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EFFICIENT ALGORITHMS FOR GRAPH MANTPULATTON

John Hopcroft

Robert Tarjan

Stanford University, Stanford, California

Graphs arise in many different contexts where it is necessary to represent interrelations between data

elements. Consequently algorithms are being developed to manipulate graphs and test them for various

properties. Certain basic tasks are common to many of these algorithms. For example,in order to test a

graph for planarity, one first decomposes the graph into biconnected components and tests each component

separately. If one is using an algorithm [4] with asymptotic growth of V log V to test for planarity, it

is imperative that one use an algorithm for partitioning the graph whose asymptotic growth is linear with the

number of edges rather than quadratic in the number of vertices. In fact, representing a graph by a connection

matrix in the above case would result in spending more time in constructing the matrix than in testing the graph

for planarity if it were represented by a list of edges. It is with this in mind that we present a structure

for representing graphs in a computer and several algorithms for simple operations on the graph. These include

dividing a graph into connected components, dividing a graph into biconnected components, and partitioning a

graph into simple paths. The algorithm for division into connected components is well-known [6]. The other

two algorithms are original. For a graph with V vertices and E edges, each algorithm requires time and

space proportional to max(V,E) .

Standard graph terminology Will be yged throughout this discussion. See for instance [2]. We assume

that the graph is initially given as a list of pairs of vertices, each pair representing an edge of the graph.

The order of the vertices is unimportant; that is, the graph is unordered. Labels may be attached to some or

all of the vertices and edges.

Our model is that of a random-access computer with standard operations} accessing a number in storage

requires unit time. We allow storage of numbers no larger thank max(V,E) where k is some constant. (If

the labels are large data items, we will assume that they are numbered with small integer codes and referred

to by their codes; there are no more than k max(V,E) labels.) It is easy to see and may be proved rigorously

that most interesting graph procedures require time at least proportional to E when implemented on any

reasonable model of a computer, if the input is & list of edges. This follows from the fact that each edge

must be examined once.

It is very important to have an appropriate computer representation for graphs. Many researchers have

described algorithms which use the matrix representation of a graph [1]. The time and space bounds for such

algorithms generally are at least ve [3] which is not as small as possible if E is small. (In planar

graphs for instance, ©E < 3V-6 .) We use a list structure representation of a graph. For each vertex, a

list of vertices to which it is adjacent is made. Note that two entries occur for each edge, one for

each of its end points. A cross-link between these two entries is often useful. Note also that a directed

graph may be represented in this fashion; if vertex Vo is on the list of vertices adjacent to vy oo then

(v5 vy) is a directed edge of the graph. Vertex vy is called the tail, and vertex Vs is called the head
of the edge.

) A directed representation of an undirected graph is a representation of this form in which each edge

appears only once; the edgesare directed according to some criterion such as the direction in which they are

transversed during a search. Some version of this structure representation is used in all the algorithms.

One technique has proved to be of great value. That is the notion of search, moving from vertex to

adjacent vertex in the graph in such a way that all the edges are covered. In particular depth-first search

is the basis of all the algorithms presented here. In this pattern of search, each time an edge to a new

vertex is discovered, the search is continued from the new vertex and is not renewed at the old vertex until

all edges from the new vertex are exhausted. The search process provides an orientation for each edge, in

addition to generating information used in the particular algorithms.



Detailed Description of the Algorithms

Algorithm for Finding the Connected Components of a Graph

This algorithm finds the connected components of a graph by performing depth-first search on each .

connected component. Each new vertex reached is marked. When no more vertices can be reached along edges

from marked vertices, a connected component has been found. An unmarked vertex is then selected, and the

process is repeated until the entire graph is explored.

The details of the algorithm appear in the flowchart (Figure 1). Since the algorithm is well-known, and

since it forms a part of the algorithm for finding biconnected components, we omit proofs of its correctness

and time bound. These proofs may be found as part of the proofs for the biconnected components algorithm. The

algorithm requires space proportional to max(V,E) and time proportional to max(V,E) where V is the number

of vertices and E 1s the number of edges of the graph.

Figure 1: Flowchart for Connected Components Algorithm
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Algorithm for Finding the Biconnected Components of aGraph

This algorithm breaks a graph into its biconnected components by performing a depth-first search along

| the edges of the graph. Fach new point reached is placed on a stack, and for each point a record is kept of

| the lowest point on the stack to which it is connected by a path of unstacked points. When a new point

cannot be reached from the top of the stack, the top point is deleted, and the search is continued from the

next point on the stack. If the top point does not connect to a point lower than the second point on the

stack, then this second point is an articulation point of the graph. All edges examined during the search

are placed on another stack, so that when an articulation point is found the edges of the corresponding

biconnected component may be retrieved and placed in an output array.

When the stack is exhausted, a complete search of a connected component has been performed. If the graph

is connected, the process is complete. Otherwise, an unreached node is selected as a new starting point

| and the process repeated until all of the graph has been examined. Isolated points are not listed as

biconnected components, since they have no adjacent edges. They are merely skipped. The details of the

algorithm are given in the flowchart (Figure 2). Note that this flowchart gives a non-

deterministic algorithm, since any new edge may be selected in block A. The actual program is deterministic;

the choice of an edge depends on the particular representation of the graph.

We will prove that the non-deterministic algorithm terminates on all simple graphs without loops, and

we also derive a bound on the execution time. We Will then prove the correctness of the algorithm,by

induction on the number of edges in the graph. Note that the algorithm requires storage space proportional

to max(V,E) , where V is the number of vertices and E is the number of edges of the graph.

Let us consider applying the algorithm to a graph. Referring to the flowchart, every passage through

the YES branch of block A causes an edge to be deleted from the graph. Each passage through the NO branch

of block B causes a point to be deleted from the stack. Once a point is deleted from the stack it is never

added to the stack again, since all adjacent edges have been examined. Each edge is deleted from the stack

of edges once in block C. Thus the blocks directly below the YES branch of block A are executed at most E

times, those below the NO branch of block B at most V times, and the total time spent in block C is

proportional to E . Therefore there is some k such that for all graphs the algorithm takes no more than

k max(V,E) steps. A more explicit time bound may be calculated by referring to the program.

Suppose the graph G contains no edges. By examining the flowchart we see that the algorithm, when

applied to G, will terminate after examining each point once and listing no components. Thus the algorithm

operates correctly in this case. Suppose the algorithm works correctly on all graphs with E-1 or fewer

edges. Consider applying the algorithm to a graph G with E edges. Since the stack of points becomes

empty at least once during the operation of the algorithm, and since the YES branch at block D must be taken

when only two points are on the stack, every edge must not only be placed on the stack of edges but must be

removed in block C. Consider the first time block C is reached when the algorithm is applied to graph G.

Suppose not all the edges in the graph are removed from the stack of edges in this execution of block C.

Then p , the second point on the stack, is an articulation point and separates the removed edges from the

other edges in the graph.

Consider only the set of removed edges. If the algorithm is applied to the subgraph G' ofG made up

of these edges, withp used as the start point, then the steps taken are the same as those taken during the

analysis of the edges of G' when the input is the entire graph. Since G' contains fewer edges than G ,

the algorithm operstes correctly on G! . G' must be biconnected, since otherwise block C is reached

before G' is completely examined, contrary to our assumption that block C is reached for the first time

only after all edges of G' are examined. If we delete the set of edges of G' from G , we get another

graph G" with fewer edges than G . The algorithm operates correctly on G" by assumption. The behavior

of the algorithm on G is simply a composite of its behavior on G' and G" } thus the algorithm must

operate correctly on G.

Now suppose that the first time block C is reached, all the edges of G are removed from the stack of

edges. We want to show that in this case G is biconnected. Suppose that G 1s not biconnected. Then

choose a biconnected component of G which may be separated by removing some one point. Let the edges making

up this component be subgraph G' of G ; let the remainder of G be G" . The algorithm operates correctly



on G' and on G" by assumption. The behavior of the algorithm on G is a composite of its behavior on

G' and on G" . But the algorithm reaches block C once while processing G' and at least once while

processing G" . This contradicts the fact that the algorithm only reaches block C once while processing G.

Thus G must be biconnected, and the algorithm operates correctly on G. By induction,the algorithm is

correct for all simple graphs without loops.

Figure 2: Flowchart for Biconnected Components Algorithm
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Algorithm for Finding Simple Paths in a Graph

This algorithm may be used to partition a graph into simple paths, such that all the paths exhaust the

edges of the graph. Fach iteration of the algorithm produces a new path which contains no vertex twice,

and which connects the chosen startpoint with some other vertex which already occurs in a path. Total

running time is proportional to the number of edges in the graph. The starting point for each successive

path may be selected arbitrarily. In fact, the initial edge of each successive path may be selected

arbitrarily from the set of unused edges.

The algorithm is highly dependent on the graph being bicomnected. (The biconnected components of a

graph are found using the previously described algorithm.) Inorder to find a new path, the initial edge is

selected and the head of the edge is checked. If this point has never been reached before, a depth-first

search is begun which must end in a path since the graph is biconnected. The search generates a tree-like

structure; specifically, it is a tree with extra edges connecting some nodes with their (not necessarily

immediate) ancestors. (We will visualize the tree drawn so that the root, which is an ancestor of all points,

is at the bottom of the tree.) Enough information is saved from this tree so that if a point in it is reached

when building another path, the path may be completed without any further search.

The flowchart (Figs. 3 and 4) gives the details of the algorithm. It is divided into two parts; one for the

depth-first search process and one for path construction using previously gathered information. We shall

prove the correctness of the algorithm and give a time bound for its operation. To derive the time bound,

we assume that one point is marked old initially, and a different point is selected as the initial startpoint.

The algorithm is then run repeatedly with arbitrary startpoints until all edges are used to form paths.

Let us consider path generation using depth-first search; that is, suppose the algorithm is applied and

that the head of the first edge selected is previously unreached. Referring to the flowchart, we see that

the search process is very similar to that used.in the biconnectivity algorithm. A search tree is generated,

and each edge examined is either part of the tree or connects a point to one of its predecessors in the tree.

LOWPOINT is exactly the same as in the bicomnectivity algorithm; it gives the number of the lowest point in

the tree reachable from a given point by continuing out along the tree and taking one edge back toward the

root. The forward edges point along this path, while the backward edges point back along the tree branches.

We have shown in the correctness proof of the biconnectivity algorithm that, if the graph is biconnected,

LOWPOINT of a given point must point to a node which is an ancestor of the immediate predecessor of the given

point. In particular, LOWPOINT of the second point in the search tree must indicate an old point which is not

the startpoint. Therefore the algorithm will find a path containing the initial edge. Note that all points

encountered during the search process must either be old or unreached, since every point reached in a previous

search either has had all its edges examined or has been included in a path.

Let us now suppose that the head of the first edge has been reached previously but is not marked old.

Then the forward and backward pointers, along with the LOWPOINT values, allow the algorithm to construct a

path without further search. First, if the number of the head of the edge is less than the number of the

startpoint, then following backward pointers will certainly produce a simple path, since the root of a search

tree must be old and each successive point along a backward path has a lower number and thus is distinct from

the other points in the path. If the initial edge is part of a search tree and the startpoint is the

predecessor of the second point, then LOWPOINT of the second point must be less than the number of the

startpoint. Following forward edges until reaching a point numbered lower than the startpoint and then

following backward edges, will produce a simple path. This is true since the forward edges point through

descendants of the tree, with the single exception of the edge whose head is a point below startpoint in the

tree. The last case to consider occurs when the initial edge is not part of a search tree but points from a

node to one of its descendants in a tree. In this case some node in the tree between the startpoint and the

second point of the path must have a LOWPOINT value less than the number of the startpoint. If we follow

backward edges until the first such point is reached, then follow forward edges until a point numbered less

than the startpoint is reached, and finally follow backward edges until an old point is reached,we will

generate a simple path. Note that the first forward edge taken cannot lead to the previous point, because if

p,



| it did the IOWPOINT value at the previous point would be less than the number of startpoint, and the forward
edge from this point would have been chosen instead of the backward edge. |

We thus see that each execution of the pathfinding algorithm produces a simple path, assuming that the

algorithm is applied to a biconnected graph with at least one point which is not the first startpoint marked

old initially. Since each edge is examined at most once in the search section of the algorithm, and since ) |

each edge is put into a path once, there is a constant k such that the time required to execute the

algorithm until no edges are unused is less than kE steps, where E is the number of edges in the graph. oo

(Note that the number of vertices, V , is less than E_ if the graph is biconnected.) Detailed examination .

of the program will produce a more exact time bound.

Another algorithm for finding simple paths exists. Lempel, Even, and Cederbaum[5] have described an |
algorithm for numbering the vertices of a biconnected graph such that: (i) each number is an integer in |

the range 1 to V , where V is the number of vertices on the graph; (ii) vertices 1 and V are

joined by an edge; (iii) for all 1 < i < V , vertex i is joined to at least two vertices, one with a

higher number and one with a lower number. We may use this algorithm to partition a graph into simple paths.

Given a start point and an adjacent end point, number the vertices so that the start point is 1 , the

endpoint is V , and the numbering satisfies the conditions above. Take edge (1,V) as the first path.

Given an arbitrary start point, find an edge to a higher numbered vertex. Continue to find edges to

successively higher numbered vertices until an old vertex is reached. If no edge to a higher numbered vertex

exists from the start vertex, select edges to successively lower numbered vertices until an old vertex is

reached.

This algorithm is clearly correct and looks conceptionally simpler. However, Lempel, Even, and Cederbaum

present no efficient implementation of their numbering algorithm, and the only efficient way we have found to

implement it requires using the previously described pathfinding algorithm in a more complicated form. Thus

the new algorithm requires time and space proportional to max(V,E) , but the constants of proportionality

are larger than those for the implemented algorithm.
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Figure 3: Flowchart for Pathfinding Algorithm (I)
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Figure 4 Flowchart for Pathfinding Algorithm (II)
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Implementation

The algorithms for finding connected components, biconnected components, and simple paths were implemented

in Algol using the Algol W compiler at Stanford University. Auxiliary subroutines were also implemented.

Brief descriptions of the procedures are provided below.

ADD2(A,B, STACK, PIR) : This procedure adds value A followed by value B to the top of stack STACK and

] increments the pointer to the top of the stack (PTR). Stacks are represented as arrays; the top
of the stack is the highest filled location.

NEXTLINK(POINT, VALUE): This procedure is used to build the structural representation of a graph. It adds

VAIUE to the list of vertices adjacent to POINT. (POINT,VAIUE) is an edge (possibly directed)

of the graph.

CONNECT (V, E, EPTR, EDGELIST , COMPONENTS) : This procedure, given a graph with V vertices and E edges,

vhose edges are listed in EDGELIST, computes the connected components of the graph and places the

edges of the components in COMPONENTS. Each component is preceded by an entry containing the

number of edges E' of the component. The edges are oriented for output according to the direction

in which they were searched (head first, tail second).

BICONNECT(V, E, EPTR,EDGELIST, BICOMPONENTS) : This procedure, given a graph with V vertices and E edges,
whose edges are listed in EDGELIST, computes the biconnected components of the graph and places

them in BICOMPONENTS. Each component is preceded by an entry containing the number of edges E"

of the component. The edges are oriented for output according to the direction in which they were

. searched (head first, tail second).

PATHFINDER(STARTPT, PATHPT,CODEVALUE, PATH): This procedure, given a list structure representation of a

- biconnected graph with certain vertices marked as old, constructs a simple path from STARTPOINT

to some old vertex, saving information to be used in constructing succeeding paths. The new

path is stored in array PATH. Calling PATHFINDER repeatedly may be used to partition the graph

into simple paths.

Further comments may be found in the program listings, which follow.



PROCECURE ACDZ2{INTEGCER VALUE AyB3INTEGER ARRAY STACK *):
INTEGER VALUE RESULT PTR):

BEGIN

COMMENT dd tool ook ok ok ok ok a ok of oi ok oka ofc af ode ok ode a ode ade afk ofa afk ad oie ie ofc fk ok ak ok be oe a ai of ok of a xc ok ak ok

* PROCEDURE TO ADC VALUES Ay B TO STACK MSTAC KY AND

% INCREASE STACK FQOINTER BpPTR® BY 2,

8 J Xd Ae fe Si dk ok de ve ok ok dk ake ke tole sik ok of oe ok sk ak ol ok oe de ok de ak ac ok doe ok ok ok ok i ook ale ok ok ote dle kok dk kak 3
PTR:=PTR+2;

STACK(PTR~-1):=A;

STACK{(PTR}):=8
ENDS

PROCEDURE NEXTLIANK( INTEGER VALUF PCINT,VAL);

BEGIN ~. |
CCMMENT  dkokakokosd seofok sk oko of ob de ok ob 8 ob ob ok oe 3k ok ok ok of ok ole oe 2k gk ok oe ok abe ok ok ok of dk 3 oe ok of oe ok ok a 3c

* PROCEDURET OADCDIRECTEDE D G E(POINT,,VAL)TC

* STRUCTURAL RFPRESENTATIONOF A GPAPY.
%*

* GLOBAL VARIABLES:

* HEAD(V4#]1:33V423E) JNEXT(L2:V+2%E): STRUCTUKAL

# REPRESENTATICNOFT H E GRAPH,

* FREENEXT: CUPRENT LAST ENTRYIN NEXT AKRAY.,

oe J 3c oe oe oe oe oe de de oe So de oe ak fe dee dk dole oo fe ok oe lk ote ook ok ok oo ak of of ole oes fe ook ok of of ok dk Rok dk ok kk
FREENEXT:=FREENFXT+1;

NEXT (FREENEXT)s=NEXT{PCINT);
NEXT{POINT):=FREENEXT;

HEAC(FREENEXT):=VAL

END;

INTEGER PROCEDURE MIN(INTEGFR VALUE A,B):
COMMENT oko sok dc oe ole sie of ak ak oko 3b ok ofe of ole of oie ok ok oh oe 9 ode ofc ok af oe 2k of ode ai of ak ol aiooie ok oe ole ok eof ok ok of

% PRCCEDURE TO CCMPLTYE THE MINIMUM OF TWOINTEGERS.
Xe oe de ak of ot ok ok ook A 3 ok ae ok ob bok ok ok 3 ok ak ook ook of ok ok ok of ai laf ke oi ok kk ok dk sok a ok ok K aK dk ok 3
IF ACB THEN A ELSE Bg
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PROCEDURE CONNECT(INTEGERVALUEVYESINTEGER RESULT CPTR;
INTEGER ARRAY EDGEL IST,COMPONENTS(*));

| BEGIN

- COMMENT sk sok sk sok sk dio oak sk si ale dk sk oi ok ale 2 ak sie ake ak 3k oi cai sek ak ak ve ok ok se sk of die of of ofa ake of ak ak ok of oi

x PROCEDURE TO FINC THE CONNECTED COMPONENTS OFA

* GRAPH.

* .

% PARAMETERS

x VeE: INPFUTNUMBERCFVERTICESANDEDGES OF THE

* GRAPH.

x EDGELIST(1::2%E): INPUT LISTOFEDGESOF GRAPH.

* COMPCONENTS({1:23%E)2: OUTPUT LISTOFEOGES CF

* COMPONENTS FOUND. EACH COMPONENT IS PRECEDED 8Y

* AN ENTRY GIVING THE NUMBERCF EDGES Of Tt-E

* COMPONENT.

* CPTR: OUTPUT PCINTER TO LAST ENTRY IN COMPONENTS.

*

* GLOBAL VARIABLES:

x HEAD ( V+] 22V+2%E) NEXT{1223V42%E):STRUCTURAL

% REPRESENTATIONOF THE GRAPHI(UNDIRECTED,yN O

x ~. CRCSS-LINKS).,

* FREFNEXT:LAST ENTRYINNEXT ARRAY.
*

x LCCAL VARIABLES:

%x NUMBER{1l2:V+1l): ARRAY FOR NUMBERING THE VERTICES
* DURING DEPTF=-FIRST SEARCH.

* CODE: CURRENT HIGHEST VERTEX NUMBER.

* PCINT: CURRENT POINT BEING EXAMINED DURING SEARCH.

* V2:NEXTPCINTTOBE EXAMINED DURING SEARCH.

% OLDPTR: POSITION TN COMPONENTS TO PLACE E VALUE CF

x NEXT CCMPCNENT,
*

* GLOBAL PRCCECURES:

* ADD2 ¢NEXTLINK,
*

* a RECURSIVELCEPTH-FIRSTseEAR CH PROC E Du RE 1s USEDT o

* EXAMINE CCNNECTED COMPCNENTSOF THE GRAPH.

A ok of oo 3 a eo ak ode ak ok ob ale ok ok ok ake of a ak aK ok ake of ak of ok aia ok ake oe ok ofeok 3 ake ak ok ok of af ok oi dea ok dk dak i ok 3

INTEGER ARRAY NUMBER (12:V+1);

INTEGER CODEPCINT,W2,CLDPTR;

PROCECURE CONNECTOR( INTEGER VALUE POINT, OLDPT) 3
COMMENT kdkakakakokokokokokskdokokkok skak bok Rokk kook kk kkk kkk kkk kk kh kk xR

* RECURSIVE PROCEDURE TO FIND ACONNECTEO COMPONENT,
* USING DEPTH-FIRST SEARCH,

* PARAMETERS3

* POINT: STARTPOINTCF SEARCH.

* OLOPT: PREVIOUSSTARTPOINT.
x

* GLOBAL VARIABLES:

’ SEE CONNECT FOR DESCRIPTION.

*

x GLOBALPROCECURES:
x ADC2.
%*
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* EXAMINE EACH EDGE OUT DOF POINT.
ae oe 3 ee Fe de ofc Re dk Ar esd fc ok ae okie ok ook ik oe of ok of ak ok ak oo oi ok ol ok ek ak ok de oe ok ol ak ole ok ok of ok ek dk ek 8 |
WHILE NEXT(POINT)>O DON |

BEGIN

COMMENT 2% dk sk ook dk sk 3k vk 2 ok ok 2 a oe ok of se de ok ale oie soak a od oi xk ak ede ak ok oi ok sic ok ale a ak oe ok

* V2 1S HEAL OF EDGE. DELETE EDGE FROM j
* STRUCTURAL REPRESENTATION.

ee de ee of ade of oe ae a oe oe oe of oe ie de vk a oe of al ok ok ok oeoe ok ade ie alee ake oe afe sik off 3 oe ok ok ok ode oe ook ak ok 3

V2:=HEADINEXT{PCINTI)); | | |
NEXT(PCIANT) :=NEXTI(NEXT(POINT) ); .
COMMENT  % 3% % ok 5 sk 2 ok ok oe ok tof ak a 3 ok oe desde of sede se sc ofc of of ok ok a afc oc ok ak ad aie oie ik ok of ofc ake oe oe

* HAS THE ECCE BEEN SEARCHED IN THE OTHER

* DIRECTICNT IF SC, LOCK F(CR ANCTFHER ECCE., |
Xe 3% ob ok de oe of ook oh otk 3k ok ok dh ok ok ok odo dk ok ob xk al ok ak ak ole oi Fok dale ok of de xk ok ao dx ak ok ok oo deol ke 3

IF (NUMBER(V2)SKANUMBER(PCINT))IAND(V2~=0LDPT) THEN

REGIN | |
COMMENT sok shook dk ok deol of ofeole a ale shoo oe of of oo ol ok oc oi de ie ole of adele oie ob of kc ole of of ax ok of ok

* ADC EDGE TO COMPONENTS.

Xe sfc ak 8c oe sk ote ok ok ale of ok of ok al ok of a ok afk ok ofa ol sole Soke aloe oi ok de ol ak of kc oe of fk ok dak dk dee
ADDZ2(POINT, v2 ,COMECNENTS,CPTR) 3

COMMENT  % % ok ob dk sk of ole ae ofc oie dk oe sc oie ad af ofa ee of de oie ok ook ae ade ode de alk ok ak ole oe ok oie ofc od 3 |

B %x HAS A NEW PCINT BEEN FOUND?
ec fc oe de oe ok de sok ok ok ok si sok Seok ok de oe ok ok alco ofc cole ole ok ak oe ok oe of ok dk db sok dk Rk tok kek
[F NUMBER(VZ)=0 THEN |

~REGIN |
COMMENT oo vole vo oi de dk oe ale sf ok ok seal ai oe oe ak dc oe a ol aoa oe ode ade fk of ofc ax ok ale of |

Xx NEW PDINT FOUND. NUMBER IT.
ae 3 3c oc oe 3k 2k oe ve oe ake oe de ode of ok ok deo al oe de ek ak ok alk ok oe ok oof a oo oko oe ole ok dk |
NUMBER(V2):=CODE:=CODE+1; .
CONMENT ashok oo oof ok ook ai a a ok ok ol oe oe a of abe of kok of of ofc ok of oof dd

#* INITIATE A DEPTH-FIRST SEARCH FRCM THE
* NEW POINT. .

| oe ve ok de 2k vk oe oc oc ic 3k oe ic 3 oe ok of de alk ok ok ake akke dk le ak ol ok de ok ok kok ld dal ok ook ok 3
| CONNECTOR(V2,POINT);

| END

END; |

ENC 3 |
COMMENT sk dole vk aki oe dk de sles se de vi ok oe ok of se ok ok aie of of ok ok ok de oe ak ok ote ok of ok 2% ok of ak 3% ok ok

* CONSTRUCT THE STRUCTURAL REPRESENTATICN OF THE

* GRAPH,

hc de a oc de se ok ook oe oe i ak ok of sok ok of ok fe eke ado ok ok le alk ok ak oi oe ak seal ak ai ok ok ae de fe a of de oe ok de dk ok 3

FREENEXT:=V;

FCR J:=1 UNTIL V CC NEXT(I):=0;

FOR I:=1 UNTIL E DD

PEGIN |

: COMMENT ca ok ok de ok dk ok sk aie se ok ofc 3k ak ae ae ok oe ae ox de oie ok ak a ok fe se oie oe sees ae sk dele ae ok ok

%* EACH EDGE CCCURS TWICE, ONCE FOR EACH
x ENDPCINT,

ae sie oc fc ck ok oe of oo ke ale fe ok eo ook ak ode oe al oe alk ole ake oe ak ok dete sok i of ok ie de ook ak dk ool ko 3

NEXTLINK{EDGEL IST(2*1-1),EDGELIST(2*]1))

NEXTLINK(EDGELIST(2%1),ECCEL IST(2%1-1))3 |
ENC; |

COMMENT ok vkokok ok ok x % ok ak ok ok ok ook ok ok ole ok ok of ok ok a ok ok of ok ae ok of ok of od oc ok of ok ok ooo ok a xe -
* INITIALIZE VARIABLES FOR SEARCH.

3 3c Ac 2 0 oe ole 38 oe eo ook oe de ok ok ke oe ole ok ok ok ok oe oe ok oe ok oc ok ok col ol ok oe ob ool op kdkok ok 3

CPTR:=0:; |
PCINT:=13 . |

FOR T:=1 UNTIL v+1 DC NUMBER(I):=0;

WHILE POINT<=yY DOD

REGIN
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|

COMMENT ok #0 oh 3h ok 3 ok ok ok ok ok ak oe ok ake of oko seal ook de ok of ole ok Aoki
* EACH EXECUTIONCF CONNECTOR SEARCHESA

x CCNNEC TED CCMPCNENT. AFTER EACH SEARCH,

* FINCA h UNNUMBEREC VERTEX ANDSEARCH AGAIN.

x REPEAT UNTIL ALL VERTICES ARE INVESTIGATED.

oc kc kode of ae oh of 3k ob ob 3 ok a kok sik of ake ok a a ok dkokook ok kak ook ak ok de ak ok ak kok kk doko kk J

NUMBER(PCINT ):=CCDEz2=13

NLOPTR :=CPTR :=CPTR+13}
CCNNECTCR{(PCINT,0)3

CCMMENT sik si sk ok ai a 3k afk af oo ok ok ok 3 ok ale ake a ak ool ak kode oe ok ok kok ok kkk dk kk
x COMPUTENUMBER OF EDGES Of COMPONENT.
fc sk ok of ok ac ok af 8c oak of ok ok ok a eck ole oe ok ok oe ok ok kok ok kk kook kok kk kkk dk kok kk S

COMPONENTS(OLDPTR) :={CPTR-OLDPTR)IDIV 2 .
WHILENUMBER(PCINT)~=0D OoOPOINT:=POINT+13

END

END:

PROCEDURE BICONNECT( INTEGER VALUE VyES INTEGERRESULT RPTR;
INTEGER _ARRAY EDGELIST,BICCMPUONENTS(*x))

BEGIN

COMMENT a ok ik oe ok ok 3 ok ok oe 3k ak ok op ok ot ok of ak 2k ak le 3k ook 3k ke ode ai ak sk ak ok ok ok ak oe ol oi ok of ok ok a ook 3k ak
* PROCEDURE TO FIND THE BICONNECTED COMPONENTS OF A

* GRAPH.

a

* PARAMETERS:

* VeyE: INPUT NUMBER OF VERTICESAND EDGESOF THE
* GRAPH.

* EDGELIST(12:32%E): INPUT LISTOFEDGESOF GRAPH.

* BICCMPCNENTS(1::3%E): OUTPUT LIST OF EDGES OF

* COMPONENTS FOUND. EACHCOMPONENTIS PRECEDED BY

* A NENTRYGIVINGTHENUMBERDFEDGES OFTFE

x COMPONENT.

* BPTR:OUTPUT POINTERTYO LAST ENTRYOF BICCMPUONENTS.
¥*

* GLOBAL VARIABLES:

x HEAD(V+1:sV+2%E) NEXT(12:V42%E)I STRUCTURAL REPRE-

* SENTATIONOF THE GRAPHUIUNDIRECTEDsN 0 CROSS~

* LINKS),
* FREENEXTS CAST ENTRYIN NEXT ARRAY.

*

* LCCAL VARIABLES:

* NUMBER(12:V+1): ARRAY FCR NUMBERINGTHE VERTICES

* DURING DEP TH~FIRST SEARCH.

* CCDE:CURRENTHIGHESTVERTEXNUMBER.

* EDGESTACK(1 ::2%E): STORAGEFOR LIST OF EDGES

x EXAMINEO CURING SEARCH,

* EPTR: POINTERTO LAST ENTRYIN EDGESTACK.

* POINT: CURRENT POINT 8EING EXAMINED WRING SEARCH.

* V2: NEXT PC? NTTO BEEXAMINEDDURING SEARCH.

* NEWLOWPT:LOWPOINTFC RBICONNECTED PART OF GRAPH

* ABOVEANC INCLUDING V2.
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* CLDPTR: POSITION INBICOMPONENTSTO PLACEE VALUE
* OF NEXT COMFONENT. |
x |

* GLOBAL PRGCECURES: |

* MINS ACC2 +NEXT LINK,
* |

% A RECURSIVE CEPTH~-FIRST SEARCH PROCEDUREIS LSEDTO |

% DIVIDETHEGRAPH, THE LOWEST POINT REACHABLE FROM THE

* CURRENT POINT WITHOUT GOING THROUGH PREVIOUSLY

* SEAQCHECPCINTS IS CALCULATED. THIS INFORMATION |
%* ALLOWSDETERNMINATICNCF THEARTICULATICGN POINTS AND |
* CIVISICNC F THE GRAPH, |

% 3% 3c ok of op oh 3k de ok ake oie ok oc oie oe ok af ak oe oc of ok ok ok kd ok 3k ok ok oe deo a Sho ok ok dk afk oe ok ok ok sk ofa sie sd ook ok a ok ok dk ok 3

INTEGERARRAYNUMBER (12:V+1)3;

INTEGER ARRAY EDGESTACK(12:2%E);

INTECER CODE, EPTRYyPOINT J V2, NEWLOWPTL,OLDPTR §

PROCEDURE BICCNNECTOR{INTEGER VALUE QESUCT POINT, CLDPT, |
= LOWPO INT) 3

COMMENT oko okok dk ok ok 3 ob ok ok 3 ol dk of ok of ok ok of ob of a of ok ake ok ok 2k ede dk oi ole de she oe ade afr ak oie ok ok ak of oe of

* RECURSIVE PROCEDURE TO SEARCHA CONNECTED COMPONENT

we ANDFINDITSBICONNECTEDCQMPONENTS USING DEPTH- |
* FIRST SEARCH.

* |

* PARAMETERS: |

* POINT: STARTPOINYCF SEARCHy UNCHANGED CURING
# EXECUT ION.

* CLDPT: PFEVICUS STARTPOINT, UNCHANGED DURING
* EXECUTION.

* LOWPOINT: OUTPUT OF LOWEST POINT REACHABLEON A

x PATHFCUND DURING SEARCH FORWARD,
x

% GLOBAL VARIABLES:

* S EFBICOCNNECT FO RDESCRIPTION, a
*

* GLNBAL PROCECURES:

% MIN,ADDZ.
*

* EXAMINE EACHEDGEGUT cF PCINT.

0 3 ofc ok oe 3 ak ok ok ok ok kk of ok a dh ak a fe ok se ale of of oe ade oe oe of ole ok kak sok ake ok ae a alk ak a doe of of ak oe ae dak ae dle ok 3

WHILENEXT(PCINTI>O0OC O

BEGIN

COMMENT sk kok ob ok sk shook ook asi kik ok ok ook ofc ak oe se seal akeol ac of ok of aoe dic ale oko sk ok oe ok dk ok XK

x V21S BEACOF THE EDGE. DELETE EDGE FROM

* STRUCTURAL REPRESENTATION.

ac of ook oe ok ok ok dk dk ob of ok ook kk ok ok ok ok xk ok ok kk ok ok ok skal ol ok ofc fc ak oe 3 ofeak ade ok coe ok deo ok kk 3

V2:=HEACINEXT{PCINT));

NEXT (POINT) :=NEXTINEXT(POINT)});

COMMENT dk skak dk ska dk ook ok ok oe od 8 Skok ok ok af aie ok ok ofc a ook oie oe ok ok of skola ok ok ok ok ok ok ok

* HAS. THE EDGEBEEN SEARCHEDIN THE CTHER

* CIRECT ION? TIF so,LOOKFOR ANOTHER EDGE.
ake dc eo se 3 2k oe de ake sk kok ok 3k dk fe ak ok ak ak ak ok 2 oe sk sk seal dla dak ok ok ak xe ale ok ok ole fe age ok of ae ok kok ok

| F {NUMBER (V2) <KNUMBER (POINT) )IAND(V2-=0LDPT)TH EN

BEGIn

COMMENT ok sk sia de fok doi ole sk ak aj ok ok oi of fe sla af oie 3k oi 3k 3 ke ok sie 3k XK fe kak oe ok 3k

*x ADCECCETO EDGESTACK.
x 3 ok af de ok de de dk oie sie ak ol ae ae ole de deo i ok se ole dole of oe sk kK ak a ofeok ok doko ak dk dk kok 3

ADD2(POINT,V2,EDGESTACKLEPTR)3

COMMENT forsookdolor doko kok dofok kok dk kok ok  dolok doo 30k
* HAS A NEW POINTBEEN FOUND?

de oe at ook Ao 3b a of ok ok of of ak ok do 3 3 oak af alk dk ok oleok ok ok oi ak ode dk lk ok kok ak ok ak 3

1h



IF NUMBER(V2)=0 THEN |
BEGIN

COMMENT kek dookok ok ok kook ok ok ofook sk ook ok ok Skok dofok ook ok of op alee 3k ok

* NEWPOINT FOUND. NUMBER| 7s

dk 3 3 ok ok sk ook ak oe oe ok oe sk 3 ok ak ok ok kak deo ook kk kok ok Bb kkok Rak kk 3

NUMBER({V2) :=CODE:=CODE+1;

COMMENT x kakokok ok ob ak of ok oak ok safe soak ok ode afk xe ok oc of 36 ake ab kof oe akc age te oe oe 3

% INITIATEA DEPTH-FIRST SEARCH FROM THE

* NEw POINT.

ae 3k 3 of ok oko ob of ok def ok ok oR a ok ok oof of akak ok ok fe 3k ook dk oieok sh okok dk ok dk kk 3

NEWLCWPT:=V#1;

BICONNECTOR(V2,POINT,NEWLOWPT)3

COMMENT kok ska dk ok ok ak kale sk oak sieafe ook ok vk ok oi ok ok ak ie ok 3 ok ok ok a oe ok ok

* MOTE THAT ALTHOUGH GLOBALVARTIABLE V 2

* | SsCHANGECy ITS VALUEIS RESTCRFD UPON

x EXIT FROMTHIS PROCEDURE. RECALCULATE

%* LOWPOINT.
ac oe 3 de dk fe ok ok ok de oko oi oe a 3k ak ok ak ok ak oe of dea ok afk die side dk ak of dol of dk oe de oj ke esi 3

LOWPOINT::=MIN(LOWPODINT,NEWLOWPT);

COMMENT 3% desk oka dk ok sk ak sok ak ak ok dee de oie oi ole ake dr a oe oie 3b of de se or oe xe i oe oe

* IS POINTAN ARTICULATIONPOINTOFTHE

* CRAPH?

ac 3 of 3k 2 ok kc 2 oe fe 3k ok ade ke de ae ae ok oe ok ake de ae oak ok ok de 3k dk ak kok ok dk alkok dk ok dk kk 3

1 NEWLOWPTO>=NUMBER(POINT)YTH EN

~ BEGIN

COMMENT kok dkokok sok dk deok ai oie Xoo sk kook 3c ajo ok ok dk ok oko dk ko

* POINTISAN ARTICUCATICN POINT.

* OUTPUT EDGES OF COMPONENT FROM

* EDGESTACK.

a 3k 3 oo sk 2k ade ok oc 3k 2 oko of ok a ak 3K ok ak ak ok ok oi koe ok a ak ok of ok dk folk ok kk 3

OLDPTR:=B8PTR:=BPTR+1;

WHILENUMBER(EDGESTACK(EPTR-1})IDNUMBER

(PCINT) DC

BEG IN

ADC2(ECGESTACK(EPTR~-1),EDGESTACK

(EPTR) ,BICOMPONENTS,BPTR);

EPTR:=EPTR=-2

ENC

COMMENT oki ok ok ok sie ok dc ak ade 0 ese 2k oieoke ok ae of ok oe sia ale ok ake ojo ak oe x ok

* ADD LAST EDGE.

A 3 she fe afc oe ode ok se 3 ok of ae aie ae Kode ok eae ese of ok ak ake ole desk ok dk kok kkk lk kk 3

ADD2(POINT V2,BICOMPONENTS,BPTR };

EPTR:=EPTR-2;

COMMENT 2% ok a ok oi 3 oe ke sek ae so ok oc ak of kofeok 2 sk afk ok oe ae ok ok of ok

* COMPUTE NUMBER OF EDGES OF

* COMFUNENT,

5 20 3 2 3k oe fe of a ake ae ole ak ok ole dk aE oe Sia ole oe ok oe ok of ak leo ok kde dk dk ak Kk ok 3

BICCMPONENTS(OLDPTR)::=(BPTR-0OLDPTR)DIV 2 ;
END

END

ELSE

COMMENT 3 kaka fo ok fe di ok sie ok of ole ofc alae 2800 3k ok of of oles 3 of ae oe oe ai abel oe ke

* NEW POINT NOT FOUND. RECALCULATE LOWPOINT.

a ee ok ke ee ak ok ok fe ok ok ale ofc ke ok ok of ole ok af ok kale ake ok ok ok ok kok ok Bok kkk KKK 3

LOWPOINT c=MIN{LOWPCINT,NUMBER(VZ2))

END

END: :

COMMENT  okkok dak oko ok dk ok soak ak dak ok 2 dak oe ok of ok acai ak 3 aie se of of of oc ok oe ok oka of ok ako ok sofa ak ae ok

* CONSTRUCT THE STRUCTURAL REPRESENTATION Of THE GRAPH.

EEE RRR RRR RRR R Rok Rk kkk kkk kk kkk Yok fk kkk kkk kkk RRR kkk kkk 3
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FREENEXT :=V;

FGRI 2=1 UNTIL ¥ DC NEXT{I) :=0;
FOR I2=1UNTILED C

BEGIN

COMMENT 2k sk od ok ole si of ak de she ok ok x ok sie ok oe dk oe a oi sje a aleok ak ake 2 of ofeole a ae ole oe ofc oe oe ok oe ok ok

* EACFECCECCCURS TWICE, ONCEFOREACH ENDPOINT.
a 3 3 oc 3c ok ae 3 ok koe dk xe of afk ok ok ox dc Ae ok age ok ik ok af ac ak ae alk Sik of oe ode a ke oi ak de ik sk de oe ok oft od ok ode al ak ok a ok 3

NEXTLINK{FDGEL IST{2*I-1),EDGEL IST(2%11});

NEXTLINK(EDGELIST(2*1),EDGELIST(2%I-1))

ENC3

COMMENT deokok ok ai of ok ook ok 3 ok ok ok % vk ote de ok sok 3 ok of of of of ok ai alk de oe oe oi oie ok afc de oo abe ok diode xc oe ode of oc oe a

* INITIALIZE VARIABLES FCR SEARCH,
wk of de of ob ok 9 x oh od a akc sk of of of ak ak ak ak oi ok ok of dc ok of of afk ake a afk dk dk afk ok ae ole a oak ik dk ode oe ok dk ae ol ok ke lk ok dle de

EPTR:=03%

BPTR:=03

PCINT:=13 )

v2:=03

x FCP I:=1U NT1 LV+1DONUMBER(TI):=03
WHI LE PCINTLK=V [IC

BEG IN

CCMMENT oooh ok ok sk ok a ok od doko 3 dk 3% 3k of ok 3k se sic ke ok ode si ok ok oe 3c aed ako ako ok of ok ok dee

4 EACHEXECUTIONOf BICCNNECTOR SEARCHES A

- * CONNECTEC COMPONENT OF THE GRAPH. Af TER EACH

* SEARCH, FIND 4N UNNUMBERED VERTEX ANG SEARCH

* AGAIN. RFPEAT UNTIL ALL VERICESAR EEXAMINED.
oe sx dj 3c %c dk de Fc ob ok oe 3k ok of ok ok 3h of dk ok ok ole afk dk ak ak ak oe ai ak ak ak ok ae si ak ok vi ak oe ote of deo dk op ok dk ok de ok dk kek 3

NUMBER(POINT):=CCCEz=13

NEWLOWPT:=V+]3

BYCONNECTCR(PCINTyV2 4NEWLGHWPT) $

WHILE NUMBER(POINT)~=0 DO POINT:=POINT+1

END;

END;

PROCEDUREPATHFINDER(INTEGERVALUE RESULT STARTPCINT,

PATHPT,CCDEVALUES INTEGER ARRAY PATH(*))3

BEG MENT wk fc 3 dk oe ok 9 of of de aol deo ak ak ok ok sk ok ak ok ak Kk sk ak ak ak ok ade shook dk a alk dk kak ok XK
* PROCECURE TO FIND DISJOINTPATHSWITH

¥* ARBITRARY STARTING POINTSINA BICONNECTED
* GRAPH. THEPCINTSOF EACH PATH ARE LISTED

* IN ARRAY “PATH”. THEFOLLOWINGVARIABLESARE

% ASSUMED cLoOBAL:

* NEXT(12:V+2%E) ,HEADIV+1l,V+2%E),

x LINK{V+]l ,V#2%F)CEFINETHE GRAPH USING SINGLY
x LINKED EDGE LISTS AND A SET OF CRCSS REFERENCE

* PC INTERS,

3x CLD(1l :2V) MARK(V+1,V#2%*%E) INDICATE USED
* PCINTS AND EDGES.

x PATHCCODE(1:3V)ISTHE CONSECUTIVENUMBERING

* CF THE POINTS.

* LOWPCINT(1::V),FCRWARD{(1::V),BACK(1l: 2V) GIVE

x INFORMATICNsaAvED FROM DEPTH-FIRST SEARCH.

4 NODE(12:VYGIVESTHE NEXT UNSEARCHED EDGE

x FRCMEACH POINT.

ak oe 3 3x vc 2% ok oc of oak ok dc 3k ok ak ok al de dkoke oe le de dk ak oe ok ok ok she ak ake ok a dle ok alka sk a ok ok sk eo ok ok 3
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f |
INTEGERPCINTy PASTEOGE,EDGE, PASTPOINT, V2;

PATH(1):= STAR TPOINT; |
COMMENT kakckok kok obo hakokok fob ok 2k th ok ok ok dk ok dkeak kook kok ak dk ok sk pak ak dk kok kok |

* CHOOSE INITIAL EDGE.

3 ok fe oe ob 3 ok ok ob 3 a ok ok oko ook kk of oe ae ak kok ok kk ok dk oi dakok dk ok ok kok kkk dk kk 2

EDGE:= NEXT(STARTPOINT};

WHILE(ECGE-=0)ANDMARK(EDGE)D0 EDGE:=NEXT(EDGE)

| FEDCE=0 THEN

BEGIN

COMMENT # aka sk sk ok ok ok ok ok de ok sk 3 of ok oie ake kook ok aksle ale afaik ok ogo ak dof ok ok

* NCUNUSED ECGEANDTHUSNIPATHEXISTS.

se fe or ok ok oe de a ok sie a ae fe ok oe ok shea dee ae fe ok se dete ade fe ak e kof ofc ale ale ok a ole ole afk kk ok ok 3

NEXT(STARTPOINT)$=03%

PATHPT:=0 ;
GC YO DCNE

ENC;

NEXTISTARTPCINT ):=NEXT(ECGE);

i PATH(Z2):=EDGE:
: PCINT:= HEAC(ECCE);
| PATHPT $=23

|F OLC(POINTITHRENGO TO PATHFOUND;

IFFORWARDI(PCINT)»=0 THEN

BEGIN

COMMENT 2h kook xe ode ie ai ok ke of ae ok ake ake 5 3 ae ofc oi a ok oe afc ofc ok deaf de ak aie ak 3 ae ode ak oe of 3

* USEPREVICUSLY FOUND INFORMATICN TO

* BUILDA PATH. FORWARDBACK ,LOWPCINT

* DESCRIBE TREES INVESTIGATEDUSING DEPTH-

* FIRST SEARCH.

HRokd hx pk kkk Rk koko kk kk kkk ok kkk kkk kk koko kkk 3

| F PATHCCDE(STARTPOINT)>PATHCCDE(PCINT)YTHEN

G OTD NEXTBACK:
NEXTMARK: | FPATFCODE(STARTPOINT)IDLOWPOINT(POINT)

THEN

BEGIN

NEXTFCRWARD: EDGE:= FCRWARD(POINTY);

PCINT:=HEAC(EDLGE);

PATHPT:= PATHPT+1;

PATH{PATHPT):=EDGE;

|F CLD{(PCINT)THEN GO TO PATHFCUND;
| FPATHCODE(STARTPOINT) >PATHCODE(PGINT)

THEN GC TO NEXTBACK;

GO TO NEXTFORWARD

ENC;

EDGE:= BACK{(POINT).

POINT:= FEAC(ECGE)S

PATHPT:=PATHPT+1;

PATH(PATHPT):=EDGE:

| FCLC(PCINYT)THEN GO TOPATHFOUNDELSE Go TD

NEXTMARK

NEXTRACK: EDGE:=BACK(POINT);

PCINT:=+HEAC(ECGE)};

PATHPT:=PATHPT+ 1;

PATH{(PATFPT ):=EDGE;
|F CLD{PCINT)THEN GO TO PATHFOUND ELSE

GO TO NEXTBACK

END:

COMMENT 2% kok sak sic sks fc ok sk 2 a she oi ak oe se 3k 3K ale alo of ok ok ok kook of sok ok kook oe ak oie af ok kok

* USECEPTH-FIRSTSEARCKTO FIND A PATH. SAVE

* INFORMATION DESCRIBING SEARCH TREE.

REEER IER E EXER REAR AR ERE KR RRR ERE RR RRR RAEN RRR BRR PRR
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[3

h EXTPO INT: COCEVALUE:= COCEVALUE+1;

PATHCCCE(PC INT): - CONEVALUE

NEXTEDGE EDGE:= NCDE(POINT);

WHILE EOCE=Q CI

BEGIN’

BACK(POINT) :=LINK{(PATH(PATHPT)) ;

FASTPOINT2= HEAD(BACKI(PUINT));

IF(FCRWARD(PASTPCINTY)=0)O R{LOWPOINT
(PCINT)IKLOWPOINT(PASTPOINTI)THEN

BECIN

FORWARD(PASTPOINT):= PATH(PATHPT)

LCWPOINT(PASTPOINT ):=LOWPOINT( POINT)

ENDS .
PNINTY:= PASTPOINT;

i FATHPT:= PATHPT-13
EDGE:= NCDE(POINT)

ENC;

NODE{(POINT)= NEXT(EDGE);

V2:= FEAC( EDGE);

| FPATHCCGRE| Vv 21=0 THEN

REGIN

POINT= V2;

~. FATHPET:= PATHPT+]1;
PATH(PATHPT):=EDGE3

COT ONEXTPCOINT

END:

| FOLC{(V2)YAND(V2-=STARTPOINT)T H E N

BEGIN

PATHPT:= PATHPT+1

PATH(FATHFPTISI= EDGE:
GC TC PATHFCUND

END;
IF(FORWARL (FC INT )=0)OR{PATHCODE(V2I<KLOWPOINT

{PCINT)) THEN

HEG IN

FCRWARD(FCINT):=EDGE;

LOWPODINT{(POINT):=PATHCCDE(V2)

END;

G OTONEXTEDGE;

COMMENT 2% % ok a ok ai a of oie ole ak ade 3 ai sp fe ic oe 3k fe xe offi of of oie ole ole ok ok ok oe ale ok oe of ae aol oe oe

x PATH FCUNC. CCNVERT STACK OFEDGESTCLISY

%* GF POINTSINPATH. MARKALLEDGES ANC
* FCINTS IN PATH,

fe sc ic ofc dk 2 se Ac dk oe 3c oe ade ol ak ok de ale ve ai af ok ake dk ok ae ak kok aoc ale oie ie die ale ale ke se ok ak xe oe ok ok ok Xk 8

PATHFOUND: FOR: = 2 UNTIL PATHPT GO

BEGIN

EDGE:= PATHI(T1)

PCINT:= FEAC(ECCE);

FCRWARD( POINT) 2= BACK{POINT)2:=0;

CLC{(PCINT):=TRUE;

MARK(LINK(EDGE)):=MARK(EDGE):=TRUE3
PATHI( I) t= POINT

END;

DCNE: END;
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