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Abstract

Assume that two subspaces F and G of a unitary space are defined

as the ranges(or nullspaces of given rectangular matrices A and B.
Accurate numerical methods are developed for computing the principal
angles Gk(F,G) and orthogonal sets of principal vectors u, € F and

Vi € G, k =1,2,..., g = dim(G) < dim(F). An important application in
statistics 1is computing the canonical correlations o, = cos ek
between two sets of variates. A perturbation analysis shows that

the condition number for 6, essentially is max(x(A),k(B)), where «
denotes the condition number of a matrix. The algorithms are

based on a preliminary &R-factorization of A and B (or AH and BH),
for which either the method of Householder transformations (HT) or
the modified Gram-Schmidt method (MGS) is used. Then cos ek and

sin Bk are computed as the singular values of certain related matrices.
Experimental results are given, which indicates that MGS gives ek
with equal precision and fewer arithmetic operations than HT. However,
HT gives principal vectors, which are orthogonal to working accuracy,
which is not in general true for MGS. Finally the case when A and/or

B are rank deficient is discussed.



1. Introduction

Let F and G be given subspaces of a unitary space Em, and assume that
(1) p = dim(F) > dim(G) = g > 1.

The smallest angle 6,(F,G) = eléﬁhn/Q] between F and G is defined by

¢os 6 = max max o , ormuire =1 |vl]2 =
uéF veG

Assume that the maximum is attained for u = uj; and v = v,. Then 6,(F,G)
is defined as the smallest angle between the orthogonal complement of
F with respect to u; and that of G with respect to vi. Continuing in
this way until one of the subspaces is empty, we are led to the follow-

ing definition.

DEFINITION The principal angles Bkéﬂhﬂ/albetween F and G are

recursively defined for k =1,2,...,q by

(2) cos ek = max max qu ='ui&, Ijl||2=1 ||Vl[2=1
uelr veG

subject to the constraints
- H _ s
u.u = 0, VUV = 0, J = 1,2,...,k-1,

The vectors (ul,...,uq) and (vy,. .”vq) are called principal vectors

of the pair of spaces.

We note that the principal vectors need not be uniquely defined, but
the principal angles always are. The vectors V =(v1,.u,vq) form a
unitary basis for G and the vectors U =(u1,.”,uq) can be complemented

with (p-g) unitary vectors so that (ul,-n,up) form a unitary basis for F.



It can also be shown that

For an introduction to these concepts we refer to [l]. An up to date

list of references can be found in fﬂ.

Principal angles and vectors have many important applications in

statistics and numerical analysis. In b] the statistical models of
canonical correlations,factor analysis and stochastic equations are
described in these terms. By taking the vectors u

k
cos Sk = 1 we get a unitary basis for the intersection of the two

corresponding to

spaces F and G. This has applications in the generalized eigenvalue
problem ﬁ1]. Other applications are found in the theory of approxi-
mate least squares [6] and in the computation of invariant subspaces

of a matrix DB].

The purpose of this paper is to develop new and more accurate methods
for computing principal angles and vectors, when the subspaces are
defined as the ranges (or nullspaces) of two given matrices A and B.
In section 2 we describe the standard method of computing canonical
correlations, and show why this method may give rise to a serious
loss of accuracy. Assuming that unitary bases for F and G are known
we derive in section 3 formulas for computing principal angles and
vectors from the singular values and vectors for certain matrices.

To find out how accurately the angles are defined in presence of
uncertainties in A and B, first order perturbation results are given
in section 4. In section 5different numerical methods for computing
the unitary bases, and the use of the formulas from section 3, are
discussed with respect to efficiency and accuracy. The special problems
which arise when A and/or B are exactly or nearly rank deficient are
discussed in section 6.Finally some numerical results are given in

section T.



2. Canonical correlations

For a matrix A we denote the range of A by R(A) and the nullspace of
A by N(A),

(3) R(A) = {ulAx = ul}, N(A) = {x|Ax = 0} .

In the problem of canonical correlations we have F = R(A), G = R(B)
where A and B are given rectangular matrices. Then, the canonical

correlations are equal to cos Gk, and it can be shown that

(&) cos 8, =0, w = Ay, v, = Bz, k = 15250050,

where O) > 0 are eigenvalues and Yo %y properly normalized eigen-

vectors to the generalized eigenvalue problem

/o Ay iy iAo Ly
(5) =0 | ;

,
; I ‘? H o ¢
B 0/ 2 Co B8l e

Assume for convenience that A and B have full column rank. The standard
. . , . H H
method Dd of computing canonical correlations is to compute A A, BB,

AHB and perform the Choleski decompositions

AHA=RXRA, BB = RR_,

where RA and RB are upper triangular.

The eigenvalue problem (5) is then equivalent to the eigenvalue problems

for a pair of Hermitian matrices

Ho _ .2 = 42
wi'y = o? g, i 2. =02

1
where
Hy=T

M=(RA

Hoyo—1 _
A"B)Rp s 9, = Ryy;» 25 = Rpzg

These can be solved by standard numerical methods.



When g = 1 and B = b, the principal angles and vectors are closely
related to the least squares problem of minimizing | |b - Ax| |2. In

fact, with the notations above (but dropping subscripts), we have

y = x/|ax]l2, z = 1/||vll2, o = [|ax|]2/]]v]]2,
and (5) is reduced to

AH'bz=oAHA v, bHAy=ch'bz.

But the first equation here is the normal equations for x = oy/z.
Thus the classical algorithm reduces for g = 1 to solution of the

normal equations by Choleski's method.

Lately it has been stressed by several authors that forming the
normal'equations in single precision involves a loss of information
which cannot be retrieved. For linear least squares problems other
methods without this disadvantage have been developed [2], [13] and
[114]. Our aim in this paper is to generalize these methods to the

case when g > 1.



3. Solution using singular values

In most applications each subspace is defined as the range, or the
complement of the range, of a gi?en matrix. In this case a unitary
basis for the subspace may be computed in a numerically stable way
by well known methods for the &R-decomposition of a matrix. These

methods will produce for an mxn matrix A, with m > n, a decomposition

_ S\ }pxn
A= @l (),
where rank (S) = p and Q = (Q'|Q") is unitary. Then Q' gives a unitary

basis for the range of A, R(A), and Q" a unitary basis for the comple-

ment R(A). Notice that the case when a subspace is defined as the null-
space N(AH) of a matrix A¥ is included, since N(AH) = R(A). The compu-
tation of unitary bases will be discussed in more detail in section 5

and 6, and we assume here that such bases have been obtained.

Recently an efficient and numerically stable algorithm for computing

the singular value decomposition [9] (SVD) of a matrix has been developed
[lh]. This algorithm will be our basic tool for computing principal angles
and vectors. The relation between singular values and our problem is clear

from the following theorem.

THEOREM 1. Assume that the columns of QA and QB form unitary bases for

two subspaces of a unitary space Em.Put

H
(7) M = QAQB,
and let the SVD of this pxq matrix be

(8) m=yczl, c-= disg(o1,.-50,),

where



If we assume that

g1 2022 . . . _>_O'q

then the principal angles and principal vectors associated with this

part of subspaces are given by

(9) cos 8, =0 (M), U =Q,Y, v=

k 0B 27

Proof: It is known [15]that the singular values and singular vectors

of a matrix M can be characterized by

H
(10) o _ max (yHMz) = ykM Z, 5
[yll2 =llz]]2 =1
subject to
ygyj =z zJ =0, j =1, k-1
If we put

U = QAy( R(QA)’ v = QBze R(QB)’

then it follows that |hﬂ|z =||Y||2’||V|'2 =||Z||2 and
uu f g v
y Yj Cl J, *® xj Cl J.
Since YHMz = deiQBZ = uHV, (10) is equivalent to
= max (qu) = qu
% ~ 'k
| Tul|2=] v ]]|2=1
subject to
uHuj = vHvJ = 0, J =1, , k-1

Now (9) follows directly from the definition of principal angles

and vectors (2), which concludes the proof.



For usmal 1 angles Ok is not well determined from cos ﬂk and we now

develop formulas for computing sin 0, . Let Q) and @ be defined as
in theorem 1. For convenience we change the notations slightly and
write (8) and (9) as

H
' —
(8") M YACYB,

Ua = %¥r> Up = '

c = diag (cos ek),

(9")
We split QB according to

where P ='QAQH

A A is the orthogonal projection onto R(Q,). Here

A

. _ H
PpQp = QQQp = QM = Q¥,C ¥y

and hence the SVD of the matrix PAQB is given by

(12) PAQB =y, C YB , C = diag(cos Bk).

Since PA(I - PA) =0 we get from squaring (11)
Hoo _ 29 - T - of p2 - _ r23yyh
QB(I PA) QB I QB Py QB YB(I C)YB

)Q.. is given by

and it follows that the svbo of (I-P 5

A

H

(13) (I‘PA)QB = WA S YB’ s = diag(sin 6, ).

k

Comparing (13) with (12) it is evident that W, gives the prineipel
vectors in the complement R(QAS associated with the pair of sub-
spaces (R(Q, ), R(Qp)).When p<<m the SVD of (I—PA)QB can be computed

more economically from that of M, using

(11) (1-P,)agY, = WS



We will for the rest of this section assume that in addition to

(1) we have

Pp+gq=<m.

This is no real restriction, since otherwise we have (m-p)+(m-q)< m,
and we can work with the complements of R(QA) and R(QB) instead.
Then dim(R(QA)) =m-p > g, and we can choose the mxq matrix W, in (13)

so that WI_'EIUA= 0.

By analogy we have formulas similar to (12) and (13) related to the
splitting Q, = P.Q, + ( I-Py )q, ,

(15) PQ =U_CY , (I -P)Q, =W_5SY ,

where again since m - g > p > g we can choose the mxq matrix W

B
so that V};UB = 0. From (15) we get

_ _ H _ C
Up = QY = (UC + WS)Y, Y, = (UW,) ()
If we put
H C H
Pp,a = Uplp = (Ug ¥p) (g ) Ug s
then, since R(QB) = R(UB)’ we have for any x ¢ R(QB) that

P % 8@, [Ixllo= 117y ol 1o

We can now alwaysfind an mx(m-2q) matrix Zp such that (UB Wy ZB)

is a unitary basis in Em. Then

c -s Ut

B

0 H

(16) 2 p,a = (Ug wlzg) | s ¢ 1| ¥g



is the matrix of a unitary transformation, mapping R(Q.) into R(QA).

B

g p» and it leaves all vectors in R(ZB)

unchanged. This transformation'is called a _direct rotation [ﬂ from

Its restriction to R(QB) is P

R(QB) into R(QAL It is distingui‘shed from other unitary transforma-
tions P taking R(QB) into R(QA) by the property that it minimizes
each unitarily invariant norm of (I -,P)H(I-P). If R(QBN7§T§;7 is
empty, then all Gk < /2 and the direct rotation is uniquély deter-
mined.

).

Similarly we can construct a direct rotation taking R(UA) into (R(QB

It is obvious that the relations between the two subspaces are very

completely characterized by the quantities C, S, UA' WA, UB and WB.



L. Perturbation of principal angles

We consider here how the principal angles between R(A) and R(B)
changes when the elements in A and B are subject to perturbations.
We assume in this analysis that the matrices A and B are mxp and
mxq respectively, and have linearly independent columns. Consider
first a perturbation of A only,

A = A+eE = (A + €E) + €E,p,

where we have split the perturbation in components in and orthogonal
to R(A),

~ Ey = P4E, Ep = (I—PA)E.

Let the polar decomposition of A+eE; be

1 o C
A+eEy = QAHA s QAQA =1, HA positive definite.
Then, since R(A) = R(A+£E1),QA gives a unitary basis for R(A).

To get a unitary basis for R(Ae) we note that for small absolute values

of € , the matrix

YEH |

-1 _ _ _
(17) (A+eE)HA =Q, + mF, r = (I-P A

A

. . H, _ B, H. _ -
is nearly orthogonal. Since QAF = QAQAQAF = QEPAF 0 we have
H H H 2 2
- = - + + = 0 .
1 - (Q+eF) (Q,+eF) e(FQ, Q,F) o(e?) (%)

Then from a series expansion for the unitary factor QA in the polar
€

decomposition of AeHA1[3] it follows that

(18) Q =Q *eF+ 0(e2).
€



Premultiplying (18)byPpveget
-1
PBQAe = PQ, + ePB(I P JEH, .
Using the well known inequalities for singular values, [123 p. 30,

o, (A+B) < o, (A) +01(B), 0, (AB) = o, (A)o1(B),

k = 1,2,...,9,

we obtain

oy (P53, ) = oy (Ppa,)| < ¢ 01((P,(1-P,))o1 (EH, ') + 0(e2).

Now PB(I-BA) = U_ diag(sin ek)Wﬁ and since

B
-1
o1(H, ) = 1/op(A+eE]) = 1/op(A)+0(e),
we have to first order in ¢

(19) |acose, [<e sin 6 ol(E)/op(A).

If instead we premultiply (20) by (I-PB), and proceed in the same

way we arrive at

(20) |Asin ekl < ecos emincl(E)/op(A).

Now assume that both A and B are perturbed by 8A and 8B respectively,

where

|16al]2/]|a]]2 < eA, |]8B]]2/]1B]]2 < ep.

11



Then to first order of approximation the perturbationsadd together
and we get from (19) and (20)

(21) |Acos ekl < Kesin emax » |8 sin ekl < K 088 . s

Ul(A) Ul(B)
k(A) + e_k(B)

K= ey M + 85 (8) ~ % B
P q

Thus again neglecting terms of higher order, we have

(6. | < Kemin( sin 8 cos emin)
N k! — sin ek >  cos ek

= K-g(6,).

k

The maximum of g(8) for 0 < 6 < m/2 is attained for 6 = arctan r

Brox (1+r2)ibos 8 i, » = sin emax/cos I
It follows that

gm < (1 + cos~26 . )ibos 6 . < V2
ax — min min

and finally

(22) |88, | ¢ v2(e k() + epk(B)).

We conclude that when both ¥(A) and x(B) are small, then the angles
ek are well determined.

We note that if the columns in A are scaled, then k(A) will change,
but not R(A). Also the numerical algorithms for the &R-decomposition
have the property that, unless column pivoting is used, they give the
same numerical results independent of such a scaling. Therefore it is

often more relevant to take in (21) as condition number for A the number

k'(A) = min «(AD), D= diag(dl,...,dp).
D

12



It has been shown in b6] and [17] that «(AD) is not more than a factor
of p’ away from its minimum, if in AD all columns have equal L,-norm.

This suggests that A and B should'be assumed to be preconditioned so that

el 12 = [|bj||2 =1, i =1,...5ps J = T,..0,0.

We remark that «'(A) is essentially the spanning precision of the basis
in R(A) provided by A as defined in [17].

13



5 Numerical methods

We assume in this section that the columns in A and B are linearly
independent. The singular and near singular case will be briefly
discussed in section 6. For convenience we also assume that A and B
are real matrices, although all algorithms given here can easily be
generalized to the complex case. Computed quantities will be marked

by a bar.

In order to get the orthogonal bases for F and G we need the QR-decom-
positions of the matrices A and B. We now describe two efficient

methods for computing these. In the method of _Householder triangulari-

T
zations (HT7[13] orthogonal transformations of the type Qk =1 -2w-kwk

are used, where

T
Vk = (O’.“’O’wkk"..’wmk) s ||Wk”2 = 1.

The mxp matrix A is then reduced to triangular form using premultipli-

cations )
/R . p
| A}
U---2 A = L=
0/} mp
where Wy is chosen so that annihilates the appropriate elements

in the k th column. Since Q; = Qk’ an orthogonal bases QA for R(A)
can then be computed by premultiplying the first p columns in the

unit matrix Im by the same transformations in reversed order,
I

Q= Q...q 2

. 0 /

For this method a very satisfactory error analysis is given inD9].

14



Assume that floating point arithmetic with a mantissa of t binary
digits is used, and that inner-products are accumulated in double
precision wherever possible. Then there exists an exactly orthogonal

matrix Q such that the computed matrices satisfy

4

T ' RA‘ - /I .:
(23) Q(A+EA)=i3—), QA=Q'\\—EO CHF, =+,
-t _ 3/2 -t
||EA|IF =12.5p2 ”AHF’ IlFAHF =12.5p 2 7,

where QK is an exactly orthogonal basis f'orlMA+EAL From this and

ol owm 1T owroestoinnte foy Qli we et

(h) o (M) = o, (0] - g = 4) . 1ol

' Kk k — % . ’
where M= Q% Q§ and the constant 13 .0 accounts f'or the rounding
errors 1in computing the product ai §B.We have ok(M) = CO:; hk’ where
'Ok arc the exact angles between (A+EA) and,(B+EB) . Thus, the difference
between Ek and Bk can be estimated from (22),

~ _t
(25) 8, = 0.l <12.5 /2 (pe(A)+qe(B))2 7 .

Finally, the errors Ek(ﬁd—ok(ﬁ) in computing the singular values of ﬁ;
using the procedure in [ﬂﬂ , will be of the same order of magnitude

as those in (24).

The error estimate given above is satisfactory, except when 6, << 1.

k
In this case, the errors in cos 8, from (24) will give rise to errors
in ek which may be much larger than those in (25). We return later

to the problem of accurately computing small angles.

15



An orthogonal basis QA for R(A) = N(AT) can be obtained by applying

the transformations Qk’ k=p,. . .,1 to the last (m-p) columns in Im’

0
A-Qle e o« Qp Im-—p

Also in this case the estimate (23) for Q', (24) and (25) still hold

3/2 1/2|

if the factor p is everywhere replaced by p(m-p)

The QR-decomposition of a matrix A can also be computed using the modified
Gram-Schmidt method  (MGS) [é]. The matrix A is then transformed in

p steps, A = Al, Az,...,Ap+1 = QA where

B K
A (qpse - - sqy g - al({k),.. "aI(J )).

The matrix Ak+1 , k =1,2,...,p 1s computed by

ak = al(:k)/llal({k)llz , a§k+1) = (I_qkqi)agk)’ Sk,

and the elements in the k th row of RA are

(k T (k .
rkk= {Iak )”2 H] rkj=qka§ ) r J > k.

It has been shown in Bﬂ p. 10, 15 that the computed matrices EA and
QA satisfy
- = -t
A+ Ey = QR, . ||E,||5 < 1.5(e-1)2 7] [Al]p s

(26) ) .
[leg - q,ll, < 2p(p+1)x(a)-2™

where Qy is an exactly orthogonal basis for R(A+E,) and quantities of

order 2“:2t have been neglected. With MGS QA will ?n general not be
orthogonal to working accuracy, and we cannot therefore hope to get
principal vectors which are nearly orthogonal. Also the condition
numbers k(A) and k(B) will enter in the estimate corresponding to (24).
However, since k(A) and x(B) already appear in (25),we can hope to get
the principal angles as accurately as with HT. Experimental results

reported in section 7 will confirm that this actually seems to be the case.

16



An advantage with MGS is that the total number of multiplications

required to compute RA and aA is less than for HT, i.e.

MGS: p2m , HT: 2p2(m-§).

If only the principal angles are wanted, then the number of multi-

plications in the SVD-algorithm is approximately
2q%(p - 3).

Thus, when m >> p , the dominating work is in computing QA and QB
and in this case MGS requires only half as much work as HT.

If also the principal vectors are wanted, we must compute the full
SVD of M. Assuming two iterations per singular value, this requires

approximately
10
Ta%(p + =73)

multiplications. To compute UA and UB a further mq(p+q) multipli-

cations are needed.

To get a basis for R(A) using MGS we have to apply the method to the
bordered matrix (Allm), and after m steps pick out (m-p) appropriate
columns. Especially when (m-p) <<m, the number of multiplications

compares unfavourably with HT,

MGS: m?(m+2p), HT: 2mp(m-p) + 5%3.
In some applications, e.g. canonical correlations, we want to express
the principal vectors as linear combinations of the columns in A and B,

“ly ), and hence

respectively. We have U, = Q¥ = A(RA A

17



G
Il

e
P

A A’ B B?
where
21 -
(27) Xp = By Yo Xp = Ry¥p
We remark that if we let iA and iB denote the computed matrices,
then A iA and B iB will not in general be orthogonal to working

accuracy even when HT is used.

We now turn to the problem of accurately determining small angles.

One method is to compute sin 8, from the SVD (13) of the matrix

k

G =(I-Py)ay=0qy- QM

~
If we let G denote the corresponding matrix computed from QK anClQﬁ

then
T .oy oW B T Tyon
Qp + 9u(Qap) = G + (I-9,@, )F, + (QFF + F,Q0)q -

Neglecting second order quantities,

1/22—t

—_— ~
16 =311 < l1Fgll 4+ 21171 + 2a'/%27",
where the last term accounts for the final rounding of the elements

in M and G. Thus, if QA and aﬁ are computed by HT, we have from (23)

3/2 3/2)2't .

(28) | ok(a) - 0,(6) | < 13.2(q + 2p

k
It follows that the singular values of the computed matrix G will

differ little from sin 8. and thus small angles will be as accurately

k“)
determined as is allowed by (25).

Since the matrix G is mxg, computing the singular values of G will

require about 2mq? multiplications. If however, UA and UB are available

we can obtain sin ek accurately with fewer operations. We have

18



_ T .. _ _ 2 _ op2 _ s .2
(29) (UB UAC) (UB UAC) =TI+ ¢C 2C% = diag(sin Gk)
and
(30) (U-U)T(U—U)—2(I-C)
B A B A"
. .1 1/2
From the last equation we can compute 2 sin Eek = (2(1 -cosek))

which since 0 i;% < m/b  accurately determines both sin 8, and

ek
cosek.

We finally remark about an appearent imperfection of MGS. When A = B
(exactly) we will get EA = EB' The exact angles equals zero, but

since we only have the estimte
=T~ . -t
1T -l 1) <2p(p¥t) <(R)2 7,

the singular values of M = EXQA may not be near one, which is the case
if HT is used. However, since M is symmetric, SVD will give YAQDYB
and therefore also UA:$ UB. It follows that if (30) is used, also MGS
will yield angles which are near zero in this case. If however only

A=~ B, then the rounding errors in computing QA and QB will not be
correlated, and in an ill-conditioned case, we will probably not get

angles near zero either with HT or MGS.

19



6. The sinqular case

We now consider the case when A and/or B does not have full column
rank. In this case, the problem of computing principal angles and
vectors is not well posed, since arbitrarily small perturbations in
A and B will change the rank of A and/or B. The main computational
difficulty then lies in assigning the correct rank to A and B. The
most satisfactory way of doing this generally is the following Uﬂ.
Let the m x p matrix A have the SVD

A=Q, D, j‘}; » Dy = dlag(ok(A)).
Let € be a suitable tolerance and determine p'< p from
n

n
(31) I azm) cef<]o¥(a) .
i=p'+ 1 i=p'

We then approximate A with an m x p matrix A' such that rank (A') =7,
a'=(Q,Q,) (A oV (vaw )T D' = diag(o a,)
A A O 0 A 9 A 1 7 e e e e Ij 9

where

Q = (Q) Q) Vv, = (V) V})

have been partitioned consistently with the diagonal matrix. The matrix

B is approximated in the same way.
If instead of (1) we assume that
p'= rank(A') > rank(B) = ¢ > 1,
then we can compute the principal angles and vectors associated with

R(A") and R(B") by the previously derived algorithms, where now @y and
Qﬁ should replace QA and Q.

20



In order to express the principal vectors of R(#) as linear combina-
tions of columns in A', we must solve the compatible system

— —al
Al XA = UA = Q) YA .

Since V& is an orthogonal basis for N(A), the general solution

can be written

~1
=V +
= VA Oa ¥ VaCa
where C, is an arbitrary matrix. It follows that by taking CA = 0
we get the unique solution which minimizes||XA||F,c.f.[ﬂq.
Thus we should take
~1

~1
= ' =
(32) X, vA 13'A YA, Xg v']3 DB YB .

where XA is pxp' and XB is q x q.

The approach taken above also has the advantage that only one decompo-
sition, the SVD, is used throughout. It can, of course, also be used

in the non-singular case. However, computing the SVD of A and B, requires
much more work than computing the corresponding QR-decompositions.

In order to make the QR-methods work also in the singular case, column
pivoting must be used. This is usually done in such a way Bﬂ, [Kﬂ and
[ﬁjl that the triangular matrix R = (rij) satisfies

r..|* , k<j<n.

Such a triangular matrix is called normalized, and in particular the

sequence |r11|,| |, . ... lrpp' is non-increasing. In practice it

r
22 .
is often satisfactory to take the numerical rank of A to be P' if

for a suitable tolerance € we have

(33) |rP’P'| >'e > |rIj+ 1,0 + 1|

21



We then approximate A = QARA by a matrix A'= QAR'A of rank ¢
by putting

r]{J. = ]i,j" i<p', r[.1:]= 0, i>p'.

It has been shown in [20] how to obtain the solution (32) of minimum

length from this decomposition.

If we use the criterion (33), there is a risk of choosing p' too

large. Indeed, from the inequaliti’es[m]

3(4%+6x - 1)_1/2|rkk| < o () < (n+k+1)1/2|rkk|

it is seen that o (A) may be much smaller than |r

k kk| )
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. Test results

Some of the algorithms in section. 5 have been tested on the UNIVAC
1108 of Lund University. Single precision floating point numbers
are represented by a normalized 27 bit mantissa, whence the machine

precision is equal to 270105 0%

We have taken F = R(A), where A 1s the m x p matrix

e 0...0 1
a=_1/f0 e , o= m/p = kK>
k| :
1
- 0 O...e

and k is an integer. Thus, A is already orthogonal, and QA = A.

Further, G = R(B) where B is the m x p Vandermonde matrix

-1
1 Xo... XE
p-1
1 Xp..o X} o1
B= i £ = —1+m+1

P-1
1 X1 Xp-1

The condition number «(B) is known to grow exponentially with p,

when the ratio m/p is kept constant. These matrices A and B are

the ones appearing in [6]. There is exactly one vector, u =(1,1,.
. J)T, which belongs to both F and G, so there will be one minimum

angle 6 = 0.

For the tests, the matrix B was generated in single precision.

The procedures for the QR-decompositions use column pivoting and

are apart from minor details identical with procedures published in
[21] and [22] . Inner products were not accumulated in double precision.
For checking purposes, a three term recurrence relation Bﬂ was used
in double precision, to compute an exact single precision orthogonal
basis for R(B).

For m/p = 2 and p = 5(2)YT,QA was computed both by the method of
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Householder and the modified Gram—-Schmidt, method . Then cos Ok,

YA and Y, were computed by the procedure in [ﬂq , and finally

B
UA and UB from (9'). The results-are shown in table 1, where
m(o, ) = max|o, - o | F(U) =1 - UTUII
k X k k'’ F -

Notice,that because of rounding QB to single precision and rounding

errors in the computation of the SVD, o0, are not exact to single

k
precision.

For the Gram-Schmidt method, the predicted lack of orthogonality in

UB when «(B) is large, is evident. However, there is no significant

difference in the accuracy of cos 5? between the two methods.

In table 2 we show for m = 26 and p = 13 the errors in cos 6%

for each k.

For the same values of m and p, sin ek were computed from the

singular values of both the matrix (I—PA)QB and the matrix (I-P_)Q

The results in table 3 again show no significant difference bet;leﬁ
the two methods. For the Gram-Schmidt method, the values of sin ek
differ somewhat between the two matrices, whereas the corresponding
values for the Householder method are almost identical. This 1is
confirmed by table 4, where, again for m = 26, p = 13, results for

each k are shown.

The authors are very pleased to acknowledge the help of Mr. Jan

Svensson, who carried out the tests described in this section.
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Table 1

Househdlder Gram-Schmidt

— - -~ i) by —o 8
m p F(UA)-108 F(UB)-108 m(cos ek)-109 F(UA)~108 F(UB)-109 m(cos eg 10

10 5 il 15 L 15 12 10
1 7 27 35 10 2k 76 12
18 9 37 28 26 33 202 21
22 11 30 46 40 47 2412 91
26 13 43 51 612 38 12129 913
30 15 57 63 1874 51 28602 1484
34 17 51 65 13051 56 344685 5417
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m= 26

13

Table 2

b =
Householder Gram-Schmidt

k cos Ek Acos 6, +108 cos Ek Acos 5#-108
1 0.99999979 2 0.99999989 12

2 0.99823279 8 0.9982330k 25

3 0.99814388 - 33 0.99815032 613

4 0.99032719 15 0.99031791 - 913

5 0. 98988868 12 0.98989530 6Tl

6 0.976L46035 - 47 0.97646120 38

7 0.96284652 51 0.9628L4428 - 173

8 0.94148868 - 33 0.94148907 6

9 0.91758598 8 0.91758703 97

10 0.87013517 - 186 0.87013374 - 329

11 0.763663k49 612 0.76365566 - 171

12 0.06078814 1 0.06078782 - 33

13 0.01558465 - 60 0.01558528 3
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Table 3

Householder 1) Gram-Schmidt 1)

1 ry . 8 1 I 0 8 3 a . 8 J a ° 8
m P m(sin ek) 10% m(sin ek) 10 m(sin ek) 108 m(sin Qk) 10
10 5 3 2 4 3
1 7 16 7 27 4
18 9 51 e} 48 6
22 11 68 68 135 97
26 13 704 T09 390 288
30 15 2367 2358 1173 1140
34 17 --. 16285 16281 5828 4501

1)

in © dasa, ( in ® ((1-P_)Q, )
sin 8, compute as o, (I—PA)QB), sin ek as o —PB QA
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Table k4

k

28

m =2 p =13
Householder Gram-Schmidt ")

k sin Ek Asin 6& Asin 3; sin Ei Asin 6? Asin 3;
1 0.00000002 0 3 0.00000002 0 |
2 0.05942237 - 2k - 24 0.059k42257 4 5
3 0.06089812 129 129 0. 06089789 106 67
L 0.13875079 - 97 - 97 0.13875077 99 30
5 0.14184525 - 183 - 181 0. 14184804 96
6 0.21569622 190 190 0.21569423 9 - 28
T 0.27004868 - 171 - 173 0.27004985 54 5
8 0.33704409 108 109 0.33704250 51 - 4]
9 0.39753688 17 21 0.39753668 3 - 37

10 0.49281275 344 343 0.49280659 272 - 70

i 0.64561398 - 704 - 709 0.64562460 358 288
12 0.998150L5 78 3 0.9981L4761 206 3

13 0.99987832 90 6 0.99988132 390 0

1) _

sin computed as Gk((I—PA)QB), sin 'é'k as ok((I-PB)QA)
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