUMN(20),A,SKIP A)3
DU!*IT O M3 ’
= P U TFILEC(OUT)EDIT(I,KEY(I),**)(SKIP,F(4),COLUMN(10)},
F(5) COLUMN(20),A);
D OK=KEY(I)BY 1 WHILE (PRTB(K)~=0)3
PUTFILE(OQUTYEDIT(PRTB(KIIIX{L),F(4))s
END;
END:
END SYNTAX-OUT PUT:
PRECEDENCE: PROC 3
/* FIND H PRECEDENCE MATRIX */
DGCLEIyJpK)FIXEDBINyERRORFLAGBIT(I);
DCLU(UpVePsQsAyB) FIXED BIN:
DCLNNFIXED BIN, CHANGE BIT{1)3
OCL(CLIO:MLIM),C2(0:MLIM)) FIXED BIN:
/* THE IT'H SYMBOL OCCURS C1{I) TIMES AS LEFT */
/# ANDC2(I) TIMES AS RIGHT */
DCLU(BL{OSNLIM),B2(O:NLIMIIBITIL1);
/% B(K) MEANS THAT THE K'TH PRODUCTION HAS BEEN x/
/%* ELI Ml NAT ED */
OCLU(CSO(OSNLIM),SL(OSNLIM),SR{OSNLIM)) FIXED BIN:
ENTER : PROC (XY ,S)3
DCL T CHAR(1):
DCL(X)YVFIXEDBINARY,S CHAR(1);
T=H(X,Y) 3
| FT~=* &£ T~=STHE N DO
| F~ ERRORFLAG THEN PUT FILE(OUT) EDIT
("HINTS REGAROING PRECEDENCE VIOLATIONS’,’ ‘)
(PAGEA,SKIPyA)3
ERRORFLAG='I"B:
PUTFILE(OUT)EDIT
(UnSVT(X"ToS'SYT(Y,)(SKIPpF("’aX(Z’|A.X(z’.
2 AyX(2),A03
END:
H{X,Y)=S3
END ENTER:
00 I -1TOM; Cl(I)=035 C2(I)=03 EN D3
BA: DOK=1TO N;
SO(K) =PRD(K0); SL(KI=PRD(K,;1); J=RLIM;

- 65 -

DO WILE (PRD(KyJ)=0); J=J-13 END:
SR KJ =PRD{K,J); BI(K)=*1Bs B2(K)=?1*pB:
C2(SO(KII=C1(SO(K))+1s CL(SOIK)I=C2(SO(K));
ENDBA;
DOI=1TO MM:
DCJ=1TOM;:; R(I,JI='0'B;s L(I,J)='0"Bs END: END:
NN=N3 CHANGE='1"'8;
DO WILE (CHANGE ENN>0)3

BB :
CHANGE='0'8;
DCK=1TO N;
| FBL(K)T HE ~ DO
A=SO0(K); B8=aSL(K);
| F~ L(AyBYTHENDO; L (ApB)=* 1" B: CHANGE=@ 1'B}
END:
|FBK=MM THEN 00J=1T O M3
| F~ LCApJ) THEN IFL(ByJ) THEN 00:
L(ApS)='1'B3 CHANGE-’1*B: ENDSENDS
IFCL(BY=0 THEN DO :Bl{(K)='0'B; C1(A)=Cl(A)~-13
NN=NN-13 END:
END BB
NN=N3 CHANGE='1"'B;
BC: D OWHILE (CHANGE &NN>0)3
CHANGE='0*'B;
DCK=1TO N:
IFB2(K) THEN DO:
AsSO(K)3 B=SR(K);
IF-R(AyBY THEN DO: R{A BY='1 B; CHANGE="1'B3END3
| FBK=MM THEN 00 J-1 TO M:
| F~ R{AyJY THEN IFR(ByJ) THEN DO3
R(ApJI=*1'B; CHANGE="1'B3 END: END;
| FC2(B)=0 T HE N DO3
B2(K)='0'B; C2(A)=C2(A)-1; NN=NN-1; END;
ENDBC;
/*OUTPUT RIGHT AND LEFT SYMBOL SETS*/
PUTFILE(OUTY EDIT (‘RIGHT SYMBOL SETS’,” * J{PAGE)Ay SKIP,A)3
DOI=1TO MM: .
PUTFILE(OQUTYEDITISYTLIN, "=)(SKIPpApX(1))A);
D OJ=1T OM;
IFROIPIVTHEN PUTFILE(OQUT)EDIT(SYT(JIIN(X(2),A)3
END:
END;
PUTFILEC(OQUT)EDIT(*LEFT SYMBOL SETS',@ "M SKIP(4),A,SKIP,
AD3
D CI=1TOMM;
PUTFILE(CUTIEDITISYT(I)*=*) (SKIP A X(1),A)3
DO J=1T O M:
IFLII)V THEN PUTFILE(OQUT)EDIT(SYT(JININ(X{2),A)s
END:
END;
/* FIND H PRECEOENCE MATRIX ®/
0 01-0O TOMSD OJ=0T O M; H(I,J)=?13END; END;
ERRORFLAG='0"'8B;
uv 0oo0U=1TO N;

D OV=2T ORLIM;

I FPRO(U)VI-=0 THEND
P=PRD(U,V~-1}3; Q=PR
| FP<=MM T HE N DO3

DOI=1TOM;
IFREP)IVTHEN CALLENTER(IyQ¢*>*)3ENDS

|FQ<=MM THEN 00 J=1T O M3

(+H
D(URV IS C A L L ENTER(PQy*=1?);

) - 66-

| FL(QyJI) T H E N DO3
CALL ENTER(P, J, '<*);

D OI=1TOM;
IFR(PyIY THEN CALLENTER(I¢Jyp">%)3
END:
END;
END:
END:
ELSE IFQ<=MM THEN 00 J-1 TO M3
IFLIQeIJY THEN CALL ENTER(P§J)*'<*);END;
END UV ;
UTFILE(OUT)EDIT(*PRECEDENCE MATRIX', *I(PAGE)A)SKIPyA);
U TFILE(OUTYEDITI(J/10D OJ=10T OMB Y 10))
(SKIPX(6)9(X(10),F(1)))3
D OI=1T OM;
P U TFILE(QUTYEDIT(I,**)(SKIP)F(4)yX(1),A);
DO J=0 TO M BY 10
I FM>J#9 THE N U=J495 EL SE U=M;
P UTFILE(OUT)EDIT((H(I,K)ID oXK=dT OUNp*e*)
(11 AD;
END: _
END;
IF ERRORFLAG THEN PUT FILE(OUT)YEDIT
(‘PRECEDENCE VIOLATIONS OCCURRED! Y (SKIP(2),A);
ELSE PUT FI LE(OUT) EDIT (‘NO PRECEDENCE VIOLATIONS OCCURRED"’)
(SKI P2),A);
END PRECEDENGE
OUTPUT,DCL: PROC 3
/*OUTPUT DECLARATIONS TO PARSER FIL Ex/
DCLUCIyJeK)FIXED BIN:
PUT F | LE (PARSER) EOIT (* DCL /*DECLARAT |ONS FROM SYNTAX*/')
(COLUMN(6),A);
IF QUOTES=*" THEN QUOTES=QUOTES| | QUOTES:
PUTFILE(PARSER)Y EDIT (‘QUOTES EXT CHAR(20) V AR INITIAL(***,
QUOTES ') ,*) (COLUMN(10), 3 A)s
p u TFILE(PARSER) EDIT (*ERRORSCAN CHAR(20) va RINITIAL(®t*,
ERRORSCAN,*),) (COLUMN{10),3 A};
PUTFILE(PARSERY EDIT (‘SCAN-START CHAR(20) v A RINITIAL(**
pSCAN_START p* %), *) (COLUMN(10),3 A | :
/% MAKE UP BASSYM AND BASVAL */
J=03; XWORD=03; XI NT EGER=03; XSTRING=0;
DOI=MMel T O M
IFSYT(I)= WORD THEN XWCRD=13
ELSE IF SYT(I)=INTEGER THE N XINTEGER=13
ELSE IFSYT(I)=STRING THEN XSTRING=13
ELSE DO:
J=J+ls
BASSYM(JS)=SYT()3
BASVAL(J)=I3;
END:
END:
J=J+l;
BASSYM(J)=TERMINAL;
BASVAL(J) =M+1;
XTERM=M+13
P UTFILE(PARSER)EDIT(*BASSYM(*)J)*) CHAR(20)V A R
CINITIAL(Y** ,BASSYM(1),****)(COLUMN(10), A
Fla), 4 A)3
P U TFILE(PARSER)EDIT ((*p***,BASSYM(I),**** (0I=2T O
J1) (COLUMN(20)},6 AD.;

- 67~

/%

PUT FILEtPARSERJ EDIT t’ ALY
PUT FILEtPARSERJ EOIT !'BASVAL(';J.

JFIXED BIN INITIAL(®,)BASVAL(1))(COLUMN(10),A,Fl4),
A F(4))3 .
P U TFILE(PARSER)E D | T{(*)*yBASVAL(IIDOI=z2T O4M)
(COLUMN(20), 10(A,F(&)));
P UTFILE(PARSER)EDIT(*),*V(A);
P UTFILE(PARSER)EDIT(*KEY(0:*yM+]1,')FIXED B | N INITIALC(?®
»KEY (0) J (COLUMN(10), Ay F(4)y A F(&) y:
PUTFILE(PARSER)EDIT((**)KEY(I) DOI=1T OM+1))
(COLUMNI(20) 6 (A, F(4))
PUT FILEtPARSERJ EDIT(*)*1(A);
PUTFILE(PARSER)EDIT(*PRTB(O:*,KEY(M+1),
) FIXED BININITIAL(®,PRTB(O))(COLUMNI10),A,F(4),
AyFlad)
PUTFILE(PARSERYEDIT((*y*yPRTB(IID O I=1T O KEY(M+1)
JJ (COLUMN(20),6 (A, F(4)));

PUT FILEtPARSERJ EDIT t' J,” J (A)3

PUTFILE(PARSER)EDIT(*HLIM FIXED BIN INITIAL (*oM+1,
) »') (COLUMN(10) A, F(4), A)3

PUTFILE(PARSERYEDIT(*XTERM FIXEO BIN INITIALCY , XTERM,

“J p*)(COLUMN(10) ,ApF(4), A);
XSEQXSCAN.STOP=03 DOK=1TO10; XSYM{K)=03 END:
D OI=1TOM;

0 0OK=1T O1l03
I FSYT{I)=SYM(K) THENXSYM(KI=I;
END:
| FSYT(I)=SEQUENCE THE N XSEQ=13
ELSE IFSYT(I)=SCAN_STOP THE N XSCAN_STOP=13
END;

PUTFILE(PARSER)EDIT(*XSYM(10) FIXEDB I N INITIAL(",
XSYM{1) p(*)? yXSYM(K)I D O K=2TO10)s*),*)
(COLUMN(10) »ApF(4),COLUMN(20),9(A,F(4)) Al

PUTFILE(PARSER)IEDIT(*XWORD FIXED BININITIAL(*)XWORD,

) ») (COLUMNI(L10)pApF(4) A3

PUTFILE(PARSER)EDIT(*XINTEGER FIXED BININITIAL(?,

XINTEGER)*)) (COLUMN(10),A,F(4),A);
PUTFILE(PARSERIEDIT(*XSTRING FIXEOB I N INITIAL(?,
XSTRING»*)»*)(COL(L10),A,F(4),A);
PUTFILE(PARSER) EDIT(*XSCAN_STOP FIXEO BININITIAL(®,
XSCAN_STOP,),)({COLUMNC(10) A, Fl(4),A);

PUTFILE(PARSERY EDIT(*XSEQ FIXEO BIN INITIAL(?,XSEQ,
")) (COLUMNIL10) A F(4),A);

PUT FILE (PARSER)EDIT(*MFIXED BININITIALC*)Jp*)y*)
(COLUMN(10),A,F(4),A);:

PUTFILE(PARSER)EDIT(*N FIXED BIN INITIAL(*,Ny*)35*)
(COLUMN(L10),A,F(4),A);

SET UP TO OUTPUT PRECEDENCE INITIALIZING PROCEDWE

AND PRECEDENCE MATRIX H */
PUTFILE(PARSER)EDIT(*DCL HINITIAL ENTRY(FIXEDBIN)3®,»
"HINITIAL: PROCI(JILIM);*

"OCL(IyKyJLIM) FIXEO BIN,",
J(02JLIM) FIXED BININITIAL(O)
(COL{10)pA,COL(2)¢A,2(COL(10),AN);

/%0 MEANS= 1 MEANS < ANO 2 MEANS > */

J-03%
OI=1TOM;
D OK=1T OM;
| FH(L yK)==**THEN DO;
PUT FILEtPARSERJ EDIT(® y?p1p?p%yKp®p*)

. - 68 -~

(COL(200,2(A F(4)), ADs

| FH(I,K)='=* THEN
PUTFILE(PARSER)IEDIT(*O')(AD;

ELSE IFH(I,K}=*<*THEN
PUT FILE(PARSER)VEDIT(* 1 *)(A);

ELSE PUTFILECPARSERIEDIT('2')(A)s

J=J+3;

END;

END:
END:

PUTFILE(PARSERYEDIT(*);*)(A);

PUTFILE(PARSER)EDIT('DOI=0TO HLIM;",

‘DO K=0 TOHLIM;* p*H(I,K)=ttv0e30,

END3»*ENDs*»y'DOI=1TOJLIM-1 BY3:*,

IF J(I42) =OTHENHJ(IN J(Iel)p=te=res0,

‘ELSE IF JII42) =1 THENH{J(I) J(I+1))=00 050,

"ELSEH{JUI),J(I+1))=00>00 0,

‘END; ",

'DOI=0T OHLIM;?) H(HLEMy | ~ = <= -

CH(| ,HLIM)I=*9>0050 9END;?,* END HINITIAL:')

(COL(14) yA,COL(18),A,COL(22), A, COL(22))A,
COL(18),A,COL(14))A,4(COL(L18),A),COL(L14),A,

3(COL(18) A),COLIL4),A);

P U TFILE(PARSER}EDIT (*DCL H(O:* yM+1,¢,0:° ,M+1,
)CHAR{L) INITIAL CALL HINITIAL(®,Jd,%*)5*)
(COL(L10) 3 (A F(4)),A);

END OUTPUT,DCL;

OUTPUT-PARSER : PRCC:
/* MERGES INPUT FILE2 WITH DECLARATIONS FROM OUTPUT,DCL INTO
FILE3 */

OCL A CHAR(80) VAR:
DCL | FIXEO BIN, (BpC)BIT(1)3
O NENDFILE(IN) BEGIN:
PUT FILECOUT)EDIT (**%x%kx*ENDFILE PARSER INPUT-*END* *»
“ABSENT OR WRONG') {SKIP,2A);
GO TO EXIT;
END;
OPENFILE(INITITLE(FILE2) INPUT STREAM;
OPEN FI LE(PARSER) TITLE(FILE3) OUTPUT STREAM:
I F PARSER_NAME=** THENB='0'B; EL S EB=*1"'8;
I F SE MANT_NAME='¢* THENC='0*B; ELSE C="1'8;
LOOP: GE TFILE(INIEDIT(A)(A(80));
IF SUBSTR{A,1,5)="#END** THEN GO TO EXIT:
IF SUBSTR(A,1,8)='*INSERT** THEN CALL OUTPUT-DCL;
ELSE IF B &INDEX(A)**PARSER**)~=0 THE N DO;
I=INDEX (A, **PARSER®")3
A=SUBSTR(A)1,I-1)| | PARSER_NAME]| | SUBSTR(A,1+8);
P UTFILE(PARSER)EDIT(A)(SKIP,AD;
END3
ELSE IF CE&INDEX(Ay**SEMANT*')~=0 T HE N DO}
I=INDEX (A, '*SEMANT*"*);
A=SUBSTR(A,1,I-1)||SEMANT_NAME! | SUBSTR(A, I+8};
P UTFILE(PARSER)EDIT(A}(SKIPyAD;
END;
ELSE PUT FILE(PARSERIEDIT{AN(SKIP, A
GC TO LOOP:
EX T: CLOSE FILE(IN);
CLOSE FILE(PARSER);
END OUTPUT-PARSER;
¥ CALL ING S EQU ENCE ~==ee—ceeea=%/
OPENFILE(OUT)TITLE(FILE4) PRINT STREAM:
CALL READ-SYNTAX-INPUT;
CALL BASIC;
CALL COMP_KEY_PRTB;
CALL SY NTAX,OUTPUT;
CALL PRECEDENCE:
CALL OUTPUT-PARSER;
CLOSE FILE(QUT);
END SYNTAX;

- 69 -

APPENDIX C
SKELETON PARSER

PARSER: PROC OPTIONS (MAIN);
/*PARSER USING THE TABLES INSERTED BY THE SYNTAX PROGRAM =/
D CLINPUTTCHARIT) VAR, /*INPUT FILE */
POUT CHAR(T) VAR, /*DIAGONOST IC OUTPUT FILE*/
OUTPUT CHAR(T) VAR: /*OUTPUT FILE*/
DCLUIpJpKoLoKKI1I2,I3)FIXEDBIN,
$(0:50) FIXED BINARY, /*PARSING STACK*/
V(0:50) CHAR(400) VAR, /* VALUE STACK */
QUOTE BIT(1), /*BOOLEAN FOR QUOTING BASIC SYMBOLS */
SYM FIXED BIN, /%*NJUMERICAL FORM OF ASSIGNED SYMBOL */
SYMS CHAR({400) VAR, /*STRING FORM OF ASSIGNEO SYMBOL */
ERRORBITUL)INITIAL('O*B)y /*PASSED T O SEMANT®/
ANS FIXED BIN INITIAL(O), /*PASSED TO SEMANT%®/
INPUT CHAR(100) VAR: /*INPUT BUFFER*/
#*INSERT*
DCL LCOK INTERNAL ENTRY (CHAR(4O00IV ARy FIXEDBIN,BIT(1),BIT(1Y);s
LOOK: PROC (SF1, Ty X3
/*FREE FIELD REAO PROCEDURE TIS FALSEIF INTEGER ELSE TRUE*/
/*SEPARATOR IS ALWAYS. BLANK IF NOT QUOTED STRING THEN A
SEPARATOR IS ANY SINGLE CHARACTER IN THE SYNTAX
IF X TRUE THEN BLANKS REMOVED ELSE BLANKS LEFT */
NE XT: PROC RETURNS(CHAR(1}));
/* GETS THE NEXT CHARACTER FROM INPUT*/
O NENDFILE(IN) BEGIN:
PUTFILE(DIAGILIST (¢ *%%xx%ENDFILE MAIN SCANNER’) SKIP:
IF QUOTE THEN PUT FILE(DIAG) LIST
(‘“*****MISMATCHING QUOTES’) SKIP:
GO TO FINIS:
END:

I F IDLENGTHC(INPUT) THEN DO3
GETFILE(INVEDIT(INPUT)(A(BO));
PUTFILE(DIAGIEDIT(*NEW INPUT STRINGEK®kx%x? » INPUT)

(SKIP,2 A3

INPUT = INPUT | "3
I=1;
END:

RE TURN(SUBSTRIINPUT, I, 1));

END NEXT:

CON: PROC;
/'@CONCATENATES SYM TO S ANO INCREASED I */
S =S 1ISYM;I=1+13,
END CON:
SPEC : PROC(A,B) RETURNS(BIT(1));
/% TRUE IFA IS NOTA SEPARATING CHARACTER*/
DCL A CHAR(1),BBIT(1)yJ FIXEDBIN :

IF A= * |A=QUOTES THE N RETURN(*O*' B J;

IF B THEN RETURN(*1'B);

DOJ=1TOM; |IF A=BASSY M{J) THEN RETURN{(* 0’ B}3 END:

RETURN(*1'B);

END SPEC:

DCL SPEC INTERNAL ENTRY (CHAR(1),BIT(1)JRETURNS(BIT(1)),
NEXT INTERNAL ENTRY RETURNS (CHAR(1)}),
CON I NTERNAL ENTRY,
SYM CHAR(1),
(T,x) BIT(1),

- 70 -

| FIXEO BIN, /J*INPUT BUFFER POINTER™*/
S CHAR{400) VAR; /*QUT PUT STRING*/
SYM=NEXT3; §=v?; -
IFX THEN DO WHILE (SYM='1);

I=I+13 SY H-NEXT3 END;
| F-SPEC{(SYM,QUQOTE) TH E N DO3

CALL CCN; T=*1%*B; RETURN: END;
IF SYM>*Z* THEN DO:

DO WHI LE (NEXT>* 7)3

CALL CON: SYM=NEXT;

END:
T='0'8B3; RETURN:
END;

DC WHILE (SPEC(SYM, QUCTE))
CALL CON: SYM=NEXT;
END:

T='1'8; RETURN:

END LOOK:

ASSIGN: PROC (QUOTE ¢#0S»V) RECURSIVE:
/*ASSIGNS A NUMERICAL VALUE TO CURRENT INPUT SYMBOL */
DCL QUOTE BITI(1),
~ OS CHAR({400) VAR, /*STRING RETURNED HERE */
V FIXED BIN, /* NUMERICAL FORM OF STRING */
J FIXED BIN,
TBIT(1) ,0X CHAR(400)V AR :
IF QUOTE THEN DO3
CALL LOOK(QS,1,T,'0'8B);
IF OS-QUOTES THEN DO;
QUOTE='0*B; 0S=**'; V-XSTRING; RETURN:
END;
CALL LCOK(OX ¢I,T,%0'8);
DO WHI LE (OX~=QUOTES);
0s=0s|]0x;
CALL LOOK(OX,I,T,'0*'B);
END;
QUOTE=*0'B; V=XSTRING;
RETURN:
END;
CALL LOOK(OS I,T,*1'8B);
IF T THEN DO:
| FOS=QUOTES TH E N DOs
QUOTE=*1'B; CA L L ASSIGN(QUOTE 0S,V); RETURN;
END;
DOJ=lT OMs
I F 0S=BASSYM(J) THEN 00;
V=BASVAL(J); RETURN:

-END:
END;
V=XWORD; RETURN:
END;
V=XINTEGER: RETURN:
END ASSIGN:

SCAN2: PROC 3
/* DRAINS INPUT BUFFER AND SCANS INPUT FILE UNTIL SCAN-START
OCCURS RESET I AND INPUT BUFFER %/
DCL K FIXED BIN:
CN ENOFI LEC(IN) BEGIN;
PUT FILE(DI AGJ EDIT (" **%x%xENDFILE ALTERNATE SCANNER’,
‘*****CHECK FOR MATCHING SCAN-STOP & SCAN-START’)
(2(SKIP,AY})

-1 -

GO TOFINIS:
END ;
I F IKLENGTH(INPUT) THEN INPUT=® *| | SUBSTR(INPUT, It:
ELSE DO: -
GE TFILE(IN)EDITC(INPUT)(A(BO));
PUTFILE(DIAG)EDIT('CODE INPUT STRING**?, INPUT)
(SKIPy2 At 3
END:
LOOP : K=INDEX{INPUT,SCAN_START);
IF K=O THEN DO:
PUTFILE(QUTIEDITCINPUT) (SKIP, At:
GETFILECIN)EDITUINPUT) (A(8D));
PUTFILE(DIAG)YEDIT('CODE INPUT STRING*%¢*, INPUT)
(SKIP 2 A t;
GO TO LOOP:
END;
IF K+LENGTH (SCAN_START 1 >=LENGTH({ INPUT) THEN DO3
I121; INPUT=213;
END 3
ELSE DO:
PUTFILE(CUTIEDIT(SUBSTR(INPUT)1,K=1))(COLUMN(2),A);
I=13 INPUT=SUBSTR(INPUT K+L ENGTH(SCAN_START});
END;
END SCAN2; .
STACKOK: PROC RETURNS(BIT(1));
/¥ TRUE | FHIS{J=1),S(J))='<? %/
DCLI FIXED BIN:
TF H(SC(I=11,S(I)=*<* THENRETURN(* 1*' B);
PUT FILE(DIAGILIST (**x*%x*ERROR I N PARSING STACK ‘t SKIP:
RETURN('0'B);
E ND STACKOK;
ERROR-RECOVERY: PROC:
/*RESETS STACK, SCANS INPUT UNTIL ERROR-SCAN */
D C LUMERIBIT(1))(RyLyKK)F | XEDBINg(TRyTLyXRp XL) CHAR(400)

VAR:
DCL TYPE INTERNAL ENTRY(FIXEDBIN) RETURNS (CHAR(400) VAR)3
TYPE : PROC(R) RETURNS(CHAR(400) VAR}3

/*RETURNS TYPE OF R INTEGER,WORD,STRING OR RESERVED %/
DCL R FIXED BIN:
IFR=XWORD T HE NRETURN(*WORD*)3
ELSEIF R=XI NTEGER THEN RETURN(' INTEGER’ t:
ELSEIF R=XSTRING THEN RETURN(*STRING®* t;
ELSE RETURNI’RESERVED WORO' }3
END TYPE:
/*RE SET STACK "~~~ """"""""-"-"--~ */
PUTFILE(DIAGIEDIT(' *¥xxkSYNTAX ANALYSISI=%p1}
(SKIPA,Fl4)) ;s
PUTFILE(DIAG)EDIT(*STACK W A S*p(SIL)pVILIOOL=0TO Kttt
({COLUMN(20) , ApS{COLUMN(20),10(F(4), X(1,A)));

L=13

D OWHILE (XSYM(L)~=0 & LK10)3
L=L+13
END:

M=t0'B3 J=L3
D CKK=1TO L;
I F S{KK)~=XSYM(KK) THEN DO:
J=KK=13 GO TO EXIT:
END:
END:
EXIT: I F J=L & ERRORSCAN~=SCAN_START T H E N M=*'1783

-T2 -

/* SCAN INPUT UNTIL ERRORSCAN FOR ERRORS */
I-1: QUGTE='0'B; ER='1"B;
CALL ASSIGN{QUOTE,;XR,R);
TR=TYPE(Rt ;
LOOP : | F XR=ERRORSCAN THEN GO TO XEXIT;
TL=TR; XL=X R; L=R: "
IF L=XSCAN_STOP THEN DO:
CALL SCAN23
IF ERRORSCAN=SCAN_START THEN GO TO XEXIT;
END;
CALL ASSIGN(QUOTE,XR,R)3;
TR=TYPE (R)3
IFH(L)R)=**THEN DO;
ER='0'8;
PUTFILE(DIAG)EDIT(XLy* (TYPE=1,TLy*")MAY NOT BE?*,
‘FOLLOWED BY *¢XRp? (TYPE-" o TRy *)* } (COLUMN(20),9 A t :
END;
GO TO LOOP;
XEXIT: IF ER THEN PUT FILE(DIAG)EDIT(* ERROR NOTI N CURRENT INPUT’)
(COLUMN(20) ,A);
PUTFILE(DIAG)EDIT(*STACKRESET TO'p(S(L),VIL)D OL=0
TO J)) (COLUMN(L0) »A,5(CCLUMN(20), 10(F(4), X(1),A)));3
PUTFILE(DIAG)ILIST("*%%x%x*END OF ANALYSIS’') SKIP;
QULOTE='0"'8;
INPUT=SUBSTR{INPUT,1); I= 1;
IFMTHENDQ; SYMS=XR; SYM=R: ENO;
ELSE CALL ASSIGN(QUOTE, ;SYMS,SYM);
END ERROR-RECOVERY:
/® -We----- PARSING SECT ION ~ ------------ */
DCL STACKOK INTERNAL ENTRY RETURNS(BIT(11));
DOJ=0TO 50; Std=05 V(J)=""; END;
S(Ot =XTERM;
I NPLTT=*SOURCE's POUT=" OTIAG’; QUTPUT='QUTPUT";
OPEN FILE(OUT)TITLE(OUTPUT) OUTPUT STREAM:
OPEN FILE(DIAG)TITLE(POUT) PRINT STREAM:
OPEN FILECIN} TITLE (INPUTT) INPUT STREAM:
I-1; INPUT="; J=0; QUOTE='0"B;
CALL ASSIGN(QUOTE SYMS,SYM);
0 OWHILE (SYM>0);
J=J+1;Ksd; SJI)=SYM; V(J)=SYMS;
IF S(J)=XSCAN_STOP THEN CALL SCAN2;
CALL ASSIGN(QUOTESYMS,SYM);
D OWILE(H(S(J),SYM)I=t>1);
IFS(J)=XSEQ THEN GO TO FINIS:
DO WHILE ((H{S(J=11,S(I))==2)E(I>1));
T=T-13%
END:
L=KEY(S{J) t:
IF STACKOK THEN DO WHILE (PRTB(L)~=0);
KK= J#13
DO WHILE ({KKK=K)E&E(S(KK)=PRTB(L)));
KK=KK+1; L=L+1;
END:
| FOCKK>K) E(PRTBILIKO)}Y THEN DO:
I1=J3 12=K; I3=-PRTB(L t:
TF I3<=N THEN CALL *SEMANT*(I3,V,I1, I2,ANS,ERROR)}
S(J) =PRTBIL+1); L=0;
END:
ELSE DO3
DO WHILE (PRTB(L)I>0);

-73 -

L=L+13
END:
L=L+23
END:
END:

ELSE DO; /*ELSE TO IfF-=DO(PRTB==) %/

CALL ERROR-RECOVERY; L-0O;
END:

IFL-=0 THEN 00: /*PUT ERROR RECOVERY HERE */
L=0; CALL ERROR_RECQOVERY;
END:
K=J:
END:
END:
| FSYM=0 T H E N DO3
PUTFILE(DIAG) LIST
('%xk®kTHE SYMBOL * pSYMS,»* WAS ASSIGNED TO NULL CLASS *)
SKIP;
IFXWORD=0 THEN PUT FILE(DIAG)LIST(*WORDCLASS*);
IF XINTEGER=0 THENP UTFILE(DIAG)LIST(*INTEGER CLASS *):

IFXSTRING=0 THEN PUTFILE(DIAG)LIST{*STRING CLASS");
END3

FINIS: END *PARSER#*3
*END *

- 74 -

APPENDIX D -- SEMANTIC CONSTRUCTOR

SYNTAX

* SYN TA X*

SEMANTICS *#3:=% SEMANT CODA PRODUCT IONS *;#*
PRODUCTIONS *::=% INTERPRETATIONS *NO=S EMANT * *; %
SEMANT *:3=% *SEMANTICS* WORD *3 *

INTERPRETATIONS *::=% INTERPRETATION *NO=S EMANT* % ;%
*::=% INTERPRETATIONS INTERPRETATION *NO=S EMANT & % ; %
INTERPRETATICN *:3=% INTERP *CODE"* *3*

INTERP *2 :=% *PRODUCTION* INTEGER * gk

CODA *3:=% *"CODE"”

END- SYNTAX

-75 -

APPENDIX D -- SEMANTIC CONSTRUCTOR

PARSER WITH SEMANTICS

PARSER: PROC (INPUTT,QUT PUT,POUT)* N
/*PARSER USING THE TABLES INSERTED' BY THE SYNTAX PROGRAM =/
O C L INPUTT CHAR(T)Y VAR, /*INPUT FILE */
POUT CHAR(T) VAR, /*DIAGONOSTIC OUTPUT FILE*/
OUTPUT CHAR{T) VAR, /*OUTPUT FILE+/
LCOK INTERNAL ENTRY (CHAR(400)VAR, FIXEDBIN,BIT(1),BIT(1));
CODE-OUT: PROC(N VS JpK)ANS,ERROR};
DCLA(NyJsK)ANS) FIXEO BIN, I FIXED BIN ,
VS(0:50) CHAR(400t VAR, ERROR BIT(1);
IF N=1 THEN DO;
PUTFILE(OUTYEDIT (‘END*IIVS(IDII*5°)(COLI10),A);
CLOSE FILE(OUT);
END;
ELSE IF N=3 THEN DO:
PUTFILE(OUTYEDIT
(VS(J+1) | l*s PROC(NyVSyJyKy ANS, ERRORI;*I(COLUMN(2),A)3
PUTFILE(OUT)EDIT(
‘DCL N FIXED BIN, /*PRODUCTION NUMBER*/*,
*VS(0:50) CHAR{400) VAR, /*VALUE STACK ¥/7%,
*3 FIXED BIN, /*LEFT STACK POINTER*/*,
‘K FIXED BIN, /*RIGHT STACK POINTER */%,
“ANS FIXED BIN, /*NOT USED BY PARSERINITTO 0%/*,
‘ERRORBIT{(1)3 /*NOT USED BY PARSERINIT TO FALSE*/")
(COL(10),A,5(C0L(14),A));
VS(J)=VS (J+1);
END:
ELSEI F N=6THEN PUTFILE(OUT)EDIT(*RETURN;®*,*END"*
TPl IvsSear o3 (2(COLUMNI{10), A)
ELSE IFN=T THEN 00:
P U TFILE(OUTDEDIT('IFN#'.VS(K).'THEN'.'L'IIVS(KHI':'
v '00; /*PRODUCT ION NUMBER *9 VS(K), %/ ¢)
(COLUMN(10) 3 Ap COLUMN(2), A) COLUMN(20),3 A t :
VS(J)=VS(K);
END:
END CODE-OUT:
DCLUCLpJeKyLyKK I1,)12,I3)FIXED BIN,
S(0:50) FIXED BINARY, /*PARSING STACK+/
V(0:50) CHAR(400) VAR, /7 VALUE STACK */
QUOTE BIT(l), /*BOOLEAN FORQUOTING BASIC SYMBOLS */
SYM FIXED BIN, /% NUMERICAL FORM OF ASSIGNED SYMBOL */
SYMS CHAR(400) VAR, /*STRING FORM OF ASSIGNED SYMBOL */
ERRORBIT(L)INITIAL('0'B)y /*"PASSED TO SEMANT®/
ANS FIXED BININITIAL(O), /*PASSED TO SEMANT*/
INPUT CHAR(100) VAR; /*INPUT BUFFER"*/
INSERT
LOOK: PROC(SeIyTyX)s
/*FREE FIELO READ PROCEDURE TIS FALSEIF INTEGER ELSE TRUE*/
/*SEPARATOR IS ALWAYS BLANK IF NOT QUOTED STRING THEN A
SEPARATOR IS ANY SINGLE CHARACTER IN THE SYNTAX
IF X TRUE THEN BLANKS REMOVED IF FALSE THEN BLANKS' LEFT %/
NE XT: PROC RETURNS(CHAR(1)1t:
/* GETS THE NEXT CHARACTER FROM INPUT*/
O NENDFILE(INYBEGIN:
PUT FILE(DIAGYLIST (***%x%ENDFILE MAIN SCANNER’') SKIP;
GO TO FINIS;

-6 -

ND:

SLENGTH{INPUT) THEN DO:

GE TFILEC(IN)EDITUINPUT) (A(80));

PUTFILE(DIAG)EDIT('NEW INPUT STRINGKk*x* , |INPUT)
(SKIP,2 A);

INPUT = | NPUT {]**;

IF

END:
RE TURN(SUBSTR(INPUT, [,1));
END NEXT:
CON2 PROC 3
/*CONCATENATES SYM TO S AND INCREASED I */
S=S ||SYM; I=I+1;
END CON;
SPEC : PROC(AyB) RETURNS (BIT (1))
/* TRUE IF AIS NOT A SEPARATING CHARACTER®*/
DCL A CHAR(1)y BBIT(1)y JFIXEOB | N :
IF A * | A=QUOTES THEN RETURN{ ‘0’ B);
IFBTHENRETURN(®1'B);
D OJ=LTOM; TIF A=BASSYM(J) THEN RETURN(*0*B); END:
RETURN(*1*B) ;
-E ND SPEC 3
DCL SPEC INTERNAL ENTRY (CHAR(1), BIT(1))RETURNS{BIT(1)),
NEXT INTERNAL ENTRY RETURNS (CHAR(1)),
CON I NTERNAL ENTRY,
SYH CHARI(1),
(TyX) BIT(1) ,
I FIXEDBINy /*INPUT BUFFER POINTER*/
S CHAR{400) VAR: /*OUTPUT STRING*/
SYM=NEXT3 S=te.
IF X THEN DO WHILE (SYM=9?);
I=I+13 SYM=NEXT; END:
IF -SPEC(SYM,QUQOTE) THEN DO:
CALL CON; T='1'83 RETURN: END:
IF SYM>*Z* THEN DO:
DOWHI LE (NEXT>' Z')3
CALL CON: SYM=NEXT;

END;
T='0'8;3 RETURN:
END:

D OWHILE(SPEC(SYM, QUOTE))
CALL CON: SY M= NEXT 3
END:

T=*1'B; RETURN:

END LOOK:

ASSIGN: PROC (QUOTE 0S,V) RECURSIVE;
/*ASSIGNS A NUMERICAL VALUE TO CURRENT INPUT SYMBOL */
DCL QUOTE BIT(1),
O S CHAR{400) VAR, /*STRING RETURNED HERE */
V FIXED BIN, /% NUMERICAL FORM OF STRING */
J FIXEDBIN,
TBIT(1) ,0X CHAR(400)V A R :
IF QUOTE THEN DO:
CALL LOOK(OS,1,T7,0'8);
IF0S=QUOTES THEN DO:
QUOTE=*0*B3 O S = “ : V=XSTRING; RETURN:
END:
CALL LOOK(OX yI,T,'0"B);
DO WHI LE (OX-~=QUOT ES);

os=0s | | ox 3

- 77 -

CALL LOOK(OX,I,T,%0°B);
END3
QUOTE=*0'B; V=XSTRING;
RETURN:
END:
CALL LOOK(OS1,Tp*1'B);
IF T THEN DO:
IF 0$S=QUCTES THEN DO:
QUOTE="1'8; CAL L ASSIGN(QUOTE,O0S,V): RETURN;
END:
D OJ=1T OM;
I F 0S=BASSYM(J) THEN 003
V=BASVAL(J): RETURN:

END:
END;
V=XWORD; RETURN:
END;
V=XI NTEGER,; RETURN:
END ASSIGN:

SCAN2 : PRDC 3
/* DRAINS I NPUT BUFFER AND SCANS INPUT FILE UNTIL SCAN-START
OCGCURS-RESET, I AND INPUT BUFFER %/
DCL K FIXED BIN3
ON ENDFI LE¢IN) BEGIN:
PUT FILE(DIAG) EDIT (*#x%k*ENDFILE ALTERNATE SCANNER’,
“**++**GCHECK FOR MATCHING SCAN-STOP & SCAN-START’)
(2(SKIP,A))
GO TO FINIS:
END:
1 FICLENGTHUINPUTYT 1 £ NINPUT=' v] | SUBSTRCINPUT,)3
ELSE DO:
G E TFILE(IN)EDITCINPUT)I(A(8BO))3
PUTFILE(DIAG)EDIT(*CODE INPUT STRING**', INPUT)
(SKIP' 2 A3
END:
LOOP : K=INDEX{INPUT SCAN_START);
IF K=O THEN DO:
P UTFILE(QUT)EDITCINPUT) (SKIP, A3
GE TFILECIN)EDIT(INPUT) (A(B0));
PUTFILE(DIAG)EDIT(*CODE INPUT STRING**?, INPUT)
(SKIP,2 A) 3
GO TO LOOP:
END:
IF K+ LENGTH{SCAN_START)1>=LENGTH(INPUT) THEN DO:
I121; INPUT=L9;;
END;
ELSE DO:
PUTFILE(OUT)EDIT(SUBSTRUINPUT,; 1,K=131(COLUMNIT2),A);

I=13 INPUT=SUBSTROINPUT yK+L ENGTH{SCAN_START))3
END:

END SCAN2 3
STACKOK: PRDC RETURNS(BIT(1});
/* TRUETI F HISUJ=1},S(JI))=<t %/
DCLI FIXED BIN;
I FHES(J=1) ,SUIN =< T HENRETURN(* 1*B);
PUTFILE(DIAG)LIST (***%%x%ERROR I N PARSING STACK *) SKIP:
RETURN(*0*8B);
E ND STACKOK3;
ERROR-RECOVERY: PROC:
/*RESETS STACK’' SCANS INPUT UNTIL ERROR-SCAN */

- 78 -

TYPE :

D CLUMERIBIT(I)p{RpLyKK)F | XEDBINy{TRyTLyXRy XL) CHAR(400)
VAR;
DCL TYPE INTERNAL ENTRY (FIXEDBIN) RETURNS (CHAR(400) VAR) 3
PROC(R) RETURNS(CHAR(400 JVAR);
/*RETURNS TYPE OF R INTEGER,WORD OR RESERVED */
DCL R FIXED BIN:
| FR=XWORD T HE NRETURN{(*WORD")3
ELSE IF R=XI NTEGER THEN RETURN({' INTEGER’)3
ELSE IF R=XSTRING THEN RETURN(*STRING*)}
ELSE RETURN(‘RESERVED WORO')3
END TYPE:
/*RESET STACK ~~~~""7 ~"~""""7--~ x/
PUTFILE(DIAG)EDIT(**kxkkSYNTAX ANALYSISI=*, 1}
(SKIPAF(4));
PUTFILE(DIAGIEDIT(*STACKWAS "p(S(L),VI(L}D OL=0T OK))
(COLUMN(20) yA,S(COLUMN(20),10(F(4),X{1),A)));3
L=1;
D OWILE (XSYM(L)~=0 & L<10)3
L=L+13
END;
M=90'B3 J=L3
D OKK=1TOLj .
TIF S(KK)-~=XSYM(KK)} THEN DO:
J=KK-1; GO TOEXIT:
END:
END:

EXIT: 1 F J=L & ERRORSCAN~=SCAN_START T H E N M=*1'B;

LooeP :

XEXI T:

/* SCANINPUT UNTIL ERRORSCAN FOR ERRORS */
I=13 QUOTE='0'B; ER='1'8;
CALL ASSIGN(QUOTE XRR)3
TR=TYPE(R);
IF XR=ERRORSCAN THEN GO TO XEXIT:
TL=TR; XL=XR3 L=R3
IF L=XSCAN_STOP THEN DO:
CALL SCANZ2;
IF ERRORSCAN=SCAN,START THEN GO TO XEXIT;
END;
CALL ASSIGN(QUOTEXRR);
TR=TYPE(R) 3
IF HILyR)=**THEN DO:
ER='0'83
PUTFILE(DIAG) EDITUXLy* (TYPE=*»TLy*IMAYNOTBE?®,
‘FOLLOWED BY *»XRy*(TYPE-*»TRy *)*) (COLUMN(20},9 A)3
END:
GO’ TO LOOP:

IF ER THEN PUT FILE(DIAG)EDIT(*ERROR NOTI N CURRENT INPUT")

(COLUMN(20) ,A);
PUTFILE(DIAGIEDIT('STACK RESET TO*{(S(L)VIL)D OL=0
TOJ))(COLUMN(L10) A, SCCOLUMN (200, 10(F(4)y X{1)pA))3
PUTFILE(DIAGILIST (**%k**END OF ANALYSIS’) SKIP:
QUCTE='0"'8B;
INPUT=SUBSTRCINPUT I3 1= 1:
IF M THEN DO: SYMS=XR; SYM=R; ENO;
ELSE CALL ASSIGN(QUOTE,SYMS,SYM);
END ERROR-RECOVERY:
/® VW PARSING SECTION e %/
DCLSTACKOK INTERNAL ENTRY RETURNS{(BIT(1));
DO J=0 TO 50; S(I=03 V(JI)= 3 END:
S(0) =XTERM:
OPEN FILE(OUT)TITLE(OUTPUT) OUTPUT STREAM:

-9 -

OPEN FILE(DIAGI)TITLE(POUT) PRINT STREAM;
OPEN FILECIN) TITLE (INPUTT) INPUT STREAM:
I=13 I NPUT='*3 J=0: QUQOTE='0" B3
CALL ASSIGN{QUOTE SYMS,SYM);
D OWHILE(SYM>0);
J=Jd+l 5 K=J; S(J)=SYM; V(J)=SYMS;
IF S(J)=XSCAN_STOP THEN CALL SCAN2;
CALL ASSIGN{QUOTE SYMS,SYM);
DO WILE (HIS(J),SYM)=D>");
IF S(J)=XSEQ THEN GO TOFINIS:
D O WHILE ((H(S{J-1),S(IV)=*=*)E(ID>1));
J=J-13
END:
L=KEY{(S(J));
IFSTACKOK THEN DO WHILE (PRTB(L)~=0);
KK=J4+13
D OWHILE ({KK<=K) & (S(KK)=PRTBIL))});
KK=KK+1; L=L+13
END;
| FO(KKOK) & (PRTB(LIKOII THEN DO:
I1=J3 12=K; [3=-PRTB(L);
--. IFI3<=N THEN .CALL *SEMANT*(13,V,I1,12)ANS,ERROR)3
S(J) =PRTB(L+1); L=03
END:
ELSE DO:
DO WHILE (PRTB(L)>0);
L=L+13
END:
L=L+23
END:
END;
ELSE DO: /*ELSE TO IF--DO(PRTB~~) %/
CALL ERROR-RECOVERY: L=03}
END;
IFL==0 THEN DO: /*PUT ERROR RECOVERY HERE */
L=03 CALL ERROR-RECOVERY:
END:
K=d3
END;
END;
FINI S: END *PARSER*:
END

- 80 -

APPENDIX E -- CONTROL LANGUAGE META SYSTEM

SY NT AX
//G0+SYNDATAD D *
SYM{1)=*0OPTIONS"* ERRORSCAN='*END** SEQUENCE='COMMAND-TABLE®*
PARSER_NAME='TABLE"* SEMANT_NAME=*SEMANT® QUOTES=¢*??

TERMINAL=**END-TABLE** MLIM=50 NLIM=50 MMLIM=50 SYM(2)=*COMMAND~LIST®*;
7%

//G0.SYNTAX DD *
* SYN TA X*

COMMAND-TABLE *23=% OPTIONS COMMAND-LIST* *3%
OPTIONS *33=% OPTION ®NO-=-SEMANT * *; %

*x2::=% OPTIONS OPTION ®*NCO=SEMANT * *; *

OPTION *2:=% *QUOTES* *=% W O R D *3*

::=% #PERIOD *=% W O R D *3*

*3:=k kTBL-NAME® =% STR|ING ®3 %
COMMAND-11 ST* #2:=% CCMMAND-LIST ®*NQO=S EMANT* *; %
COMMAND=LI ST * : : =% COMMAND *NO-SEMANT* *3%

x2:=% COMMAND-LX ST COMMAND *NO=SEMANT* %%
COMMAND *g2=% ID-LIST PARM-LIST* ®*NO=SEMANT* %%
ID-LIST *®22=% |D-SPEC®NO=SEMANT * *; %

*3:=% |D-11 ST ID-SPEC *NO-SEMANT* *3%
ID-SPEC *33=% | D %%

2:=% | D #DL-EX=LIST* STRING *3%

s2=% | D #DL=-SKIPX* STRING *3%

*2:=% | D *DL-EX=LIST®* STRING *DL=-SKIP* STRING *3%
::=% D ¥DL=SKIP STRING *DC-EX-LIST* STRING *¥:%
ID %3 :=% *“KEYWORD* WORD *RTN* WORD *3%*

*::=% *“SUB-ENTRY* WORD *; %
PARM=LI ST* *2:=% PARM-LX ST *NO-S EMANT* % ;%
PARM-LX ST *2:=% PARM *END* *NO-S EMANT* * ;%
*x2:=% PARM-LX ST PARM *END* ®*NO=SEMANT % %3
PARM %z2:=% PARM-ID &NO=SEMANT* x%;*
::=% PARM-ID KEYS ®NO=SEMANT* *;%
PARM=ID St s=% *PARM® T V P E %3 %
2:=%¥PARM* TYPE *INITIAL* STRING *3*
TYPE ®23=% V_-TYPE %3 %
*2:=% V-TYPE P=ACTI O N *;3%
=% V-TYPE K-REQUIRED *;3*
* V-TYPE P-ACTION K-REQUIRED *3%
* V-TYPE K-REQUIRED P-ACTION *3%
YPE %3 :=% ®NUM* *NO-SEMANT* *;%&
t=% *STRING®* ®NO=SEMANT * %3 %

* * *
o 50 o0 —| 50 o0 e

<

* % ¥

P-ACTION LEEEL *P* XNO=-SEMANT * k3%
K-REQUIRED %:2:=% &Kk RNO=-SEMANT* *3%
KEYS* ®33=% KEYS *NO=-SEMANT* *; *
KEYS ®:3=% KEY TYPE-KEY #%3%
*23=% KEYS KEY TYPE-KEY *%3%

KEY *:3=% *KEY* WORD *3%
TYPE-KEY ®s:s=% *VALUE"* ®3*

*2:=% *SELF* STRING #*3%

x23=% *VALUE* STRING #*3#

*x:2=% *VALUE SHORT* STRI NG x3 K
*33=% *CALL*STRING

END- SYNTA X

- 81 -

APPENDIX E -- CONTROL LANGUAGE META SYSTEM

SEMANTICS

/7/G0.SEMANTIC OD #
SEMANTICS SEMANT *CODE*
DCL | FIXEDBIN, TBL(S500) E X T CHAR(80) VAR,
(NAME yNUMBER) I N T ENTRY (CHAR(*) VAR) RETURNSI(BIT(1)),
QUOTES E X T CHAR(20) v A RINITIAL(*0*),
PERIOD EXT CHAR(1)}INITIAL(*.*),
TBL-NAME EXT CHAR(40) VAR INITIAL(*TABLE'),
TOUT FILE ENVIRONMENT (F(400,80));
NAME 2 PROC(A) RETURNS(BIT(1));
/*RETURNS TRUE If A OF TYPE NAME ELSE FALSE %/
DCL A CHAR(*) VAR, J FIXEDBIN :
IF A=** JA='¢ T HENRETURN(*0'B:
I F SUBSTR(A)L1)<*A? | SUBSTR(A L 1)>*Z* THEN
RETURN(*0*B);
D OJ=2 T O LENGTH(A);
I F SUBSTR(A,J10<*A* THE N RETURN('0' B);
END:
RETURN(*1'8);
END NAME;
NUMBER: PROC(A) RETURNS(BIT(1) ¢t
/*RETURNS TRUE IF A OF TYPE NUMBER ELSE FALSE*/
DCL A CHAR(*) VAR, X FLOAT BIN;
CN CONVERSION GO TO FALSE:
Oh OVERFLOW GO TO FALSE:
Oh UNDERFLOW GO TO FALSE:
X=A3
RETURN(*'1°'B);
FALSE: RETURN(‘0’ B);
END NUMBER;
END
PRODUCTION 1 *CODE*
/% OUTPUT TABLES %/

OPENFILE(TOUT)TITLE(‘TABLES’ t OUTPUT STREAM;

TBL(ANS+1) =DATE;

TBLCANS+#1) =SUBSTR(TBLCANS+1),3,2) (/{1

SUBSTR(TBL(ANS+1),5,2)1|*/*||SUBSTR(TBL(ANS+1),1,2);

TBL(ANS+2) =TI ME;

TBLOANS#2) =SUBSTR(TBLUANS+2),1,2) |2]}
SUBSTR(TBL(ANS+2)),3,2) 122 ||
SUBSTRITBLIANS+2),5,2M e ||
SUBSTR(TBL(ANS+2),7,3);

P U TFILE(TOQUTIEDIT(TBL_NAME, TBL(ANS+1),TBL{ANS*+2),*" ¢

(COL(2) A)X 21) ApX(2),ApSKIP(2)pA);

DOI=1TO ANS;

PUTFILE(TOUT)EDIT(TBL(I)IY(SKIPyA);
END:
PUTFILE(TOUTIEDIT('$$8°*)(SKIP,A);
*END *
PRODUCTION 4 *CODE*
/* SET QUOTES */
QUOTES=VS(Kt 3
END
*PRODUCTION+ 5 *CODE#*
/*SET PERIOD %/
PER1 OD=VS(Kt}

- 82 -

END
PRODUCTION 6 *CODE"
/* SET TBL,NAME */
TBL_NAME =VS (K) 3
END
PRODUCTION 13 *CODE*
/* BUILD ID-SPEC */
ANS=ANS+1;
TBL{ANS) =vS(J) | |PERIOD] | PERICD| | PERIOD;
END
#PRODUC TION= | 4 *CQODE*
/x BUILD ID-SPEC WITH EXCL LIST */
ANS=ANS+1;
TBLCANS)=VS(J) | IPERIQDI IVS(K)| { PERIOD| | PERIOD;
END
PRODUCTION 15 *CODE*
/* BUILD ID-SPEC WITH SKIP LIST */
ANS=ANS+13;
TBL(ANS) =VS(J) | | PERIQOD] I PERIOD|IVS (K)| | PERIOD;
END #
*PRODUCTION+ 16 *CODE*
/* BUILD ID-SPEC WITH EXCL LIST AND SKIP LIST */
ANS=ANS+13
TBLCANS) =VS(J) | |PERICOD|IVS(J+2)] | PERIODI IVS(K)||PERIOD;
*END *
PRODUCTION 17 *CODE*
/* BUILD ID-SPEC WITH EXCL LIST AND SKIP LIST */
ANS=ANS+1;
TBLOANS) =VS(J) 11 PERIODIIVS(K) I IPERIOD} [VS(JI+2)| |PERIOD
END
PRODUCTION 18 *CODE*
/% SAVE KEYWORD AND RTN %/
VS(J)=VS(J+1) | | PERIODIIVS(K);
*END+
PRODUCTION 19 *CODE*
/* SAVE ENTRY */
VS{J)=VS(J+1) | |PERIOD;
END
PRODUCTION 25 *CODE*
/*ENTER PARAMETER AND TYPE™*/
ANS=ANS+1;
TBL(ANS) =PERIOD|IVS(K)|IPERIOD}II PERIOD:
VS(JI=VS(K)3;
END
PRODUC TION 26 *CODE*
/* ENTER PARAMETER TYPE,, INITIAL VALUE %/
/J®* CHECK INITI AL VALUETYPE %/
ANS=ANS+1;
TBLOANS) =PERIOD| IVS(J+1) | | PERICD]IVS(K)| | PERIOD;
IFINDEX(VS(J#1)p* ®*NUM**)~=0 THEN
IF ~NUMBER(VS(K)t THEN
PUTFILE(DIAG) LIST
(‘DIAGNOSTIC MESSAGE*WRONG TYPE INITIAL VALUE®) SKIP:
IF INDEX{VS(J+1),* ®*NAME**)~=0 THEN
I F -NAME(VS(K)t THEN
PUT FILE(DIAG)LIST
(‘DIAGNOSTIC MESSAGE*WRONG TYPE INITIAL VALUE®') SKIP:
END
PRODUCTION 27 *CODE*
/* ENTER NULL FOR P K OPTIONS */

- 83 -

VS(J)I=VS(J) || %%
END
PRODUCTION 28 *CODE*
/*BUILD TYPE %/
VS(J)=VS(J) || *P*ke
END
PRODUCTION 29 *CODE*
/*BUILD TYPE */
VS(J)=VS(J) || **Kke;
END
PRODUCTION 30 *CODE*
/*BUILD TYPE */
VS(JY=VS(JI) || ¢ PRKRe;
END
PRODUCTION 3 1 *CODE*
/*BUILDTYPE */
VSUJ)I=VS(J) || ' PRKR;
END
#PRODUCTION* 3 5 *C ODE*
/% SAVE TYPEYITH * AT END */
VSUJI=VSUJI || v%eg
END
PRODUCTION 39 *CODE*
/*ENTERKEY TYPE-KEY INTO TBL */
ANS=ANS+i ;
TBL(ANS) =PERIOD| IPERIODI IVS (J}| | PERIODI | VSIK)3
END
PRODUCTION 40 *CODE*
/* ENTERKEY TYPE-KEY INTO TBL*/
ANS=ANS+1
TBL(ANS) =PERIOD| {PERICOD] VS(J+1)| | PERIOD|[VS(K)3
END
PRODUCTION 41 *CODE*
/* SAVE KEY */
VS{J)=VS(K);
END
PRODUCTION 42 *CODE*
/*SAVE VALUE */
VS(J)=VS(J) | | PERIOD| | PERIOD;
END
PRODUCTION 43 *CODE*
/*SAVE SELF AND STRING */
VS(J)=VS(JI) 1IPERIODIIVS(K) || PERIODS
END
PRODUCTION 44 *CODE*
/* SAVE VALUE AND STRING */
VS(J)=VS(J) I IPERIODI}VS(K) || PERIODS
END
PRODUCTION 45 *CODE*
/* SAVE VALUE AND STRING */
VS(J)=VS(J) | IPERIODIIVS(K) || PERIOD:
END
PRODUCTION 46 *CODE*
/% SAVE CALL AND STRING */
VS(J3)=VS(J) | IPERIOD|IVS(K) || PERIQD:
*ENDS
END-SEMANTICS

- 84 -

APPENDIX F -- WYLBUQ EXAMPLE

COMMAND DESCRIPTION

*TBL-NAME % *=% ‘WYLBUR EXAMPLE---GEORGE’
QUOTES *=% g *PERIOD* *=%x
SUB-ENTRY NUMRER

XDARME ENUM* * I[N | TIAL* a=1d
KEY FIRST *SELF* a-2a
KEY END *SELF* a-33
®*KEY® | AsT*SELF a-33
KEY ALL *SELF*3-43 *END*

SUB-ENTRY NRANGE *DL-EX-LIST® @,/~(' "3

*PARM® gNUMBER a *K*

KEY » *VALUE* *END*

*PARM® @NUMBER a *K* *px
KEY/ *VALUE* *END*

PARM aNRANGE , a *K* * p ~
KEY ¢ *VALUE* *"END*

. *SUB-ENTRY* ARANGE *DL-EX=LIST*a*/ ()",

*PARMX *STRING* *K* *INITIAL* @a
KEY=*CALL* @STRINGA ~a
*KEY**"*CALL®* @STRINGA ‘ a
KEY"*CALL®dSTRINGA “ 3
END

SUB-ENTRY STRINGA *DL-EX-LIST* a'"/ (}~,d

*PARM% *STRING* *K* *INITIAL* @2
KEY=~*SELF*a-~a *END*

PARMX® XSTRING SK* *P% *] NIT I AL* 33
KEY® ¢ *CALL* @STRINGB * a
KEY"*CALL®@STRINGB “ g
END

SUB-ENTRY STRINGB @ DL-EX-LIST* a"*/(),a

*PARM® *STRING* #*K* *] NITI AL* @@
*KEY** v AL UE *a'a@

KEY®* ™ *y o | UE *a"a *END=

PAR ME RNUMK %Pk 5 N T A LI @-12 ¥END=%*

RPARM® ENUMK kK% %XP%X * [N | TIAL* a-1l2
KEY/ *VALUE* *END*

*PARM® kNUMR =K% P~ *INI|ITIAL + @a-1@
®KEY*(*vALUE *@)@ * EN D*

SUB-ENTRY EQNUM

PARM *NUMkx =] NITIAL*® a-1a
KEY = *VALUE* *END*

SUB-ENTRY STRING *DL-EX=~LIST*a3'%"3

PARM XSTRING* *K* *INITIAL* a2
*KEY#** *v AL UE *3'a
KEv "*VALUE® @%@ *END*

KEYWORD LI ST *RTN* SUB1 *DL=EX=-LIST®*a~*'"/(),3
KEYWORD L #RTN% SUB1 *0L-EX-LIST*a~'"/(}) ‘a

PARM® gARANGE® *INITIAL * @@ *"END*

PARM aNRANGEja *INITIAL * aa
KEY IN *VALUE* *END*

KEYWORD CHANGE ®#RTN*® SUB2 *DC-EX-LIST* @~*"/().,a
*KEY<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>