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Abstract

Assume that two subspaces F and G of a unitary space are defined

as the ranges (or nullspaces of given rectangular matrices A and B.

Accurate numerical methods are developed for computing the principal

angles 8, (FG) and orthogonal sets of principal vectors Uy ¢ F and
Vi € G, k =1,2,..., gq = dim(G) < dim(F). An important application in

statistics 1s computing the canonical correlations 0, = COs 0
between two sets of variates. A perturbation analysis shows that

the condition number for 6, essentially is max(«x(A),x(B)), where «
denotes the condition number of a matrix. The algorithms are

based on a preliminary &R-factorization of A and B (or a" and B),
for which either the method of Householder transformations (HT) or

the modified Gram-Schmidt method (MGS) 1s used. Then cos 0, and

sin 0, are computed as the singular values of certain related matrices.

Experimental results are given, which indicates that MGS gives 0,
with equal precision and fewer arithmetic operations than HT. However,

HT gives principal vectors, which are orthogonal to working accuracy,

which is not in general true for MGS. Finally the case when A and/or

B are rank deficient 1s discussed.



I. Introduction

Let F and G be given subspaces of a unitary space ou and assume that

(1) p = dim(F) > aim(G) = g > 1.

The smallest angle 81(F,G) = 0,¢[0,m/2] between F and G 1s defined by

H —
¢o08 6; = max max u v , ITurr 2 = 1 v|]o = 1

uélr vei

Assume that the maximum is attained for u = uj and v = v;. Then 6,(F,G)

1s defined as the smallest angle between the orthogonal complement of

F with respect to uj; and that of G with respect to vi. Continuing in

this way until one of the subspaces 1s empty, we are led to the follow-

ing definition.

DEFINITION The principal angles 0, ¢0,7/2] between FF and G are
recursively defined for k =1,2,...,9 by

(2) cos 8. = max max uv = u- ullo=1 {lvl],=1k kk a
uel vei

subject to the constraints

atu = 0, vy = 0, J = 1,24...,k-1,
J J

The vectors (upseesu) and (vi,.. Ty) are called principal vectors
of the pair of spaces.

We note that the principal vectors need not be uniquely defined, but

the principal angles always are. The vectors V = (Viseeesv) form a
unitary basis for G and the vectors U = (ups osu) can be complemented
with (p-g) unitary vectors so that (uyseeesu) form a unitary basis for F.



It can also be shown that

atv = 0, JH Kk, j=1,..,P k=1,...,q.
Jk |

For an introduction to these concepts we refer to [1]. An up to date

list of references can be found in [7].

Principal angles and vectors have many important applications in

statistics and numerical analysis. In [5] the statistical models of
canonical correlations,factor analysis and stochastic equations are

described 1n these terms. By taking the vectors uy corresponding to

COS 0, = 1 we get a unitary basis for the intersection of the two
spaces F and G. This has applications 1n the generalized eigenvalue

problem [11]. Other applications are found in the theory of approxi-
mate least squares [6] and in the computation of invariant subspaces
of a matrix [18].

The purpose of this paper 1s to develop new and more accurate methods

for computing principal angles and vectors, when the subspaces are

defined as the ranges (or nullspaces) of two given matrices A and B.

In section 2 we describe the standard method of computing canonical

correlations, and show why this method may give rise to a serious

loss of accuracy. Assuming that unitary bases for F and G are known

we derive 1n section 3 formulas for computing principal angles and

vectors from the singular values and vectors for certain matrices.

To find out how accurately the angles are defined 1n presence of

uncertainties in A and B, first order perturbation results are given

in section 4. In section Sdifferent numerical methods for computing

the unitary bases, and the use of the formulas from section 3, are

discussed with respect to efficiency and accuracy. The special problems

which arise when A and/or B are exactly or nearly rank deficient are

discussed in section 6.Finally some numerical results are given in

section T.



2. Canonical correlations

For a matrix A we denote the range of A by R(A) and the nullspace of

A by N(A),

(3) R(A) = {u|Ax = ul, N(A) = {x|Ax = 0} .

In the problem of canonical correlations we have F = R(A), G = R(B)

where A and B are given rectangular matrices. Then, the canonical

correlations are equal to cos 8 and 1t can be shown that

_ _ — = 1,24... 50,(kL) COS 0, = Ops Uy Ay. Vi Bz, » k 2, el

where Oy > 0 are eigenvalues and Yio 2 properly normalized eigen-
vectors to the generalized eigenvalue problem

(5) =o Lo

BA 0O/ lz 0 BB 'z,

Assume for convenience that A and B have full column rank. The standard

H H

method [U] of computing canonical correlations is to compute A A, BB,
A'B and perform the Choleski decompositions

H H H

A"A = RR, , BB = RyRy,

where Ry and Rp are upper triangular.

: The eigenvalue problem (5) 1s then equivalent to the eigenvalue problems

for a pair of Hermitian matrices

Ho _o 42 = 42

where

H\-1,,H_ = _
M = (Ry) (ABJRp'» 9; = Ry; 2; = Rpz,

These can be solved by standard numerical methods.
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When gq = 1 and B = b, the principal angles and vectors are closely

related to the least squares problem of minimizing |b - Ax] |,. In

fact, with the notations above (but dropping subscripts), we have

y = x/||ax]]2, z = 1/]|v|l2s o = ||ax|]2/}]v]]2,

and (5) is reduced to

ay - ¢ AMA VY, bay =o bbz.

But the first equation here is the normal equations for x = oy/z.

Thus the classical algorithm reduces for g = 1 to solution of the

normal equations by Choleski's method.

Lately it has been stressed by several authors that forming the

normal 'equations 1n single precision involves a loss of information

which cannot be retrieved. For linear least squares problems other

methods without this disadvantage have been developed [2], [13] and

[14]. Our aim in this paper 1s to generalize these methods to the
case when gq > 1.



3. Solution using singular values

In most applications each subspace1s defined as the range, or the

complement of the range, of a given matrix. In this case a unitary

basis for the subspace may be computed in a numerically stable way

by well known methods for the &R-decomposition of a matrix. These

methods will produce for an mxn matrix A, withm > n, a decomposition

SY lpxn= tio" =A= (Qa) (5) }(m-plxn °’

where rank (8) = p and Q = (Q'|Q") is unitary. Then Q' gives a unitary

basis for the range of A, R(A), and Q" a unitary basis for the comple-

ment R(A). Notice that the case when a subspace 1s defined as the null-

space nat) of a matrix a is included, since (a) = R(A). The compu-
tation of unitary bases will be discussed in more detail in section 5

and 6, and we assume here that such bases have been obtained.

Recently an efficient and numerically stable algorithm for computing

the singular value decomposition [9] (SVD) of a matrix has been developed
[14]. This algorithm will be our basic tool for computing principal angles

and vectors. The relation between singular values and our problem is clear

from the following theorem.

THEOREM 1. Assume that the columns of Qy and pg form unitary bases for
two subspaces of a unitary space E. Put

H

and let the SVD of this pxq matrix be

(8) M=YC 78 C = diag(oy,.. 50),
where

yly = 7g = 778 = 14



If we assume that

gy 20, >. . . 20

1 _%Y2 -"q

then the principal angles and principal vectors associated with this

part of subspaces are given by

(9) CoS 0, = a, (M), U =Q,Y, v= og Zr

Proof: It 1s known [15 that the singular values and singular vectors
of a matrix M can be characterized by

H

(10) op _ max (yMz) = y Mz,
_ [yll2 =llz]]2=1

subject to

H H

y-¥3 =z 23 =0, j =1,...,k-1.

If we put

U=Qqyé€Rr(Q), v=0az€R(Q),

then it follows that ||ul|, = Hyll2s [1v]]2 = ||z||, and

yh uu f 3 VvY 3 a J? %* "3 da y- .

kl,
Since v Mz = y QQz = uv, (10) is equivalent to

= max (uv) - wv% ~ Ykk

| Tul |2=]]v]]2=1
subject to

H H .
u. = Ls = 1,...,k-1

u i \ vy 0, J

Now (9) follows directly from the definition of principal angles

and vectors (2), which concludes the proof.



For smal 1 angles 0, is not well determined from cos 0) and we now
develop formulas for computing sin SE Let Q and U be defined as
in theorem 1. For convenience we .change the notations slightly and

write (8) and (9) as

(8') M=Y CY c = diag (cos8, )A B’ kK’?

' =

(9") U, = QY,», Ug _ Qf

We split Qn according to

(11) Qp = P,Qp+ (I - Py)Qg,

where Py = Q,Q, 1s the orthogonal projection onto R(Q,). Here

PQ =QQQq, =qM=QYCY
AB TATATB A AAT "BO?

and hence the SVD of the matrix P,Qq is given by

(12) PQ, =U cy! C = diag(cos8, ).
A”B A B kK

Since P, (I - P,) = 0 we get from squaring (11)

Hoo _ 20 — 1 - ofl p2 _ = o2)ywh
Q(T Pp)Qp = I - QP Qp=7Y(I-C Yo

and it follows that the svb of (1-P,)Q, is given by

(13) (I-P. JQ. = W, S Yo, = diag(sin 6.).AB A B’ k

Comparing (13) with (12) it is evident that W, gives the prineiral

vectors in the complement R(Q,) associated with the pair of sub-
© spaces (R(Q, 7, R(Qy)).when p<<m the SVD of (1-P,)Qy can be computed

more economically from that of M, using

(14) (I-P, )QpY, = WS

;



We will for the rest of this section assume that in addition to

(1) we have

Pp+q<m. }

This 1s no real restriction, since otherwise we have (m-p)+(m-q)< m,

and we can work with the complements of R(Q,) and R(Qp) instead.
Then dim(R(Q,)) = mp > gq, and we can choose the mxq matrix W, in (13)
so that WU, = 0.

By analogy we have formulas similar to (12) and (13) related to the

splitting Q, = Pa, + I-Pg )Q, ’

(15) PQ =U_CY" (I -P.)Q— WS Yo
BA B A 7 BA  B AC

where again since m - gq > p > g we can choose the mxq matrix Wy
so that Gail = 0. From (15) we get

U, = QY, = (UC + W.S)YY, = (UW) (2)
A AA B B "TAA BB S

If we put

H C H

then, since R(Qg) = R(Ug), we have for any y ¢ R(Qp) that

Pp aX €R(Q)), [x[[2= [|Py ,x|]2

We can now alwaysfind an mx(m-2q) matrix Zp such that (Ug We Zp)
1s a unitary basis in Em. Then

/° -S ulB
IE

(16) 2 5,0" Us Yl 28) 5 i H

0 I Zp
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1s the matrix of a unitary transformation, mapping R(Qp) into R(Q,)-
Its restriction to R(Qy) is Py ,, and it leaves all vectors in R(Z,)
unchanged. This transformation'is called a direct rotation [7] from
R(Qp) into R(Q,). It is distingui‘shed from other unitary transforma-
tions F taking R(Qp) into R(Q,) by the property that it minimizes
each unitarily invariant norm of (I - P(g -pP). If R(Q,)IR(Q,) is
empty, then all 0, < I/2 and the direct rotation is uniquély deter-
mined.

Similarly we can construct a direct rotation taking R(U,) into (R(Qg).
It 1s obvious that the relations between the two subspaces are very

completely characterized by the quantities C, §S, Uno Wyo Ug and Wa.



|

4, Perturbation of principal angles

We consider here how the principal angles between R(A) and R(B)

changes when the elements in A and B are subject to perturbations.

We assume 1n this analysis that the matrices A and B are mXp and

mxq respectively, and have linearly independent columns. Consider

first a perturbation of A only,

AL = A+ eB = (A + €E;) + €E,,

where we have split the perturbation in components in and orthogonal

to R(A),

~ Ey = PE, Ep = (I-p, JE.

Let the polar decomposition of A+eE; be

| _ H., _ CL CL
A+eEy = QuHy R QQ =1I, Hy positive definite.

Then, since R(A) = R(AteEy), Q gives a unitary basis for R(A).

To get a unitary basis for R(A_) we note that for small absolute values
of €¢ , the matrix

“1 rr -1
(17) (A+B), = @Q, + 8, r= (I-P,)EH,

Hy, _ ~H, Hp _1s nearly orthogonal. Since QF = QpQ, QF = QP, F 0 we have

H H H 2 2
- = =- + + 0] = 0 £ *1 -(Qy+eF) (Q,+eF) e(F'Q, + QF) (e“) (e°)

Then from a series expansion for the unitary factor QY in the polar
_ -1

decomposition of AH, 13) it follows that ©

_ 2
(18) Qy Q * eF + 0(e®).

€

10



Premultiplying (18) by Py, ve get
-1

Pa = PaQ) + cP (1 P,)EH, .

Using the well known inequalities for singular values, [12; p. 30,

0, (A+B) < o, (A) +01(B), 0, (AB) = 0, (A)o1(B),

k = 1,2,...,9,

we obtain

- - €<).

[oy (PpQy ) 0, (Pr) < ¢ 01 ((Py(I P,))o1(EH, ) + 0(e*®)

Now PL(I-P,) = Ug diag(sin 0, IW, and since
-1

01 (H, ) = 1 [0 (A+eE, ) = 1/0 (A)+0(e),

we have to first order 1in ¢

(19) |Acose, |<e sin 6 _ 01(E)/a (A).

If instead we premultiply (20) by (I-Pp), and proceed in the same
way we arrive at

(20) |Asin 0, | < ecos Bin O1(E)/0 (A).

Now assume that both A and B are perturbed by 6A and 6B respectively,

where

[16a] ]2/]]a]12 < eA, ||6B]|2/]]B]]2 < ep.

11



Then to first order of approximation the perturbationsadd together

and we get from (19) and (20)

(21) | Acos 6, | < Kesin®___, [4 sin ® | < K ao86.

og; (A) 01 (B)

K= ep om + aoe) ~ ca XW) + epl®)
p q

Thus again neglecting terms of higher order, we have

sin 8 ax Cos 0 in
86,| < Keminl G50 Coss, KElfy):

- k k

The maximum of g(8) for 0 < 8 < m/2 is attained for 6 = arctan r

rox (1422) Feos 6 i. , I = sin 8 ay / COS 6
It follows that

g < (1 + cos 26 Foose <2
max = min min —

and finally

(22) a8, | ¢ v2(e, k(A) + exx(B)).

We conclude that when both k(A) and k(B) are small, then the angles

O are well determined.

We note that if the columns in A are scaled, then k(A) will change,

but not R(A). Also the numerical algorithms for the &R-decomposition

have the property that, unless column pivoting 1s used, they give the

same numerical results independent of such a scaling. Therefore it 1is

often more relevant to take in (21) as condition number for A the number

k'(A) = min «(AD), D = diag(dr,...,d).
D

12



It has been shown in [16] and [17] that (AD) is not more than a factor
of 7 away from its minimum, 1f in AD all columns have equal L,-norm.
This suggests that A and B should'be assumed to be preconditioned so that

We remark that k'(A) is essentially the spanning precision of the basis

in R(A) provided by A as defined in [17].

13



5 Numerical methods

We assume in this section that the columns in A and B are linearly

independent. The singular and near singular case will be briefly

discussed in section 6. For convenience we also assume that A and B

are real matrices, although all algorithms given here can easily be

generalized to the complex case. Computed quantities will be marked

by a bar.

In order to get the orthogonal bases for F and G we need the QR~decom-

positions of the matrices A and B. We now describe two efficient

methods for computing these. In the method of Householder triangulari-
T

zations (HT) [13] orthogonal transformations of the type Q = 1 — aww,
are used, where

T

| w= (050 ves03WpyseensW )7, lw, [12 = 1.

The mxp matrix A is then reduced to triangular form using premultipli-

cations

CAL)

U2 Q A = — |
0 /} mp

where Wy 1s chosen so that yt annihilates the appropriate elements
. in the k th column. Since Q = Q » an orthogonal bases Qy for R(A)

can then be computed by premultiplying the first p columns in the

unit matrix In by the same transformations in reversed order,

For this method a very satisfactory error analysis is given in [19].

14



Assume that floating point arithmetic with a mantissa of t binary

digits is used, and that inner-products are accumulated in double

precision wherever possible. Then there exists an exactly orthogonal

matrix Q such that the computed matrices satisfy

/ py . .

T , Ad = {Pi= | = = ~

(23) Q(A +E) =17), Q=alg8 +F =q+F,

_ -t - 3/2 -t
ENE =12.5p2 [A] &> ne =12.5p 2

where &y is an exactly orthogonal basis f'or R(A+E,). From this and
sos low lI oar es tomate for Q, we get,

(hh) “a, (M) = a (M)] 5 (MM) Lop + Jy!

where M = ay Qy and the constant 13 .0 accounts f'or the rounding
errors 1n computing the product Q, Q. We have 0, (M) = co: 0s where
0k arc the exact angles between (A+E,) and (B+E,) . Thus, the difference
between LN and 8, can be estimated from (22),

a -t

(25) 6, - 6.| <12.5 V2 (pc(A)+ac(B))2 ~ .

Finally, the errors 0, (M)-0, (M) in computing the singular values of M,
] using the procedure in [14] , will be of the same order of magnitude

as those in (24).

The error estimate given above 1s satisfactory, except when 0, << 1.

In this case, the errors in cos Oy from (24) will give rise to errors

in 6 which may be much larger than those in (25). We return later
to the problem of accurately computing small angles.

: 15



An orthogonal basis Q) for R(A) = N(AT) can be obtained by applying
the transformations Q 1 k=p,. . .,1 to the last (m-p) columns in I,

0)
' = ——

QU =U... QT
m=p

Also 1n this case the estimate (23) for Qs (2b) and (25) still hold
if the factor 53/2 is everywhere replaced by p(n-p) 1/2

The QR-decomposition of a matrix A can also be computed using the modified

Gram-Schmidt method (MGS) [2]. The matrix A 1s then transformed in

p steps, A = Al, Aaseeesh = Q where

i (k) (k)
A (apse cosa -8y sec e208 ).

The matrix Abi , kK =1,2,. ..,p 1s computed by

_ .(k) (k) (k+1) T, (k) .
gk = a /] ay 112 ’ 8; = (I-q,q, Je; s» J > k

and the elements in the k th row of Ry are

(k) T (k) :
Tk = AEN IE ’ Tx; = Ue? ry J > Kk.

It has been shown in [2] p. 10, 15 that the computed matrices R, and
Q, satisfy

-= = -t

A+E, = QR, , [|B |[z < 1.5(p-1)2 "|[A]l5
(26) _ .

[leg - Ql, < 2p(p+1)c(a)ea™

where eG 1s an exactly orthogonal basis for R(A+E) ) and quantities of
order 2 2t have been neglected. With MGS Q, will in general not be
orthogonal to working accuracy, and we cannot therefore hope to get

principal vectors which are nearly orthogonal. Also the condition

numbers k(A) and k(B) will enter in the estimate corresponding to (24).

However, since k(A) and «x(B) already appear in (25),we can hope to get

the principal angles as accurately as with HT. Experimental results

reported in section 7 will confirm that this actually seems to be the case.

16



An advantage with MGS 1s that the total number of multiplications

required to compute R, and Q, 1s less than for HT, i.e.

MGS: p?m , HT: 2p? (m=).

If only the principal angles are wanted, then the number of multi-

plications in the SVD-algorithm 1s approximately

2a%(p - 3).

Thus, when m >>p , the dominating work is in computing Q and Q
and 1n this case MGS requires only half as much work as HT.

If also the principal vectors are wanted, we must compute the full

SVD of M. Assuming two iterations per singular value, this requires

approximately

10
7a*(p + 53a)

21

multiplications. To compute Uy and Ug a further mq(p+q) multipli-
cations are needed.

To get a basis for R(A) using MGS we have to apply the method to the

) bordered matrix (A]T), and after m steps pick out (m-p) appropriate
columns. Especially when (m-p) <<m, the number of multiplications

compares unfavourably with HT,

2 2.3
MGS: m“(m+2p), HT: 2mp(m-p) + 3p

In some applications, e.g. canonical correlations, we want to express

the principal vectors as linear combinations of the columns in A and B,

_ ICS
respectively. We have U, = QuY, = A(R, Y,), and hence

17



Up = A Xp Ug = B Xp

where

_ 1 -

(27) Xp = Ry Yoo Xg = Rp Yq .

We remark that 1f we let X, and X, denote the computed matrices,
then A X, and B X, will not in general be orthogonal to working
accuracy even when HT 1s used.

We now turn to the problem of accurately determining small angles.

One method 1s to compute sin 0, from the SVD (13) of the matrix

~n

If we let G denote the corresponding matrix computed from EN and Q
then

— — = J — = ui T
+ = - 1 .Qp + (QQ) = G + (1-Q,Q)JF, + (QF+ F\0x)0p’

Neglecting second order quantities,

= 3 1/2,.-t
G-G < | |F 2| |F 2 213-311, <1IFgll, + 2llF,l1 + 2a’,

where the last term accounts for the final rounding of the elements

: in M and G. Thus, if Q, and qQ are computed by HT, we have from (23)

(28) | 6,(8) - 0, (0) | < 13.2(a3/2 + 2p3/2)27"

It follows that the singular values of the computed matrix G will

differ little from sin Bs and thus small angles will be as accurately
determined as 1s allowed by (25).

Since the matrix G 1s mxq, computing the singular values of G will

require about 2mg? multiplications. If however, Up and Ug are avallable
we can obtain sin 0 accurately with fewer operations. We have

18



- Tu - _ 2 _ 202 = giag(sin2
(29) (Ug Uu,C) (Ug U,C) I + C 2C diag(sin 0, )

and

(30) (Up- UT (Um U,) = 2(T - ¢)B “A B "A }

. 1/2
From the last equation we can compute 2 sin 76, = (2(1 = cos 6,))
which since 0 <3 0 < m/l accurately determines both sin 0 and
COS 0»

We finally remark about an appearent imperfection of MGS. When A = B

(exactly) we will get Q, = Qg- The exact angles equals zero, but
since we only have the estimte

=I : -t
11 - ll, <2p(p¥1) «(a)2 7,

vi

the singular values of M = QQ may not be near one, which 1s the case

if HT 1s used. However, since M is symmetric, SVD will give r= Yo
and therefore also Up= Ug- It follows that if (30) 1s used, also MGS
will yield angles which are near zero in this case. If however only

A> B, then the rounding errors in computing Q and Qp will not be
correlated, and 1n an 1ill-conditioned case, we will probably not get

angles near zero either with HT or MGS.

19



6. The singular case

We now consider the case when A and/or B does not have full column

rank. In this case, the problem of computing principal angles and

vectors is not well posed, since arbitrarily small perturbations in

A and B will change the rank of A and/or B. The main computational

difficulty then lies in assigning the correct rank to A and B. The

most satisfactory way of doing this generally 1s the following [8].
Let the m x p matrix A have the SVD

A= QU Dy ve . Dy = diag(o, (A)).

Let € be a suitable tolerance and determine p'< p from

n n

(31) }  az(n) < e?< 7 o%(A) .
<= 1 SE
1=p'+ 1 1=p

We then approximate A with an m x p matrix A such that rank (A') =7,

A'=(Q,q}) [A O° (va wv )! D' = diag(o a,)
‘A ‘A A ? A 1 I 4 ° ° ° ° P ’

0 O

where

-— \J ”n - 1 n

have been partitioned consistently with the diagonal matrix. The matrix

B 1s approximated in the same way.

If instead of (1) we assume that

p'= rank(4')> rank(B) = ¢ > 1,

then we can compute the principal angles and vectors associated with

R(A") and R(B') by the previously derived algorithms, where now Q and

Qg should replace QA and Qg-

20



In order to express the principal vectors of R(A) as linear combina-

tions of columns in A', we must solve the compatible system

' — — 0

A Xy Up % r, .

Since Vi 1s an orthogonal basis for N(A), the general solution
can be written

—1
= VV +

Xp = Va Pa Ya * Va Ca»

where C, 1s an arbitrary matrix. It follows that by taking CA = 0

we get the unique solution which minimizes | [X,| |g, c.f. [14]
Thus we should take

(32) X, = V DY ,X, =V DYA A "A "AB BB B’

where Xp is pxp' and XB is q x q.

The approach taken above also has the advantage that only one decompo-

sition, the SVD, 1s used throughout. It can, of course, also be used

in the non-singular case. However, computing the SVD of A and B, requires

much more work than computing the corresponding QR-decompositions.

- In order to make the QR-methods work also in the singular case, column

pivoting must be used. This 1s usually done in such a way 2], [10] and

[13] that the triangular matrix R = (44) satisfies

| 2 = ry,Bs = |r...| . k < J <n.
kk i=k 1)

Such a triangular matrix is called normalized, and in particular the

sequence EARL or Ce. [vol 18 non-increasing. In practice 1it2 []
is often satisfactory to take the numerical rank of A to be P' if

for a suitable tolerance € we have
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We then approximate A = QR, by a matrix A'= QR of rank ¢
by putting

Tis = yer 1 <p, Thy © 0, 1i»>p'.

It has been shown in [20] how to obtain the solution (32) of minimum

length from this decomposition.

If we use the criterion (33), there is a risk of choosing p' too

large. Indeed, from the inequalities [10]

3(45+6K - 112), | < o,(A) < (n+k+1) 72 |kk! — "k — kk

it is seen that o, (A) may be much smaller than Ir | :
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(. Test results

Some of the algorithms in section. 5 have been tested on the UNIVAC

1108 of Lund University. Single precision floating point numbers

are represented by a normalized 27 bit mantissa, whence the machine

precision is equal to 2 20 1.5.10

We have taken F = R(A), where A 1s the m x p matrix

e 0...0 :
A= _] 0 e...0O . o =|] m/p = Ko»

1

~ 0 O...e

and k is an integer. Thus, A 1s already orthogonal, and Q = A.

Further, G = R(B) where B 1s the m x p Vandermonde matrix

-1

1 Xoo xg

1 X1ooo al .
B= x = -1 + 21

ee ’ f m+

P-1

1 X 1X4

The condition number «(B) is known to grow exponentially with p,

when the ratio m/p is kept constant. These matrices A and B are

the ones appearing in [6]. There is exactly one vector, u =(1,1,.
. . 1), which belongs to both F and G, so there will be one minimum

angle 6 = 0.

For the tests, the matrix B was generated 1n single precision.

The procedures for the QR-decompositions use column pivoting and

are apart from minor details identical with procedures published in

[21] and [22] . Inner products were not accumulated in double precision.
For checking purposes, a three term recurrence relation [6] was used

in double precision, to compute an exact single precision orthogonal

basis for R(B).

For m/p = 2 and p = 5(2)17, Q, was computed both by the method of
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Householder and the modified Gram—-Schmidt, method . Then cos Ok,

YA and Yo, were computed by the procedure in [114] , and finally
Up and Ug from (9'). The results—-are shown in table 1, where

m(o, ) = max|o, - o_| FU) = ||1 - uly] |
k To k k'? F

Notice, that because of rounding Op to single precision and rounding

errors in the computation of the SVD, 0, are not exact to single
precision.

For the Gram-Schmidt method, the predicted lack of orthogonality in

Ug when «(B) is large, is evident. However, there is no significant

difference in the accuracy of cos 8, between the two methods.
In table 2 we show for m = 26 and p = 13 the errors in cos 0,
for each k.

For the same values of m and p, sin 0, were computed from the

singular values of both the matrix (1-P,)Q; and the matrix (1-P5)Q,
The results in table 3 again show no significant difference between

the two methods. For the Gram-Schmidt method, the values of sin 0,
differ somewhat between the two matrices, whereas the corresponding

values for the Householder method are almost identical. This 1s

) confirmed by table 4, where, again for m = 26, p = 13, results for

each k are shown.

The authors are very pleased to acknowledge the help of Mr. Jan

Svensson, who carried out the tests described in this section.
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Table 1

Househdlder Gram-Schmidt

m p F(U,)-108 F(U,) +108 m( cos 8, )+108 F(U,)+108 F(Ug) +108 m(cos 6)+10°

10 5 11 15 4 15 12 10

1h 7 27 35 10 ol 76 12

18 9 37 28 26 33 202 21

22 11 30 46 40 47 2412 91

26 13 43 51 612 38 12129 913

30 15 57 63 1874 51 28602 1484

34 17 S51 65 13051 56 344685 5417
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Table 2

m= 26 p = 13

Householder } Gram-Schmidt

ry .1n8 ry a .108
k COS 6, Acos 0, 10 COS o. Acos Oy 10

0.99999979 2 0.99999989 12

2 0.99823279 8 0.9982330k 75

3 0.99814388 - 33 0.99815032 613

4 0.99032719 15 0.99031791 - 9013

5 o. 98988868 12 0.98989530 6TL

6 0.976L6035 - 47 0.976L46120 38

7 0.9628L652 51 0.9628L428 - 173

8 0.94148868 - 33 0.9414 8907 6

9 0.91758598 8 0.91758703 97

10 0.87013517 - 186 0.87013374 - 329

11 0.76366349 612 0. 76365566 - 171

12 0.06078814 0.06078782 - 33

13 0.01558465 - 60 0.01558528 3
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Table 3

1) _ 1)Householder Gram-Schmidt

3 TN 3 e108 8 ).108
m p m(sin 6, )+108 m{ sin 8, )e10° m(sin 6.) 108 m(sin 8) 10

10 5 3 2 4 3

1h 7 16 7 27 4

18 9 51 49 48 6

22 11 68 68 135 97

26 13 704 709 390 288

30 15 2367 2358 1173 1140

34 17 --. 16285 16281 5828 4501

1)

sin 8, computed aso, ((I-P,)Qg), sin 6, as 0, ((I-P-)Q, )
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Table k

m = 26 p = 13

1) | 1)
Householder Gram—-Schmidt

Lo «= «nN LT «A . NM

kK sinf Aden Asin 6, 0 sin Asin fy Asim 6

1 0.00000002 0 3 0.00000002 0 |

2 0.05942237 - 24 - 24 0.05942257 4 5

3 0.06089812 129 129 o. 06089789 106 67

L 0.13875079 ~ 97 - 97 0.13875077 — 99 30

5 0.14184525 - 183 - 181 0. 14184804 96

6 0.21569622 190 190 0.21569423 9 - 28

7 0.27004868 - 171 - 173 0.2700k985 - 354 5

8 0.33704409 108 109 0.33704250 - 351 - 41

9 0.39753688 17 21 0.39753668 3 - 37

10 0.49281275 344 343 0.49280659 - 272 - 70

11 0.6L4561398 - 704 - 709 0. 64562460 358 288

12 0.998150L45 78 3 0.9981L761 - 206 3

13 0.99987832 90 6 0.99988132 390 0

1) BN

sin 6, computed as 0, ({I-P,)Q;), sin 6, as 0, ((I-Pg)Q,)
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