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Abstract

An asymptotic expression for the average height of a planted plane
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The Average Height of Planted Plane Trees

by BN. G. de Bruijm, D. E. Kmsth, end 8. O. Rice

A planted plane tree (sometimes calledan ordered tree) is a rooted tres which has been embedded in

the plane so that the relative order of subtrees at each branch is part of its structure. In this paper

we shall say simply “tree” instead of "planted plane tree”, following the custom of computer sciemtista.

The heightof a tree is the number of nodes on & maximal simple path starting st the root. For

example, there are exactly 5 trees with five nodes and height 4, namely

The height of a tree is Of interest in computing because it representsthe maximm size of a stack used in
algoritime that traverse the tree (3, p. 317-318]. Our goal in this paper iz to study the average height

of a tree with n nodes, asuming that all a-node trees are equally liksly. The correspondingproblem for

oriented (i.e., rooted, unordered) trees has beam Solved by Renyi and Ssekeres (6). Our principal results

are stated in equations (32) amd (3h) below.

Trees agpear in many disguiees, and im particular there is & natural correspondence between trees of

height <h and discrete rendos walks in & straight line, vith absorbing barriers at 0 and brl . If we

"wanderaround” 8 tree with n nodes, 01 show by the dotted lines is Figure1, the vertical component of

. nccestive positions described a path of length 2n-1 fram 1 to 0 ; for example, the path in Figure 1 is

1,2,3,2,1,2,5,2,5,4,5,5,3,4,3,2,1,2,5,2,3,2,1,0 . (This is one way a gambler can lose §1 before winning 95.)

This construction, suggested ty T. KE. Harris in 1952 [2), is clearly reversible.

The height of trees plays a similar role in the classical ballot prodlem: HOw many ways are there

to arrange n btelluts for candidate A and nn for candidate 3 in such a way that the mmber of votes

for A never lage behind the number for B , as the ballotsare counted, but A is nevermore than bh

votes Ahead? The ansver is the number of trees with n+l nodes and beight < h¢l , again by the comstruction

indicated in Pigure 1. The ballot sequence corresponding to that tree is AANMAABAABABADEBAABARS .

0) .

2 p ot ot 5 . ry .

Figure 1. A tree as a rendom walk.
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We shall begin cur stuly of the asymptotic properties of height by reviewing some known results.

Let A Ve the mmber of trees with pb nodesand height <b , and let

as) = Tas” (1)

be the correspondinggenereting function. We obtain all trees with height < hel by takinga root

sole and attaching sero or more subtrees each of which has haight < bh ; therefore

Ay y(s) = (1s a(n) + AZ eA (070.0)

=2/(1-A(s) , for B30. (2)

Clearly An(s) = 0, This relation yields a simple recurremce for the numbers

Sed * Maumeet Aoifent ttt ALperAnaa,n 0 FOF B22, 020, (3)

fram which ft 18 easy to prepare a table of the first few vaiues:

awl 2 3 } 5 6 7 8

hh =] i 0 0 0 0 0 } 0

he? b 1 ) § 1 b § p | 1 1

heh 1 1 2 'y 8 16 32 Oh

hak 1 1 2 5S 1B » 8 23»

hs$ 1 1 2 5 1h hy 122 365
heb 1 1 2 5 1h 2 13 b17

Binee80 tree with a nodes cam lave a height greater than n , we have

A, = AL (52) . Aya, (¥
the wall-imomn formals for the total mmber Of trees with n nodes [cf. 3,p. 389).

Iterationof (2) yields a continued frectioa represastation of A(R) , e.g.

1- rie

This sugpests apreseing the generating Muction as & quotient of polynamials,

=, (zs)
(s) = OR 6

where

B®) =0 , nix) a1, pp (0) cps) - my (5) (1)

™e solution to this recurremseis

Ah

Bs) - ref).(iY) , (8)- bg
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and the form of this solution suggests setting = = 1 /(k cos® 9). We obtain

By 1 sin nO——) + ———%3 °
bh cos” © sin (2 cos 6)

(9)

—i— = —ainbe .h cos” @ 2 cos @ sin(hel)®

: Incidentally it 13 easy to verify that By (-1) is the Fibonacci mumber F, , end that

p(s) = L (> Yn” > for h21 3 (10)0 <k <h

this leads to another recurrence for the An »

Since B(2)° - py, (2)R, (2) = 1 , there is a simple generating function for the pamber of trees
with n nodes and height exactly nh ,

h

A(z) «A (2) - —=Ta} ; (11)- Prey  ®/By,

this formuls ves recently derived by Krewerss [», p. 37}.

Ginca pis & polynomial of degree | (h-1)/2| » the roots of RB, (%) =0 are 1l/(% cos>( Ja/n)) ’
for 1 <3 <h/0; and we obtain a partial fruction expansion of the gemersting functiom,

| tan’ @
1cJch/2 (hel)(1 - (Md coe op)t) “

where

in = Jm/ (k+l)

. -n{ 2a 1
Cm ba OF Somes” TATE bagel “ay ¢ for m21. (V)

This leads Lmmediatecly to thie "explicit® formulas

Ay Ee "ain AR cod®? Af, for naz (1)
1<y<n/2

(Te 4s rather remarkable that this formula gives a constant value for fixed n and all bk >n . It is

perhaps even more remarkable that Lagrange deri-ed a formulas in 1775 which essentially includes this as

a special case! See [H, p. 247|: Feller (1, p. 322) cbserves that the formula has been rediscovered many times,

although it appears in many texts on probability in comnection with the equivalent “gambler’s ruin®

problem.) AS au special case of (1h) we have the asymptotic formulas

LW" of =n 2
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Another interesting expression for Ay can be derived by applying complex variable theory. we

have (00)0+
1

Am zm] TAG
(o* h

9 8 (100 Ady (16)= leu

vhare

- «Ag

by (6) and (8). 8imce

. , 18

ve have uw when [3] << 1 ; hemce we may chamge variables in (16) to obtain

(Oe) a

Ap - sar | & (1a) (10) 2 Ly . (19)| -%

In Gther words A, 1s the cosfficient of uw" tn (1-u)(1+u) P21") / (1u™) . same
simplification now cocurs when we consider the mmber Of trees With height greater thea I :

Ba "Auth

(0+) wl

- wrI Ey aw)?™?we . (20)'] «4

It follows thet

on 2 onParl,ner (2) * (2) (2) * (22)

The sYSrags Relght of a tree with =n nodes 1s 8/A_ , where 8 1s the (finite) sum

8 - h - - -

n L (Ag = Apna) XL. B(3, p.1 = Bp)

(Oe) h1 [0 2 2ne2 u. l-u)“r3ml Frewtee™ Loy
(04) 2,4. 202 x

- len) (2vu d(x .2 1 (10a) EL (Ku (22)

5



(As usual, 4(k) denotes the mumber of positive divisors of k .) Therefore

an an onBpe1 = RA a(x).2) : (2) * Ga) . (23)
We shall now proceed to obtain an asymptotic series for the sum

,
rm) - IT MFARL 4x) , fixet a, ne ; (24)

k>1
- n

and this will lead to an asymptotic series for 8, .

Let x = (k-a) /n . By Stirling's approximation ve have

n

2 & 2 1) -

Ley? = wo (a( * 2 * ) (%3 .) - = (x® sxe Lava), (25)n

when « §g<x<g, and

x 2¢
de = o(e™ ) vhen x >nb ‘va ,

n

for all fixed ¢ > 0 . Therefore the sum of all terms for k > =. M Cea in (24) 1s negligible, being
o(n™ for all n> 0 , and we may take x = o(a~* €) in (25).

We now turn to the asymptotic behavior of the function

2

gm = LI xame™ /" | tixedb, nw. (26)
k>1

\ Again the terms for k>al*” are negligible, so we can use (25) to express f in terms of g :

28 8’ bas 1 1
f,(n) = gn) + == g,(n) - = g,(n) + rei &,(n) - yp» €,(n)

3 3

SBE gn) 5() - oA gn) + 0a gla) (21)n n

In principle such an expansion could be carried out as far as we like, hence the problem of obtaining an

asymptotic expansion for £.(n) reduces to the analogous problem for &(n) .

The behavior of &,(n) can be derived by starting with the well-known formula
Ctim

et. Ta J rfz)x as , e>0, x>1 , (28)
c-ie

obtained, for exsmple, try Fouricr inversion of [(c + .‘mit) . Then since cz)” L, > dk) / 0% we find

>



crim

ey (n) - XL a § n® r(s)x®<% a(k)dz
= Cc=i=

ctie

| - gx [of re)g(es-b)® as (29)
c=i=

where now ¢ > §{b+l) . let q be a fixed positive number. When Re(s) > q , ((s) <of[sfd' hy as
s ~o } and since a*r(z) gets mall on vertical lines we can shift the line of integration to the left

as far as we plesse 1f we only take the residues into account. There is a double pole at 2 - 4(bl) ,

and possibly some simple poles at 3 = 0y~1,-2,... . St w z-§(bel) ; we have

ar(s)¢(2s-v)" » oA) r(#(v+1))(1+ w(ln n) + 0(v")) «(1+ wy(g(v+1)) +0(w°)) ’ = + z + 01})

where #(z) = "(z) /I'(z) , hence the residus at the double pole is

oFDr(poe1)) 1a 0 4 § lhe) 47) (30)

™e residue at 5 = ~k is

3 4 k

- _—
(2kete1)” Kt

which 1s almost always sero when b is even. The sum of (30) and (31) for all k > 0 givesan asymptotic

series for G(r) . Hence we have, for al2 m>0, :

ron) $V manne (¢ 7 uma fme ge o(n™) :

&,(n) -%a in neg m+ Te - WEE or) ;

an) Vm mas Gegr-$im2admeoa® ; (32)

etc. These formulas have been verified by computer calculation; for example,when n = 10,

ton) = 3.9062 ant (Vm inns £7 -3 mo) dmg. 3000mn.
Returning to our origimml problem about trees, we have

Se £.(n) - 2¢ . .
(a+ 1) 1,m1 - p(n - o(®) 7 (a)

I~

« 2 gn) + > 6,(n) + 0(a™”/2 10g n) (33)

by (4), (23), (Ph), and (:77), and this equals /= a ¥. gate o(n=>/? log n) « We have proved, in
particular; the ollowinge result:
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Theorem. The aversge height of a planted plane tree with n nodes, considering all such ‘ress Lo be

equally likely, is

IC REY on ¥ 108 n) . (3h)

The sage method can be used to cbtain as many further terms of the expanaion as desired. The factor

lo) n in the error term turns ou* to be unnecessary.
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