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The Average Height of Planted Plane Trees

*
by N. G. de BNiJn’ D. E. Kn“bh’ and S. O. Rice

Abstract
An asymptotic expression for the average height of a planted plane
tree is derived, based on an asymptotic series for sums such as

2
Zk)l Cnink)d(k) and zk>1 eX/n d(k) , where d(n) 1is the

number of divisors of n .
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The Average Height of Plamted Plane Trees

by B. G. s Bruijm, D. K. Dmth, and 8. O. Rice

A planted plane tree (scmetines called an ordered tree) is & rooted tres which has been embedded in
the plane so that the relative order of subtrees at sach bramch is part of its structure. In this paper
we shall say simply "tree” instead of "planted plane tree”, following the custom of computer sciemtista.

The height of & tree is the number of nodes 0n & saximal simple path startinag st the root. Por
exangle, there are exactly 5 trees with five nodes and height &, namely

P AAA

The height of a tree is of int in compuwting b it repe the size of a stack used in

algorithme that traverse the tree [3; p. 317-318]. Our goal ila this paper iz to study the average height
of a tree with n nodes, estuming that all a-node tress are egually likely. The corresponding prodlem for
or{ented (1.e., rooted, unordered) trees has beam solved by Renyi and Ssekeres (6. Our principal results
are stated in equations (32) amd (34) below.

Trees agpear in many disguices, end im particular there 18 & natural correspondence between trees of
height <h and discrete rendam walks in & Streight line, with absorbimg barriers at 0 ead bl . If ve
"wander around” & tree with n nodes, &3 shown by the dotted limes in Figure 1, the vertical component of
uccessive positions descrided & path of leagth 2n-1 fram 1 to 0 ; for example, the path in Figure 1 i3
1,2,3,2,1,2,5,2,5,4,5,8,3,4,3,2,1,2,3,2,5,2,1,0 . (This is ome way a gambler can lose §1 before wiraing 95.)

Thie tion, eted ty T, E. Harris in 1952 [2], 1s clearly reversible.
The height of trees plays & similar role in the classical ballot prodlem: HOw many ways are there
to arrange n btelluts for candidate A and n for candidate B in such & way that the mmber of votes
for A never lags behind the mumber for B , as the ballots are counted, but A 18 never more than h
votes Aneed? The ansver is the number of trees with n+tl nodes end beight < htl , again by the comstructiom

indicated in Pigare 1. The ballot sequence corresponding to that tree is AAMMABAABABABIPAABARS .

[V S I

Figure 1. A tre¢ as & rendom walk.



We shall begia ocur stully of the asymptotic properties of height by reviewing some knowm results.
et A_ 0 the mmber of trees with n nodes and height < b , and let
am - Tays®

be the corresponding genereting fumetion. We obtain all trees with height < bh+l by taking & root
sode end stteching sero or more subtress each of which has haight < B ; therefore

Ay (8) =51 s A (x) « A Z e A ()70 L)
“3/(1-A) ,  for b20

Clearly Ao(l)-o. This relstion yields & siapls recurremce for the numbers A v

(©

(2)

i ® At T Anomeddo,n t et t ALpeaAn,n ¢ fOF B22, 020, (3)

fram which 1t 18 easy tO prepare & tadls of the first few vaiues:

awl 2 3 [ 5 6 7 8
B=1 1 0 0 0 0 0 o o
B2 1 1 1 1 1 1 1 1
hel 1 1 2 [ 8 16 32 6
hak 1 1 2 5 B N 8 23
hes$ 1 1 2 5 1 M 122 365
heb 1 1 2 5 1v k2 1% M7

Binee 50 tres with a nodes can have & height grester tham n , we have

ne2
L A =) - I F L
the wall-lmown formula for the totel mmber of trees with n nodes [cf. 3 p. 399).
Iterstion of (2) yields & eomtinwed frectiom represemtatiom of \(I).o.g.
[

Hw - =g

T

mmwummmmx«---mx—zwm,

()
&(I) - %:Ta‘ ’

BB =0, mx) 21, p(0) ~ps) - @y, (s) .

™he sclution to this recurremce is

o - (Y )

(%)

()

(6)

1



and the form of this solution suggests setting t = 1 /(b cas’ @). We obtatn

w\ e
h cos” @ ain &(2 cos a)

9
A'(l. eu! 0) 2 cos @ u.n(h'].)e
Incidentally it 1is easy to verify that ph(-l) is the Pibomacci number 'h » and that
(h-l—l 3 .
Pp(s) = . J0-%) » for h21 ; (10)
o<k <h

this leads to ancther recurrence for the h B

Stnee 3,(0)7 -, (1), ;(2) = 71, there is & einple gmerating function for the mumber of trees
with n nodes and height exactly h ,
n
| 3
A(z) - A (2) - W CINe] i (1)

this formuls wes recently derived by Krewerss [%, p. 37].

fince B 18 & polynamial of degree L (h-1)/2 | , the roots of ph(z) =0 are 1/(4 cune(J-/h)) ’
for 1 <3 <b/2 ; and we obtain a partisl frection expension of the gemereting functiom,

)

NI = a R T (12)

LTz (D= (M con” 90)8)

9y, ~ I/ (B

Sw o by o;.&.l-%&.—%”a, "an‘ﬁ' for m21. (L)

This lcads inmediately to thie "explicit® forwuls

A FIT A" oan® ;I.-'! coa2 ﬁ , for n>2 . (1n)
1<ysn/2
(T¢ 4s rether remarkadle that this formula gives & constant value for fixed n and &l h >n . It is
perhaps even more remarkable that Lagrange deri-ed a formuls in 1775 which essentially includes this as
u special case! See |5, p. 247 |: Feller {1, p. 322) cbserves that the formula has been rediscovered wamy times,
aithough it sppears in mamy texts on probability in comnectian with the equivaleat “gambler’s ruin®
probiem.) As & special case of (14} we have the asymptotic formuls

~ o7 ten (—i)eu‘2‘(~—i) , fxed h, n =w». (19)



Another interesting expression for M can be derived by applying complex variable theory. We

have ()
ozl ETAG
(o+) .
- & S 0w I‘_—“;‘;I 16
whare

by (0) end (8). Since

u = uj{-_g R Qamn)
1441l-Ms
2

l-—‘j (18)

(1eu)

wehave uw s when (3] << 1 ; hemce we may chamge varisbles in (16) to obtain

(or) n
R R L s e - I a9)
') -9
In other vords 1s the cosfficient of w2 1a (1-u)(1+u)®2(1") / (1-4™1) . same
A
siaplificetion now when we ider the of treas with height grester thea b :
T " Aty
(0+) bl
g R L e = S @)
v -u

It fallows thet

i+ ER)-(2) (2) -

The sYsrage helght of a tree vith n nodes 1s 8 /A , vbare 8  is the (finite) oum

————

5 - h§1 Blhu, - Aypey) n§1 BBy, by - B

U
(0v)

h

1 [} 2 n-2 ')
- = 1 1-u)13 %
I - (- ) hgl len

() o 2, w2 k
. 10)2(2 ax .
= S T ELY) 313:1 (M) @)



(As usual, d4(k) denctes the mumber of positive divisors of k .) Therefore

Bpe1 " u§1 &t ((n‘?k) ) 2("2’..) * (“"?") . “

We shall now proceed to obtain an aswmptotic series for the sum

f () - a(k) , fixet a, n-e ; (2h)

and thie will lead to an esymptotic series for sn .
Lot x = (k-a) /n . By Stirling's approximation we have

n

2 2 .
mekd | up(-?n(ﬁ' 3‘7,:0 )6(5!0 %‘-0 ...)-r;- (x‘oxhb...)&o(lzn")), (25)
n

4c

vhen k >n ta

for all fixed ¢ >0 . Therefore the sum of all terms for k > n" €ea in (24) 18 negligible, being
o(n™) for all m >0, and ve may take x = 0(n" ¥ €) 4n (25,
We now turn to the asymptotic behavior of the functiom

2
&(n = lEL ameX /™ | ftixedb, n-w. (26)

Again the terms for kgn”‘ are negligible, 80 we can use (25) to express f in terms of g :

2 2
£,(0) = go(n) + 2 g (n) - & gi(n) + ﬁ;’,l g,(n) - ;f, (0

3 3
SE2E "'—)’,2 650 - 5y a(n) ¢ o7 pom)) (@n
n n’

In principle such an expansion t_:w be carried out as ft—r u we like, hence the problem of obtaining an
asymptotic expansion for r.(n) reduces to the analogous problem for 'b(") -
The behavior of ch(n) can be derived by starting with the well-known formula

Cctim
- ﬁj r(z)x"%as , e>0, x>1 , (28)

c-le

obtained, for example, bty Fouricr inversion of [(c+ ‘mit) . Then since ((1.);. z. >) 'l(l)/lv‘ we i



crim
1 s b-2%
&) - : HI n" r(s)k a(k)dz
k31 cote

ctiw
- 2 ] ot regesy)® e (29)
c-im

whare now ¢ > §(b+1) . Let q be & fized positive mmber. When Re(s) >, ((e) < o([s|%" 1) us
s ~o j and since n’r(:) gets mall on vertical lines we can shift the line of integration to the left
a8 far as we plemse if we only take the residues into account. There is a double pole at 2z = 4(b*l) ,
and pospibly same simple poles at 3 = 0,+1,-2,... . Lat w s 2-j(bel) ; we have

ar(a)g(2a-0)” « ™D r(pm1)) (14 wCin 2) ¢ 0(vP)) - 1+ b1 006 (5 o T« 00

where #(z) = I'(2) /T(z) , hence the residus at the double pole is
n‘(b.l)r(.(b'l’)(% Inn+ % e((pel)) +9) . %)

T™e residue ot s = -k 1is

4 4
R R Bpoey 1)
T e
(2ket+1)” Kt
which 15 Almost always 3ero when b is even. The sum of (30) and (31) for all k > 0 gives an asymptotic
series for ‘b(') . Hemce we Dave, for all = >0,

u“(n) %Gnn#(ir-%m;l)ﬂ’%oo(n") :

2

&,(n) n%nhmEnO ﬁ-ﬁn’loo(n
em -gVmmas Gegr-fumandmeon® ; (32)

etc. These formulas have besn verified by camputer calculation; for example, when n = 10 ,
ln) = 39002 ant §Vminas @y -$mdmei-s.00m.

Returning to our origimml problem about trees, ve have

g .
1
=I5 et R CRRAC)
~
- Egyn) —"5 &(n) ¢ 0(a">/2 10g n) (33)
n

by (8), (23), (h), ana (77), and this equals /o Y. dneo(n"”/2 1og n) . We bave proved, n
particular, the rnllowineg result:



Theorem. The average height of a planted plane tree with n nodes, considering all such ‘vess to be

equally likely, is
fw-eotn g n . (%)

The same method can be used to cbtain as wany further terms of the expanaion as desired. The factor

loy n in the error term turns out to be unnecessary.

We wish to thank Prof. John Riordan for pointing out references (2] and (k).
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