
|

SLAC-133
STAN-CS-71-226

UC-32

(MISC)

SIMPLE -- A SIMPLE PRECEDENCE TRANSLATOR WRITING SYSTEM *

JAMES E. GEORGE

STANFORD LINEAR ACCELERATOR CENTER

~ AND

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

Stanford, California

PREPARED FOR THE U.S. ATOMIC ENERGY

COMMISSION UNDER CONTRACT No. AT(04-3)-515

| July 1971

y Reproduced in the USA. Available from the Clearinghouse for Federal Scientific
and Technical Information, Springfield, Virginia 22 151.
Price: Full size copy $3.00; microfiche copy $0.95.

‘Supported in part by the National Science Foundation, Contract No. 2SFGJ687.

|

ABSTRACT

SIMPLE is a translator writing system composed of a simple precedence

syntax analyzer and a semantic constructor and is implemented in PL/I. It

provides an error diagnostic and recovery mechanism for any system implemented

using SIMPLE. The removal of precedence conflicts 1s discussed in detail with

several examples.

The utilization of SIMPLE is illustrated by defining a command language

meta system for the construction of scanners for a wide variety of command

oriented languages. This meta system is illustrated by defining commands from

several text editors.

- iii -

TABLE OF CONTENTS

Page
1. Introduction - - - + « «+ + + cc ee eee ee]

2. Input Data to Simple’s Executive LL. 5

3. Syntax Analyzer and Parser. Ce ee ee ee eee 8

3.1 Definitionsand Notation 9

3.2 Transforming a Grammar to Simple Precedence 10

3.2.1 Removing Precedence Conflicts 11

3.2.2 Transforming a S-Precedence Grammar to Simple

Precedence «o.oo. 0 00. 18

3.2.3 Transformation Examples 18

3.3 Input Conventions for the Syntax Analyzer 27

3.4 Syntax Analyzer Output 28

3.5 ParSer. « « « oc ue ee ee eso.

3.5.1 Declarations in the Parser. 32

3.5.2 Declarations and Initialization Inserted by the Syntax

Analyzer oo ooo 32

3.5.3 Symbol Recognition. 34

3.5.4 Parsing «ooo 35

) 3.5.5 Error Recovery and Diagnostics. 39

4. Semantic Constructor - - - . « « «+ « «ce ett eee eee

5. Possible Extensions - - - - « «ooo 0000 ddd ee eee 43

5.1 Automatic Syntax Correction « « « « « « « © © © © © « « © « « « 43

5.2 Parser Modification to Allow Simple Manipulation of the

Parsing Stack by the Semantic Procedure 43

_ iv -

|

Page

6. Example Applications of Simple - - 45

6.1 Semantic Constructor. - « « « + « « « « « «+ «oo... 45

6.2 A Command Language Meta System 49

6.2.1 The Model « « 49

6.2.2 The Table Generator. . - - « « « « « « 50

6.2.3 The Scanner. - - - « « « « «ce eee eee ee ee 54

6.2.4 Examples Using the Command Language Meta System 4

6.2.4.1 WYLBUR Example.. 55

6.2.4.2 CRBE Example - « « « « « vc evo vw... 57

BIbHOZIaAphY. © « «+ oo eeeee 59
Appendix A... .Lees 0d

Appendix B... . .02

Appendix C.eee

Appendix D...eee

Appendix E.sd

Appendix F. ee eee BS

-v-

|

LIST OF FIGURES

1. SIMPLE block diagram . . « «ov ooo EE
2. Example SIMPLE application. . . .Ce

3. Basic parsing algorithm.31

4. Symbol recognition.36

5. Flow chart for LOOK - the get next symbol procedure 37

6. Parser flow chart38

7. Command language meta system - table generation 51

§. Command language meta system =- scanner..............5l1

— vi-

1. INTRODUCTION

SIMPLE 1s a specialized translator writing system designed to aid the 1m-

plementation of an experimental graphic meta system in PL/I (George 1969 a & b).

Although intended for writing preprocessors for PL/I, experience has demonstrated

that these techniques can be used to implement various specialized languages

(George 1967 a & b; George and Saal 1971).

SIMPLE is composed of three components: an executive, a syntax analyzer,

and a semantic constructor as illustrated in Fig. 1.

The executive reads a block of data (i.e. , variable initialization) and then

passes control to the syntax analyzer and then to the semantic constructor.

The syntax analyzer reads the input syntax and constructs parsing tables which

are then merged as data in a general skeleton parser, in source form (PL/I); this

merged program is a specific parser for the language defined by the syntax and

includes a parser, automatic error recovery and error diagnostics. The syntax

analyzer has two output files: the specific parser, in source form (PL/I), and

diagnostics related to the syntax.

The semantic constructor reads the semantics to be associated with the previous

syntax and constructs a semantic procedure compatible with the specific parser; it

"also has diagnostic output for errors. The semantic constructor is defined using

the syntax analyzer and a skeleton parser containing a short, hand-coded semantic

procedure.

A language defined using SIMPLE functions is illustrated in Fig. 2. The input

text 1s processed by the parser which calls the semantic procedure at appropriate

times. The language processor has access to two output files: a source output

and a diagnostic output. Roth of these files are available to the parser and the

-1 -

DATA SIMPLE |
EXEC

|] SYNTAX

A SYNTAX DIAGNOSTIC DIAGNOSTIC SEMANTIC SEMANTICS
N ANALYZER OUTPUT OUTPUT CONSTRUCTOR

[GENERAL |
SKELETON

PARSER SPECIFIC SPECIFIC
PARSER SEMANTIC

- PROCEDURE —- 153485

FIG. I--SIMPLE block diagram.

INPUT SPECIFIC DIAGNOSTIC |

| SPECIFIC V Y covnoclSEMANTIC ; SOURCE

| PRC)CEDURE | | OUTPUT
153442

FIG. 2--Example SIMPLE application.

-3-

semantic procedure. A typical application would be to process input text and

generate an equivalent source text (say PL/I) and error diagnostics, if any.

The source output can then be compiled using a standard language processor.

-4 -

2. INPUT DATA TO SIMPLES EXECUTIVE

The executive program initializes variables to be used by both the syntax

analyzer and the semantic constructor. Any of these values may be changed by

name value pairs appearing in the data file, SYNDATA (the data is read using the

data directed input option in PL/1 and, hence, consists of the variable name, an
\

"=" and the value as a legal constant in PL/1). The variables are:

NAME TYPE DEFAULT EXPLANATION

ERRORSCAN CHAR(2 0)VAR *END* That symbol in the syntax which
1s used 1n error recovery. When
an error 1s detected when parsing,
all current and future text until

the first occurrence of this symbol
1s erased.

FILE 1 CHAR(8)VAR SYNTAX Syntax equations input file.

FILE2 CHAR(8)VAR SPARSER Skeleton parser input file,

FILE3 CHAR(8)VAR PARSER Parsing program output file.

FILE4 CHAR(8)VAR PSYNTAX Syntax diagnostic output file.

FILES CHAR(8)VAR SYNDATA Input file for SIMPLE executive.

FILEG6 CHAR(8)VAR SEMANTICS Semantic input file.

FILE7 CHAR(8)VAR PSEMANT Semantic diagnostic output file.

FILES CHAR(8)VAR SEMANT Semantic program output file.

INTEGER CHAR(2 0)VAR INTEGER That symbol used in the syntax
for an integer.

MLIM FIXED BIN 20 Maximum number of symbols in
the syntax,

-5 =

NAME TYPE DEFAULT EXPLANATION

MMLIM FIXED BIN 2() Maximum number of non-
basic symbols in the syntax.

NLIM FIXED BIN 20 - Maximum number of

productions in the syntax.

PARSER-NAME CHAR(8) SEMANT Name to be substituted for
PARSER in FILEZ2; the

procedure name for the
parser procedure.

QUOTES CHAR(2 0)VAR n That symbol used for quotes
to force the STRING class.

RLIM FIXED BIN 8 Maximum number of symbols
on the right side in any pro-
duction in the syntax.

SCAN-START CHAR(2 0)VAR *END* That symbol not in the
syntax which will restart
the parsing,

. SCAN-STOP CHAR(2 0)VAR *CODE* That symbol in the syntax
which, upon entry into the
parsing stack, causes all
input to be ignored by the
parser until the symbol
after SCAN-START.

SEMANT NAME CHAR(S) CODE-OUT Name to be substituted for
SEMANT in FILE2; the

name of the semantic pro-
cedure to be called by this
parser,

SEND CHAR(2 0)VAR *END-SYNTAX* Terminator for syntax.

SEQUENCE CHAR(2 0)VAR SEMANTICS The initial symbol of the
syntax; when it occurs in
the stack, the parsing is

] terminated.

SINIT CHAR(2 0)VAR *SYNTAX* Initiator for syntax analyzer.

SSEMANT CHAR(2 0)VAR *NO-SEMANT* Indicates no semantics for
this production.

. -6 =

NAME TYPE DEFAULT EXPLANATION

SSEP CHAR 0)VAR *oo =X Separator for left-right
sides.

STERM CHAR(2 0)VAR * 3% Terminator for syntax
i equations.

STRING CHAR(2 0)VAR STRING That symbol in the syntax
used for the string class,

SYM(*) CHAR(2 0)VAR SYM(1)='SEMANT" Used for error recovery;
1 ' those symbols which are

SYM(2)=' CODA expected to reside in the
SYM(3)='INTERPRE- ith position of the parsing

TATIONS stack.

SYM(4...20)=""

TERMINAL CHAR(20)VAR *END-SEMANTICS * That symbol used to force
-. the parsing to be completed.

WORD CHAR(20)VAR WORD That symbol used in the
syntax for the WORD class.

A listing of the executive 1s given in Appendix A.

-7 =

|

3. SYNTAX ANALYZER AND PARSER

A simple precedence syntax analyzer was chosen for its simplicity, power

and availability in a form suitable for modification. The basic analyzer was trans-

lated to PL/1 from an ALGOL listing obtained from N. Wirth (Wirth and Weber,

1966 a & b). Many sections were modified to take advantage of features of PL/1,

The changes to the analyzer are:

1. The input section was modified to be free field and to mark productions

with no semantics;

2, Maximum number of right part elements 1s variable;

3. Three terminal classes are recognized rather than two (this holds in

the parser also);

4. The output section inserts PL/1 declarations into a skeleton parser

rather than punching tables.

A complete listing of the syntax analyzer 1s given in Appendix B.

The skeleton parser 1s also a translation of an ALGOL parser (Wirth and Weber,

1966a, Shaw 1966) with the following modifications:

1. The parser uses precedence tables rather than precedence functions;

2. Three terminal classes are recognized rather than two;

3. An additional input scanner allows direct code emission independent of

the parsing section;

4. Error recovery and diagnostics are provided and related to the grammar;

5. The semantic procedure 1s not called for those productions with no

semantics.

Thus the output of the analyzer is a PL/1 program containing the parsing tables,

error recovery and diagnostics; a listing of the skeleton parser 1s given in

Appendix C.

~-8 -

TT

3.1 Definitions and Notation

The formal definitions are included here for completeness (Wirth and Weber

1966a, Shaw 1966, Feldman and Gries 1967).

Upper case letters, special characters (*,+...) or a string of these enclosed

by <and > represent symbols.

Lower case letters represent strings of symbols.

Script letters represent sets.

An individual statement of the syntax 1s called a production and has a left side

and a right side separated by ':: =".

Terminal or basic symbols are those which appear only in right sides.

Nonterminal or nonbasic symbols are those which occur in left sides.

A grammar 1s a set of productions.

A grammar 1s a simple precedence grammar if:

1. The productions contain exactly one nonterminal symbol which appears

only as a left side (i. e. , the goal);

2. All left sides are single nonterminal symbols;

3. The productions contain a nonempty set of terminal symbols;

4. No two right sides of any pair of productions are identical;

5. Between any two symbols of the grammar one and only one of the

precedence relations (<, =,> or no relation) holds.

The precedence relations are defined by:

1. A=DBiff there is a production of the form U: := XABy in the grammar;

2. A<B iff there is a production of the form U: : = XxAVy and B @(V);

- 9 -

3. A> B iff either

there 1s a production of the form

U::=xVBy and A&?(V), or

there 1s a production of the form

U::=xVWy and Ae ZZ (V) and BeZ(W), |

where,

Z(U) = |s|dz(U: := Sz) or (Hz(U::= Vz)
and Se £(V))

RU) = E Hz(U: := zS) or
(Hz(U::= zV) and SeZR(V))

where z may be the null string.

3.2 Transforming a Grammar to Simple Precedence

In many cases, the grammar for a given language must be manipulated

before it 1s a simple precedence grammar. The problem areas are the ;

requirement for unique precedence relations between any two symbols of the

language and that no two productions have identical right sides. Within the |

literature, many formal properties about precedence languages are discussed

and each uses his own definitions. For presenting these results, the definition

ofa simple precedence grammar 1s given in Section 3.1 and S-precedence 1s

] defined by :

Simple precedence = S-precedence plus unique right sides

Some of the formal properties are:

1. Wirth and Weber's parsing algorithm yields a unique canonical

parse for any sentence of any simple precedence language

(Wirth and Weber 1966a, Shaw 1966).

2. A context free grammar can be transformed to a simple precedence

grammar but the terminal language may be altered (Presser 1968;

Gray 1969; Presser-and Melkanoff 1969).

-10 -

ol

3. Any context free grammar can be transformed to a S-precedence

y grammar, and there 1s no deterministic parsing algorithm for all

S-precedence grammars (Fischer 1969). The transformation proof

requires Chomsky normal form of a grammar and is not useful as a

practical algorithm.

4. Any context free grammar can be transformed to a S-precedence

grammar without modification of the terminal language (Learner and

Lim 1970; McAfee and Presser 1970). These proofs are different

but both are directly useful as practical techniques.

5. Any context free grammar with unique right sides can be transformed

into™a S-precedence grammar with at most two duplications of any

right side of any production (Learner and Lim 1970).

: I had also studied these transformations using methods similar to Learner

and Lim’s but was unable to complete the formal proof (George 1969c). The

| proof 1s short with the proper form but does not lead to a practical algorithm

(Fischer 1969); Learner and Lim’s approach results in a more difficult proof

but yields a practically useful algorithm; it 1s also intuitively easier to under-

stand.

3.2.1 Removing Precedence Conflicts

Precedence conflicts* can be removed by several means, however the

method presented here will be restricted such that it does not cause a change

in the terminal language or require a change in the associated semantics of

any production of the grammar. The changes of interest are those which could

| be incorporated in the syntax analyzer of SIMPLE and be invisible to a user.

| “A precedence conflict means that more than one of the precedence relations
holds between two symbols of the grammar.

-11 =

From the formal work, this can not always be accomplished for an arbitrary

context free grammar, but if the terminal language 1s altered or the associated

semantics must be modified, then the user must make these changes before

SIMPLE can be utilized. However, many times the changes required are

significant and the user should be conscious of them.

The techniques presented are intended to be intuitive and easy to under-

stand.

An artificial production is a production with no associated semantics and

only one element on the right side (Shaw 1966, p. 145; also called an inter-

mediate production, Feldman and Gries 1967, p.28).

A left restricted expansion (LRE) ofA replaces A in the right sides of

all productions , except where it 1s the left-most symbol, by the same new

non-terminal A, and adds the artificial production A : =A to the grammar

(Learner and Lim 1970).

A right restricted expansion (RRE) ofA replaces A in the right sides of

all productions , except where it 1s the right most symbol, by the same new

non-terminal Aj and adds the artificial production Ay : :=A to the grammar

- (Learner and Lim 1970).

Lemma 1: The precedence relation =between two symbols A and B (i.e. A = B)

can be changed to < by a left restricted expansion of B.

Proof: Let A = B, then productions of the form

U :'=x A B y exist

By the LRE these become

U i= x A B, y

and B, :: = B 1s added to the grammar

Thus, A = B, and A< B.

-12 -

Lemma 2: The precedence relation = between two symbols A and B (i. e. A = B)

. can be changed to > by a right restricted expansion of A.

Proof: Let A = B, then productions of the form

| U ::=xAB y exist :

By the RRE these become

U:'=x Ay By

and Aq : : = A 1s added to the grammar

Thus, Aq = B and A > B.

Lemma 3: The precedence relation < between two symbols A and B (1. e. A < B)

can be changed to > by a right restricted expansion of A.

Proof: Let A. < B, then there exist productions of the form

U ::=xAVyandB eZ (V)

By the RRE these become

U ::= XA; Vyand BeZ(V)

and Aq += A 1s added to the grammar

Thus Aq =V, Ay < B and A > B.

These lemmas provide the techniques for removing precedence conflicts

between two symbols; the changes in the grammar do not affect the terminal

language or the associated semantics. The precedence conflicts which can

occur between any two symbols are (=, <), (=>), (<, >) and (5,<, >).

Th1: The precedence violation pair (=, <) between two symbols A and B

(1. e. A=B and A <B) can be removed by a left restricted expansion of

B (i.e. change the = to < by Lemma 1); however, new violations may be

introduced.

-13 -

|

Proof: Lemma 1 for removal of the original conflict.

No left sets are altered by the expansion and some right sets

may have the new symbol Bi included, hence relationships between

symbols other than A, B or B, are unchanged. The only symbols

whose relationship may cause violations are those adjacent to a

B in the original grammar.

Let the symbol Z occur to the left ofB and Y to the right of Bin

the original grammar, then

Orig. relation new relation (after LRE)

/Z=8B Z = B, Z<B

/< B Z<B

Z>B Z>B Z>B, (possible)

B=Y B=YorB, =Y &B>Y

B<Y B <Y or B, <Y&B>Y

B >Y B>Y

Thus, the conflicts which could be introduced are

B (=,>) Y from productions of the form

U:=B Yd andW:i=eVBYf

and

B (<,>) Y from productions of the form

U :==BTd andY eZ(T)

Wii=eVBTf and Y eZ(T)

One might consider removing the violation pair (=, <) by applying a right

restricted expansion to A (i.e. changing the = to > by Lemma 2 and the

<to> by Lemma 3); however, this leaves the original violation pair between

A, and B.

- 14 -

Th 2: The precedence violation pair (=, >) between two symbols A and B

| (i.e. A=B and A> B) can be removed by a right restricted expansion of

' A (i.e. change the =to > by Lemma 2); however, new violations can be

introduced.

Proof: Lemma 2 for removal of the original conflict

No right sets are altered by the expansion and some left sets

may have the new symbol A, included, hence relationships between

symbols other than A, B or A, are unchanged. The only sumbols

whose relationships may cause violations are those adjacent to an

A in the original grammar.

Let the symbol Z occur to the left ofA and Y to the right ofA in
the original grammar, then

orig. relation new relation

A =Y A, =Y A>Y

ALY A, < Y A>Y

A>Y A; < Y Ora; = Y and A>Y

Z =A Z =A or Z=A&Z<A

Z < A 7 <A Z < A, (possible)

Z > A Z > A Z>A, (possible)

Thus the conflict (=, <) could be introduced between Z and A from

original productions of the form

U:x=d ZA andW =e ZAVI,

Th 3: The precedence violation pair (<, >) between two symbols A and B

(i.e. A<B and A > B) can be removed by a right restricted expansion of A

(1. e. change the < to > by Lemma 3); however, new violations can be

introduced.

- 15 -

Proof: Lemma 3 for removal of the original violation.

Second part of Theorem 2 for rest.

Th4: The precedence violation triple (=, <, >) between two symbols A

and B (i.e. A =B, A<B and A> B) can--be removed by a right restricted

expansion ofA (i.e. change the = to > by Lemma 2 and the <to > by

Lemma 3); however, new violations can be introduced.

Proof: Lemmas 2 and 3 for removal of the original conflict.

Second part of Theorem 2 for rest.

Th5: A context free grammar with unique right sides can be transformed

to a S-precedence grammar with at most two duplications of any right side.

Proof: Find all the violations between two symbols A and B.

Case1:A (=, <) B

Theorem 1 substitutes B, : : = B and the only B's remaining are _

B, += B , and

U += BY where y may be null

The only violation which can be introduced 1s one between

B and C, where C occurs immediately to right ofB in some

production.

Case A: B (=, >) C

Theorem 2 adds B,:: = B and changes U (:=B VytoU i= B, Vy.

Thus, the only B's remaining are

B, = B (Th 1)

B, := B (Th 2)

Uu «»%% B (from original grammar)

The only violations from Theorem 2 involve symbols immediately |

to the left of a B after applying Theorem 1, of which there are)

none. Therefore, after two levels no new violations will be

- 16 -

|

introduced. Further, for an expansion to be required for

| B, B would have to occur adjacent to some symbol to generate

3 some precedence conflict; since it does not, only two duplications

are possible.

Case B: B(<, >)C

Theorem 3 adds B, : += B and becomes same as Case A.

Case 2: A (=, >) B

Theorem 2 leaves the following productions with A's

Aq re= A , and

U :i:=y A

The only violations which can be introduced is one between

A and C where C occurs immediately to left of A.

C(= <)A

Theorem 1 adds A, i= Aandchanges U (i= y AtoU i:=y A,

Thus the only A's remaining are

Ay i= A (Th 2)

Ayii= A (Th 1)

U :=A (from the original grammar).

By Theorem 1, the only new violations which can be introduced

must occur with a symbol immediately to the right of an A

after the application of Theorem 2; since there are no symbols

of this type, no new violations will be introduced by Theorem 1.

Further, for an expansion of A to be required, A would have to

5 occur adjacent to some symbol to generate some precedence

conflict; since it does not, only two duplications result.

-17 =

Case3: A(<,>) 13

Theorem 3, then same as Case 2.

Case4: A (5,< ,>) B

Theorem 4, then same as Case 2.

Learner and Lim's algorithm is recursive, but since the grammars are

finite, the number of duplicates of right hand sides 1s at most two, I suspect

that the algorithm does not need to be recursive, but perhaps related to the

total number of symbols of the original grammar.

3.2.2 Transforming a S-Precedence Grammar to Simple Precedence

Section 3.2. I-shows how to transform any context free grammar to a

S-precedence grammar. If the transformed grammar 1s only S-precedence,

it must be transformed to simple precedence before being useable within SIMPLE.

Generally, this requires a change in the terminal language or splitting of

productions and the corresponding change in the associated semantics. These

changes must be specified by the user and an example is given In the next

sec tion.

3.2.3 Transformation Examples

) 1. Violation pair (=, <) (Shaw 1966, example 4 pp. 139-141).

S::= E

E:*= E + T

E:.=T

T::= T*F

T:.=F

F::= (E)

F "= <VAR>

The violations are + = < T and (= <E.

- 18 -

ey

For + and T,

+= T results from E::= E+T

+ < T results from E: : = E +T and Te#AT)

Using Th 1, change T to <TT> resulting in the grammar;
S::=E

E::=E + <TT>

E: = <TT>

<TT>::=T

T: .=T*F

T : : =F

) F: =)

F: := <VAR>

This removes the violation pair (=, <) between + and T, but not

the pair for (and E.

For (and E,

(= E results from F: : = (E)

(< E results from F: := (E) and E€e4E)

Using Th 1, change E to < EE > resulting in the grammar;

s: := <EE>

<EE>::=E

E: =E+<TT>

E: = <TT>

<TT>::=T

T: .=T*F

T::=F

-19 -

T: = (<EE>)

F::= <VAR>

Which 1s a simple precedence grammar.

2. Violation pair (=, >). }

Consider the above grammar modified to be right recursive instead of

left recursive.

S: :=E

E::=T+E

E:=T

T:=F *T

T::=F _

F::=(E)

F: :=<VAR> |

the violations are T = > + and E =>).

For the T and +,use Th 2 and change T to<TT >; for the E and), use

Th 2 and change E to < EE >, resulting in the grammar:

S::= <EE>

<EE>::= E

E: = <TT>+E

E::=<TT>

<TT>::=T

T::=F*T

T::=F

F::=(<EE>)

F::=<VAR>

Now the grammar 1s a simple precedence grammar.

-20 -

3. Violation pair (<,>).

Consider the grammar:

N:=R)

N: =S

R::=WATX

s::=YUBZ

T::= B

U::=MA

The violation 1s A >< B.

A <Bresults from R:: = WATX and BeT)

A > B results from S: := YUBZ and AeZ(U).

" Using Th 3, change A to C resulting in the grammar:

N::=R

N::=8S

C::=A

R:=WCTX

s::=YUBZ

T:.=B

U::= MA

Which is a simple precedence grammar. Note that the Ain U: := MA was

not changed.

Consider the grammar:

N::=R

N::=8S

R::=WATX

s::=YUV Z ~

-21 =

T::= B

U::= MA

V::=BK :

The violation 1s A >< B.

A <B results from R: := WATX and Be#(T)

A > B results from S: := YUVZ and AeZ2(U) and BeZ(V)

Using Th 3, change A to C resulting in the grammar:

N::=R

N::=3S

C::=A

R::=WCTX

s::=YUV Z

T::=B

U::=MA

V:.=BK

Which is a simple precedence grammar. Note that the A in U: := MA

was not changed.

4. Consider the syntax for simple assignment statement.

<STAT>::= <VAR><:=><EXPR>

<EXPR>::= <EXPR> + <TERM>

<EXPR>::= <EXPR> - <TERM>

<EXPR>::=- <TERM>

<EXPR>::= <TERM>

<KTERM>::= <TERM> X <FACTOR>

<TERM>::= <TERM> / <FACTOR>

<TERM>: := <FACTOR>

292 -

<FACTOR>::= < FACTOR >* <PRIMARY ~

< FACTOR 7: : =< PRIMARY 7

<PRIMARY >: := (<EXPR>)

<PRIMARY>::= <VAR>

< PRIMARY 7:: = <NUMBER 7

The violations are:

<:=> =< <EXPR>

(=< <EXPR>

+ =< <TERM7

=< <TERM> two cases

x =< <FACTOR7

/ =< < FACTOR7

This example suggests that the symbols which have been replaced must

be recorded to prevent future redundant substitutions.

Using Th 1 repeatedly, the grammar becomes:

<STAT >::= <VAR> <:=><EXPRA>

<EXPRA>::= <EXPR>

<EXPR>::= <EXPR> + <TERMA>

<EXPR>::= <EXPR> - <TERMA>

<EXPR>::= - <TERMA>

<EXPR>::=<TERMA>

<TERMA>::= <TERM7

<KTERM>::= < TERM7 x <FACTORA?~

<TERM>: := <TERM7 /<FACTORA>

<TERM>::= < FACTORA 7

<FACTORA?7:: =< FACTOR 7

-23 =

|

<FACTOR>::= < FACTOR7 *< PRIMARY 7

< FACTOR 7: : =< PRIMARY 7

< PRIMARY >::= (<EXPRA>)

<PRIMARY >::=<VAR> . .

<PRIMARY 7::= <NUMBERY7

which 1s a simple precedence grammar.

5. Consider an early version of the syntax for SPIRES, an information

retrieval system (George 1967b; Parker 1967).

<SEARCH>::= <FIND7 <REQLIST>; <END>

<REQLIST >::= < CQMPSEARCH ~

<REQLIST>:: = <REQLIST7; < COMPSEARCH >

<REQLIST >: := < REQLIST >; <OR> < COMPSEARCH >

< COMPSEARCH >::=< FACTOR >

< COMPSEARCH >::= < COMPSEARCH 7<OR >< FACTOR >

<FACTOR>::= < SIMPSEARCH >

<FACTOR>::= < FACTOR > < AND 7 < SIMPSEARCH »>

<PHRASE>::= <WORD>

<PHRASE>::= < PHRASE > <WORD >

< SIMPSEARCH >: :=(< COMPSEARCH 7)

< SIMPSEARCH >: := < AUTHOR 7< PHRASE 7

< SIMPSEARCH >::= < DATE 7< BETWEEN 7< PHRASE 7

<AND7 <PHRASE7

The violations are:

a. <FIND7 =< < REQLIST>

b. ; =< < COMPSEARCH 7

C. (=< < COMPSEARCH 7

~ 24 -

d. <OR> = < < COMPSEARCH +

e. <OR> = < < FACTOR >

f. <AUTHOR7 =< < PHRASE >

g. < BETWEENY =< < PHRASE 7

h. <AND7 = < <PHRASE 7

i. <PHRASE 7 = < <AND7

a. Changing < REQLIST 7to < REQLIST- 7 as specified by Th 1 will

result in the violation pair (=, 77between < REQLIST 7 and ';" as discussed

in the theorem. This 1s an error which requires a production to be

split.)

b, cand d. Using Th 1, change < COMPSEARCH 7 to < COMPSEARCH- 7.

e. Using Th 1, change < FACTOR 7 to <FACTOR- 7.

Thus, two productions with a right side of <FACTOR 7 result; the solution

1s a different terminal symbol for one of the <OR >'s,

f, gand h. Using Th 1, change <PHRASE 7to <PHRASE- 7.

1. Using Th 2, change only one < PHRASE- 7 to <PHRASE+ 7.

If the correction for iis made before f, g and h, then the steps

would be:

Change <PHRASE 7 after < BETWEEN 7 to < PHRASE+ 7 and add

<PHRASE+>::- < PHRASE 7; do not change other < PHRASE >'ssince

this would remove < PHRASE 7 € R(< FACTOR 7) as specified in the theorem.

~ 25 —

Change < PHRASE > after AUTHOR >to < PHRASE ->,

<PHRASE+>::= <PHRASE 7to < PHRASE + 7: : = <PHRASE -7and all

of the <PHRASE 7.to <PHRASE~7except those where < PHRASE 7is

the left side.

The corrected grammar is:

<SEARCH>::= < FIND > < REQLIST- 7< END >"

<REQLIST- >: := <REQLIST >;

<REQLIST >::= < COMPSEARCH- 7

< REQLIST >: :=< REQLIST 7,< COMPSEARCH- ~

<REQLIST>: := < REQLIST 7:< ORA7< COMPSEARCH- >"

< COMPSEARCH- 7: : =< COMPSEARCH ~

< COMPSEARCH 7::=<FACTOR- >

< COMPSEARCH 7: := < COMPSEARCH 7< OR >< FACTOR- >

< FACTOR-7:: =< FACTOR >

<FACTOR>: := < SIMPSEARCH ~

<FACTOR>::= < FACTOR 7<AND 7< SIMPSEARCH >

<PHRASE+>::= <PHRASE->

<PHRASE->::= <PHRASE>

<PHRASE>::= <WORD>

<PHRASE>::= < PHRASE 7<WORD ~

< SIMPSEARCH 7::= (< COMPSEARCH- 7)

< SIMPSEARCH 7::= <AUTHOR 7< PHRASE -7

< SIMPSEARCH 7: : = <DATE 7< BETWEEN > <PHRASE + >

<AND 7< PHRASE- 7

"This production was split.

“* This <OR > was changed. 26 -

3.3 Input Conventions for the Syntax Analyzer

| The input for the syntax analyzer (i. e. , the productions) is contained in a

: file whose default name 1s SYNTAX (setting this name is explained in Section 2).

The formal definition of the syntax is:

<SYNTAX7 : := <SINIT7<PRODUCTIONS 7< SEND 7

< PRODUCTIONS 7: : =< PRODUCTION 7

: : =< PRODUCTIONS 7< STERM7 <PRODUCTION >

< PRODUCTION 7::= <LEFT-PART 7< SSEP 7< RIGHT-PART >

: : = <LEFT-PART 7< SSEP 7< RIGHT-PART >< SSEMANT 7

< LEFT-PART 7::=< SYMBOL ~

< RIGHT-PART 7: : =< SYMBOL ~

: : = <RIGHT-PART 7< SYMBOL 7

<SYMBOL>::= any string excluding blanks

- The default values are:

<SINIT > = *SYNTAX*

<SEND 7= *END-SYNTAX*

<STERM> = *;*

<SSEP> = *;.=%

< SSEMANT 7= *NO-SEMANT*

The input is free field card images using blanks or a new card to separate symbols;

only the first 20 characters of a symbol are used.

In actual use there are two additional limits:

1, Upper limit on number of productions;

2, Upper limit on number of symbols in any right part.

i If more productions than the limit of productions are used, then those productions

between the limit less one and the last productions are lost; similarly, for more

27 =

symbols in the right part than the limit, Note that both of these are input parameters

to SIMPLE (Section 2).

If the left part has more than one symbol then the last symbol in the left part

1s used.

3.4 Syntax Analyzer Output

In addition to inserting the necessary declarations and initialization into the

skeleton parser, the syntax analyzer generates a file (FILE4 whose default name

is PSYNTAX) which contains information about the syntax and any errors. This

output consists of:

1. Productions — The productions are numbered in the order that they are

read in and-this number 1s used to select the applicable portion of the

semantic procedure.

2. Basic and nonbasic symbols — The basic and nonbasic symbols are

assigned a unique number,

3. KEY and PRTB tables (Shaw 1966a p. 194) — These are used by the parser |

in determining the production number and the left part of the production

of a reducible substring. ‘KEY(i) represents for the Hi symbol (1 cor-

responds to the number assigned in 2) the index in the production table

PRTB, where those productions are listed whose right part string begins

with the ith symbol. For each production, the right part 1s listed without

its leftmost symbol, followed by the production number (negative) and the

left part symbol.of the production. The end of the list of productions

referenced via KEY(i) is marked with a 0 entry in PRTB. "If a production

has no semantics then the production number in PRTB is adjusted to be

out of range (by the number of productions).

4. Right and left symbol sets — These are sometimes useful in removing

conflicts. 25

: 5. PRECEDENCE Matrix — Two symbols x and y are related (either x=y,

xX<y, Xx>y or norelation) by the entry in the iow (where 11s the number

corresponding to x) and it eolumn (j corresponding to y) of the matrix,

6. DIAGNOSTICS

a. For a correct syntax

NO PRECEDENCE VIOLATIONS OCCURRED

b. For an incorrect syntax

1. PRECEDENCE VIOLATIONS OCCURRED

HINTS REGARDING PRECEDENCE VIOLATION

~ The most recent production number which causes a violation

followed by the two symbols separated by the two relations.

c. Incorrect input file

*¥*x*x* ENDFILE SYNTAX INPUT - NO

followed by the value of SEND (Section 2).

SEND missing generally causes no problems. If there is no additional

syntax output, then the symbol SINIT was never encountered (Section 2)

3.5 Parser

) One of the principal advantages of the simple precedence system 1s the parser,

which, for a correct syntax, yields a unique canonical parse with no backtracking

(Wirth and Weber 1966a; Shaw 1966). This permits the syntactical analysis

(parsing) to be separated from the semantics; this 1s both a blessing and a headache.

The advantage of this separation is that the parser can be protected from

interference (or modification) from the associated semantics. This protection is

very important when a complete parser 1s supplied to any user; it limits debugging

: faults and permits confident use without a detailed knowledge of the internal methods.

~ 20 -

|

However, this separation also limits the power of the applications. Namely,

no semantic process can alter or change the parsing (1. e. , the system 1s entirely

syntactically driven); this sometimes results in an awkward syntax or may not

be applicable toa class of desirable languages. Section 5.2 discusses this further

and illustrates an extension which relaxes this requirement, still preserving an

acceptable level of protection.

The parsing algorithm depends upon the precedence relations <,= and >

(Wirth and Weber 1966a; Shaw 1966) according to:

1. The relation = holds between all adjacent symbols within a symbol which

1s directly reducible;

2. The relation < holds between the symbol immediately preceding a reducible

string and the leftmost symbol of that string;

3. The relation > holds between the rightmost symbol and the symbol imme-

diately following that string. |

The basic parsing algorithm consists of locating a string 3- ---- Sk such that

S;= Sii1 for £&=j, j+1, --- k-1 and Sy 15 and S,>S, 1° This string 5; --- Sk 1s

then a reducible substring and corresponds to some production U : : = 3: --- 5.

The semantics for the production may then be performed and then the string

] S.-= S.is replaced by the left side of the production. This is illustrated in
Fig. 3.

“The parser consists of five parts:

1. Declarations in the parser;

2. Declarations and initialization inserted by the syntax analyzer (i. e. ,

dependent upon the grammar);

3. Symbol recognition;

4. Parsing; |

5. Error recovery.
- 30 -

FIND k A

Sk > Sk + |

j=k—I

Decrement | until

Syntax NO AL
Error

YES

Find Production U

Error if M0 — — — qU::=S;... Sy
Production

is a production

Apply semantics for U

Reduce Sj . . . Sk
1534A3

FIG. 3--Basic parsing algorithm.

-31-

3.5.1 Declarationsin the Parser

These declarations reside in the parser since they are related to the parsing

technique and not to the individual grammar.

NAME TYPE VALUE _ EXPLANATION

ANS FIXED BIN initially 0 For use in the semantic routine

ERROR BIT(1) initially '0'B For use in the semantic routine to
indicate an error; upon return to the

: parser, if ERROR true ("1'B) then
parsing 1s terminated.

J FIXED BIN -- Left hand stack pointer; copy of it
passed to semantic routine,

K FIXED BIN -— Right hand stack pointer; copy 1s
passed to the semantic routine.

INPUT ~~ CHAR(100)VAR -- Input string buffer.

INPUT CHAR(7)VAR SOURCE Input file identified as //GO. SOURCE.
Contains the input to be parsed.

OUTPUT CHAR(7)VAR OUTPUT Output file identified as //GO.OUTPUT.

POUT CHAR(7)VAR DIAG Diagnostic output file identified as
//GO. DIAG.

SYM FIXED BIN -- Numerical form of the current input
symbol.

SYMS CHAR(400)VAR —— String form of the current input symbol.

- §(0:50) FIXED BIN initially set Parsing stack (numerical form)
to 0

V (0:50) CHAR(400)VAR initially null Associated value stack to the parsing
stack.

3.5.2 Declarations and Initialization Inserted by the Syntax Analyzer

The declarations and values for these variables are inserted by the syntax

analyzer since they are determined by the grammar.

- 32 -

‘ NAME TYPE EXPLANATION

BASSYM(*) CHAR(2 0)VAR Contains the basic symbols of the grammar
. with the three types WORD, INTEGER and

STRING removed and the value of TERMINAL

added,

BASVAL(*) FIXED BIN The associated numerical form of BASSYM,

ERRORSCAN CHAR(2 0)VAR Termination symbol for error recovery.

H(0:%, 0:%) CHAR(1) The precedence matrix; each entry 1s =,
<,> or blank.

HINITIAL Procedure This procedure is automatically called upon
entry to the parser to initialize the matrix
H. Within the procedure, the variable J
contains triples indicating the nonblank
entries in H; Row, Column, [0, 1,2] where
0 means =, 1 means <,2 means >.

This solution was forced by the PL/I compiler
due to maximum string length in the INITIAL
statement.

’ HLIM FIXED BIN Upper limit for each dimension of the H
matrix and KEY matrix,

KEY(0:%) FIXED BIN Index in PRTB for those productions whose
right part string begins with the ith symbol.

M FIXED BIN DIMENSION of BASSYM and BASVAL

. N FIXED BIN Number of productions

PRT B(0:*) FIXED BIN Contains the productions without the left-
most symbol of the right part and with the
production number (negative) and the left
part symbol of the production. Productions
with the same leftmost symbol of the right
part are together and these groups are
separated by 0%.

QUOTES CHAR(2 0)VAR That symbol which turns on and off the
string class recognition,

SCAN-START CHAR(2 0)VAR That symbol which terminates the alternate
scanner and returns to the parsing section.

XINTEGER FIXED BIN Numerical form of the symbol in the grammar
used for the integer class.

- 33 -

|

NAME TYPE EXPLANATION

XSCAN STOP FIXED BIN Numerical form of the symbol in the syntax
- which activates the alternate scanner just

before it 1s inserted into the parsing stack.

XSEQ FIXED BIN Numerical form of the goal. When this
appears as the rightmost element of the
parsing stack, the parsing 1s terminated
and control 1s returned to the calling
program.

XSTRING FIXED BIN Numerical form of the symbol in the grammar
used for the string class.

XSYM(10) FIXED BIN Used for error recovery. (See error
: recovery section,)

XTERM FIXED BIN Numerical form of the symbol whose pre-
cedence 1s such that it will force all parsing
to be completed and prevent scanning across
the beginning of the parsing stack.

XWORD FIXED BIN Numerical form of the symbol in the grammar
used for the word class.

3.5.3 Symbol Recognition

The function of the symbol recognizer is to scan the input file for the next

syntactical unit and to assign this symbol the unique number originated by the

syntax analyzer. The recognizer classifies all symbols into four classes:

) 1. INTEGER CLASS

2, WORD CLASS

- 3. STRING CLASS

4. RESERVED WORDS

The integer class 1s defined by:

INTEGER : := DIGIT

: := INTEGER DIGIT

DIGIT : := o}1|213|4|5]6]7|8|9

~ 34 -

The word class 1s any string of characters starting with a non-digit and

excluding blanks, single character reserved words and QUOTES if it is a single

character,

The string class is any string of characters including reserved words and

surrounded by QUOTES; the string corresponding to QUOTES 1s erased.

Reserved words are those words contained in the BASSYM matrix.

The separators for the word class are blanks, a single character QUOTES

and single character reserved words. Lee separators for the integer class are
any non-digit character. The entire character string enclosed in QUOTES is

recognized as a string as it appears; the QUOTES are removed since they are not

part of the syntax. A flow chart of the symbol recognition is given in Figs, 4

and 3.

3.5.4 Parsing

The parser 1s a modification of the basic parsing algorithm given at the

beginning of Section 3.5. The flow chart for the parser is given in Fig. 6. "8S"

18 a stack which contains the partially reduced string at any time, The input

string 1s copied one symbol at a time into SYM and SYMS. If the rightmost

element of S 1s > SYM then S 1s scanned to the left from the current right end

until Ss a Ss at this point 1f S. 4 <8, then we are guaranteed (if the string is in

the language) that there 1s a production whose right side 1s S, --- 5 We then

perform a “semantic reduction” on the value stack Vv, -—- \f (i. e., call the

semantic procedure) and then reduce the string S, -—- 8; by replacing it by the
left side of the corresponding production.

] Input to the parser is in a file named SOURCE; the parser has two output

files, one for diagnostics (internal name, POUT, external name DIAG) and one

for semantic output (internal name OUTPUT, external name OUTPUT). Both

output files are used by the parser and both may be used by the semantics.

- 135 -

GET.NEXT

| SYMBOL

YES N
SYMBOL=QUOTES O

YES |
READ UNTIL INTEGER TYPE
NEXT QUOTES Co

*RETURN ENTIRE |
STRING AND RETURN SYMBOL

STRING TYPE AND NO
| INTEGER TYPE

TN |NO ~ |
BASIC SYMBOL YES

RETURN SYMBOL RETURN SYMBOL

AND BASI fv LWORD TYPE SIC SYMBO
TYPE

1534A4

FIG. 4--Symbol recognition.

Entry Variables

S Output string

| Input character pointer

T Tis set to False if integer else true

X if X true then Blanks removed

; | SYM = next | *: S-=]] .

True Using NEXT increment

NZ I until SYM not blank

QUOTE) T=true

No is SYM a digit D>—2s
Call CON

SY M= Next

Spec (SYM, False Yes |
QUOTE) 'S NEXT -—

a digit

.

| Caii CON | v | T=False

| | SYM= next | Exit
E xit 153446

* SPEC returns true if first argument is not a separating character.
*CON concatenates SYM to end of S and increments I.

* NEXT returns the character pointed at by I in the input string. IfI > length
of input string, 80 more characters are read, a blank 1s concatenated to end
and I 1s set to 1.

FIG. 5--Flow chart for LOOK — the get next symbol procedure.

- 37 -

INITIALIZATION

8(*)}<0, V(*)=NULL

S(0)=XTERM, OPEN }/0 FILES

I=1, INPUTSNULL, J=0

QUOTE=FALSE, FETCH NEW SYM, SYMS

YES

J=J+l, K=J LOCATES REDUCIBLE SUBSTRING
S(J)-8YM, V(J)=8YMS -

YES

8(J)=XSCAN_STOP CALL SCANZ — —
I

|

NOlg — — — — BETURN |

FETCH NEW SYM, SYMS

NO

YES

5(J)=XSEQ yEs » EXIT PARSER

NO

—- ==NEa& J>1

NO

L=KEY(8{J))

FIND PRODUCTION

No _ | CALL ERROR_RECOVERY

L=0

al YES

PREBLIT=0 NO YES _| L=0
HLn= CALL ERROR _RECOVERY

FOUND PRODUCTION YES

D=JLEET POINTER) KK Nn —<= KK=KK+1

I3=-PRTB{L) (PROD #)

SCAN OVER THB

NO PRODUCTION
YES KK>X & NO

PRTB(L) <0

|CALL SEMANTIC | CL
PROCEDURE | PRTB(L) >0

i

8(J)=PRTB(L+1)(LEFT SIDE OF PRODUCTION)

L=0 (INDICATES SUCCESS)

1534C1

When the SCAN-STOP symbol is moved to the parsing stack, procedure

SCAN2 is activated, SCAN2 simply reads the input and copies it to the output

file (this 1s the only use of the OUTPUT file in the parser) until the SCAN-START

symbol is detected (the SCAN-START symbol is effectively erased). This facility

allows the mixture of special code and, the normal output code within one input

string.

3.5.5 Error Recovery and Diagnostics fT

“There has also been very little effort on the problems of automatic error

detection and recovery in syntax-directed processors. Once again, even a

bad system would be of great value to users. " (Feldman and Gries 1967, p. 111)

After using the syntax for implementing several different languages (George

1967b, 1969b).a simple method for error recovery and useable automatic diagnostics

has finally evolved. This has primarily resulted from careful analysis of the

parsing stack and the classification of the input symbols.

With a simple precedence system, the earlier an error 1s detected (1, e., with

| the least amount of parsing) the easier it 1s to recover and issue meaningful diag-

nostics. Precedence functions were utilized in an earlier system (Wirth and

Weber 1966a, b) and led to complications for error detection, With the precedence

functions, the blank relation 1s effectively removed and several steps of parsing

can occur before an error 1s detected; in fact, the only type of error to be detected

is an illegal production (i. e., no production matches the string to be reduced).

The problem of restoring the parsing stack after several illegal reductions 1s

complex; further, one cannot automatically restore the actions performed by the

associated illegal semantic activations. Also, automatic diagnostics were impos-

sible since the blank entries were missing.

tLeinius (Leinius 1970) analyzes and classifies syntax errors in simple
. precedence and LR(K) languages. He developes general techniques for

detecting errors (equivalent to the detection methods used here) and specifying,
syntactically, error recovery for any language of these classes. His techniques
are more general than those presented here, but are not needed in simple
languages. The techniques presented here have proven adequate for applications

involving simple languages. 39

The solution was to try to detect syntax errors as soon as possible and

keep the blank entries for diagnostic purposes. With a change of Wirth and

Weber's parsing algorithm, the errors can be detected earlier (i. €., use

the precedence matrix and not the functions). When searching for a reducible

substring, the search is only started when a '>"' relation exists between the

rightmost symbol of the stack and the next symbol. A scan is then initiated

to scan to the left in the stack while the '=" relation holds between adjacent

symbols; this scan terminates at the leftmost symbol of the candidate re-

ducible substring.

At this point the relation '<'is required (STACKOK in parser flow chart)

otherwise the stack is incorrect and production look-up and semantic calls are

not performed and a diagnostic message is issued. The error recovery mechanism

1s activated by either an incorrect stack or the nonexistence of a production to

match the candidate reducible substring.

The error recovery procedure first outputs the current contents of the stack.

The stack 1s then examined from the leftmost symbol and compared to a recovery

stack of maximum length 10 (this stack was processed by the syntax analyzer as

SYM(1) --~- SYM(10) and represents what 1s normally expected to reside in the

stack). The symbols in the parsing stack (and their associated value) are kept as

long as they match the recovery stack.

After the stack has been corrected, the input scanner is reset to the beginning

of the current input file and the symbols are read and checked to see if they may

occur adjacent; if they may not occur adjacent, a diagnostic message 1s issued

i -40 -

|

giving the symbols and how they were classified (WORD, STRING, INTEGER

or RESERVED). This scanning continues until the SCAN-STOP symbol is detected.

The symbols thus processed are erased from the input file and normal parsing

1s resumed.

Although this method 1s simple, it has proven quite useful for the types of

languages implemented to date. It provides automatic diagnostics and recovery

related to the input grammar with little effort of the user.

— 41 -

4. SEMANTIC CONSTRUCTOR

The semantic constructor processes its input text, which is a mixture of

keywords and PL/1 statements, and generates a program which 1s compatible

with the parser. Its purpose 1s to provide the standard procedure and parameter

declarations and to construct the branching logic for selecting that portion of the

code applicable for a particular production; the overall branching structure

cannot be affected by the code for any production. The specification of the

semantic constructor is given in Appendix D.

The syntax for the semantic constructor follows:

SEMANTICS . = *SEMANTICS* PROG-NAME CODA PRODUCTIONS

PROG-NAME : := procedure name to be given to these semantics

CODA::= *CODE* <block of PL/1 code > *END*

PRODUCTION : : = INTERPRETATION

: : = PRODUCTION INTERPRETATION

INTERPRETATION : : = *PRODUCTION* INTEGER CODA

As the syntax illustrates, the basic unit 1s an INTERPRETATION, which 1s

the keyword *PRODUCTION* followed by an integer followed by the keyword

CODE followed by a block of PL/1 code terminated by *END*. For this unit,

an if test on the integer 1s constructed and a label ("'L’' followed by the integer)

attached to form a DO group for the block of PL/1 code. The end of the PL/1

block causes an END label to be generated, thereby closing the DO group.

The semantic constructor is implemented using the syntax analyzer and a

skeleton parser with a hand coded semantic section, It will be used to illustrate

the use of the SIMPLE system in Section 6.

42 -

5. POSSIBLE EXTENSIONS

5.1 Automatic Syntax Correction

Some grammars require the insertion of several artificial productions and

renaming of variables in different parts of the grammar to be a simple precedence

grammar. Thisresults in the grammar’s being longer and not in a form easily

useable by users of a special language.

| The methods of removing precedence violations discussed in Section 3.2

were developed with the idea of possible inclusion into the syntax analyzer; in

fact, the organization of the syntax analyzer was modified to permit this insertion

in an easy straightforward manner. Removing the conflicts automatically would

make the grammars shorter and more readily useable. I see no problem in doing

this, but havent had the time to do so.

5.2 Parser Modification to Allow Simple Manipulation of the Parsing Stack by

the Semantic Procedure

As discussed earlier (Section 3.5) the parser and semantics are separate

and the semantics may operate only upon the value stack and not the associated

parsing stack. This means that the system is entirely syntax driven and the parsing

cannot be affected by any semantic meaning, Situations do arise where the parsing

] must be affected by the semantic meaning.

Consider for example the evaluation of an algebraic expression where the

variables may stand for a numeric value or for some other algebraic expression.

The parser only recognizes symbols and cannot determine whether a symbol

represents a primitive or an intermediate expression; only the semantics can

determine this. At this point the semantics need to defer a reduction and alter

the stack (i.e., the semantics would like to replace the variable by its equivalent

expression). This particular problem originated in the Graphic Description

Language of GEMS (George 1969a, b).

- 43 -

|

The problem was to allow a form of stack manipulation which would still

preserve a reasonable level of protection, From my work with and modification

of the parser, I knew that all the error recovery and error diagnostics are based

upon the symbol recognition; thus, the manipulation should be upon the input string

so that the symbol recognizer can process the input string and thus preserve error

recovery and diagnostics; this would provide the ‘reasonable level of protection, "

The solution 1s to provide an external switch and string to both the parser

and the semantics, When the semantics wants to erase the effect of a whole pro-

duction and insert a string into the current input string (i.e., this new string is

to be processed before the rest of the old string), the semantics leaves the string

in the external string variable and sets the switch. Upon return from the semantics,

the parser checks the switch and performs the ordinary reduction if the switch has

not been set. If the switch has been set, the parser inserts the external string

into the proper place of the current input string, resets the switch and erases

the current production from the stack; it performs no reduction but resumes the

normal parsing.

This solution not only provides a substitution facility for intermediate or non-

basic primitives, but also allows grammars to be used with apparently disjunct

J productions. These disjunct productions can represent shortened or alternate

forms of a production; these sometimes cause precedence violations and cannot

be resolved in any other manner, For example in SPIRES (George 1967b;

‘Parker 1967) it is desired to have

AUTHOR name AND name

to be equivalent to

AUTHOR name AND AUTHOR name.

This disjunct production method can be used for search classes other than AUTHOR

by remembering the last search type and performing a substitution.

~ 44—

6. EXAMPLE APPLICATIONS OF SIMPLE

6.1 Semantic Constructor

For an example consider the semantic constructor. The syntax in simple

precedence form and the data for SIMPLE’s executive follow:

//IGO. SYNDATA

SEMANT NAME='SEMANT'

/*

//IGO. SYNTAX DD*

- *SYNTAX*

SEMANTICS a= SEMANT CODA PRODUCTIONS *;*

PRODUCTIONS * =k INTERPRETATIONS *NO-SEMANT?** ;*

SEMANT ¥ = *SEMANTICS* WORD *;*

INTERPRETATIONS *::=* INTERPRETATION *NO-SEMANT* ok

¥ro= INTERPRETATIONS INTERPRETATION

NO-SEMANT **

INTERPRETATION *::.=* INTERP *CODE* *;*

INTERP k= *PRODUCTION* INTEGER *;*

CODA oo o=% *CODE*

END-SYNTAX

/*

~- 45 -

|

The semantics are:

//GO. SEMANTIC DD*

SEMANTICS SEMANT *CODE* *END*

PRODUCTION 1 *CODE#*

PUT FILE (OUT) EDIT (END’ || VS(@)|';")

(Col (10), A);

CLOSE FILE (OUT);

END

PRODUCTION 3 *CODE*

PUT FILE (OUT) EDIT

(VS (K)(|': PROC (N, VS, J, K, ANS, ERROR);)

(Col (2), A);

PUT FILE (OUT) EDIT

(DCL (N, J, K, ANS) FIXED BIN, ',

'VS(0:50) CHAR(400) VAR, !,

ERROR BIT(1)3;")

(Col (10), A, Col (20), A, Col (20), A):

VS(J) = VS(K);

END

PRODUCTION 6 *CODE*

PUT FILE (OUT) EDIT

(RETURN: END’ |'L'| VS(J) | ';1

(2 (Col (10), A):

END

PRODUCTION 7 *CODE*

PUT FILE (OUT) EDIT

(IF N=', VS(K),' THEN’, L’ | VS(K)|l':',
- 46 -

'DO'; /*PRODUCTION NUMBER !',

VS(K), "*/"

(Col (10), 3 A, Col (2), A, Col (20), 3 A);

VS(J) = VS(K);

END

END-SEMANTICS

An example input to this language is:

//IGO. SOURCE

SEMANTIC S SEM *CODE*

/* ANY PL/1 CODE CAN BE HERE*/

END

PRODUCTION 1 *CODE*

PUT FILE (OUT) EDIT

(PUT LIST (N) SKIP;

(Col (10), A);

END

PRODUCTION# 2 *CODE*

PUT FILE (OUT) EDIT

(PUT LIST (N, J) SKIP;

(Col (10), A);

END

END-SEMANTICS

- /*

~ 47 =

And the output is:

SEM: PROC (N, VS, J, K, ANS, ERROR);

DCL (N,J, K,ANS) FIXED BIN, |

VS(0:50) CHAR(400)VAR,

ERROR BIT (1);

/* ANY PL/1 CODE CAN BE HERE */

If N=1 THEN

L1: DO; /*PRODUCTION NUMBER 1*/

PUT LIST(N) SKIP;

RETURN;

END L1;

IF N=2 THEN

L2: DO; /*PRODUCTION NUMBER 2*/

PUT LIST (N, J) SKIP;

RETURN;

END L2;

END SEM;

- 48 -

|

6.2 A Command Language Meta System

During the Spring Quarter of 1970, a computer laboratory (CS 293) was

organized by Professor W. F. Miller to allow small groups of students to

participate in projects involving substantial programming tasks. Dr. Harry J.

Saal and I led a group to study and implement a text editor system; the students

were Howard Cohen, David Wyeth and Marice Schlumberger.

During the initial process of reviewing existing text editors, we arrived

at the following conclusions :

1. No existing text editor had all the features desired;

2. We could not agree on a universal text editor language;

3. There was no existing’system in which we could experiment

with different text editor languages in an economical manner;

4. Generally, only one text editor was available in a computer system.

At this point, we realized that we were really talking about command

languages rather than just text editor languages. The sentences of these

languages are a command and consist of a command keyword followed by a list

of parameters . Thus, we decided to design a meta system for defining command

languages of this type.

The characteristics desired were :

I. The defined command language should be easy to change;

2. The system should be, able to service various command languages.

. The meta system developed for describing, scanning and implementing command

languages (George and Saal 1971) has been used to define and implement two text

editors (Schlumberger and Wyeth 1971) and will now be presented in detail.

6.2.1 The Model

The meta system consists of a table generator and a scanner. A specific

command language 1s defined by a command description and the inclusion of any

additional subroutines into. the primitive library; the command description is

49 -

|

translated by the table generator to a form useable by the scanner as illustrated

in Figure 7. The tables describe how a standard parameter list 1s to be con-

structed, thus allowing the primitive library members to be shared by various

applications. The table generator provides a construction aid to a user with

error diagnostics and some consistency checking.

To use a specific command language, the user designates to the scanner

which table 1s to be used; this table 1s then obtained and saved in the user’s

work area. Commands can now be syntactically analyzed by the scanner using

the specified table and the semantics of a command can be performed through

activation of the appropriate subroutine in the primitive library. This is

illustrated in Figure 8.

This model provides the versatility desired and allows command languages

to be developed or modified modularly. New or modified commands can be

tested without the other users of that particular command language system being

aware of or affected by this testing. Further, each command language can be

tailored to a user or group of users. This tailoring could provide simplified

commands for less sophisticated users or could limit their actions or capabili-

ties in items such as, read only systems, file access restrictions, etc.

6.2.2 The Table Generator

The Table Generator 1s implemented using SIMPLE and its definition 1s

given in Appendix E. As indicated in the appendix, a command table consists

ofa set of options followed by a list of commands.

The options consist of the table name to which the table generator adds the

current date and time for identification (this line 1s usually typed out when a

user selects a table and, thus, indicates the version of the command system to

the user), a separator to mark fields in the table (*PERIOD*) and a character

which will inclose strings to indicate type <STRING> , (*QUOTES¥*).

~- 50 -

TABLES

COMMAND TABLE [|
DESCRIPTION “GENERATOR |

|

|

[]
1534A7

FIG. 7--Command language meta system - table generation.

TABLES

BH SCANNER PRIMITIVE
| LIBRARY
|

|

BB TERMINAL I534A8

FIG. 8--Command language meta system - scanner.

- 51 -

The list of commands 1s composed of subroutines used by the commands

and the commands, all are recursive. Commands are indicated by an identifier

list followed by a parameter list; an identifier list 1s a list of identifier |

specifications ; e . g. :

KEYWORD® LIST *RTN* SUBI *DL-EX-LIST* "/" *DL-SKIP* ". "

specifies a command whose name 1s LIST and whose semantic routine 1s

named SUBI.

Normally, all special characters are treated as delimiters by the scanner;

when scanning for the next item, the scanning proceeds until a delimiter is found

and then the delimiter is deleted. In the above example, '"/" is not to be deleted,

but is to be returned as the following item; ".'" is not to be treated as a delimiter.

Thus, 2/3 would be scanned as three items 2, / and 3 whereas 2 :3 would be

scanned as two, 2 and 3. Further, 2.3 would be scanned as one item 2.3.

Each parameter may be one of the following types

NUM type number ;

STRING type string

*NAME * first letter alphabetic followed by

alphanumerics

<STRING > Call the table subroutine specified by

{STRING)>to obtain the parameter 7

T The table subroutine calling mechanism is assumed to work by concatenating

this <STRING> to the current unscanned put string and then activation of the

scanner. This results in not only the subroutine activation, but character strings

can be appended to the string. For example, if the current input pointer is at

ABC)

and the subroutine call is “SUBS (M

then, the input becomes SUBS (ABC)
-52 -

|

Further, parameters may be restricted by the options:

k Pk No parameter before the one with this

option can be filled in after this parameter

* KX This parameter can only be filled in after

recognition of its key

and parameters may be initialized. A parameter may have multiple keys of

the types:

*VALUE * Take the next item after the key in the

current input string and assign it to the

N parameter if it 1s of the proper type

VALUE (STRING) Take everything up to the occurrence of

<STRING), assign it to the parameter

and then delete <STRING) from the input

VALUESHORT (STRING) Take everything up to the occurrence of

(STRING) and assign it to the parameter;

do not delete <STRING> from the input

SELF (STRIN G) Assign <STRING> to the parameter

CALL (STRING) Call the table routine named in <STRING);

same functioning as the previous subroutine

call

For example, if the desired command is:

- num) {/ umd IN (FILENAME)
where,

[- ‘| means one of the options must be used; and

{- 4 means the contents are optional
- 53 -

The command description is:

QUOTES ¥=¢ 0

PERIOD =k

TBL-NAME * ¥=x " EXAMPLE” -

KEYWORD LIST *RTN* SUBI *DL-EX-LIST*"/"

KEYWORD L *RTN* SUBl *DL-EX-LIST* "/"

* PARM* *NUM* *INITIAL* "-1" *END*

PARM *NUM* *K* *p* *INITIAL* *“-17

KEY / *VALUE* *END*

PARM *NAME* *K* *P* *[NITIAL”""

KEY I N *VALUE* *END*

END-TABLE

6.2.3 The Scanner-.

The original scanner was designed to test the model and the design of the

tables produced by the table generator (George and Saal 1971; the table generator

1s the author’s work, the scanner work was done by H. J. Saal and the command

description language and the tables were a joint effort). This scanner was then

modified to perform the subroutine linkages to complete the meta system model

as discussed in Section 6.2.1 (Schlumberger and Wyeth 1971). The original

version of the scanner accepts an input string from the user and builds a parenthe-

© sized expression indication which subroutine 1s to be activated, number of

characters scanned and a parameter list; if an error occurs, a diagnostic 1s

given with a pointer to the offending character. This original version does

provide a convenient testing vehicle for checking out the syntax of a command

language and will be used for illustration.

6.2.4 Examples Using the Command Language Meta System

The system has been used to define and implement two text editors |

(Schlumberger and Wyeth 1971) and found to be an efficient way to experiment :

with different text ‘editor languages. Im particular, the syntax is easily debugged

- 54 -

|

and commands may be modified or added easily. Some example commands from

each of these languages will be used for illustration.

6.2.4.1 WYLBUR Example

WYLBUR (---WYLBUR 1969) is alocally available text editor and several

commands from it will be used as an example. The commands are:

1. List Command

il [CARANGE) |] [IN] [<{NRANGE)]
2. Change Command

CHANGE

En - | [CARANGE)] ro [<srrine>] [mv] [{NRANGE) |]
3. Copy Command

COPY

oe | [{NRANGE)| zo [<VALUE)| sy [<NUMBER>|
4. Set Command

SET [LENGTH =NUMBER) | [pertA = NUMBER) |

[UPLOW | UPPER | VERBOSE | TERSE |

where,

— {STRING>
(ARANGE)= | [(NUMBER) [/ <NUMBER)| | [(<NUMBER>)]—
(vranGe = (VALUE) | <varue> / <VALUE)| {NRANGE) , <VALUE) |

{NRANGE) , <VALUE) / <{VALUE)

(VALUED= NUMBER) | FRST | 1a sr | END | au

<strinG>= ' (CHARACTER STRING> ' | " {CHARACTER STRING)

[1 means optional

{..} means one of the options must be present

- 55 -

The specification of the syntax of these commands 1s given in Appendix F

with the resultant generated table. An example conversation with the scanner

using the tables follows: :

UNIT#213

WYLBUR EXAMPLE---GEORGE 07/17/7014:33:48,260
LIST TABLES?no

LIST COMMANDS?yes
LIST

L

CHANGE

CH

COPY

co

SET

COMMAND?list

(suB1,5,¢(,),(0,0),)
COMMAND?T 1,2
(suB1,6,(,((1),,((2),,))),(0,1),)
COMMAND?11/4

(suB1,6,(,((1),(4),)),(0,1),)
COMMAND?1 all :

(sus1,6,(,((-4),,)),(0,1),)
COMMAND?1 'y"
(sus1i,6,(((,(Y,-1,-1,-1))),),(1,0),)
COMMAND?1'y' 1/8(9)in all
(sus1,21,(((,(Y,1,8,9))),((-14),,)),(1,1),)
COMMAND?list everything
ERROR
COMMAND?set terse

(SuB4,10,(,,4),(0,0,1),)
COMMAND?set delta=12

(suB4,13,((12),,0),(1,0,0),)

COMMAND?set delta=1 length=2 terse
(suBy,27,((1),(2),4),(1,1,1),)
COMMAND?change 'sk' to 'wk' in all
(sus2,27,(((,(sx,-1,-1,-1))),(WK), ((-4),,)),(1,1,1),)
COMMAND?ch ~'t'4/9 (8)to"e"in all
(suB2,32,(((™,(T,4,9,8))),(E),((-8),,)),(1,1,1),)
COMMAND?copy 1/5to 16.2

(sus3,17,(((1),(5),),(16.2),-1),(1,1,0),)
COMMAND?*RESTART*

-56-

6.2.4.2 CRBE Example.

CRBE (Wells 1970a and b) is another locally available text editor and

several commands from it will be illustrated. The commands are:

- 1. List Command]
LIST

[| RANGE) | [ARANGE) |
(a

2. Save Command

SAVE

[FvaME) | [(NUMBER) [, (NUMBER)])]
S

I [KEEP | PURGE][REPLACE| REPL]
3. Bring Command .

BRINGJ" (NUMBER)
(NAME)]

B [D| DSNAME] = (FNAME) [(NAMEY)][, [V | VOL] =<NAME)]

[SEQ| NOSEQ]

4. Change Command

CHANGE

[{NRANGE)] [~(STRING) | (STRIN®> |] [STRING]
CH

[COL = ({NUMBER) [, <NUMBER) |)]

| NOTEXT | NOLIST |

where,

{NRANGE) = [<NUMBER)| FIRST| [<NUMBER> I LA ST] [((NUMBER))]

. STRING)
{ARANGE) = [COL = ((NUMBER) [, <NUMBER> |) |]

STRING)
[| SEQ| NOSEQ|

FNAME) = NAME) | FNAME) . NAME)

< N AM E> = First character alpha rest alpha-numeric

(STRING) = ' <CHARACTER STRING>' | " {CHARACTER STRING> "
1 means optional

{ 4 means one of the options 1s required
- 57 -

The specification of the syntax of these commands is given in Appendix G

with the resultant generated table. An example conversation with the scanner

using the tables follows:

UNIT#?215 -
CRBE EXAMPLE---GEORGE 07/22/70 12:50:25.960

LIST TABLES?no

LIST COMMANDS?yes
LIST

L

SAVE

S

BRING

B

CHANGE

CH

COMMAND?list

(suB1,5,(,),(0,0),)
COMMAND? 14ist 1/4

(suB1,9,(((1),(s),-1),),(1,0),)
COMMAND? 11,4
(suBl,6,(((1),(w),-1),),(1,0),)

COMMAND?1 'y' in all
ERROR

COMMAND? 1 'y'
(suB1,6,(,((,(Y,,0)))),(0,1),) i
COMMAND?1 first last

(suB1,13,(((0),(-2),-1),),(1,0),)
COMMAND?11,2,(9),""k",col1=(2,3)
(SuBl1,25,(((1),(2),(9)),((™,(K,((2,3)),0)))),(1,1),)
COMMAND?1 12(9)""K"col1=(2,3)
(susl,25,(((1),(2),(9)),((",(K,((2,3)),0)))),(1,1),)
COMMAND?save , rep!
(sus2,11,((ACTIVE,),,-1,0),(1,0,0,1),)
COMMAND?save ss.dd.ff,v=wyl1003,(200,500)
ERROR

COMMAND?save ss.dd.ff,vol=wy1003,(200,500)
ERROR
COMMAND?save ss.dd.ff,repl

(suB2,19,((ss,(pD,(FF,))),,-1,0),(1,0,0,1),)
COMMAND? 123

(suB3,6,(,-1,,123),(0,0,0,1),)
COMMAND?b jegxx123
(sus3,11,(,-1,JEGXX123,),(0,0,1,0),)
COMMAND?b d=ss.dd(member),v=wyl1003
(suB3,27,(((ss,(pD,))MEMBER, ((WYLOO3))),-1,,),(1,0,0,0),)
COMMAND?ch1,2,'y','u',nolist
(suBs,22,(((1),(2),-1),¢(,(YH ,wy,,1y,(1,1,1,0,1),)
COMMAND ?*qui t*
GOODBYE!

9 }

- 58 -

BIBLIOGRAPHY

| I. Feldman, Jerome A. and Gries, David (1967). Translator
Wri tthg Systems. Computer Science Department, Stanford

. University, Technical Report No. CS 69. Also appeared
in Comm. ACM, 11(1968),2(February), 77-113.

2. Fischer, Michael J. (1969). Some Properties of
Precedence Languages. ACM Symposium on Theory of
Computing, 181-190,

3. George, J.E. (1967a). SARPSIS: Syntax Analyzer,
Recognizer, Parser and Semantic Interpretation System.
Stanford Linear Accelerator Center, CGTM 34, November
15, 1967.

4. George, J.E. (1967b). The SPIRES Scope Demonstration
Sys tern. Stanford Linear Accelerator Center, CGTM 33,
November 15, 1967.

5. George, James E. (1969a). The System Specification of
GLAF: A Linear String Graphical Language Facility.
Stanford Linear Accelerator Center, GSG-61, February,
1969.

6. George, J.E. (1969b). GEMS: A Graphic Experimental
Meta-System. Stanford Linear Accelerator Center, GSG
63, June, 1969.

7. George, J.E. (1969c). Rules for Transforming a Grammar
to a Simple Precedence Grammar Utilizing Artificial
Productions. Stanford Linear Accelerator Center

Computation Group, GSG-62, July, 1969.

8. George, James E. and Saal, Harry J. (1971). A Command
Language Meta-System., Fourth Hawaii International
Conference on System Sciences , 482-485, Also Stanford

Linear Accelerator Center, SLAC-PUB-84L,

9. Gray, James (1969). Precedence Parsers for Programming
Languages. Department of Computer Science, University
of California.

10. Learner, A. and Lim, A.L. (1970). A Note on
Transforming Context-Free Grammars to Wirth-Weber
Precedence Form. The Computer Journal, 13, 2(May),
142-144.

11. Leinius, Ronald Paul (1970). Error Detection and
Recovery for Syntax Directed Compiler Systems.
University of Wisconsin.

~ 59-

12. McAfee, J. and Presser, L. (1970). An Algorithm for
the Design of Simple Precedence Grammars. Department
of Electrical Engineering, University of California at
Santa Barbara.

13. Parker, Edwin B. (1967). SPIRES 1967 Annual Report.
Insti tute for Communication Research, Stanford

University, December, 1967.

14. Presser, L. (1968). The Structure, Specifications and
Evaluation of Translators and Translator Writing

Systems. Department of Engineering, University of
California at Los Angeles, Report No. 68-51.

15. Presser, L. and Melkanoff M.A. (1869). Transformat ion
to Simple-Precedence. Second Hawaii International
Conference on System Science, 695-698.

16. Schlumberger, Maurice and Wyeth, David (1971). A
Multi-Editor System. Computer Science Department,
Stanford Universi ty, CS 293 Report. Also, Stanford
Linear Accelerator Center, CGTM 127.

17. Shaw, Alan C. (1966). Lecture Notes on a Course in
Systems Programming. Computer Science Department,
Stanford University, Technical Report No. 52,

18. Wells, J. (1970a). CRBE Command List. SLAC Facility,
Stanford Computation Center, Stanford University, User
Note 39.

19. Wells, J. (1970b).CRBE Commands. SLAC Faci 1 i ty,
Stanford Computation Center, Stanford University.

20. Wirth, Niklaus and Weber, Helmut (1966a). EULER: A
) Generalization of ALGOL, and its Formal Definition:

Part I. Comm, ACM, 9, 1(January), 13-25.

21, Wirth, Niklaus and Weber, Helmut (1966b). EULER: A
Generalization of ALGOL, and its Formal Definition:

| Part Il. Comm, ACM, 9, 2(February), 89-99.

22, ------ (1969). WYLBUR Reference Manual.” Campus
Facility, Stanford Computation Center, Stanford
University, Appendix E, User’s Manual.

- 60-

APPENDIX A

SIMPLE'S EXECTIVE

SIMPLE: PROC CPTI CNS (MAIN);

D C LFILE1CHAR(E8)VAR,; /*SYNTAX EQUATIONS INPUT FILE+/

FILE2 CHAR(8) VAR, /*PARS ING PROGRAM INPUT FILE*/
FILE3 CHAR(8) VAR, /*PARSING PROGRAM OUTPUT FILE*/

FILE4 CHAR(8) VAR, /*SYNTAX OUTPUT FILE*/
FILESCHAR{8IVAR, /*SYNTAX DATA OPTIONS*/

FILE6 CHAR(BY VAR, /*SEMANTLC INPUT FILE™*/
FILE7 CHAR(8) VAR, /*SEMANTIC DIAGNOSTIC OUTPUT FILE*/

FILER CHAR(8)VAR, /%SEMANT IC PROGRAM OUTPUT FILE*/

SINITCHARI(20) VAR, /* INITIATOR FOR SYNTAX ANALYZER™*/

SSEPCHAR(20)VAR, /*SEPARATOR FOR LEFT-RIGHT SIDES*/

STERY CHAR(20) VAR, /*TERMINATOR FOR EQUATIONS*/
SEND CHAR(20Q)VAR, /*TERMINATOR FOR SYNTAXX/

SSEMANT CHAR({20) VAR, /*INDICATES ‘JO SEMANTICS FOR THIS
PROOUCT ION*/

PARSER-NAME CHAR(B) » 74 NAME TO BE SUBSTITUTED FOR
*PARSER®X |[N FILE2 */

SEMANT,NAME CHAR(8),/*% NAME TO BE SUBSTITUTED FOR
SEMANT |N FILE2 */

INTEGER CHAR(2CIVAR,/*THAT SYMBOL USED IN SYNTAX FOR
AN INTEGER*/

WORD CHAR(20)V AR, /*THAT SYMBOL USED IN SYNTAX FOR WORD*/

STRING CHAR(20) VAR; /*THAT SYMBOL USED FOR STRING */

QUOTESCHAR (20) VAR, /*THAT SYMBOL USED FOR QUOTES*/

SEQUENCE CHAR(20) VAR, /7*THE INITIAL SYMBOL OF THE SYNTAX
~- WHEN IT OCCURRS IN THE STACK THE PARSING

IS TERMINATED*/

TERYINAL CHAR(20) VAR, /*THAT SYMBOL USED TO FORCE PARSING
TO BE COMPLETED*/

ERRORSCAN CHAR{20) VAR, /7*THAT SYMBOL IN THE SYNTAX WHICH
IS USED IN ERROR RECOVERY..THE TEXT BETWEEN

TWO OF THESE SYMBOLS IS EFFECTIVELY DELETED*/

SYM(1C)ICHAR(20) VAR, /*THOSE SYMBOLS WHICH ARE EXPECTED
TO RESIDE IN THE I-TH POSITION OF THE PARSING

STACK */

SCAN-STOP CHAR(20) VAR, /*THAT SYMBOL IN THE SYNTAX WHICH
UPON ENTRY INTO THE PARSING STACK CAUSES

ALL INPUT TO BE IGNORED BY THE PARSER

UNTIL THE SYMBOL AFTER SCAN_START¢*/
SCAN-START CHAR(20) VAR, /¥* RESTARTS THE PARSING AFTER THE

APPEARANCE OF THIS SYMBOL*/

MLIM FIXED BIN, /7*MAXIMUM NUMBER OF SYMBOL S*/

MMLIM FIXED BIN, /7#MAX IMUM NUMBER OF NON-BASIC SYMBOLS*/
NLIM FIXEO BINy /*MAXIMUM NUMBER OF PRODUCTIONS+/

RLIM FIXED BIN; /*@'AX IMUM NUMBER OF RIGHT ELEMENTS*/
DCL | FIXED BIN:

O NENDFILE(SYNDATAY GO TO XXX:

FILEL='SYNTAX*;FILE2=*SPARSER*SFILE3=*PARSER';FILE4='PSYNTAX"*;

FILES='SYNDATA!'; FILE6='SEMANTICS'; FILET='PSEMANT'; -

FILES8='SEMANT'; PARSER_NAME='SEMANT'; SEMANT_NAME='CODE_OUT';
SINIT=t*=SYNTAXx?; SSEP='%::2=%x1; STERM='%x;x%x";

SEND="*END-SYNTAX*?; SSEMANT='%*NO-SEMANT*>?;

INTEGER='INTEGER'S WORD=*WORD'; QUOTES=‘“‘; MLIM=203}
MMLI M=203; NLI M=203 RLIM=8; STRING=" STRING’ 3

SEQUENCE='SEMANTICS?'; TERMINAL=**END-SEMANTICS**;

ERRORSCAN='*END*?;

DOI=1TO 10; SYM(])}=9¢3 END;

SCAN-START= *END*?*; SCAN_STOP=*%CODEX";
SYM(1)=*SEMANT*; SYM(3)=' INTERPRETATIONS*; SYM(2)=*CODA*;

OPEN FILE (SYNDATAITITLEC(FILES) INPUT STREAM;
GETFILE(SYNDATA)Y DATA:

- XXX: CALL SYNTAX A(FILEYL,FILEZ2)FILE3,FILE4,SINIT,,SSEPySTERM, SEND,

SSEMANT oPARSER_NAME,SEMANT _NAME,
INTEGER WORD STRING, QUOTES SEQUENCE, TERMINAL ,ERRORSCAN,

] SYM,SCAN_STOP ,SCAN_START, ML IM, MML IM,NL IM, RLIM);
CALL SEMANT(FILE6,FILES8,FILET):

END SI MPLE

- 61 -

APPENDIX B

SYNTAX ANALYZER

SYNTAX: PROC(FILEL yFILEZ2,FILE3 FILES, SINIT,SSEP,STERM,SEND,SSEMANT,
PARSER_NAME,SEMANT _NAME,

INTEGER)WORD »STRING, QUOTES »SEQUENCE, TERMINAL ERRORSCAN,
SYM,SCAN_STOP)SCAN_STARTpy MLIMyMMLIM, NL IMpRLIM)

DCLFILEL1CHAR({B) VAR, /*SYNTAX EQUATIONS INPUT FILE+/

FILE2 CHAR{8) VAR, /*PARSING PROGRAM INPUT FILE*/

FILE3 CHAR(8) VAR, /*"PARSING PROGRAM OUTPUT FILE+/

FILE4 CHAR(8) VAR, /*SYNTAX OUTPUT FILE*/

SINITCHAR(20)VAR, /*INITIATOR FOR SYNTAX ANALYZER™*/

SSEP CHAR1201 VAR, /*SEPARATOR FOR LEFT-RIGHT SIDES+/

STERMCHAR{(20) VAR, /*TERMINATOR FOR EQUATIONS*/

SEND CHAR{20) VAR, /*TERMINATOR FOR SYNTAX*/

SSEMANT CHAR(20) VAR, /*INDICATES NO SEMANTICS FOR THIS
PROOUCT ION*/

PARSER-NAME CHAR{(81},/*NAME TO BE SUBSTITUTED FOR

SPARSER* IN FILE2*/

SEMANT, NAME CHAR(8}y /*"NAME TO BE SUBSTITUTED FOR
®SEMANT® | N FILEZ2 */

INTEGER CHAR(20)VAR,,/*THAY SYMBOL USED IN SYNTAX FOR
oC AN INTEGER™/

WORD CHAR(20) VAR, /*THAT SYMBOL USED IN SYNTAX FOR WORD*/

STRING CHAR(20) VAR, /*THAT SYMBOL IN SYNTAX FOR STRING */
QUOTES CHAR {20} VAR, /*THAT SYMBOL USED FOR QUOTES*/

SEQUENCE CHAR(20) VAR, /*THE INITIAL SYMBOL OF THE SYNTAX
WHEN IT OCCURRS IN THE STACK THE PARSING

IS TERMINATED */

TERMINAL CHAR{20) VAR, /*THAT SYMBOL USED TO FORCE PARSING
TO BE COMPLETED*/

ERRORSCAN CHAR(20) VAR, /*THAT SYMBOL IN THE SYNTAX WHICH
IS USED IN ERROR RECOVERYeeTHE TEXT BETWEEN

TWO OF THESE SYMBOLS IS EFFECTIVELY DELETED™*/

SYM(10)CHAR(20) VAR, /*THOSE SYMBOLS WHICH ARE EXPECTED
TORESIDE IN THE |I-TH POSITION OF THE PARSING

STACK */

SCAN-STOP CHAR(20) VAR, /*THAT SYMBOL IN THE SYNTAX WHICH
UPON ENTRY INTO THE PARSING STACH CAUSES

ALL INPUT TO BE IGNORED BY THE PARSER

UNTIL THE SYMBOL AFTER SCAN-START.+/

SCAN-START CHAR(20) VAR, /7* RESTARTS THE PARSING AFTER THE
APPEARANCE OF THIS SYMBOL?™*/

MLIM FIXED BIN, /*"MAXIMUM NUMBER OF SYMBOLS*/

MMLIM FIXED BIN, /*MAXIMUM NUMBER OF NON-BASIC SYMBOLS*/
NLIM FIXED BINy /*MAXIMUM NUMBER OF PRODUCT IONS%/

RLIM FIXED BIN; /7®«*MAXIMUM NUMBER OF RIGHT ELEMENTS*/
DCL XINTEGER FIXED BIN, /*NUJMBER FORM OF INTEGER™*/

XSCAN,STOP FIXED BIN, /7®*NJMBER FORM OF SCAN_STOP*/
XSEQ FIXED BIN, /*"NUMBER FORM OF SEQUENCE*/

XSYM{10) FIXED BIN, /*NUMBER FORM OF SYM{(%®}%x/

XTERM FIXED BIN, /*NUMBER FORM OF TERMINAL™/

XSTRING FIXED BIN, /*"NUMBER FORM OF STRING #%/

XWORD FIXED BIN: /*"NUMBER FORM OF WOR[D*/

DCLM FIXED BINARY: /* NUMBER OF SYMBOLS %/

DCL MM FIXED BI NARY: /% NO NON-BASIC SYMBOLS */

DCL N FIXEO BINARY: /* NUMBER OF PRODUCTIONS*/

DCLSYT(O:MLIM)CHAR(20)VAR;/*SYMBOL TABLE *x/

. -62-

DCLPRDI(NLIMO:RLIM) FIXEO BIN; /%* PRO IN NUMBER FORM*/
DCLP(NLIMyO:RLIM) CHAR(201 VARS /*PRODUCT IONS IN STR ING FORM*/
DCL SEMANTINLIMIBIT(1)Y: /*TRUE IF NO SEMANTICS FOR ITH PROD*/

DCLH(O:MLIMO:MLIMI)CHAR(L1); /*PRECEDENCE MATRIX * /
~ DCL L{O:MMLIM,O:MLIM) BIT(1))R(O:MMLIM, O:MLIM) BIT(1):

/*L{1,J) TRUE MEANS THAT SY-J OCCURS IN THE */
/¥ LEFT SYMBOL SET OF SY=1.R(I,J) MEANS THAT %*/
/¥SY-J IS IN RIGHT OF SY-I*/

DCLIKEY(O:MLIM) ,PRTB(O:S%NLIM)IF | XE OBIN;

DCLBASVALI(MLIM)FIXED BIN;
DCLBASSYM{MLIMICHAR(20) VAR:

READ-SYNTAX-1 NPUT: PROC;

DCL INBUFCHAR{(100)VAR, BUF CHAR{100)VAR,(I,K) FIXEO BIN:
/%*READS SYNTAX INPUT ANO MAKES UP P MATRIX AND SEMANT*/

DELETE: PROC(INBUF) RETURNS(CHAR(100) VAR);

/*DELETES LEAD1 NG BLANKS--RETURNS NULL IF ALL BLANK*/

OCLIINBUF,STR)CHAR({100)VAR:
STR=I NBUF:

| FSTR=** | STR=' * THENRETURN('?');

D OWILE(SUBSTRISTR;1,19¥="");

STR=SUBSTR(STR,Z2):
END:

RE TURN(STR)

END DELETE:

NEXT: PROC RETURNS(CHAR({100) VAR);

DCL CCTA CHAR(100) VAR;
/*FETCHES NEXT SYMBOL FROM INPUT*/

O NENDFILE(DATA) BEGIN:

PUT FILE(OUT)EDIT(xxx ENDFILE SYNTAX INPUT--NO*,
SEND) (SKIP,2A)3

GO TO EXIT;

ENO;

IF INBUF=*% THEN DO;

LOOP: G E TFILE(DATA)EDIT(INBUF)(A(80));
INBUF=INBUF| |* *;
INBUF=DELETE(INBUF);

IF INBUF=** THEN GO TO LOOP;
END:

I=INDEX(INBUF,*' *);

OULTA=SUBSTR(INBUF,1,I-1)s

INBUF=DELETE(SUBSTR(INBUF,I+11}));
RE TURN{OUTA)};

END NEXT:

DCL NEXT INTERNAL ENTRY RETURNS {CHAR(100) VAR),

DELETE INTERNAL ENTRY(CHAR(100) VARIRETURNS({CHAR(100) VAR)
K=0s N=13: BUF=*'; INBUF=?t¢

DOI=TONLIM:;P(I, 0)=';SEMANT(]I)='0*B; END:
CPEN FILE(DATA)TITLE(FILEL) INPUT STREAM:

D OWHILE (BUF ~=SINIT);

BUF=NEXT:

END;

BUF=NE XT;

) DO WILE(BUF ~=SEND);

| F BUF=SSEPTHEN K=13

ELSE IF BUF=STERMTHEN 003

DO I-K TO RLIY;P{NyI)=01; END:

IF N< NLIM THEN N=N+I;

K=03

END

ELSE IF BUF=SSEMANTTHEN SEMANT(NI=?178;

- 63 ~

ELSE 00:

} P{N,K)=BUF;
IF K< RLIC THEN. K=K+]3;

‘END3

BUF=NEXT;

END;

EX T: CLOSE FILE(DATA);

DCI=2TO N: | FP(I4OQ)="*THENP(I,O)=P(I-1,0)3 END:
END READ-SYNTAX-1 NPUT;

BASIC: PROC3

/*MAKES SYMBOL TABLE AND NUMERICAL PRODUCTION TABLE PRDx*/

i DCLI¢JpKYFIXED BIN:
M=Q; SYT(O)=¢9;

DO K=O TO RLIM;

DOI=1TO N;

DOJ = 0TOM; IFPLIKI=SYT(J)THEN GO TO FF: END;
M=M#l3: J=M; SYT(M)=P(I,K);

FF: PRDA(I pK) =J;
END;

| F K=0 THEN MM=M;
END:

END BASIC:
COMP-KE Y-PR TB : PROC ;

/*COMPUTES KEY AND PRTB TABLES ee«KEY(I) REPRESENTS, FOR THE
ITH SYMBOL THE INDEX INTO PRTB WHERE THOSE PROOUCTION ARE

LISTED WHOSE RIGHT PART BEGINS WITH THE ITH SYMBOL...

FOR EACH PRODUCTION, THE RIGHT PART IS LISTED WITHOUT

ITS LEFTMOST SYMBOL, FOLLCWEO BY THE NEGATIVE OF THE

PRODUCTION NUMBER{(IF NO SEMANTICS OPTION SELECTED N

IS SUBTRACTED FROM THE PRODUCTION NUMBER) AND THE LEFT
PART SYMBOL OF THE PRODUCTION. ALL SYMBOLS ARE IN NUMERIC

FORM, THE END OF A LISTGF PRODUCT [ONS REFERENCED BY KEY{(11}

IS MARKED WITH A 0 ENTRY IN PRTB. *x/

DCLA(IpJyKy»UpV) FIXED BIN;
K=03 V=0; KEY(0)=0; PRTEB(O)=0;

DCI=1T OM+l;

| FV~=0 THE NKEY(I-1)=V;

vV=03;

| FPRTB(K)~=0 THEN K=K+13

PRTBIK)} =03 KEY (1)=K}
DOJ=1TO Ny;

| F PRO(J»1)=ITHEN 00:
IF V=0O THEN V=K+1l1;

0 0U=2T O RLIM;

| F PRD{JU)~=0 THE NDO3

K=K+#+l3 PRTB(K)=PRD(J UU); END:
END;

K=K+13

| FSEMANT (J) THE N PRTB(K)==N=J};

ELSE PRTB(K)==J;

K=K+1: PRTR(K)I=PRD(J,0);
END:

END:

END:

END COMP-KEY-PRTB;

SYNTAX_OUTPLT PROC3
/*OUTPUTS SYNTAX INFORMAT ION%/

DCLA{IpJpK)FIXEO BIN:
/*OUTPUT PRODUCTIONS IN STRING FORM*/

P U TFILE(QUT)YEDIT(* PRODUCTIONS!» J(PAGE A, SKIP,A);S

- 64 -

PO p 0 1 PILECOUT) EDIT (I PI,0)sSSEP) (SKIP) Fl4)yX(2)yA)X(2),
A)3

DO J-I1 TORLIM:

| FPL pJ)=='* THEN PUTFILE(OUTIEDIT(P(I,J4)})
(X-(2),A)3

END:

| FSEMANT(I) THEN PUTFILE(OUT) EDIT (**NO-SEMANTICS*?*)

(X(5) A);
END:

J7*0UTPUT BASIC AND NON-BASIC SYMBOLS*/

PUTFILE(OUT)IEDIT(*BASIC SYMBOLS? »*NON=-BASIC SYMBOLS,’ *)
(PAGE) A, COLUMNI(S0) ,A,SKIP, A);

0 0I=1T0 MAX(MMyM=MM)3
|FI+MMC=M THEN PUT FILE(OUT)EDIT(MM+I, SYT(MM+]})

(SKIPF(4) yX(2)y A);
| FIK=MM THEN PUTFILE(QUT)EDIT(I,SYT(I))

(COLUMNIS0)Fla), X(2), A);

END;

/*OUTPUT KEY AND PRT B%/

PUTFILE(OUT)IEDIT(I? ,*KEY(I)*,'PRTBI(KEY(I))?*,* ¢)

(PAGE,A)COLUMNI(10)A, COLUMN(20), A, SKIP, A);
DOI=1T OM;

TP U TFILE(OUT)EDIT(I,KEY(I),**)(SKIP,F(4),COLUMN(10),
F(S5) COLUMN(20),A);

D OK=KEY(I}BY 1 WHILE (PRTB(K)-~=0)3

PUTFILE(OQUTYEDIT(PRTB(KIIIX(1),F(4));

END;

END:

END SYNTAX-OUT PUT:

PRECEDENCE: PROC3
7% FIND H PRECEDENCE MATRIX */

DCLC(IpJrK)FIXEDBINyERRORFLAGBIT (I);
DCL (UsVePyQeAyB)FIXED BIN:
DCLNNFIXED BIN, CHANGE BIT{(1)3
OCLCCL{O:MLIM),C2(0O:MLIM))FIXED BIN:

/7* THE ITH SYMBOL OCCURS C1{I) TIMES AS LEFT */

/7¢# ANDC2(I) TIMES AS RIGHT */

DCLU(BL{OSNLIM),B2(O:NLIMI}BIT(1);

/% B(K) MEANS THAT THE K'TH PRODUCTION HAS BEEN */
/7%* ELI MI NAT ED */

OCLUCSO(OSNLIM),SLIOSNLIM),SR{O:NLIMI) FIXED BIN:

ENTER : PROC (XY S)3

DCL TCHAR(1):

DCLUX)Y)FIXEDBINARY,S CHAR(1);

T=H(X,Y)3
| FT~=* *£T~=S TH E N DO3

| F~ ERRORFLAG THEN PUT FILE(OUT) EDIT

(‘HINTS REGAROING PRECEDENCE VIOLATIONS’, ‘)
(PAGE)A,SKIPyA)3

ERRORFLAG=‘I'B:

PUTFILE(OUT)EDIT

(UpSYTUX) »T»S)SYTUY II(SKIP,F(4)ys X(2),AyX(2),
2 AgX(2),A);

END:

H(X,Y)=S3
END ENTER:

00 I-1TOMs C1(IV=035 C2(I)=03 EN D3

BA: DOK=1TO N;
SO(K) =PRD(K 0); SLI(KI=PRD(K,1l)s J=RLIM;

- 65 -

DO WILE (PRD(KyJ)=0);: J=J-1% END:
SRIKJ =PRD(K,J); BI(K)=?* 1B; B2(K)=?]1'p:

C2(SO(KII=CL(SO(K)) +1: CLISOIKII=C2(SO(K));

END BA;
DOI=1TO MM:

D CJ=1 TOM; RI J¥=0'B; L(I,J)=%0'B3 END: END:

NN=N3 CHANGE='1"'8;

BB : DO WILE (CHANGE ENN>0)3
CHANGE='0"'B;

DCK=1TO N;
| FBlL(K)T HE Nn DOs

A=S0(K)s B8=SLI(K);

| F=~ L(AyBY THENDO; L(A)B)=* 1° B: CHANGE=-@ 1'B3
END:

| FBK=MM THEN 00J=1T O M3}

| F~ LCApJ) THEN IFL(ByJd) THEN 00:
L(A,J¥='1'B CHANGE-'1*B:ENDS END

| FCl(B)=0 THEN DO: Bl{(K)='0'B; C1(A)=C1l(A)-1:

NN=NN-1 3; END:
END BBs

NN=N 3 CHANGE='11*'B;

BC: DOWHILE (CHANGE &NN>O);
CHANGE='0*B;

DCK=1TO N:

|F B2(K) THEN DO:

A=SO(K); B=SR(K):

IF -R(AyBY THEN DO: R{A BY¥=?1 B CHANGE=" 1'B3END3}
| F B=MM THEN 00 J-1 TO M: .

| F~ R{AyJ) THEN IFR{(BpJ) THEN DO}
R(A,J¥=*1'B: CHANGE='1'8; END: END;

| FC2(B)=0THE N DOs

B2(K)='0'Bs C2(A)=C2(A)-13 NN=NN-1; END;
END BC:

/*OUTPUT RIGHT AND LEFT SYMBOL SETS*/

PUTFILE(OUT)Y EDIT (‘RIGHT SYMBOL SETS’,” *Y{PAGE)A, SKIP A}:
DOI=1 TO MM:

PUTFILE(OUTIEDITUISYTLIIN,=)(SKIP Ap X(1))A);
D OJ=1T OM}

| FREI PIV THEN PUTFILE(OUT)EDIT(SYT(JIN(X(2),A)
END:

END;

PUT FILE(OUT)EDIT(*LEFT SYMBOL SETS ,@'")M{SKIP(4),A,S5KIP,
AD3

D CI=1TO MMs

PUTFILE(QUTIEDITISYT(I)= (SKIP, Ap X(1),A);
DO J=1T O M3

| FLITpJV THEN PUTFILE(QUTIEDITISYT(ININ(X(2),A)
END:

END;

/% FIND H PRECEOENCE MATRIX ®/

0 01-0 TOMID OJ=0T OM; H(I,J)=""*3END; END;

ERRORFLAG='0"'8B;

uv: OooU=1 TO N;
D OV=2T ORLIM;

| F PRD(UyV)~=20THE N DOs
P=PRO(U,V=1): Q=PRDIU,V I; C AL L ENTER(P,Qy =?)

| F P<=MM T HE N DOs
DOI=T OM;

IFREPPIY THEN CALLENTER(I;Qe*>*)3ENDS
| FQK=MM THEN 00 J=1TO M3

. - 66-

| FL(QpJY THE N DOS
CALL ENTER(Py J, *'<*});
D OI=1T OM;

IF R(PpIY THEN CALLENTER(IJp">%};:
END:

END:

END:

END:

ELSE IFQE=MM THEN 00 J-1 TO M3

|FL{QeJY THEN CALL ENTER(PyJ)*'<*):END;

END UV;
PUTFILE(OUT)EDIT(*PRECEDENCE MATRIX, *V(PAGE)A,SKIP,A);
P UTFILE(OUTYEDITI((J/10D 0OJ=10T OMB Y10))

(SKIP X(6) ,9(X(10),F(1)));
D OI=1T OM;

P UT TFILE(CUTYEDIT(I,**)(SKIPF(4)yX(1),A);
DO J=0 TO M BY 10:

| F MDJ+9 THE N U=J493 EL SE U=M;

PUTFILE(OUTIEDIT((HA(I KID oX=dT OUNp'e?}

(11 AD;

END: _
END:

IF ERRORFLAG THEN PUT FILE(OUT) EDIT

(‘PRECEDENCE VIOLATIONS OCCURRED®)(SKIP(2),A);
ELSE PUT FI LE(OUT) EDIT (‘NO PRECEDENCE VIOLATIONS OCCURRED’)

(SKI PE€2),A);
END PRECEDENGE;

. OUTPUT,DCL: PROC3
/*OUTPUT DECLARATIONS TO PARSER FIL Ex/

DCLEIpJeK) FIXED BIN:

PUT F | LE (PARSER) EOIT {* DCL /7*DECLARAT [ONS FROM SYNTAX*/"}
(COLUMN(6),A);

IF QUOTES=“" THEN QUOTES=QUOTES| | QUOTES:

PUTFILE(PARSER) EDIT (‘QUOTES EXT CHAR(20) V A RINITIAL(?,
QUOTES »*%?) ,*)(COLUMNI(10), 3 A);

Pp Uu TFILE(PARSER) EDIT (*ERRORSCAN CHAR(20) va RINITIAL(*r,

ERRORSCAN,"1?), 9) ({COLUMN(10),3 A};

PUTFILE(PARSER}Y EDIT (‘SCAN-START CHAR(20) VA RINITIAL{
pSCAN_START,**%) ,*) (COLUMN(10),3 A |:

/* MAKE UP BASSYM AND BASVAL */

J=03 XWORD=0; XI NT EGER=03; XSTRING=0;

DOI=MM:1T O Ms

IF SYT(I)= WORD THEN XWCRD=13

ELSE IF SYT(II=INVYEGER THEN XINTEGER=13;

ELSE IF SYT{I)=STRING THEN XSTRING=1}

ELSE DO:

J=J+1;

BASSYM(J¥=SYT(I);

BASVAL(J)=I}

END:

END:

J=J+1:

BASSYM(J)=TERMINAL:;

BASVAL(J)=M+]1:

XTERM=M+13

P UTFILE(PARSERIEDIT(*BASSYM(*,J,*')CHAR(20)V A R*

INITIAL(®** ,BASSYM(1),%0*®)(COLUMN(10), A |
F(4), 4 A);

P U TFILE(PARSERIEDIT ((*,¢**,BASSYM(I),**** (0I=2TO

JI (COLUMN(20),6 AD;

- 67 -

PUT FILEtPARSERJ EDIT t’° J,” Y(A)}
PUT FILEtPARSERJ EOIT §*BASVAL(',J,

“ JFIXED BIN INITIAL(*,BASVAL(1))(COLUMN(10},A,Fl 4),
A,F(a))s .

P UTFILE(PARSER)E D I T{(*,*yBASVAL{IIDOI=2T 0 J})
(COLUMN(20)Y, 10(A,F(&)));

PUTFILE(PARSERIEDIT(*),*'1(A);
P UTFILE(PARSER)EDIT(*KEY(O:"yM+]1,')FIXEDB | NINITIAL(?

2 KEY (0) J (COLUMN(L03,AyF(4), AF(4)J:
PUTFILE(PARSER)EDIT(('*)KEY(I) DOI=1T OM+1})

(COLUMNI(20),6(Ay F(4)) J:
PUT FILEtPARSERJ EBIT(* },*V1(A);

PUTFILE(PARSER)EDIT(*PRTB(O:?)KEY(M+]1),
Y) FIXED BININITIAL(,PRTB(O)YI(COLUMNI(L10),A,F(4),

AyFl4))
PUTFILE(PARSERIEDIT((*y*,PRTB(IID OI=1T O KEY(M+])

JJ (COLUMN(20),6(A, F(4)));

PUT FILEtPARSERJ EDIT t' Jd,” J (A);
PUTFILE(PARSER)EDIT(*HLIM FIXED BIN INITIAL (*M+1l,

*) »*Y(COLUMNI(10))A,Fl4), A); |
PUTFILE(PARSER)EDIT(*XTERM FIXEO BININITIAL(?® XTERM,

‘J p*)(COLUMN(10)Y,A,F(4),A);
XSEQXSCAN_STOP=03 DOK=1TO10; XSYM{K)}=03% END:
D OI=1T OM;

0 0K=lT O10:

| F SYT{I¥=SYM{K) THE NXSYM(K}=I}

END:

| F SYT(I)=SEQUENCETHE N XSEQ=1I3

ELSE IFSYT(I)=SCAN_STOP THE N XSCAN_STOP=13
END;

PUTFILE(PARSER)EDIT(*XSYM(10) FIXED B I N INITIAL(?®,

XSYML) p(*? p)XSYM(K)ID OK=2TO0O10)s%),*)
(COLUMNI(10) A, F(4),COLUMN(20),9(A,F(4))A);

PUTGFILE(PARSER)EDIT(*XWORD FIXED BININITIAL(?)XWORD,

*} ,')(COLUMNIL10) ,ApF(4) A);
PUTFILE(PARSER)EDIT(*XINTEGER FIXED BININITIAL(*,

XINTEGER,*)»*J(COLUMN(10),A,F(4), A);
PUTFILE(PARSERIEDIT(*XSTRING FIXEOB IN INITIAL(?,

XSTRING)*)»*)(COL(10),,A,F(4),A);
PUTFILE(PARSER)EDIT (*XSCAN_STOP FIXEO BININITIAL(?®,

XSCAN_STOP,*),*)(COLUMNI10) A, F(4),A);
PUTFILE(PARSER)EDIT(*XSEQ FIXEO BIN INITIAL(?®,XSEQ,

1),(COLUMNI(L10)A, Fl4), A);
PUT FILE (PARSER)EDIT(*M FIXED BININITIAL(®*)J,%),*)

(COLUMN(10),A,F(4),A):
PUTFILE(PARSER)EDIT(*N FIXED BININITIAL(!*)N,p*)s3*)

(COLUMNIL10),A, F(4), A);

/%* SET UP TO OUTPUT PRECEDENCE INITIALIZING PROCEDURE
AND PRECEDENCE MATRIX H x/

PUTFILE(PARSERIEDIT(*DOCL HINITIAL ENTRY(FIXEDBIN):®,
‘HINITIAL: PROC(JLIM);*,

‘OCLI(LyKyJLIM) FIXEO BIN,",
J(O2JLIM) FIXED BININITIAL(O)

(COL(10) ,A,COLI(2),A;2(COL(10)pAD);

/# 0 MEANS= | MEANS € ANO 2 MEANS> */

J-O3

D OIl=1T OM;

D OK=1T OM;

| FHL yK)==*"* THEN DO;
PUT FILEtPARSERJ EDIT(® yp?" Kp?)

’ - 68 -

(COL(20),2(A, F(4)), A);
| FH(I,K)Y='=* THEN

PUTFILE(PARSER)EDIT('0%)(A);

ELSE IFHII K¥=*<* THEN

PUT FILE(PARSERIEDIT(*1 "}(A);

ELSE PUT FILE(PARSERIEDIT(' 2")(A);

J=J+3;

ENDs

END: y

END:

P UTFILE(PARSERIEDIT(*)s')(A);

PUTFILE(PARSER)EDIT(*DOI=0TO HLIM:",
‘DO K=0 TOHLIM;! ,*H(I,K)=ttre 0,

"END:;?* END; DOI=1TOJLIM-1BY3:*,
“IF J(I42) =O THENHJI(INJ(Iel))=t0b 0,

‘ELSE IF J(I+42) =1 THENH{(J(I),JlI+1))}=00(t30,
‘ELSEH{J(I) yJ(I+1))=02tD00 20,

‘END:",

DO I=0T OHLIM;* *H(HLIMy | ~=" << :"*
‘Hl ,HLI M)=todeese SEND," END HINITIAL:')

(COL(14) ,A,COL(18),A,COL(22),A,CO0L(22),A,
COL{18),A,COL(14),A)4(COL(L18),A),COL(14),A,

3(CoL(18),A),COL (14), A);
P U TFILE(PARSERIEDIT(*DCL HO yM+1,%,0:',M+1,

PCHAR(LY INITIAL CALL HINITIAL(®,J,")5")

(COL(10) p3{A,F(4)),A);

END OUTPUT,DCL;
OUTPUT-PARSER : PRCC;

/* MERGES INPUT FILE2 WITH DECLARATIONS FROM OUTPUT,DCL INTO

FILE3 */

OCL A CHAR(80) VAR:

DCL | FIXEO BIN, (B,C)BIT(1);
ONENDFILE(IN) BEGIN:

‘ PUT FILE(OUT)EDIT(*%%x%kkkENDFILE PARSER INPUT-*END**»
‘ABSENT OR WRONG*)(SKIP,2A);

GO TO EXIT;

END:

OPENFILE(IN)TITLE(FILE2) INPUT STREAM:
OPEN FI LE(PARSER) TITLE(FILE3) OUTPUT STREAM:

I F PARSER_NAME=** THENB='0'B; EL S EB=*1"'B;
I F SE MANT_NAME='* THENC='0*B; ELSE C="1"8;

LOOP: GE TFILE(INVEDIT(AY(A(BO));

IF SUBSTR{A,1 ,,5)="*END** THEN GO TO EXIT:

IF SUBSTR(A,1,8)=**INSERT** THEN CALL OUTPUT-DCL:
ELSE IF BE&EINDEX(A,**PARSER**)~=0THEN DO;

I=INDEX(A,**PARSER*"');

A=SUBSTR(A,1,I-1)|| PARSER_NAME| | SUBSTR(A,I+8);
PUTFILE(PARSER)EDIT(AN(SKIP, A);

END;

ELSE IF C&INDEX(A,**SEMANT**)~=0 THE N DO}

I=INDEX(A) *%®SEMANT** };
A=SUBSTR(A,1,I-1)||SEMANT_NAME!}| SUBSTR(A,1+8)};
PUTFILE(PARSER)EDIT(AY(SKIP,A);

END:

ELSE PUT FILE(PARSERIEDIT(AN(SKIP,ADS

GC TO LOOP:

EX Ts CLOSE FILECIN);

CLOSE FILE(PARSER);

END OUTPUT-PARSER;
J ¥ mmm meee==CALL ING S EQU ENCE ~=w=—cececaa=x/

OPENFILE(OUT)TITLE(FILE4) PRINT STREAM:

CALL READ-SYNTAX-INPUT:

CALL BASIC:

CALL COMP_KEY_PRTB:
CALL SY NTAX,OUTPUT;

CALL PRECEDENCE:

CALL OUTPUT-PARSER;

CLOSE FILE(OUT);

END SYNTAX:

- 69 -

APPENDIX C

SKELETON PARSER :

PARSER™: PROC OPTICNS (MAIN);
/*PARSER USING THE TABLES INSERTED BY THE SYNTAX PROGRAM x/

DCLINPUTTCHARI(T) VAR, /*INPUT FILE */
POUT CHAR(7) VAR, /*DIAGONOST IC OUTPUT FILE*/
OUTPUT CHAR(T) VAR: /*OUTPUT FILE*/

DCLAILpJoKoplLKK, I1,I2,I3}FIXEDBIN,
S{(0:50) FIXED BINARY, /*PARSING STACK*/

V(0:50) CHAR(400) VAR, /* VALUE STACK */
QUOTE BIT(1lY, /*BOOLEAN FOR QUOTING BASIC SYMBOLS */
SYM FIXED BIN, /*NJMERICAL FORM OF ASSIGNED SYMBOL */
SYMS CHAR(400) VAR, /*STRING FORM OF ASSIGNEO SYMBOL */
ERRORBITI(I)INITIAL(®'O'B)y/*PASSED T O SEMANT®/

ANS FIXED BIN INITIAL(O), /*PASSED TO SEMANT*/
INPUT CHAR(100} VAR: /*INPUT BUFFER*/

INSERT#

DCL LCOK INTERNAL ENTRY (CHAR(400IVAR,FIXEDBIN,BIT(1),BIT(1Y);

LOOK: PROC (S31, Ty Xs
/*FREE FIELD REAO PROCEDURETIS FALSEIF INTEGER ELSE TRUE™*/

/*SEPARATOR IS ALWAYS. BLANK IF NOT QUOTED STRING THEN A

SEPARATOR IS ANY SINGLE CHARACTER IN THE SYNTAX

IF X TRUE THEN BLANKS REMOVED ELSE BLANKS LEFT */

NE XT: PROC RETURNS(CHAR(1}));

/* GETS THE NEXT CHARACTER FROM INPUT*/

O NENDFILE(IN) BEGIN:

PUT FILE(DIAGYLIST (**%xx%ENDFILE MAIN SCANNER’) SKIP:
IF QUOTE THEN PUT FILE(DIAG) LIST

(“*****MISMATCHING QUOTES’) SKIP:
GO TO FINIS:

END:

I FIDLENGTH(INPUT)Y THEN DOs

GETFILE(INYEDIT(INPUT)(A(BOY));

PUT FILE(DIAGIEDIT(*NEW INPUT STRINGEk*%x* , INPUT}

(SKIP,2 A);
INPUT = INPUT | "9%;
I1=1;

END:

RE TURN(SUBSTRIINPUT,,I,1));
END NEXT:

CON: PROC;

/*@CONCATENATES SYM TO S ANO INCREASED I */
S=S|ISYM;I=1+13.
END CON:

SPEC : PROC(A,B) RETURNS(BIT(1})):
/* TRUE IFA IS NOTA SEPARATING CHARACTER*/

DCL A CHAR(1),BBIT(1),J FIXEDBIN :

IF A= * |A=QUOTES THEN RETURN(*0O*'B J;
IF B THEN RETURN(®*1'8B);

DOJ=1TOM$ IF A=BASSY M{J) THEN RETURN(* (0 B}S END:

RETURN(*1°'B)3

END SPEC:

DCL SPEC INTERNAL ENTRY (CHAR(1),BIT(1)J RETURNS(BIT(1})),

NEXT INTERNAL ENTRY RETURNS (CHAR(11}),

CON I NTERNAL ENTRY,

SYM CHAR(1),

(T,X) BIT(1),

- 70 -

| FIXEO BIN, /7*#INPUY BUFFER POINTER™*/
S CHAR{400) VAR: /xQUT PUT STRING*/

SYM=NEXT; S='43 -

IFX THEN DO WHILE (SYM=*"');
I=I+13 SY H-NEXT3s END;

| F -SPEC{SYM, QUOTE) THE N DOs

CALL CCN: T=*'1*B; RETURN: END;
|F SYM>*Z®* THEN DO:

DO WHI LE (NEXT>* 7 }3

CALL CON: SYM=NEXT;
END:

T='01'83 RETURN:
END;

DC WHILE (SPEC(SYM, QUCTE)):
CALL CON: SYM=NEXT;

END:

T='1'8; RETURN:

END LOOK:

ASSIGN: PROC (QUOTE 0S,V) RECURSIVE:
/*ASSIGNS A NUMERICAL VALUE TO CURRENT INPUT SYMBOL */

DCL QUOTE BIT(1),
" OS CHAR(400) VAR, /*STRING RETURNED HERE */

V FIXED BIN, /* NUMERICAL FORM OF STRING */
J FIXED BIN,

TBIT(1) ,0X CHAR(400} V AR :
IF QUOTE THEN DOs

CALL LOOK(QOS,,1,7T,'0'8);

IF OS-QUOTES THEN DO;

QUOTE='0"'8B; 0S=t?; V=XSTRING; RETURN:
END;

CALL LCOK(OX yI,T,%0'8B);
DO WHI LE (OX-=QUOTES);

0S=0S|]0X;

CALL LOOK(OX,I,T,'0'8);
END;

QUOTE=*0'8B; V=XSTRING;

RETURN:

END;

CALL LCOK{(QOS,,I,T,*1'8B);
IF T THEN DO:

| FOS=QUOTES THE N DOs

QUOTE=*1*Bs CALL ASSIGN(QUOTE,0S,VI}; RETURN;
END;

DOJ=1T OM:

I F OS=BASSYM(J) THEN 00;
V=BASVAL(J): RETURN:

-END:

END;

V=XWORD; RETURN:

END;

V=XINTEGER; RETURN:

END ASSIGN:

SCAN2: PROC3

/* DRAINS INPUT BUFFER AND SCANS INPUT FILE UNTIL SCAN-START

OCCURS RESET I AND INPUT BUFFER */

DCL K FIXED BIN:

CN ENOFI LEC(IN) BEGIN;
PUT FILE(DI AGU EDIT ("%®kk%xENDFILE ALTERNATE SCANNER’,
‘x*xx**CHECK FOR MATCHING SCAN-STOP & SCAN-START' }

(2(SKIP,A})

- 71 -

GO TO FINIS:

END;

I F IKLENGTHCINPUT) THEN INPUT=? *] | SUBSTR(INPUT, It:
ELSE DO: Co.

GETFILE(INYEDIT(INPUTHI(A(BO));

PUTFILE(DIAG)EDIT(*CODE INPUT STRING*x?*, INPUT)

(SKI Pg2 At S
END:

LOOP : K=INDEX(INPUT ,SCAN_START);
IF K=O THEN DO:

PUTFILE(QUTIEDIT(INPUT) (SKIP, At:
GETFILE(INIEDITUINPUT)(A(BD)

PUTFILE(DIAGYEDIT(*CODE INPUT STRING*%?, INPUT)

(SKIP2 At:
GO TO LOOP:

END;

IF KeLENGTH(SCAN_START 1>=LENGTH{ INPUT) THEN DO;
I1 #1; INPUT=2?33

END;

ELSE DO:

PUTFILE(QUT)EDIT(SUBSTRIINPUT)1,K=1))(COLUMN(2),A);
I=13 INPUT=SUBSTR{INPUT K+L ENGTH(SCAN_START});

END;

END SCAN2:s

STACKOK: PROC RETURNS(BIT(1)):

/% TRUE | FHIS(J=1),S(J))='? n/
DCLI FIXED BIN:

I FH(SCI=12,S(I))="<* THENRETURN(*1'B);
PUT FILE(DIAGILIST (**xkx*kERROR IN PARSING STACK ‘t SKIP:

RETURN('0'B)3

E ND STACKOK3

ERROR-RECOVERY: PROC:
/*RESETS STACK, SCANS INPUT UNTIL ERROR-SCAN ®/
D C LUMERIBITUILY y(RyLyKK}I FI XEDBINg{(TR,TLyXRp XL) CHAR(400)

VAR:

DCL TYPE INTERNAL ENTRY(FIXEDBIN) RETURNS (CHAR{400) VAR};

TYPE : PROC(R) RETURNS(CHAR(400 § VAR)

/*RETURNS TYPE OF R INTEGER,WORDySTRING OR RESERVED */
DCL R FIXED BIN:

IF R=XWORD THE NRETURN(*WORD?);
ELSEIF R=XI NTEGER THEN RETURN(' INTEGER’ t:

ELSEIF R=XSTRING THEN RETURN(*STRING®* ¢
ELSE RETURNI’RESERVED WORO’ }s3

END TYPE:

/*RE SET STACK ~~" """"~""~"-~=------ %/
PUTFILE(DIAG)EDIT(**xxkkSYNTAX ANALYSIS I=%p1}

(SKIP,A,F(4));
PUTFILE(DIAG)EDIT(*STACK W A S* (SLY VILIOOL=0TO Kitt

{COLUMN(20) A,S{COLUMNI20),;10(Fl4), X(1),A})});

L=13

D O WHILE (XSYM(L)~=0 €& L103

L=L+1l;

END:

M=¢0'8 3 J=L3

D CKK=1TO L;
| FS(KK)~=XSYM{KK)THEN DO:

J=KK=13 GO TO EXIT:

END:

END:

EXIT: I F J=L £€ ERRORSCAN-~=SCAN_START THE NM='*]1?f3

‘- 2 ~

/% SCAN INPUT UNTIL ERRORSCAN FOR ERRORS */
I-1: QUGCTE='0%B; ER='1"B;

CALL ASSIGNIQUOTE,XRR);

. TR=TYPE(Rt }

LOOP : | F XR=ERRORSCANTHEN GO TO XEXIT;
TL=TRy XL=X R; L=R: a
IF L=XSCAN_STOP THEN DO:

CALL SCAN2;

IF ERRORSCAN=SCAN_START THEN GO TO XEXIT;
END;

CALL ASSIGN(QUOTEXR, R);

TR=TYPE (R);

IF HIL R}=** THEN DO;

ER='0'8;

PUTFILE(DIAG)EDITIXLy* (TYPE='",TLy*) MAY NOT BE,

‘FOLLOWED BY *oXRp? (TYPE- »TRy *)* J {COLUMN(20}),9 A t :
END:

GO TO LOOP;

XEXIT: IF ER THEN PUT FILE(DIAGYEDIT(* ERROR NOTIN CURRENT INPUT’)
(COLUMN(20),A);

PUTFILE(DIAG)EDIT(*STACK RESET TO" (SIL), VIL)D OL=0

TO JY) (COLUMNI(LO0) yA, 5(CCLUMN(20), 10(F{ 4), X(1),A)));
PUT FILE(DIAG)LIST(*®%k%x%xEND OF ANALYSIS) SKIP:

QLCTE='0"'8B;

INPUT=SUBSTRI{INPUT, 1; I= 1;
IFMTHENDQ; SYMS=XR; SYM=R: ENO;
ELSE CALL ASSIGN(QUOTE;SYMS,SYM);

END ERROR-RECOVERY:

/*® -wWe----- PARSING SECT ION IIEIEICE I
. DCL STACKOK INTERNAL ENTRY RETURNS(BIT(1));

DOJ=0TO 50; Std=05 V(J)="'*; END:
S({ Ot=XTERM;

I NPLTT=*SQURCE*; POUT=" OTAG’; QUTPUT='0QUTPUT";
OPEN FILE(OUTITITLE(OUTPUT) OUTPUT STREAM:

OPEN FILE(DIAG)TITLE(POUT) PRINT STREAM:

OPENFILE(INYTITLE (INPUTT) INPUT STREAM:

I-1; INPUT =“; J=03 QUOTE='0"B;
CALL ASSIGN(QUOTE SYMS, SYM);
0 OWHILE (SYM>O)

J=J +1; K=sJd; S{J)=SYM; VJI=SYMS;

IF S(J)=XSCAN_STOP THEN CALL SCAN2;

CALL ASSIGN(QUOTESYMS,SYM);

D OWHILE(H(S(J) ,SYM)=t>1);
IF S(J)=XSEQ THEN GO TO FINIS:

DO WHILE ((H{(S(J=1),S(J)==)E(ID>1));
J=J-13%

END:

L=KEY(S(J)i:

IF STACKOK THEN DO WHILE (PRTB(L)~=0)3

: KK= J#13

: DO WHILE {{KK<=K)E(SIKK)=PRTB(L))):

. KK=KK+1l; L=L+1;
END:

| F{(KK>K)&E (PRTBIL)IKO)}) THEN DO:

Il=J3 12=K; [3==PRTB(Lt:

IF 13<=N THEN CALL *SEMANT*(I3,V,I1,12,ANS,ERROR);
S(J) =PRTBI{L+1); L=03

END:

ELSE DOs

DO WHILE (PRTB(L)>0);

~- 73 -

L=L+ls
END:

L=L+2;

END:

END: :

ELSE DO: /*ELSE TO If-=-DO(PRTB==)%/
CALL ERROR-RECOVERY; L-0O;

END:

| FL~=0 THEN 00: /*PUT ERROR RECOVERY HERE */

L=0; CALL ERROR_RECOVERY;
END:

K=J:

END:

END:

| FSYM=0TH E N DOs

PUTFILE(DIAG)LIST

('%xxxkTHE SYMBOL *)SYMS,* WAS ASSIGNED TO NULL CLASS *})

SKIP;
IF XWORD=0 THEN PUT FILE(DIAG)ILIST("WORD CLASS);

| F XINTEGER=0 THENPUTFILE(DIAG)LIST(*INTEGER CLASS);

| F XSTRING=0 THEN PUTFILE(DIAG)LIST{*STRING CLASS");
END3

FINIS: END *PARSER*;
END

- 74 -

APPENDIX D -- SEMANTIC CONSTRUCTOR

SYNTAX

* SYNTA X*

SEMANTICS *3:=% SEMANT CODA PRODUCT IONS *;%*

PRODUCTIONS *::=% INTERPRETATIONS ®*NO=S EMANT * *; *

SEMANT *3:=% *SEMANTICS* WORD *3*

INTERPRETATIONS *::=% INTERPRETATION *NO=SEMANT*%;¥

*2:=% INTERPRETATIONS INTERPRETATION *NO=SEM ANT & * ; %

INTERPRETATICN *s3=% I[INTERP *CODE* *3%

INTERP *2: .=% *PRODUCTION* INTEGER xk
CODA *T:=% "CODE"

END- SYNTAX

-75 =

APPENDIX D -- SEMANTIC CONSTRUCTOR

PARSER WITH SEMANTICS

PARSER™: PROC (INPUTT OUTPUT, POLIT } -
/*PARSER USING THE TABLES INSERTED BY THE SYNTAX PROGRAM *x/

O C LINPUTTCHAR(T)Y VAR, /*INPUT FILE */
POUT CHAR(T) VAR, /*DIAGONOSTIC OUTPUT FILE*/
OUTPUT CHART) VAR, /*OUTPUT FILE +/
LCOK INTERNAL ENTRY (CHAR(400)VAR,FIXEOBIN,BIT(19,BIT(1));

CODE-OUT: PROC IN,VS Jy Ky ANS ERROR};
DCLAINp)JsK)ANS) FIXEO BIN, I FIXED BIN ,

VS(0:50) CHAR(400t VAR, ERROR B8IT(1):
IF N=1 THEN DO;

PUTFILE(OUT) EDIT (‘END *IIVS(IDI]*s*)(COLI10),A);
CLOSE FILE(OUT);

END;
ELSE IF N=3 THEN DO:

PUT FILE(OUT) EDIT

(VS(J+1) 1s PROCIN,VS)JoyKy ANS, ERRORIS*I(COLUMNIL2),AY
PUTFILECOUT)EDIT(

‘DCL N FIXED BIN, /*PRODUCTION NUMBER*/‘,

'VS(0:50) CHAR(400) VAR, /*VALUE STACK %/*%,

*3 FIXED BIN, /*LEFT STACK POINTER*/',
‘K FIXED BIN, /*RIGHT STACK POINTER */°,

‘ANS FIXED BIN, /*NOT USED BY PARSERINITTOO*/"*,
‘ERRORBIT{(1)3 /*NOT USED BY PARSERINIT TO FALSE*/")

fCOL(10),A,5(C0OL(14),A));
VS(J)=VS(J+l);

END:

ELSEI FN=6THEN PUTFILE(OUT)EDIT(*RETURN;*,*END"

Pleo IvSeu les (2¢(COLUMN{10},A);
ELSE IFN=T THEN 00:

P U TFILE(OUT)EDIT('IF NF® VS IK), THEN? pL fl VSIK}| 02?
p 'D0; 7% PRODUCTION NUMBER *pVS(K}, '%/s¢)
(COLUMN(10)3 A) COLUMN(2), A; COLUMN{20),3 A t :

VS(J)=VS(K)};

END:

END CODE-OUT:

DCLELpJoKyL)KKI1,)I2,I3}YFIXED BIN,
S{0:50) FIXED BINARY, /*PARSING STACK+/
V(0:50) CHAR(400) VAR, /* VALUE STACK %/

QUOTE BIT(1}, /*BOOLEAN FOR QUOTING BASIC SYMBOLS */
SYM FIXED BIN, /Z/%* NUMERICAL FORM OF ASSIGNED SYMBOL */

SYMS CHAR({&00) VAR, /*STRING FORM OF ASSIGNED SYMBOL */
ERRORBIT(L)INITIALU®*0'8B),/*PASSED TO SEMANT%/

ANS FIXED BININITIAL(O), /*PASSED TO SEMANT*/

INPUT CHAR(100) VAR: /*INPUT BUFFER®*/
INSERT?

LOOK: PROC S¢IyTyX)s
/*FREE FIELO READ PROCEDURETIS FALSEIF INTEGER ELSE TRUE*/

/*SEPARATOR IS ALWAYS BLANK IF NOT QUOTED STRING THEN A

SEPARATOR IS ANY SINGLE CHARACTER IN THE SYNTAX

IF X TRUE THEN BLANKS REMOVED IF FALSE THEN BLANKS’ LEFT *®/

NE XT: PROC RETURNS(CHARI1)::

/* GETS THE NEXT CHARACTER FROM INPUT*/

O NENDFILE(INYBEGIN:

PUT FILE(DIAGYLIST (***%x%x%xENDFILE MAIN SCANNER’) SKIP;
GO TO FINIS;

- "76 -

|

”

END:

- IF IDLENGTH(INPUT)THEN DO:

GETFILEC(INIEDITUINPUT)(A(BO)})S
PUTFILE(DIAG)EDIT{(*NEW INPUT STRINGk%x%x? ¢ INPUT)

(SKIP,2 A};

INPUT = | NPUT |)**;

I-13%

END:

RE TURN(SUBSTR(INPUT,1,1);
END NEXT:

CON2 PROC3

/*CONCATENATES SYM TO S AND INCREASED I */

S=S | |SYM; I=I+1;

END CON;

SPEC : PROC(A,B) RETURNS(BIT (1))3
/7% TRUE IF AIS NOTA SEPARATING CHARACTER™*/

DCL A CHAR{1), B8BIT(1), J FIXEDOB | N :

IF A= '* | A=QUOTES THEN RETURN{ ‘0’ B);
IF BTHENRETURN(®1*B);

D OJ=1T O M3; I F A=BASSYM(J) THEN RETURN(*O*B)S END:
RETURN{?*1*B);

-.E ND SPEC3

DCL SPEC INTERNAL ENTRY {CHAR(1),BIT(1))RETURNS{BIT(1)}),
NEXT INTERNAL ENTRY RETURNS (CHAR(1)),
CONI NTERNAL ENTRY,

SYH CHAR(1),

(T,X) BIT(1) ,

« I FIXEDBIN, /*INPUT BUFFER POINTER?®*/
S CHAR{400) VAR: /*OUTPUT STRING*/

SYM=NEXT: S=te.

IF X THEN DO WHILE (SYM=??};

I=I+1; SY M=NEXT3 END:

IF -SPEC(SYM, QUOTE) THEN DO:

CALL CON; T=91'8; RETURN: END:
IF SYM>*Z* THEN DO:

DO WHI LE (NEXT> Z')3
CALL CON: SYM=NEXT;

END;

T=0'8; RETURN:

END:

D OWHILE(SPEC(SYM, QUOTE):
CALL CON: SY M= NEXT3

END:

T=¢1'B; RETURN:

END LOOK:

ASSIGN: PROC (QUOTE ,0S,V) RECURSIVE;
/*ASSIGNS A NUMERICAL VALUE TO CURRENT INPUT SYMBOL */

DCL QUOTE BIT{(1),

; OS CHAR(400) VAR, /*STRING RETURNED HERE */

: V FIXED BIN, /¥ NUMERICAL FORM OF STRING */

J FIXEDBIN,

TBIT(1) 0X CHAR(400)V AR:
IF QUOTE THEN DO:

CALL LOOK{OSI,T7T,'0*'8B);
IFOS=QUOTES THEN DO:

QUOTE='0*Bs O S = “ : V=XSTRING; RETURN:
END:

- CALL LOOK{OXpI,T,'0'8B);
DO WHI LE (OX-~=QUOT ES);

os=0s | | ox 3

- 77 -

CALL LOOK{(OX,1,T,%0'8B);
END;

QUOTE=*0*'B; V=XSTRING; -
RETURN:

END:

CALL LOOK(OS,I,T,%'1%B);
IF T THEN DO:

IF OS=QUOTES THEN DO:

QUOTE='1'8; CALL ASSIGN(QUOTE,OS,V); RETURN;
END:

D OJ=1T OM;

I F 0S=BASSYM{J) THEN DOs

V=BASVAL(J): RETURN:

END:

END;

V=XWORD 3 RETURN:

END;

V=XI NTEGER; RETURN:
END ASSIGN:

SCAN2 : PRDC

J*® DRAINSIT NPUT BUFFER AND SCANS INPUT FILE UNTIL SCAN-START

OCCURS-RESET, I AND INPUT BUFFER */
DCL K FIXED BINS

ON ENDFI LECI NY BEGIN:

PUT FILE(DIAG) EDIT (*%%x%xk%xENDFILE ALTERNATE SCANNER’,
«xxx»* CHECK FOR MATCHING SCAN-STOP & SCAN-START’)

(2(SKIP,A));
GO TO FINIS:

END:

I FICSLENGTHUINPUT)YT 4 £ NINPUT=* | | SUBSTR(INPUT, I);
ELSE DO:

GE TFILECIN)EDITC(INPUTI(A(BO)};

PUTFILE(DIAG)EDIT(*CODE INPUT STRING**", INPUT)
(SKIP2 A)3

END:

LOOP : K=INDEX(INPUT SCAN_START);
IF K=O THEN DO:

PUTFILE(OQUTIEDITCINPUT) (SKIP, ADS

GE TFILE(IN)EDITUINPUT)I(A(BO));

PUTFILE(DIAG)EDIT('CODE INPUT STRING**?, INPUT)

(SKIP,2 A) 3
GO TO LOOP:

END:

IF K¢LENGTH(SCAN_START)>=LENGTH(INPUT) THEN DO:
1121; INPUT=£?3;

END;

ELSE DO:

PUTFILE(OUT)EDIT(SUBSTRUINPUT,; 1,K-=1}1(COLUMNI{2},A};
I=13 INPUT=SUBSTRUINPUT K+L ENGTH(SCAN_START })3
END:

END SCANZ23

STACKOK: PRDC RETURNS(BIT(1));

/# TRUET F HIS{J=-1) SJ) }='<" %/
DCLI FIXED BIN;

| FHESUJ=1) SII ¥="<* THE NRETURN(* 1'8B);
PUT FILE(DIAG)ILIST (**>%%x%%ERROR IN PARSING STACK *) SKIP:

RETURN(*0O*B);
E ND STACKOK

ERROR-RECOVERY: PROC:
/*RESETS STACK’ SCANS INPUT UNTIL ERROR-SCAN */

- 78

D CLUMMER)IBIT(I)p{RPLyKKIF | XEDBIN{(TRyTLyXR XL }CHAR(400)
VAR;

DCL TYPE INTERNAL ENTRY (FIXEDBIN) RETURNS(CHAR (400) VAR)

TYPE : PROC(R) RETURNS(CHAR(400 VAR);
/*RETURNS TYPE OF RINTEGER,WORD OR RESERVED */

DCLR FIXED BIN:

| FR=XWORD THE NRETURN(*WORD*};

ELSE IF R=XI NTEGER THEN RETURN(' INTEGER’)3

ELSE IF R=XSTRING THEN RETURN(*STRING?);

ELSE RETURN(‘RESERVED WORO’)3
END TYPE:

/*RESET STACK ~~~ ~"~"° ~~ """---- %/
PUTFILE(DIAG)EDIT(***%xkkSYNTAX ANALYSISI=*, 1)

(SKIP,,A,F(4));
PUTFILE(DIAGIEDIT(*STACK WAS *,(S(L}),V(LID OL=0T OK)

(COLUMNI(20))A,S(COLUMN(20),10(F(4), X{(1),A))};
L=1;

D O WHILE (XSYM(L)~=0 & LL10);

L=L+13

END;

M=90Q*B 3 J=L3
D OKK=1TOL3

TIF S(KK)-~=XSYM(KK)}THEN DO:

J=KK-1;: GO TO EXIT:
END:

END:

EXIT: I F J=L & ERRORSCAN~=SCAN_START THE NM='1'8B;
- /7%* SCAN INPUT UNTIL ERRORSCAN FOR ERRORS */

I=1; QUOTE=*0" B; ER='1"'8;
CALL ASSIGN(QUOTEXR RR):
TR=TYPE(R)3

+ LOOP : IF XR=ERRORSCAN THEN GO TO XEXIT:

TL=TR; XL=XR3 L=R}

IF L=XSCAN_STOP THEN DO:
CALL SCAN2;

IF ERRORSCAN=SCAN,START THEN GO TO XEXIT;

END;

CALL ASSIGN(QUQOTE XR)R);

TR=TYPE(R);

I F HILpR)I=** THEN DO:
ER='0'8;

PUTFILE(DIAG) EDIT U(XL,*(TYPE=*»TL»* IMA YNOTBE?",
‘FOLLOWED BY "eoXRp*(TYPE="»TRy * })* }(COLUMN(20},9 A);

END:

GO’ TO LOOP:)
XEX| T: IF ER THEN PUT FILE(DIAG)EDIT(* ERROR NOTIN CURRENT INPUT")

{COLUMN(20),A);
PUTFILE(DIAGIEDIT('STACK RESET TO'"{(S(L),Vvi(L)D OL=0

TO JI) (COLUMNILI0))A,S(COLUMN (20), 10(F(4), X(1),A)));

PUT FILE(DIAGYLIST (**%x%x*%kEND OF ANALYSIS’) SKIP:
QUCTE='0"'8;

INPUT=SUBSTR(INPUT, I); I= 1:

IF M THEN DO: SYMS=XR; SYM=R; ENO;
ELSE CALL ASSIGN(QUGOTE,SYMS,SYM);

END ERROR-RECOVERY:

J® V-W----- PARSING SECTION —————-——ee- §[

DCLSTACKOK INTERNAL ENTRY RETURNS(BIT(1))3

DO J=O TO 50; S{NH=0; VJI)= tt; END:
S(0) =XTERM:
OPEN FILE(OUTITITLE(OQUTPUT)Y OUTPUT STREAM:

- 79 -

OPEN FILE(DIAG)TITLE(POUT) PRINT STREAM;
OPEN FILECIN)TITLECINPUTT)INPUT STREAM:

I=13; I NPUT=?*; J=0: QUOTE='0"'B;
CALL ASSIGN(QUOTE SYMS, SYM);
D OWHILE(SYM>O);

J=Jd+l 3 K=J;3 S(J)=SYM; V({(JI=SYMS;

IF SCJ) =XSCAN_STOP THEN CALL SCANZ2;
CALL ASSIGN(QUOTE SYMS,SYM);

DO WILE (HIS) ;SYM)=>");
IF SCI) =XSEQTHEN GO TOFINIS:

D OWHILE ((H(S(J=1),S(JY¥)==2)E(ID>1));}
J=J=-13

END:

L=KEY(S(J));

IFSTACKOK THEN DO WHILE (PRTB(L }~=0)3

KK=J+13

D OWHILE ({KK<=K) & (S(KK)=PRTB(L))});

KK=KK+ls L=L+13

END;

| F(KKOK) E(PRTB(LIKONY THEN DO:

Il=J3 12=K; [I3==PRTBI(L);

--. IFI3<=N THEN .CALL *SEMANT*(13,V,I1,12)ANS,ERROR);
S(J) =PRTB(L+1); L=03

END:

ELSE DO:

DO WHILE (PRTB(L)>0);

L=L+1;
END:

L=Le2;
END:

END;

ELSE DO: /*ELSE TO IF=-=DO(PRTB~-)%/

CALL ERROR-RECOVERY:L=03

END;

IF L==Q THEN DO: /*PUT ERROR RECOVERY HERE */

L=0; CALL ERROR-RECOVERY:

END:

K=J3

END;

END;

FINI S: END *PARSER*;

END

~- 80 -

APPENDIX E -- CONTROL LANGUAGE META SYSTEM

SYNT AX

//G0.SYNDATAD D *

SYM{(1)='0OPTIONS* ERRORSCAN=*®END** SEQUENCE=*'* COMMAND~-TABLE"®
PARSER_NAME='TABLE" SEMANT_NAME='SEMANT®* QUOTES=tt 1?
TERMINAL=**END-TABLE** MLIM=50 NLIM=S0 MMLIM=50 SYM(2)=*COMMAND~LIST*;

7%

/7/G0e SYNTAX DD *

* SYNTA X*

COMMAND-TABLE *2:=% OPTIONS COMMAND-LIST* ®*3%
OPTIONS ®2:=% OPTION ®NO=SEMANT* %; *

k2:=% OPTIONS OPTION ®*NO=SEMANT*% *;x

OPTION *22=% %QUOTES* *=% W O R D *;*

::=%k XPERIOD *=% WO R D *3*

2:=k XTBL=-NAME =k STR |NG *;3%

COMMAND-11 ST* #3: =% CCMMAND-LIST ®NO=S EMANT¥% * *

COMMAND=LI ST * : :=%* COMMAND *NO-SEMANT* * 3%
x23=% COMMAND-LX ST COMMAND *NO=SEMANT**3*

COMMAND *g2=% ID-LIST PARM-LIST* ®*NO=SEMANT**; &

ID-LIST *®223=%|D-SPEC ®SNO=SEMANT * %; *

*33:=% |D-11 ST ID-SPEC *NO-SEMANT* &3%

ID-SPEC%33=% |D 3%

« kz:=% | D #%DL-EX=LISTXSTRING #3 %
*k2:=% | D %DL-SKIPX STRING *3%

*¥32=% |D ¥DL=-EX=LISTR STRING *DL=SKIP®* STRING *:%

2:=% ID #$DL=SKIP STRING *DC-EX-LIST* STRING *:*

A ID ks ¢=% *KEYWORD* WORD *RTN* WORD *3*

*2:=% *SUB-ENTRY* WORD *;%

PARM=L]I ST* ®%2:=% PARM-LX ST *NO-S EMANT* *x 3%

PARM-LX ST *2:=% PARM *END* ®*NO=S EMANT * % j%

*2:=% PARM-LX ST PARM *END* #*NO=SEMANT*%3%

PARM ®2:=% PARM-ID ENO=-SEMANT* %;x

x::=% PARM-ID KEYS (NO=-SEMANT* *;%*

PARM=ID St s=% %PARME® T V P E *3%

*2 =k XPARM® TYPE *INITIAL* STRING ¥3%

TYPE ®%23=% \V_.TYPE %3%

®2:=% V-TYPE P=ACTI O N *3%

x2:=% V-TYPE K-REQUIRED *3*

*x2:=% V-TYPE P-ACTION K-REQUIRED *3%

*2:=% V-TYPE K-REQUIRED P-ACTION *3*

V-TYPE #2 :=% #NUM%® %XNO-SEMANT* *:%

kz::=% *STRING* *NO=SEMANT* kx; x

x33=% “NAME* ¥*NO=SEMANT * %3 *

22:2:=(STRING; =*=

P-ACTION ®223=% Pk (NO=SEMANT* *x;x%

K-REQUIRED %*::=% *%xKk XRNO-SEMANT* *x3*

KEYS* ®23s=% KEYS *®NQO=SEMANT* *; xX

KEYS ®%::=% KEY TYPE-KEY %3%

®¥2:=% KEYS KEY TYPE-KEY *;%*

KEY ®t: 3:=% *KEY* WORD *3*

TYPE-KEY®2:=% *VALUE™* %3%

k2:=% *SELF* STRING #3%

x2e=% *VALUE* STRING *3#*

¥:2=% *VALUE SHORT* STRI NG x3xk
*3:=% *CALL* STRING

END- SYNTA X

- 81 -

APPENDIX E -- CONTROL LANGUAGE META SYSTEM

SEMANTICS

//G0Oe SEMANTIC OD #

SEMANTICS SEMANT *CODE*

DCL | FIXEDBIN , TBL(SO00) EXT CHAR(80} VAR,
(NAME)NUMBER)I N T ENTRY (CHAR(%®) VAR) RETURNSI(BIT(1)),
QUOTES E X TCHAR{(20) Vv A RINITIAL (000),
PERIOD EXT CHAR(1)}INITIAL('.'),

TBL-NAME EXT CHAR(40) VAR INITIAL(* TABLE’),

TOUT FILE ENVIRONMENT (F(400,80));

; NAME 3 PROC(A) RETURNS(BIT(1))3
/*RETURNS TRUE If A OF TYPE NAME ELSE FALSE */

DCL A CHAR(*)VAR, J FIXEDBIN:
IF A=** |A='¢* TH ENRETURN(®0'B:

I F SUBSTR(A;1,1)<%A* | SUBSTR(A 1, 1)>'Z* T HEN
RETURN(*0*B);

D OJ=2 T O LENGTH(A);

I F SUBSTR(A,;J;1)0<C*A* THEN RETURN('0* 8B);
END:

RETURN(*1°'8);

END NAME;
NUMBER: PROC(A) RETURNS(BIT(1) +t

/*RETURNS TRUE IF A OF TYPE NUMBER ELSE FALSE*/

DCL A CHAR(#%®) VAR, X FLOAT BIN;
CN CONVERSION GO TO FALSE:

Oh OVERFLOW GO TO FALSE:

Oh UNDERFLOW GO TO FALSE:

X=A3

RETURN(*'1°'B);

FALSE: RETURN(‘0’ B) 3

END NUMBER;
END

PRODUCTION 1 *CODE*

/% OUTPUT TABLES #*/

OPEN FILE(TOUTITITLE(‘TABLES’ t OUTPUT STREAM;
TBL{ ANS+1) =DATE;

TBLUANS+1) =SUBSTR(TBL(ANS+13,3,2) fs}

SUBSTR(TBL(ANS+1),5,2)||*/*| |SUBSTR(TBL(ANS+1),1,2);
TBL{ANS+2)=TI ME;

TBLUANS+#2) =SUBSTR(TBL(ANS+2),1,2) 12]
SUBSTR(TBL(ANS#2),3,2) 1%: ||

SUBSTR(TBLIANS +2),5,2)i |e? } |
SUBSTR(TBL(ANS+2),7,3);

P UTFILE(TOQUT)IEDIT(TBL_NAME,TBL(ANS+1), TBLIANS*2),*"* ¢
(COLE2) Ap XU(2) AX (2), ApSKIP(2),A);

DOI=1TO ANS;

PUTFILE(TOUT)EDITA(TBL(IIY(SKIP, A);
END:

PUTFILE(TOUTIEDIT($$$)(SKIP,A);
SEND*

PRODUCTION 4 *CODE*

/* SET QUOTES */

QUOTES=VS(Ki3

END

PRODUCTION+ 5 #CODE

/*SET PERIOD */

PER1 OD=VS{Ki }

- 82-

END .
PRODUCTION 6 *CODE*

/* SET TBL,NAME */

TBL_NAME=VS(K);
END

*PRODUCTION*13 *CODE*

/%* BUILD ID-SPEC */

ANS=ANS+1;

TBL{ ANS) =vS{J) | | PERIOD] | PERICDI| | PERIOD;
END

*PRODUC TION=® | 4 *CODE*

/* BUILD ID-SPEC WITHEXCL LIST */

ANS=ANS+1;

TBLCANS)=VS(J)| I PERICDIIVS(K)| {PERIOD| | PERIOD;
END

PRODUCTION 15 *CODE*

/* BUILD ID-SPEC WITH SKIP LIST */

ANS=ANS+1:

IBL(ANS) =VS(J) | | PERIOD] I PERIOD] IVS (K)|PERIOD;

END
*PRODUCTION+16 *CODE*

/* BUILD ID-SPEC WITH EXCL LIST AND SKIP LIST */

ANS=ANS+1;

TBLCANS) =VS(J) | | PERIOD]IVS(JS+2)I PERIODIIVS(K)II]IPERIOD
*END#

*PRODUCTION*17 *CODE*

/%* BUILD ID-SPECWITH EXCL LIST AND SKIP LIST */

ANS=ANS+1;

TBLIANS) =VS (J) VIPERIODDI IVS (KI {PERIOD} I VS(J+2)| IPERIOD
END

*PRODUCTION*18 *CODE*

/* SAVE KEYWORD AND RTN %x/

VS(J)=VS(J+1)| |PERIOD}IVS(K);
*END+

PRODUCTION 19 *CODE*

/* SAVE ENTRY*/

VS(JI=VS(J+1)| | PERIOD;
END

PRODUCTION 25 *CODE*

/*ENTER PARAMETER AND TYPE*/

ANS=ANS+1;

} TBL(ANS) =PERIOD]JIVS(K}|IPERIODI|IPERIOD:
VS(JYI=VSI(K)3

END

PRODUC TION 26 *CODE*

/%* ENTER PARAMETER TYPE,, INITIAL VALUE %/
J®* CHECK INITI AL VALUE TYPE */

ANS=ANS+1;

TBLCANS) =PERICD|IVS{J+1)| | PERICD]IVS(K)] | PERIOD;
| F INDEX(VS(Je1),**NUMX* }~=0 THE N

IF -NUMBER(VS{(K)t THEN

PUT FILE(DIAG)LIST

(‘DIAGNOSTIC MESSAGE*WRONG TYPE INITIAL VALUE?) SKIP:
IF INDEX{VS(J*1),**NAME**)~=0 THEN

IF -NAME(VS(K)t THEN

PUT FILE(DIAG)LIST

(‘DIAGNOSTIC MESSAGE*WRONG TYPE INITIAL VALUE®) SKIP:
END

PRODUCTION 27 *CODE*

/®* ENTER NULL FOR P K OPTIONS */

- 83 -

VS(J)=VS(J)||? ke;
END

PRODUCTION 28 *CODE*

/J* BUILD TYPE */
VS(J)=VS(J) || *Px%eg
END

PRODUCTION 29 *CODE*

/X BUILD TYPE */

VSCJY=VS(J) || *&Kke;
END

PRODUCTION 30 *CODE*

/® BUILD TYPE */

VS(JI=VS(J)||? PRKxe;
END

*PRODUCTION*3 1 *CODE*

/*BUILDTYPE*/

VS{J)=VS(J) || 'PRKke;
END

PRODUCTION* 3 5 *CODE*
/% SAVE TYPE YITH * AT END */

VSUJI=VS(J) exe;
END

PRODUCTION 39 *CODE*

/*ENTER KEY TYPE-KEY INTO TBL */
ANS=ANS+1

TBL(ANS) =PERI OD] IPERIODI IVS (J) II PERIOD] IVSIK);
END

PRODUCTION 40 *CODE*

/* ENTER KEY TYPE-KEY INTO T8BL */

ANS=ANS+1

TBL(ANS) =PERIOD| {PERIOD| [VS(J+1)| | PERIOD] [VS(K I;
END

PRODUCTION 41 *CODE*

/% SAVE KEY %/

VS{JI=VS(K};

END

PRODUCTION 42 *CODE*

/*SAVE VALUE*/

VS(J¥=VS(J)| | PERIOD| | PERIOD;
END

PRODUCTION 43 *CODE*

/®SAVE SELF AND STRING */

VS(J)=VS(I)HIPERIOD| IVS(K) || PERIOD;
END

PRODUCTION 44 *CODE*

/* SAVE VALUE AND STRING*/

: VS{J)=VS(J}IIPERIOD]I}IVS(K)|| PERIOD:
END

PRODUCTION 45 *CODE*

/* SAVE VALUE AND STRING */

VS(J)=VS(J)| IPERIODIIVS(K)|| PERIOD;
END

PRODUCTION 46 *CODE*

/* SAVE CALL AND STRING*/

VS(J)=VS(J)| IPERIOD||VS(K)|]| PERIOD:
*ENDS

END-SEMANTICS

- 84 -

|

.

- APPENDIX F -- WYLBUQ EXAMPLE

COMMAND DESCRIPTION

¥*TBL~-NAME**=% 'WYLBUR EXAMPLE---GEORGE’

QUOTES *=% g PERI OD* *=%

SUB-ENTRY NUMRER

®XPARME *NUMX * IN| TIAL * @a=19

} *KEY* FIRST *SELF* a-2a

t *KEY* END *SELF* a-33

#KEY®| AST*SELF a-33

KEY ALL *SELF* 3-43 *END™

SUB-ENTRY NRANGE ROL-EX=-LIST%* @4/~(}*' "a

PARM® gNUMBER a *K*

KEY » *VALUE* *END™

*PARM%X NUMBER a *K* px

KEY/ *VALUE* *END*

®*PARM* aNRANGE, a *K** p *
KEY o» *VALUE* *END*™

--. *SUB-ENTRY*ARANGE *DL=-EX=LIST®at/{()"~, 2

*¥PARME® *STRING* ¥K* *INITIAL* da

KEY=~*CALL®* @STRINGA -~a

*KEY***CALL®™* @STRINGA © a

KEY" *CALL®*@STRINGA « 3

*END™

*SUB-ENTRY%® STRINGA *DL—-EX=-LIST* a3'"*/ (})~,2

*PARM® *STRING* #K* *INITIAL* aa

KEY=*SELF*a@=~a*END*

2PARMX RSTRING*® SK* %p% *] NIT | AL” aa

KEY® ¢ XCALL ASTRINGB * a

KEY" *CALL®*@STRINGB « ga

*END™

SUB-ENTRY STRINGB @ DL-EX-LIST* 2"**/(),a
XPARM® *STRING* #*K* *] NITI AL* dd

KEY® vy AL UE *a@'3d

XKEY*MN *yAo | UE *ad%ad *END%*

PAR ME RNUME RPk 5 | Ti A LI a=-1d ®END=%

RXPARM®E NUM RK* PX * | N | TIAL * a-12

KEY/ *VALUE* *END*

PARM® RANUME KX “P “INITIAL+ @a=13

®KEY*®(*"vALUE *a)@* EN D*

SUB-ENTRY EQNUM

PARM =NUM* ==] NITIAL= 3-19

KEY = *VALUE* *END*™

SUB-ENTRY STRING #DL=EX«LIST%a'"3

PARM%® XSTRING *»K%x %XINITIAL* a3

*KEY** *v AL UE *a'a

K Evy "kVALUE*® aa *END*

*KEYWORD*ULI ST #*RTN* SUB1 *DL=EX=LIST®a~'"/(),a
KEYWORD L #RTN¥% SUB1 ®0L-EX-LIST®a@~"/() ‘a

PARM® gARANGE A *INITIAL* @8@a *END*

®¥PARM*® gNRANGE ya *INITIAL * aad

KEY IN *VALUE™ *END™

KEYWORD CHANGE ®RTN*® SUB2 *DC-EX-LIST* @=~*"/(),a

KEYWORD CH ®*RTN* SUB2 *DL-EX=LIST®a~'"/() a
*PARM® gARANGE A *INITIAL* @a@ *END*

RXPARMX STRING a *K%x *P* *|INITIAL*aa

KEY TO *VALUE* *END*

¥*PARM® GNRANGE ja %INITIAL®* 3a

- 85 -

KEY IN *VALUE* *END*

*KEYWORD® COPY. ®*RTN* SUB3 #*DL-EX~-LIST*a,/a

KEYWORD CO ®RTN* SUB3 #DL-EX-LIST*3,/93

#PARME GNRANGE, a ®*INITIAL® J 5 ®*END*
®XPARME GNUMBER @ #*K* * IN | TI AL * 3a

KEY TO *VALUE* *END*

*PARM®E ENUME 2KE * IN| TIAL * 8-13

*KEY® BY *VALUE* *END*

KEYWORD SET *RTN*® SUB4 *DL-EX-LIST*3=3

PARM® dEQNUM a © K*SINITIAL* 33

KEY DELTA *VALUE* ®ENDx*

*PARM® EQNUM@ *K* | N|T | AL* da

KEY LENGTH *VALUE* ®END=*

XPARM® ENUME KE * | N | TIAL * @03

*KEY*UPLOW “SELF* ala

*KEY® UPPER *seLF a2a

KEY VERBOSE #®SELF a3a

K EY" TERS E¥RSELF# 34a ®*END*

END-TABLE?® .

© - 86 ~

APPENDIXF -- WYLBUR EXAMPLE

- TABLE

) WYLBUR EXAMPLE---GEORGEOT/17/7014233:48,260

NUMBER::::

SENUMNRE=]

$FIRST:%xSELF*2=-2:

SEND: %SELF%:=-3:

: SLASTekSELF*:~-3:

SSALL:*SELF*:=~4:

NRANGE s3p/=() "hz:

tNUMBER ®%kK*%:

$3) EVALUE*::
tNUMBER *P%kKx*x:

ss/:%VALUE=*::

:NRANGE p%P%K*::

$29 RVALUE*®::

ARANGE s2/() "=,
SRSTRING®%K*%s3

SSC ALL*:STRINGA =:

tte xCALL*:STRINGA *':

33": xCALTL*®:STRINGA ":
STRINGA:sz""/()~,2
SESTRING*%kKX%k32

t=XSELF%X2:

SESTRING®P%RK*: :

SSVIXRCALL*:STRINGB *':

SIMs RCALL*:STRINGB *":

STRINGB:s:z"*/(),::
SRSTRING*®%kK%s32

BS, IVIRVALUE*:?:

SIMI xVALUE®:z™:

SENUMRPRR z=] :

SENUMRPRK*%k2=]2
22/2 VALUE *®:2 2

SEANUMXPRK®R~~] :

$2(skVALUE*:3):

EQNUM::::

SENUM*Rk 2-1] 2

ti=tkVALUE*::
STRING::"“::

tRSTRING*%kK*%z::

sss kVALUE Xx: 0

seme VALUE ®t:

LIST:SUBL:~""/(),2:

L:SUBL:z~*"/(),2:
SARANGE *®%%:

'NRANGE p%%%:z:

SSINS*VALUE=®*::

CHANGE :SUB2:2~*%/() ,2:

CH:SUB2:~'n/(),::
:ARANGE %%k%z23

SSTRING *PxK=%x::

$:TOs*VALUE*::

TNRANGE pk%kx%x: :

- 87 -

ssINsS*VALUE*::
COPY:SUB3:2,/::

CO:SUB3:z2,/::
NRANGE p¥*%*%::

sNUMBER *%K*::

s:TOs®VALUE*::

sRNUMRRKKS=1]2

tsBYs*VALUE*::

SET:SUB4:=2:

SEQNUM *x%K%x:23

st DE LTA:*VALUESt

SEQNUM %*%kK*%*: 2

ssLENGTH:®VALUE*::

SENUMERK%20:

tsUPLOW:*SELF*:]:

SUPPER: ®SELF*:2:

$sVERBOSE ¢:*SELF*:3:

~. SSTERSE:#=SELF#24:
13 §

- 88 -

APPENDIX G -- CRBE EXAMPLE

COMMAND DESCRIPTION

TBL=NAME =k CRBE EXAMPLE---GEORGE"

QUO TES *=%x g

PERIOD ®%=%2 :
XSUB—ENTRY* NRANGE *DL-EX-LIST* 3%" ()~=3

PARM gBNUM 3 ®*INITIAL* 3-12 * E ND*

XPARM® QLNUM 2 *P% XINITIAL¥* 3-13 *END%

®*PARM® VAL 2a *P%x RINITIAL® a-1a =END=»
*SUB-ENTRY+ VAL #3DL-EX-LIST*gt" {)=xa

*PARME ENUMEk %K*x XINITIAL* a-13a
k Ev (®VALUE# a)a *ENO*

SUB-ENTRY BNUM %DL=EX=L]I ST* a()*%=43

XPARME RNUME RINITIAL® 5 - | a

XKEY® FIRST %SELF* 303 *END *

SUB-ENTRY LNUH #%DL~EX=-LIST®g{()~='"3

#PARME xNUM* XINITIAL* 3-13

K EY LAST ®SELF g=2a *END*

sSUB-ENTRY ARANGE ®DL-EX-LIST® 3 ~~ ()~=3

¥PARM® STRING #K%k kINIT! A + aa

XKEY® ~* CALL *@STRINGA a

~~. *KEY+**CALL®*a@STRINGA*'2

KEY®*CALL®* @STRINGA %a

END™

*SUB~-ENTRY® STRINGA *0OL-EX=LIST* gen{ j=3
¥PARM* *STRING* #*K* *INITIAL* aa

EKEY® ~ XSELF* 3~3a *END *

~ XPARME RSTRING* #*K* XINITIAL* a3
*K EY **® CALL* aSTRINGB 'a

KEY™*CALL®*@STRINGB"a *END*

SUB-ENTRY+ STRINGB @ DL-EX-LIST a” ()~=3

¥PARM® “STRING* #*K® “INITIAL* aad

*KEY***VALUE*a'a

RXKEY® " *y A Lu Er 8"ad ¥*END*

PARME SSTRING *K* %P% = INITIAL* 3

*KEY*COL*CALL*aCBa *END*

SPAR ME ENUME Kk Pk XINITIAL®* 5 0 2

*KEY*SEQ *SELF* @0@

KEY NOSEQ *SELF* ala ®END*

*SUB-ENTRY+ COLUMN ¥*DL=EX-LIST®g/*"()=-a

*PARMEE CB a *K* *INITIAL* 33
KEY COL *VALUE* *END*

SUB-ENTRY CB *0L-EX-LI ST @*'"()=~a

*PARM%® CBB a *K% %*] NITIAL* aa

KEY = *VALUE* *END*

*SUB—-ENTRY%® (Cg pg ¥DL-EX~-LIST® gt" (} ,~=3
PARME ENUM KE “IN| TIAL* 3-13

*KEY *(®VALUESHORTY® 5 *END*
EPARMEENUNMS Kk ¥P* =I NITIAL* d-la

*KEY® *VALUE* 3)a3

KEY®) RSELF 3-13 *END*

SUB-ENTRY DSPEC %®DL-EX~-LIST* g=,().a
¥PARME NAM 7 HK»

BKEY®*= *VALUE* *END*

XPARME “NAME+ KX xP%

KEY{*VALUE* @)@ *END*

*PARME QEQNAM 7 K® PX + | N | T| AL * 28

~ 89 -

KEY yy» *"VALUE* *END™
XSUB-ENTRY* EQNAM %DL-EX-LIST*® 3 = ()2

PARM ZEQNAMB a *K*

KEY VOL *VALUE*®

*KEY+ V *VALUE* *END*

SUB-ENTRY EQNAMB *DL-EX-LIST* a=()a
XPARMX * NAME* ®K*

KEY = *VALUE* *END*

SUB=—ENTRY STRINGC *DL—-EX=LIST*® @'"(}-~a
PARM%X RXSTRING *K* *INITIAL* aa

*K EY = %SELF% a—a *END*

XPARM®E *s TR I N g* ¥K& Pk XINITIAL* da

*KEY **#%CALL* @STRINGD © 2a

KEY" *CALL®*@STRINGD « a

END

SB-ENTRY® STRINGD "0 c-eE x-LIsT™ a#()-"a
#¥PARM%® RXSTRING* #*K#* =INITIAL* 23a

K EY '"%RVALUE a'a

*KEY " *vaLUE *a%"a *END*

*SUB—-ENTRY® NAM xDL-EX-LIST® a,(). a
XPARMEX “NAME™

KEY , *SELF* @aACTIVEad *END*
*PARM® gNAMC a *K*

KEY . *VALUE* *END*

xSUB-cNTRY* NAMC 2DL-EX~LIST®* a, 0 . a
PAR Mk XNAME *E ND*

XPARME® GNAMC a *K*

KEY . *VALUE* *END*

XKEYWORD* LI ST *RTN%* SUBL *DL-EX~L IST® 5 ()~« - 3

KEYWORD L *RT N® SUBL *DL-EX-LIST® go {()=~*" = 3

XPARME GNRANGE a * INITIAL * @a ®¥*END*

XPARM* QARANGE @ #*P%X * | N | TI AL * da *END*

KEYWORD SAVE ®#RTN%* SUB2 *DL-EX=LIST*a.()a

KEYWORD S *RTN® SUBZ *DL-EX-LIST* a3,.(1a

XPARME gNAM a *END*

XPARM* gCBB (a *P%* %xKx xINITIAL* Ja

KEY({*VALUE* *END*

*PARM® ENUNME kK® 2P% * IN| TIAL* a-1a

¥KEY E Ep ®SELF* 5 0 a

*KEY PURGE *SELF @d1l@ *E ND

¥PARM® kNUME * K * %P% *INITIAL%X 3-12

*KEY REPLACE *SELF* 20d

*K EY" REPL *SELF* 20a * En Df

KEYWORD® BRING *RTN* SUB 3 *DL-EX-LIST*a=()a

KEYWORD B ®RTN* SUB3 *DL-EX-LIST* a=()a

*PARMX @DSPEC a *K* *INITIAL* aa

KEY D *VALUE~™

KEY DSNAME *VALUE* *END*

BMPARMER ENUM %kK® *Pk XINITIAL* 2-13

*KEY SEQ*SELF aoa

K EY NOsEOQ¥SELF ala *END*

*PARM® *NAME* *P% *END*

XPDAR Mk XNUMEk Pk RINITIAL® aa *END*

KEYWORD CHANGE *RTN%® SUB4 *0OL-EX-LISTXxg~Mt={(7

KEYWORD CH XRTN* SUB4 *DL-EX-LIST* a-"*'=()a
XPARM® GNRANGE a ~~ INIT IA © aa ®END*

®PARME ®STRING® ®#K%k + , * *INITIAL* 3a
KEY=*CALL* @STRINGC ~a

KEY®**CALL*@STRINGC© a

*KEY*W*CALL*@STRINGC“a *END*

PARM *STRING*® * K * *p * *INITIAL* ada
KEY * *CALL* aSTRINGD * 2a

*KEY*W*CALL®*@STRINGD “ a

*END™

XPARM® COLUMN a *P* *INITIAL*da *END*

XPARMEkNUMNE RK® %PXk * [NI TIAL* a-1a

KEY NOTEXY *SELF* @a0a

*K EY *NOLIST *SELF* ala

END

END-TABLE~

- 90 -

APPENDIX G -- CRBE EXAMPLE

TABLE)

CRBE EXAMPLE---GEORGE 07/22/70 12:50:25,960

NRANGE$29 ()~=22

SBNUM xk]©

sLNUM *Pkkz=]2

sVAL *P*%i=]:

VAL: :'"{)==w2:

sRNUMREKKR=] 2

ts(s*VALUE*:)2

BNUM:z:2() *%=~22

sRNUME®ks=]12

SFIRST::*SELF*:0:

LNUMSs{) ~=t%

tRANUME%k:=]

SSLAST2*SELF #222
ARANGE2s W() =z
SRSTRING*ERK*:3

$S~S®CALLX®X:STRINGA =:

$s'sxCALL®:STRINGA °':2

SsRCALL*:STRINGA *:

STRINGA:2'"{)=z:

- tXSTRINGR®K%ks

S:~S%RSELF%®2~:

eR STRING ®R%K®ks:

Seve RCALL*®:STRINGB *:

SWI RCALL*:STRINGB ":

STRINGB:2'%()~=22

sx STRING *%K%:2 2

t2':RVALUE®Rs2

IWRVALUE®:":

SESTRING*PRkK% 2 2

COL ALL*CB =

TENUMP*K*30:
23SEQ:*SELF*:0

: SNOSEQ:*SELF*:]:

COLUMNzz/9% () =~22

CB x%kK*k:

tCOLs=vVALUE*: 3

CBs!" ()==::

SCAB *%kKk: 2

se=3%kXVALUE%x2:

CBBsstn() ,~=22

SENUMEEK R=] ¢

tes{ 2%xVALUE SHORT*:) ,:
TtRNUMERPRK®2=] 2

cp VALUE®Z)

ts:)exSELF*2=-1"

DSPEC:2=,().2:
‘NAM ®EKks2

te=s VALUE *:2¢

SENAME*PRK%:

ss{sRVALUE®R:)

SEQNAM *PRK%:©

Ss ptkVALUE%::

- 91 -

EQNAM: s=() 22

tEQNAMB X%kK*::

$:VOL:*VALUE=*::

TsVsRVALUE*::

EQNAMB:s:=()=z:

SHRNAME ®kKks 3

t:=2 *VALUE™: :

STRINGC:zs*"()~z=2:

SRSTRING*®K%®23

tik SELF*2:

tSTRING*®P%RK*22

SS'IRCALL*:STRINGD ':

Sse kCALL*STRINGD *:

STRINGD::'#()"2:

SRSTRING®KK*kze

sete kxVALUE®:

swe kVALUE ®sm:

NAM: :,()e 2:
cs kNA ME kkk 3 3

0S *SELF*SACTIVE:

SNAMC *%xKx%x:3

tet XVALUE *:2 :

NAMC 231),

s®NA ME**"": :

SNAMC ®kKks @

22, 2 kVALUE®2

LIST:SUBL::()~"M=22

L:SUBL:()~?"=2

SNRANGE *%%x:

tARANGE %pPpx%x=%x::

SAVE:SUB2:,()::

SNAM xk:

CBB (®%PkK*% sg :

ts(2xVALUE*::

sRNUMRPRK®R=] 2

2:KEEP:*SELF*®:0:

SPURGE:®*SELF*:]:

TARNUMRPRK k=] :

: SREPLACE:*SELF*:0:

SREPL:%®SELF*:0:

BRING:SUB3:=() : :

B:SUB3:=()2:

‘DSPEC %%K#*2:

t2DexVALUE*::

-SDSNAME: x VALUE*®: :

SARNUMRPRK*=] :

$SSEQ:*SELF*:0:

SINOSEQ:*SELF*:]1:

: NA ME #P%%3 :

SENUMBPRks:

CHANGEsSUB4 :~"?=() ::

CH:SUB&:~M?*=()z:
'NRANGE *%kx*x: :

SESTRING*P%K*:

SSI RCALL®:STRINGC =:

SSVI RCALL*SSTRINGC *:

STWIRCALL*:STRINGC ":

SRSTRING*P*K*::

$20: kCALL*:STRINGD *:

SINIXCALL*:STRINGD *:
sCOLUMN *pkk::

SEANUMRPRK®2=]¢

SINOTEXT:®SELF*:0:

SINOLIST:%xSELF#21:

$$$

- 92 .

