EFFICIENT ALGORITHMS FOR GRAPH MANIPULATION

BY
JOHN HOPCROFT
ROBERT TARJAN

STAN-CS-71-207
MARCH, 1971

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Efficient Algorithms for Graph Manipulation

John Hopcroft
Robert Tarjan

Stanford University, Stanford, California

Abstract: Efficient algorithms are presented for partitioning a graph

into connected components, biconnected components and simple paths.

The algorithm for partitioning of a graph into simple paths is
iterative and each iteration produces a new path between two

vertices already on paths. (The start vertex can be specified
dynamically.) If V is the number of vertices and E is the number
of edges each algorithm requires time and space proportional-to

max(V,E) when executed on a random access camputer.

This research was supported by the Hertz Foundation and by the Office
of Naval Research under grant number N-0001k-67-A-0112-0057 NR Ohl-402,

Reproduction in whole or in part is permitted for any purpose of the
United States Government.

EFFICIENT ALGORITHMS FOR GRAPH MANIPULATION

John Hopcroft
Robert Tarjan
Stanford University, Stanford, California

Graphs arise in many different contexts where it is necessary to represent interrelations between data
elements. Consequently algorithms are being developed to manipulate graphs and test them for various
properties. Certain basic tasks are common to many of these algorithms. For example, in order to test a
graph for planarity, one first decomposes the graph™into biconnected components and tests each camponent
separately. If one is using an algorithm [4] with asymptotic growth of V log V to test for planarity, it
is imperative that one use an algorithm for partitioning the graph whose asymptotic growth is linear with the
number of edges rather than quadratic in the number of vertices. In fact, representing a graph by a connection
metrix in the above case would result in spending more time in constructing the matrix than in testing the graph
for planarity if it were represented by a list of edges. It is with this in mind that we present a structure
for representing graphs in a computer and several algorithms for simple operations on the graph. These include
dividing a graph into connected components, dividing a graph into biconnected components, and partitioning a
graph into simple paths. The algorithm for division into connected components is well-known [6]. The other
two algorithms are original. For a graph with V vertices and E edges, each algorithm requires time and
space proportional to max(V,E) .

Standard graph terminology Will be yged throughout this discussion. See for instance [2]. We assume
that the graph is initially given as a list of pairs of vertices, each pair representing an edge of the graph.
The order of the vertices is unimportant; that is, the graph is unordered. Labels may be attached to some or
all of the vertices and edges. '

Our model is that of a random-access computer with standard operations} accessing & number in storage
requires unit time. We allow storage of numbers no larger than k max(V,E) where k is some constant. (If
the labels are large data items, we will assume that they are numbered with small integer codes and referred
to by their codes; there are no more than k max(V,E) labels.) It is easy to see and may be proved rigorously
that most interesting graph procedures require time at least proportional to E when implemented on any
reasonable model of & computer, if the input is a list of edges. This follows from the fact that each edge
must be examined once.

It is very important to have an appropriate computer representation for graphs. Many researchers have
described algorithms which use the matrix representation of a graph [1]. The time and space bounds for such
algorithms generally are at least V2 [3] which is not as small as possible if E is small. (In planar
graphs for instance, E < 3V-6 .) We use a list structure representation of a graph. For each vertex, a
list of vertices to which it is adjacent is made. Note that two entries occur for each edge, one for
each of its end points. A cross-link between these two entries is often useful. Note also that a directed

is on the list of vertices adjacent to Vl , then
is called the head

graph may be represented in this fashion; if vertex Vs
(yl, v2) is a directed edge of the graph. Vertex vy is called the tail, and vertex Vs
of the edge.

A directed representation of an undirected graph is a representation of this form in which each edge
appears only once; the edges are directed according to some criterion such as the direction in which they are
transversed during a search. Some version of this structure representation is used in all the algorithms.

One technique has proved to be of great value. That is the notion of search, moving from vertex to
adjacent vertex in the graph in such a way that all the edges are covered. In particular depth-first search
is the basis of all the algorithms presented here. In this pattern of search, each time an edge to a new
vertex is discovered, the search is continued from the new vertex and is not renewed at the old vertex until
all edges from the new vertex are exhausted. The search process provides an orientation for each edge, in

addition to generating information used in the particular algorithms.

Detailed Description of the Algorithms

Algorithm for Finding the Connected Components of a Graph

This algorithm finds the connected components of a graph by performing depth-first search on each
connected component. FEach new vertex reached is marked. When no more vertices can be reached along edges
from marked vertices, a connected component has been found. An unmarked vertex is then selected, and the
process is repeated until the entire graph is explored.

The details of the algorithm appear in the flowcha;,rt (Figure 1). Since the algorithm is well-known, and
since it forms a part of the algorithm for finding biconnected components, we omit proofs of its correctness
and time bound. These proofs may be found as part of the proofs for the biconnected components algorithm. The
algorithm requires space proportional to max(V,E) and time proportional to max(V,E) where V is the number

of vertices and E is the number of edges of the graph.

Figure 1: Flowchart for Connected Components Algorithm

CSTART

rSTARTPOINT -1 l
a ©)

Empty stack of points. Number

startpoint and put it on stack.

- ®

- ~

’—No< Is there an edge out of top point on stack? >

| Yes

Delete edge from graph and add

it to current connected component.

|

Mo~ 1s head of edge & new point? §

- Yes

| Add new point to stack of points and number it. I

®

1

< Is theriei orily cr>nr;ewpoint in stack? >—N(-)——-——) Remove top point from stack.
Yes
< Is there an unnumbered point? o o
Yes

@—— Let it be the new startpoint.

Algorithm for Finding the Biconnected Components of a Graph

This algorithm breaks a graph into its biconnected components by performing a depth-first search along
the edges of the graph. EKach new point reached is placed on a stack, and for each point a record is kept of
the lowest point on the stack to which it is connected by & path of unstacked points. When a new point
cannot be reached from the top of the stack, the top point is deleted, and the search is continued from the
next point on the stack. If the top point does not comnect to a point lower than the second point on the
stack, then this second point is an articulation point of the graph. All edges examined during the search
are placed on another stack, so that when an articula:.tion point is found the edges of the corresponding
biconnected component may be retrieved and placed in an output array.

When the stack is exhausted, a complete search of a connected component has been performed. If the graph
is connected, the process is complete. Otherwise, an unreached node is selected as a new starting point
and the process repeated until all of the graph has been examined. Isolated points are not listed as
biconnected components, since they have no adjacent edges. They are merely skipped. The details of the
algorithm are given in the flowchart (Figure 2). Note that this flowchart gives a non-
deterministic algorithm, since any new edge may be selected in block A. The actual program is deterministic;
the choice of an edge depends on the particular representation of the graph.

We will prove that the non-deterministic algorithm terminates on all simple graphs without loops, and
we also derive a bound on the execution time. We Will then prove the correctness of the algorithm, by
induction on the number of edges in the graph. Note that the algorithm requires storage space proportional
to max(V,E) , where V is the number of vertices and E is the number of edges of the graph.

Let us consider applying the algorithm to a graph. Referring to the flowchart, every passage through
the YES branch of block A causes an edge to be deleted from the graph. Each passage through the NO branch
of block B causes a point to be deleted from the stack. Once a point is deleted from the stack it is never
added to the stack again, since all adjacent edges have been examined. Fach edge is deleted from the stack
of edges once in block C. Thus the blocks directly below the YES branch of block A are executed at most E
times, those below the NO branch of block B at most V times, and the total time spent in block C is
proportional to E . Therefore there is some k such that for all graphs the algorithm takes no more than
k max(V,E) steps. A more explicit time bound may be calculated by referring to the program.

Suppose the graph G contains no edges. By examining the flowchart we see that the algorithm, when
applied to G, will terminate after examining each point once and listing no components. Thus the algorithm
operates correctly in this case. Suppose the algorithm works correctly on all graphs with E-1 or fewer
edges. Consider applying the algorithm to a graph G with E edges. Since the stack of points becomes
empty at least once during the operation of the algorithm, and since the YES branch at block D must be taken
when only two points are on the stack, every edge must not only be placed on the stack of edges but must be
removed in block C. Consider the first time block C is reached when the algorithm is applied to graph G.
Suppose not all the edges in the graph are removed from the stack of edges in this execution of block C.

Then p , the second point on the stack, is an articulation point and separates the removed edges from the
other edges in the graph.

Consider only the set of removed edges. If the algorithm is applied to the subgraph G' of G made up
of these edges, with p used as the start point, then the steps taken are the same as those taken during the
analysis of the edges of G' when the input is the entire graph. Since G' contains fewer edges than G ,
the algorithm operates correctly on G!' . G' must be biconnected, since otherwise block C is reached
before G' is completely examined, contrary to our assumption that block C is reached for the first time
only after all edges of G' are examined. If we delete the set of edges of G' from G , we get another
graph G" with fewer edges than G . The algorithm operates correctly on G" by assumption. The behavior
of the algorithm on G is simply a composite of its behavior on G' and G" j thus the algorithm must
operate correctly on G.

Now suppose that the first time block C is reached, all the edges of G are removed from the stack of
edges. We want to show that in this case G is biconnected. Suppose that G is not biconnected. Then
choose a biconnected component of G which may be separated by removing some one point. Let the edges making
up this component be subgraph G' of G ; let the remainder of G be G" . The algorithm operates correctly

on G'

processing G"

Thus G

and on G" by assumption. The behavior of the algorithm on G is a camposite of its behavior on
G' and on G" . But the algorithm reaches block C once while processing G' and at least once while

This contradicts the fact that the algorithm only reaches block C once while processing G.
must be biconnected, and the algorithm operates correctly on G. By induction, the algorithm is

correct for all simple graphs without loops.

Figure

2: Flowchart for Biconnected Components Algorithm

C start_D

Choose a startpoint.

: ®

Empty stack of points. Number

startpoint and put it on stack.

@
No yd N
= 4 Is there an edge out of top point on stack? >
Yes
f Delete edge from graph. Put on stack of edges. l
No
_< Is head of edge a new point? Yes
Check to see if number of Add new point to stack of
head of edge is lower than points. Number it. Set
LOWPOINT of top point. If LOWPOINT of the point to
80, set LOWPOINT of top equal the number of the
point equal to that number. previous top of stack.

1

g 1
‘Yi< Is there only one point in stack? >N% @

;

<

Is there an unnumbered point? > Is LOWPOINT of the top point;

@e—]

No equal to the number of the
Yes No next point on the stack?
Let it be the new Set LOWPOINT of the Form a new biconnected
-startpoint. next point equal to component by deleting
LOWPOINT of the top edges from edge stack
Stop point if it is less. until finding one which
connects to a point below
€ the next point on the
stack.

.‘ Remove top point
from stack.

B

Algorithm for Finding Simple Paths in a Graph

This algorithm may be used to partition a graph into simple paths, such that all the paths exhaust the
edges of the graph. Each iteration of the algorithm produces & new path which contains no vertex twice,
and which connects the chosen startpoint with some other vertex which already occurs in a path. Total
running time 1s proportional to the number of edges in the graph. The starting point for each successive
path may be selected arbitrarily. In fact, the initial edge of each successive path may be selected
arbitrarily from the set of unused edges.

The algorithm is highly dependent on the graph being biconnected. (The biconnected ccmponents of a
graph are found using the previously described algorithm.) 1In order to find a new path, the initial edge is
selected and the head of the edge is checked. If this point has never been reached before, a depth-first
search is begun which must end in a path since the graph is biconnected. The search generates a tree-like
structure; specifically, it is & tree with extra edges connecting some nodes with their (not necessarily
immediate) ancestors. (We will visualize the tree drawn so that the root, which is an ancestor of &ll points,
is at the bottom of the tree.) Enough information is saved from this tree so that if a point in it is reached
when building another path, the path may be completed without any further search.

The flowchart (Figs. 3 and L) gives the details of the algorithm. It is divided into two parts; one for the
depth-first search process and one for peth construction using previously gathered informati on. We shall
prove the correctness of the algorithm and give a time bound for its operation. To derive the time bound,
we assume that one point is marked old initially, and a different point is selected as the initial startpoint.
The algorithm is then run repeatedly with arbitrary startpoints until all edges are used to form paths.

Let us consider pafl generation using depth-first search; that is, suppose the algorithm is applied and
that the head of the first edge selected is previously unreached. Referring to the flowchart, we see that
the search process is very similar to that used. in the biconnectivity algorithm. A search tree is generated,
and each edge examined is either part of the tree or connects a point to one of its predecessors in the tree.
LOWPOINT is exactly the same as in the biconnectivity algorithm; it gives the number of the lowest point in
the tree reachable from a given point by continuing out along the tree and taking one edge back toward the
root. The forward edges point along this path, while the backward edges point back along the tree branches.
We have shown in the correctness proof of the biconnectivity algorithm that, if the graph is biconnected,
LOWPOINT of a given point must point to a node which is an ancestor of the immediate predecessor of the given
point. 1In particular, LOWPOINT of the second point in the search tree must indicate an old point which is not
the startpoint. Therefore the algorithm will find a path conteining the initial edge. Note that all points
encountered during the search process must either be old or unreached, since every point reached in a previous
search either has had all its edges examined or has been included in a path.

Let us now suppose that the head of the first edge has been reached previously but is not marked old.
Then the forward and backward pointers, along with the LOWPOINT values, allow the algorithm to construct a
path without further search. First, if the number of the head of the edge is less than the number of the
startpoint, then following backward pointers will certainly produce a simple path, since the root of a search
tree must be old and each successive point along a backward path has a lower number and thus is distinct from
thé other points in the path. If the initial edge is part of a search tree and the startpoint is the
prédecessor of the second point, then LOWPOINT of the second point must be less than the number of the
startpoint. Following forward edges until reaching a point numbered lower than the startpoint and then
following backward edges, will produce a simple path. This is true since the forward edges point through
descendants of the tree, with the single exception of the edge whose head is a point below startpoint in the
tree. The last case to consider occurs when the initial edge is not part of a search tree but points from a
node to one of its descendants in a tree. In this case some node in the tree between the startpoint and the
second point of the path must have a LOWPOINT value less than the number of the startpoint. If we follow
backward edges until the first such point is reached, then follow forward edges until a point numbered less
than the startpoint is reached, and finally follow backward edges until an old point is reached, we will

generate a simple path. Note that the first forward edge taken cannot lead to the previous point, because if

it did the LOWPOINT value at the previous point would be less than the number of startpoint, and the forward
edge from this point would have been chosen instead of the backward edge.

We thus see that each execution of the pathfinding algorithm produces a simple path, assuming that the
algorithm is applied to a biconnected graph with at least one point which is not the first startpoint marked
old initially. Since each edge is examined at most once in the search section of the algorithm, and since
each edge is put into a path once, there is a constant k such that the time required to execute the
algorithm until no edges are unused is less than kE steps, where E is the number of edges in the graph. .
(Note that the number of vertices, V , is less than E_ if the graph is biconnected.) Detailed examination -
of the program will produce & more exact time bound.

Another algorithm for finding simple paths exists. Lempel, Even, and Cederbaum(5] have described an
algorithm for numbering the vertices of a biconnected graph such that: (1) each number is an integer in
the range 1 to V , where V is the number of vertices on the graph; (ii) vertices 1 and V are
joined by an edge; (iii) for all 1 < i < V , vertex i is joined to at least two vertices, one with a
higher number and one with a lower number. We may use this algorithm to partition a graph into simple paths.

Given a start point and an adjacent end point, number the vertices so that the start point is 1 , the
endpoint is V , and the numbering satisfies the conditions above. Take edge (1,V) as the first path.
Given an arbitrary start point, find an edge to a higher numbered vertex. Continue to find edges to
successively higher numbered vertices until an old vertex is reached. If no edge to a higher numbered vertex
exists from the start vertex, select edges to successively lower mumbered vertices until an old vertex is
reached.

This algorithm is cledirly correct and looks conceptionally simpler. However, Lempel, Even, and Cederbaum
present no efficient implementation of their numbering algorithm, and the only efficient way we have found to
implement it requires using the previously described pathfinding algorithm in a more complicated form. Thus
the new algorithm requires time and space proportional to max(V,E) , but the constants of proportionality
are larger than those for the implemented algorithm.

Figure 3:

Flowchart for Pathfinding Algorithm (I)

Start

No
< Is there an unused edge from startpoint?

| Yes

Put edge in pathstack. Let
point be head of the edge.

2

Yes

o
N

Has point been reached previously? >

No

Number

point. J

'_Qs there an unsearched edge from point?

J’No_m

Yes

(No path exists.)

®

®

Set backward edge of
point to edge on path-
stack. Set pastpoint
to tail of edge. If
LOWPOINT of point less
than LOWPOINT of past-
point, modify LOWPOINT
and forward edge of
pastpoint to indicate
edge to point.

[Mark edge searched.]

—

Is head of edge unreached?

Is head of edge
old and not equal

to startpoint?

)

Yes No

Set point to pastpoint.
Delete edge from path-
stack.

Yes

Put edge on pathstack.
Set point to head of

edge.

If number of head of edge is
less than LOWPOINT of point,
modify LOWPOINT and forward
edge of point to indicate edge.

Mark all points in path old.
Mark all edges in path used.

C Stop. D

1L

®

Figure b

Flowchart for Pathfinding Algorithm (II)

Is number of point less than \ Yes
number of startpoint?

No

No

Is LOWPOINT of point less
than number of startpoint? Yes

pathstack.

Put backward edge on

Set point

to head of edge.

A
No Is point old? \ Yes

-0

Put forward edge on
pathstack. Set point
to head of edge.

I

Yes [/ .
A\ Is point old?)

-

<Is number of point less
than number of startpoint?

Yes

No

Put backward edge on pathstack.
Set point to head of edge.

¥ (15 point o1a?)

Yes

®

@

Implementation

The algorithms for finding connected components, biconnected components, and simple paths were implemented
in Algol using the Algol W compiler at Stanford University. Auxiliary subroutines were also implemented.
Brief descriptions of the procedures are provided below.

ADD2(A, B, STACK, PTR) : This procedure adds value A followed by value B to the top of stack STACK and

increments the pointer to the top of the stack (PTR). Stacks are represented as arrays; the top
of the stack is the highest filled location.

NEXTLINK(POINT, VALUE) : This procedure is used to build the structural representation of a graph. Tt adds

VAIUE to the list of vertices adjacent to POINT. (POINT,VAIUE) is an edge (possibly directed)
of the graph.

CONNECT (V, E, EPTR, EDGELIST, COMPONENTS) : This procedure, given a graph with V vertices and E edges,
vhose edges are listed in EDGELIST, camputes the connected components of the graph and places the
edges of the components in COMPONENTS. Each component is preceded by an entry containing the
number of edges E' of the component. The edges are oriented for output according to the direction

in which they were searched (head first, tail second).

BICONNEXJT(V,E,EPPR,EGEEIST,BICOMPOBTE&\]TS): This procedure, given a graph with V vertices and E edges,
whose edges are listed in EDGELIST, computes the biconnected components of the graph and places
them in BICOMPONENTS. Each component is preceded by an entry containing the number of edges E"

of the component. The edges are oriented for output according to the direction in which they were
searched (head first, tail second).

PATHFINDER (STARTPT, PATHPT,CODEVALUE, PATH) : This procedure, given a list structure representation of a
biconnected graph with certain vertices marked as old, constructs a simple path from STARTPOINT
to some 0ld vertex, saving information to be used in constructing succeeding paths. The new

path is stored in array PATH. Calling PATHFINDER repeatedly may be used to partition the graph
into simple paths.

Further comments may be found in the program listings, which follow.

PROCECURE ACD2(INTECER VALUS A,B3INTEGER ARRAY STACK(*);
INTEGFR VALUE RESULT PTR);

BEGIN
COMMENT e ok ok o ok 8ok o ok o6 op o ok ook ok o oo ool ol ook ok ol ok ok ok oK o oo e ot o o ok o o o oKk o
* PRDOCEDURE TO ADC VALUES A, B TO STACK “STACKY" AND
® INCREASE STACK FOINTER ®pPTR®™ BY 2,

et ot ok e ok e e e ook o ok e ol sl ol o o ok ok ok ok ol ook ko o ok ok o e ok ok R Kok Rk ok R K 3
PTR:=PTR+23
STACK(PTR~-1) =43
STACK(PTR):=
END;

PROCEDURE NEXTLINK(INTEGER VALUF PCINT,VAL);

BEGIN ~
COMMENT ootk s ok sk ob ok o o sk b o9 o0 o ok o ok ook ok oo oo o ok o ok o ok ok b ok ok o ook ok ook ok ok
* PROCEDURE T OADCDIRECTEDE D G E{POINT,VAL)TC
* STRUCTURALRFPRESENTATIONOF A GPAPY.
%*
* GLOBAL VARIABLES:
® HEAD(V4133V422E) JNEXT(L22V+2%E): STRUCTUR AL
* REPRESENTATICN OF T H E GRAPH.,

* FREENEXT: CUPRENT LAST ENTRY IN NEXT ARRAY.
ottt e ool o otk o ok oo e ok ekl i ol ol ok ook o o ol st ook o oo sk o ootk ke otk ok oK ok ok e R oK R R ok 3
FREENEXT:=FREENEXT+1;
NEXT(FREENEXT)s=NEXT{FCINT);
NEXT(POINT) :=FREENEXT;
HEAC(FREENEXT):=VAL
END;

INTEGER PROCEDURE MIN(INTEGFR VALUE A,B);
COMMENT sk stk dkokakokob 3 ook ok b ok ok o sk ook o ook 2ok o o ok o ok kool ok ok ok ok e o o

* PRCCEDURE TO CCMPLTE THE MINIMUM OF TWO INTEGERS.
o ok ok kokokok g ook ok b Ak 3 Aok ok ook ok ok Bk ook Sk ok ki ok ko K KK ko 3

IF A<CB THEN A ELSE B3

10

PROCEDURE CONNECT(INTEGERVALUEVYESINTEGER RESULT CPTR;
INTEGER ARRAY EDGEL IST,COMPONENTS(*));

BEGIN

COMMEN T %k ok skt ok sl sk o 3k ok o ok ok ok ak a5 e ok ok ak ok 3k ok ek ks o e ok o e o sk e sk ook ook ok ok ok ok ok

L IR B RN 3 K K IR N NS IR SR NE BE NE NP EE CNE N ONE R EE BE BE BE N R K IR R AR

PROCEDURE TO FINC THE CONNECTED COMPONENTS OF A
GRAPH.

PARAMET ERS ¢

VyE: INPUTNUMBERQOFVERTICESANDEDGES OF THE
GRAPH.

EDGELIST(1::2%E): INPUT LISTOFEDGESOF GRAPH.

COMPONENTS(1::3%E): OUTPUT LISTOFEOGES CF
COMPONENTS FOUND. EACH COMPONENT IS PRECEDED 8Y
AN ENTRY GIVING THE NUMBERCFEDGES Of Tt-E
COMPONENT.

CPTR: OUTPUTPCINTER TO LAST ENTRY IN COMPONENTS.

GLOBAL VARIABLES
HEAD(V+]1 2:V+2%E) NEXT{132V42%E): STRUCTURAL
REPRESENTATIONOF THE GRAPH(UNDIRECTED,yN O
~. CRCSS-LINKS),
FREENEXT:LAST ENTRYINNEXT ARRAY.

LCCALVARIABLES:

NUMBER{1l::V+1l): ARRAY FOR NUMBERING THE VERTICES
DURING DEPTF=-FIRST SEARCH.

CODE: CURRENT HIGHEST VERTEX NUMBER

PCINT: CURRENTPOINT BEING EXAMINED DURING SEARCH.

V2:NEXTPCINTTOBE EXAMINED DURING SEARCH.

OLDPTR: POSITION TN COMPONENTS TO PLACE E VALUE CF
NEXT CCMPCNENT,

GLOBAL PRCCECURES:
ADD2 ¢NEXTLINK,

a RECURSIVECEPTH=FIRSTsceaR CH PrROC E Du RE I1sUSEDT o
EXAMINE CCNNFCTEDCOMPCNENTSOF THE GRAPH.

o2 ook ok o ke o o ook ol o ok ok ook ook ok o o o ok ol 3k o ok ok o e ke ok ook ok ko ok ok o ook ok ok ok ok ok % 3
INTEGER ARRAY NUMBER(12:V+1)3;
INTEGER CODEZPCINTyW2,CLDPTR;

PROCECURE CONNECTOR{ INTEGER VALUE POINT, OLDPT);
COMMENT skl okak ok xc e sk ool o ok e koo o oge ok o ook ook ok o o ok ok 3k sk ook ok ok Kk b ok

*
*

A 3R BF 3

* % 4 *

RECURSIVE PROCEDURE TO FIND ACONNECTEDCOMPONENT,
USING DEPTH-FIRST SEARCH,

PARAMETERS 32
POINT:STARTPOINTOFSEARCH.
OLOPT:PREVIOUSSTARTPOINT.

GLOBAL VARIABLES:
SEE CONNECT FOR DESCRIPTION.

GLOBALPROCECURES:
ADC2.

11

P —

* EXAMINE EACH EDGE OUT OF POINT, :

e e e e e e de el e ot ok o kot ook Ok o ol ok oo ok ok ool ok ook ok o ok R ok ook ok ko ok Rk ok f
WHILE NEXT(POINT)>O CN

BEGIN :
COMMENT #okokokokok o ok ok s ok ok o ook s ot o o ook o okt oo o ook o ook o ok e ok e ok
* V2 1S HEAC OF EDGE. DELETE EDGE FROM j
* STRUCTURAL REPRESENTATION. ’

et e ek ok o e ok o o ok o ot o e kg e o ok o ok o o o6 o ekt ok ol ook ok ok ook ok o K §
V2:=HEADINEXT(PCINT));

NEXT(PCIAT) :=NEXT(NEXT(PCINT));

COMMENT % % %k o o ook s ok o ok ol ok o ol oot ok o ok ok 3 o ok ook e o ook ok o
* HAS THE ECCGE BEEN SEARCHED IN THE OTHER

* DIRECTICNT IF SC, LOCK FCR ANCTHER ELCCE.

e 3o o o o o ok ok o ok o b K koK o o o ok ook o e ok ok ok o e o R ok o ok ke ok
IF (NUMBER(V2)<KNUMBER(PCINT))AND(V2-=0LDPT) THEN

BEGIN
COMMENT ok soshode o deote e ool sk e ook o ok ok ook o o o 0ok ok ook ok o oo o o o ok o
* ADC EDGE TO COMPONENTS.

Xe e o o o o Kok s Ak ok ok o ok oh ok b e o ok ok ok ok ok ok kot sk ook ok ak ok §
ADD2(POINT,Vv2 ,COMFCNENTS,CPTR) 3

COMMENT % o o sk o oo o ook o ook o ook ook ok ook o ook sfeofeoleolt ok o ok o ok e ik
* HAS A NEW PCINT BEEN FOUND?

¥ e e o ke o o e ook ok o ok ook o o o o ook o ke ol ok o e o e ok ok kool Rtk ok 3
IF NUMBER(VZ2)=0 THEN

~REGIN ;
COMMENT sl dokokoteokofook o sk sk e ek o s o ok Kook o e s e o
% NEW POINT FOUND. NUMBER IT,

e e o ke o o e ol e ook ok o Rk ook ok Kol ko o ko o ok ok ok §
NUMBER(V2):=CDODE:=CODE+1;
CONNENT ook sk omokoiok 2 ok ook of ok o ook ok ook o ook ok o otk e
* INITIATE A DEPTH-FIRST SEARCH FRCM THE
* NEW POINT.
ot oo o e ok oo e o et o o o o o sl o ol e oo ok ok ok e ok kR e Xk o o o K
CONNECTOR(V2,POINT);
END
END S
ENC3
CONNMENT ete skodeaeo ok ek ok et et o ok oo o ook o o o ok ok oo e ok ok o o oo e o ook e ok
* CONSTRUCT THE STRUCTURAL REPRESENTATICN OF THE
* GRAPH.
s ot e e e o A o SR ok e o K o o ok ok ok ol ok ok o ok K ok ko ok ok % ok ok 3
FREENEXT:=V;
FCR I:=1 UNTIL Vv CC NEXT{I):=03
FOR I:=1 UNTIL E DO

REGIN
COMMENT ook ok o ok ook et ol o o ko e ok kol o ool e o o ook oo o sk ol ok sfeoke ol ok
* EACH EDGE CCCURS TWICE, ONCE FOR EACH
* ENDPCINT,

********##‘#***#******#******#*#****t***#***##***;
NEXTLINK{EDGEL IST(2*I-1),EDGELIST(2%I));
NEXTLINK(EDGEL IST(2%1),ECCEL IST(2%1-1))3
ENC;
CONMMENT ok vcokofok ko d % ok ok s ok o doofe ofc o o o o ook ok ok ol o ok ok o o o ok oe e s ok o o ok ool ok e ok
* INITIALIZE VARIABLES FOR SEARCH.
*******##*#***#**#*******t*************t**###**t*#*t;
CPTR:=0; '
PCINT:=1; .
FOR T:=1 UNTIL v+1 DC NUMBER(1):=0;
WHILE POINT<=V DD
REGIN

12

COMMENT 4% %8 4% ok ok ok gk kakok ok ok Kok Ok Kok ok kK

* EACH EXECUTION CF CONNECTOR SEARCHES A

* CCNNECTED CCMPCNENT. AFTER EACH SEARCH,

* FINC A h UNNUMBEREC VERTEX ANDSEARCHAGAIN.
* REPEAT UNTIL ALL VERTICES ARE INVESTIGATED.

ook ok e b o ok b % ok o ook ok otk ok ok kakok Aok ok ok ok ok ok ok ok ok Kokl ok ok §

NUMBER(PCINT):=CCDEz=13

NLDOPTR:=CPTR:=CPTR+1;

CCNNECTCR(PCINT,0)3

COMMENT sk ok ook oo ok ko ok ok o ot ok ok ol ook ok koo ko

* COMPUTE NUMBER OF EDGES Of COMPONENT
*t#t**##***#**t#****#**#**************#****ttt*t'
COMPONENTS(OLDPTR) :={CPTR-OLDPTR)DIV > .
NHILENUMBER(PCINT!ﬂ=0D O POINT:=POINT+13
END
END;

PROCEDUREBICONNECT(INTEGER VALUE VyESINTEGERRESULT RPTR;
INTEGER_ARRAY EDGELIST BICCMPONENTS (*)) ;
BEGIN
COMMENT ook g ok o ok ok i ok o ook ok o ook ok ok ok R oK o e ol ok ok ok o ok ook ok o ok o ok okok ok ok
PROCEDURE TOFIND THE BICONNECTED COMPONENTS OF A
GRAPH.

PARAMETERS:

Ve+E: INPUT NUMBER OF VERTICES AND EDGES OF THE
GRAPH.

EDGELIST(1:232%E): INPUT LISTOFEDGESOFGRAPH.

BICCMPCNENTS (1 ¢:3%E): OUTPUT LIST OF EDGES OF
COMPONENTS FOUND. EACHCOMPONENTIS PRECEDED BY
A NENTRYGIVING THENUMBERDFEDGES OFTEE
COMPONENT.

BPTR:OUTPUT POINTERTOLAST ENTRY OF BICCMPONENTS.

GLOBAL VARIABLES:

HEAD(V4+13sV+2%E) JNEXT(1::V42%E)SSTRUCTURAL REPRF-
SENTATIONOF THE GRAPHU(UNDIRECTEDs N 0 CROSS~-
LINKS),

FREENEXT: CAST ENTRY IN NEXT ARRAY.

LCCAL VARIABLES:

NUMBER(1::V+1)?: ARRAY FCR NUMBERING THE VERTICES
DURING DEPTH~-FIRST SEARCH.

CCDE :CURRENTHIGHESTVERTEXNUMBER.

EDGESTACK(1 ::2%E): STORAGEFORLIST OF EDGES
EXAMINEO CURING SEARCH.,

EPTR: POINTER TO LAST ENTRY IN EDGESTACK.

POINT: CURRENT POINT 8EING EXAMINED WRING SEARCH.

V22 NEXT PC? NTTO BE EXAMINED DURING SEARCH.

NEWLOWPT:LOWPOINT Fc RBICONNECTED PART OF GRAPH
ABOVE ANC INCLUDING V2.

L AR R BF R BE BF NE R NE BE BE BE B OB BE BE NE EE EE N BE NE NP S NE N BE NK EE

15

CLDPTR: POSITION INBICOMPONENTS TO PLACE E VALUE
OF NEXT COMFONENT.

GLOBAL PRGCECURES:
MIN,ACC2 yNEXTLINK.

A RECURSIVE CEPTH~FIRST SEARCH PROCEDUREI S LSEDTO

DIVIDETHE GRAPHe THE LOWESTPOINT REACHABLE FROM THE

CURRENT POINT WITHOUY GOING THROUGH PREVIOUSLY

SEAQCHECPCINTS IS CALCULATED. THIS INFORMATION

ALLOWSDETERMINATICNCF THEARTICULATIGNPOINTS AND

* CIVISICNC F THE GRAPH.

3 3 ok o o b ok e ok s ok ok o ok o ok o ok o ok ok ok o o ke e ek o ok ek ook ok ok o o ook e bl e ook ok ok 3

INTEGERARRAY NUMBER (12:V+1);

INTEGER ARRAY EDGESTACK(1::22%E);

INTECER CODE,4y EPTRyPOINT yV2,NEWLOWPT0LDPTR ;

PROCEDURE BICCNNECTOR({INTEGER VALUE QESuCT POINT,CLDPT,
Lowpo INT) 3

CONMMENT sk ol ook ok o 0% o o o ol ofc ok ok o ol ok o e o ol ol 2 ook ook ol e ke o ok o o ok o o o ok ok ol o koo o

% 3 I ¥ 3 b % H ¥ 3

* RECURSIVE PROCENDURE TO SEARCH A CONNECTED COMPONENT
* ANDFINDITSBICONNECTED CQMPONENTS USING DEPTH-
* FIRST SEARCH.
%*
* PARAMETERS
* POINT: STARTPOINT cF SEARCHy UNCHANGED CURING
* EXECUT ION .
* CLDPT: PFEVICUS STARTPOINT, UNCHANGED DURING
* EXECUTION.
* LOWPOINT: OUTPUT OF LOWEST POINT REACHABLE ON A
* PATHFCUNDDURING SEARCH FORWARD.
*
* GLOBAL VARIABLES:
* SEFBICONNECTF O RDESCRIPTION.
* N
* GLNBAL PROCECURES:
* MIN,ADDZ2.
*
* EXAMINE EACHEDGE GuUT cFPCINT.

o o ook o o kR ok o ok o o oo 3k o ok kool o ol o KoK ok Ak KKk Rk O Ko sk i kok kX 3
WHILENEXT(PCINTI>O0C O

BEGIN
COMMENT ok %k 3 o ok ok ok dkeofe 3kl oK ok ok ok ok ok o e g o o e o ok o sk s ook ok ok e ok ok
* V2 1S HEACOF THE EDGE. DELETE EDGE FROM
* STRUCTURAL REPRESENTATION.

o o o o o o ok ok o o o b o o o ok ok ok o ok 3 ok ok ol ok o o sk o ok o ok ok ook o ok ok ok Ak ok k% 5
V2 :=HEACINEXT(PCINT))

NEXT (POINT) :=NEXTI(NEXT(POINT));

COMMENT sk okookoie sk ok ok ok o ek e ok o ok o ook ok o ok ok ok ook o kol o ok o o skook e ok &
* HAS. THE EDGEBEEN SEARCHED I N THE CTHER

* CIRECT ION? I1F soOo,LOOKFOR ANOTHER EDGE.

e e e e e 3 ok ok o ok ok s ok ok o ok ok ok ok e o ok sk ootk ol sl sk ook sk 3k ok o ok o ol oK 3k ok sk ok 3 3

I F {NUMBER(V2) <NUMBER(POINT))ANDIV2~=0LDPT) T H E N

BEG!In
COMMENT ok sk ok skoke oot kot ol o o ok o o o o o ofea o ok 3 ol 3ok o ke ok sk o ko e sk o 3
* ADCECGETO EDGESTACK.

e ok o e e ok o o ok e s ok ool ke o g ok ok ol ok ok ok ok e 3k ook ok ok ek ok ok ok ok 3

ADD2(POINT,V2,EDGESTACK,EPTR) ;
CONNENT skrskkidok bk koo ook ok S Rk R Xk

* HAS A NEW POINT BEEN FOUND?
e ook Ak o o o ok ok ok ik ok ok ko 3k o 3 3 23k ok ok ok koo o ook i ok s ok ok ok ok ok k Xk 3

1k

END;

I€ N
BE

EN
ELSE

UMBER(V2)=0 THEN

GIN

COMMENT otk ok sk ook ok oo ok ok o R ook koo o ok %ok ok
* NEWPOINT FOUND. NUMBER ITe

ook ok ok ok ok ko ok ok ok ok ok ak ol ok ek ok ook ok ok kR okok b koR Rk ko 3
NUMBER(V2) :=CODE :=CODE+1;

CCMMENT ook s skok o ok ok e skook koo sk o o o ook ok ool o skt o ok %
* INITIATE A DEPTH-FIRST SEARCH FROM THE
* NEWw POINT.

o ok o o o o ok ok ok o 0 o ok ok ook o sk ok ok ok oKk o ok ok koK o skokok X K 3
NEWLCWPT:s=V#1;
BICONNECTOR(V24yPOINTNEWLOWPT) 3

CCOMMENT ok skakofe ok o ook ok sk sl o ol sk ok ok o i ok o o o ke oK e ok e sk e e o ok ¢

* NOTE THAT ALTHOUGH GLOBALVARTABLE V 2
x | s CHANGECy ITS VALUE IS RESTCRFD UPON
* EXIT FROMTHIS PROCEDURE. RECALCULATE
* LOWPOINT.

ok o ke s ok o o ok ok ok ole o o ok ok ok ok ok e 3K ke o ool o e skl ok ok o Sl o o e e oo ke vk 3
LOWPOINT::=MIN(LOWPODINT,NEWLOWPT);

CONMMENT 3% ool okt ok ok sk ok ook o ok ok ook o il i ok ok s o o e 38 of o ol 3 ook ook 3%
* IS POINT AN ARTICULATIONPOINTOFTHE

* CRAPH?
e e ok 2 o sk o ook o o o ok ok o ok o o e o ok ok R ok K ok R ok Kok 3

I NEWLOWPTD>=NUMBER(POINTIT H E N

BFEGIN
CCMMENT sk ok stk d ook ofese ol oo e oo i oo o o ook ok ok % &
* POINTIS AN ARTICUCATICN POINT.
* OUTPUT EDGES OF COMPONENT FROM
* EDGESTACK.

% 3% 3k 3 ok o ot ok o o o o o oK K o o oK ok ok o o ok ok ade ok ook oK o o o ok ek ok ko 3
OLDPTR:=BPTR:=BPTR+1;
WHILENUMBER(EDGESTACK(EPTR~-1))>NUMBER
(PCINT) DG
BEG IN
ADC2(EDGESTACK(EPTR~1),EDGESTACK
(EPTR) BICOMPONENTS,,BPTR);
EPTRS=EPTR=-2
ENCS
COMMENT sk ok ko o ke ke ok e ok ook o ke ki okook ok ok ok ok ok ok
* ADD LAST EDGE.
ok ok e 2 ko e ok ok ek 3 oK ok ok e o ko ok ek o koo ke k ok ok 3
ADD2(POINT,V2,BICOMPONENTS,BPTR};
EPTR:=EPTR-23;
COMMENT %k ok okokok 3 ek ook o e ok o o o Aok 2 ok o o s e ok ok o o
* COMPUTE NUMBER OF EDGES OF
* COMFCNENT,
o o0 2 ool oo o0 ok o ok o o ol o o e sl ok o e o ol ok ook ok kR R KK oK §
BICCMPONENTS(OLDPTR):={(BPTR-OLDPTR)IDIV 2 ;
END
D

COMMENT % okakak o ok ook e ok ok o e ok ok ol e aleale 2 0k o o o ok okeook ok 32 e e ok 3 o ok o

NEW POINT NOT FOUND. RECALCULATE LOWPOINT.

ek ok o Rk R kR kR R R Rk Rk R ROk Rk R R SRR ARk
LOWPOINT :=MIN(LOWPCINT 4NUMBER(V2))

END

COMMENT koo sl ok o ok o ook ok e ok o o ok ofe ok ok o o 2 ol o s kol sl e ofe 3 ak o ok ook o sk oo o skofesk ok ok

CONSTRUCT THE STRUCTURAL REPRESENTATION Of TFHE GRAPH.
BERERRRARERKRKEERARR AR RERER R KRR RRE R R KRR ARk ARk Rk]

*

15

FREENEXT :=V;
FGRI =1 UNTIL ¥V DC NEXT{(I) :=0;
FOR 1=l UNTILED C

BEGIN
COMMENT o ool oo s ook sk o 2 ok ot e e sl e ot oo ok e o s e 3 o ook ok e ok o o ok e ok A
* EACFECGCECCCURS TWICE, ONCEFOREACH ENDPOINT.

e 3 3 e Xe ode e e ok ke ik ake e ok ok ok X e e sk ok 2k ko ke e o ok ek e ok K e X ke e ool ko ek ok o Xk S

NEXTLINK(FEDGEL IST(2*I-1),EDGEL IST(2%1));
NEXTLINK(EDGELIST(2*1),EDGELIST(2%*[-1))

ENC;
COMMENT ook g ook sk ok ok 3 ok ak ok % skt ok o o o ok o o ok o o ok e ke e o ok ke o e o ofe ol ok ool ok ok ok o e ok
* INITIALIZE VARIABLES FCR SEARCH
e ol e o o o 9% o ok ok o o 3k oh ok o o ok ok % ok o ok e o ol ok ok o o o b e e ok ok o s ok o o o ek o o ok e o ook ke ol ok ke
EPTR:=03%
BPTR:2=03;
PCINT:=1;
vV2:=03
FCP I:=1U N T I LV+1DONUMBER(TI):=03
WwHT LE POINTL=V [C
BEG IN
COMMENT holokokookok oo ok ok ok ok o o ok ok sk sk ok e okl ok i ok o e ok o o8 ok o ok ol e e
4 EACHEXECUTION Of BICCNNECTOR SEARCHES A
% CONNECTEC COMPONENT OF THE GRAPH. Af TER EACH
* SEARCH, FIND 4N UNANUMBERED VERTEX ANG SEARCH
* _AGAIN. RFPEATUNTIL ALLVERICESA R EEXAMINED.

e e e e e ol e B o o ok o o o ok oh o o ok o ook o o ok ok o ook e e ok ok ok o ok ook okt ok b ok ok ok ok ok ok 3
NUMBER(POINT) :=CCCE:=13
NEWLOWPT:=V+1;
BICONNECTCR(PCINT yVv2 4NEWLCOWPT) ;
WHILE NUMBER(POINT)~=0 DO POINT:=POINT+1
END;
END;

PROCEDURE PATHFINDER(INTEGER VALUE RESULT STARTPCINT,
PATHPT,CCDEVALUE: INTEGER ARRAY PATH(*))3
BEGIN
GCOMMENT i e e o o oo o e ook ook o K ok ok ok sk ok ok sk ek ok ok o e ok ok o ook ok o ko ok ko
* PROCECURE TO FINDDISJOINTPATHS WITH
* ARBITRARY STARTING POINTSIN A BICONNECTED
* GRAPH. THEPCINTSOF EACH PATH ARE LISTED
* IN ARRAY “PATH”. THEFOLLOWINGVARTIABLESARE
* ‘ASSUMED GLOBAL:
* NEXT(1l::V+2%E) ,HEAD(V+ 1, V+2%E),
* LINK(V+#]1,V#2%F)CEFINETHE GRAPH USING SINGLY
* LINKED EDGELISTS AND A SET OF CRCSS REFERENCE
* PCINTERS .,
x CLD(1l :2V)sMARK(V+1,V#2*E)} INDICATE USED
* PCINTS AND EDGES.
* PATHCCOE(1::3V)IS THE CONSECUTIVENUMBERING
* CF THE POINTS.
%* LOWPCINT(132:V)FCRWARD{1:2:V),BACK{(1: 2V) GIVE
* INFORMATICN saAveED FROM DEPTH-FIRST SEARCFH.
4 NODE(12:V) GIVES THE NEXT UNSEARCHED EDGE
*
*x

FRCMEACH POINT.
e e e ok ok o ok Aok kB RO R R R R R R Rk Kk ok Rk kKK ok kK Rk Kok)

16

NEXTMARK:

NEXTFCRWARD:

NEXTBACK:

INTEGERPCINTy, PASTEOGE, EDGE, PASTPOINT, V2;
PATH(1):= STAR TPOINT;
COMMENT ®kkpsk b hkokdkdddd kkokd ok hk kkkkokkokkokkhkkkkks ek

* CHOOSE INITIAL EDGE.

Aok Rk % $ ok ok Rk ok ok ok koK ok ok dok Rk ok Rk Rk Rk Rk kR kKoK 3
EDGE:= NEXT(STARTPOINT);

WHILE(ECGE-=0)AND MARK(EDGE)D 0 EDGE:=NEXT(EDGE);

| FEDCE=0 THEN

BEGIN
COMMENT #3kk kaokok dok ok ok ok ook kR ok o ook kol ok Rk Kok &

* NCUNUSED ECGEANDTHUSNIPATH EXISTS.
o o ok o oo ke ok ook o e e e ok ook sl o ke ok ok sk ko o ok ok o o ok ok ok e ok Rk kK ok 3
NEXT(STARTPOINT) =03
PATHPT =0 ;
GC 7O DCNE
ENC;
NEXTISTARTPCINT):=NEXT(ECGE);
PATH{Z2):=EDGE;
POINT:= HEAC(ECCE);
PATHPT 2=23%
IFOLC(POINT)THENGO TO PATHFOUND;
IFFORWARC(PCINT)»=0THEN

BEGIN
COMMENT ook s ofe ook o ok o o ok ok o ko e ok ok ek ok ko koo o koo ok ok
* USEPREVICUSLY FOUND INFORMATICN TO
* BUILDA PATH. FORWARD BACK,LOWPCINT
* DESCRIBE TREES INVESTIGATED USING DEPTH-

FIRST SEARCH.
3k ok o ok ok ok sk ok ok oK o o ko s ol o ok ek ke ok e ko ook ok e okok e ok 3
| F PATHCCDE(STARTPOINT)>PATHCCDE(PCINTYTHEN
G OTO NEXTBACK;
| FPATFCODE(STARTPOINT)>LOWPOINT(POINT)
THEN
BEGIN
EDGE:= FCRWARD(POINT);
PCINT:=HEAC(EDGE);
PATHPT:= PATHPT+1;
PATH(PATHPT):=EDGE;
IF CLD(PCINT) THEN GO TO PATHFCUND;
| FPATHCODE(STARTPOINT)>PATHCODE(PCGINT)
THEN GC TO NEXTBACK
GO TO NEXTFORWARD
ENC
EDGE: = BACK{(POINT) ;
POINTs= FEAC(ECGE]);
PATHPT:=PATHPT+1;
PATH(PATHPT):=EDGE:
IFCLCA(PCINT)THEN GO TOPATHFOUNDELSE G0oT0
NEXTMARK 3
EDGE:=BACK(POINT);
PCINT:=+EAC(ECGE);
PATHPT:=PATHPT+1;
PATH(PATFKPT):=EDGE;
IFCLD{PCINT) THEN GO TO PATHFOUND ELSE
GO TO NEXTBACK

END:
COMME NT #xkok sk g s e sk dofe ok ok e e s ok ok ok sk ok koo o dkokok o ko ok ko ok ok
* USECEPTH-FIRSTSEARCKTO FIND A PATH. SAVE
* INFORMATION DESCRIBING SEARCH TREE.

KRR R IRk R Rk kR Rk ok kR kR R R R Rk kR kR Rk Rk Bkk Rk]

7

h EXTPO INT:

NEXTEDGE:

PATHFOUND:

COCEVALUE:= COCEVALUE+1;
PATHCCCE(P CINT): = CONEVALUE;
EDGE:= NCDE(PCOINT);
WHILE ECCE=Q CnN
BEGIN’
BACK(POINT) :=LINK{PATH(PATHPT)) ;
FASTPOINT:2= HEAD(BACK (PUINT));
IF(FCRWARD(PASTPCINT)=0)0O0 RILOWPOINT
(PCINTIKLOWPOINT(PASTPOINTI) THEN
BECIN
FORWARD(PASTPOINT)
LCWPOINT(PASTPOINT)
END; .
PNOINT2= PASTPOINT;
FATHPT:= PATHPT-1;
EDGE:= NCDE(POINT)
ENC;
NODE(POINT) 2= NEXT(EDGE);
V2:= FEAC(EDGE);
| FPATHCCRE | v 2)=0TFEN
REGIN
POINT = V23
~ FATHPT:s= FPATHPTYT+]1;
PATH(PATHPT) :=EDGE ;
COT ONEXTPCINT
END:
| FOLC{V2)AND(V2~=STARTPOINT)IT H E N
BEGIN
PATHPT:= PATHP T+l
PATH(FATHFPT)I:=EDGE;
GC TC PATHFCUND
END; ’
TF(FORWARC(FCINT)=0)QR(PATHCODE(V2)I<LOWPOINT
{PCINT)) THEN
HEG IN
FCRWARDIFCINT):=EDGE;
LOWPOINT{PQOINT) :=PATHCQODE(V2)
END;
G OTNONEXTEDGF;
COMMENT % o ook i o5 o e o o o e ok o ot o s ol e s o e abe ol o o o ke oo ol o o o oo e e
* PATH FCUND., CCNVERTSTACK OFEDGESTCLISY
* GF POINTSINPATH. MARKALLEDGES ANC
%* FCINTS IN PATH.
3 e ot e o e ol 4 o ke o e ke e s o e ok o o o o ok e ok e o ok ok ok e S ok e e ok ok ik ko ok ok ok oK X K ¢
FORI : = 2 UNTIL PATHPT GO
BEGIN
EDGE: = PATH(I1);
PCINT:= FEAC(ECCE);
FCRWARD(POINT) 2= BACK{POINT) :=0;
CLC{PCINT):=TRUE;
MARK(LINK(EDGE)) :=MARK(EDGE):=TRUE;
PATH(T) := POINT '
END;

PATH(PATH®PT);
=LOWPOINT(POINT)

DCNE: END;

18

References

[1] Fisher, G. J., "Computer recognition and extraction of planar graphs

from the incidence matrix," IEEE Transactions in Circuit Theory CT-13,
June 1966, pp. 154-163.

[2] Harary, F., Graph Theory, Addison-Wesley Publishing Company,

Reading, Massachusetts, 1969.

[3] Holt, R., and E. Reingold, "On the time required to detect cycles

and connectivity in directed graphs," Computer Science TRT0-33,

v
Cornell University, Ithaca, New York.

[4] Hoperoft, J., and R. Tarjan, "Planarity testing in v log v steps,
extended abstract," Stanford University CS 201, March 1971.

[5] Lempel,‘ A., 8. Even, and I. Cederbaum, "An algorithm for planarity

testing of graphs," Theory of Graphs: International Symposium:
Rome, July 1966. P. Rosenstiehl, Ed., New York: Gordon and Breach,
1967, pp. 215-232.

[6] Shirey, R. W., "Implementation and analysis of efficient graph
planarity testing, " Ph.D. dissertation, Computer Science Department,

University of Wisconsin, June 1969.

19

