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Abstract

There are several very fast direct methods which can be used to
solve the discrete Poisson equation on rectangular domains. We show that

these methods can also be used to treat problems on irregular regions.






1. Introduction. Within the past few years, several very fast and accurate

direct methods have been developed for solving finite difference approximations

to the Poisson equation,
Au = £ in R,
u=g on oR ..

These methods can usually be applied only on rectangular regions, although the

differential operator and boundary conditions can be more general than those in
the Poisson equation. In this paper, we will show how these algorithms for
rectangular domains can also be used effectively on irregular regions. The
approach used is similar to that employed by Hockney [ 16, 17], Buneman [ 7],

and George [14]. We also mention the work of Angel [1- 4], Angel and Kalaba [ 5],
Collins and Angel [ 9], Kalaba [20], and Roache [22] on the use of direct methods
for problems in irregular regions.

We will not discuss the details of any specific direct method. A survey
of these procedures is given in [1ll], and in particular we cite the recent work
of Buneman [6], Buzbee, Golub, and Nielson [ 8], and Hockney [ 16].

We will also not consider the derivation of the finite difference equations
that approximate the partial differential equation. This subject is treated in
detail by Forsythe and Wasow [13], and we assume that the problem has been
reduced to finding the solution of a matrix equation Ax =y . The matrix A
is frequently very large and sparse, but its structure does not permit the
application of the most efficient direct methods. For our computational procedure,
we alter certain rows of A to obtain a matrix B, and we will show how to
define a modified right-hand side z so that the solution X also satisfies the
equation Bx = z . The matrix B is chosen so that these equations can be

~

solved by the direct methods.



This method is computationally advantageous when we are solving a
sequence of equations Afi = Xi . This situation frequently arises in
time-dependent partial differential equations, in nonlinear problems, and in
linear problems where the right-hand side is varied but the region and
differential operator remain the same. After some initial computation, each
solution X, can be obtained in approximately twice the time required for
the solution of an equation Bx = z

In Sections 2 and 5 we derive this algorithm in a general form. We

describe a number of applications of the method in Sections 4 and 5, and in

Section 6 we present some computational results.



2. Method of Solution if detB £ 0. Suppose that we are given an n by n
matrix A and an integer p with 1 € p € n. We wish to modify p rows of A
to obtain another matrix B. Without loss of generality we assume that the
first p rows of A are to be changed, since we can achieve this situation
by multiplying A by a suitable permutation matrix. However, we emphasize
that this multiplication should not be done explicitly in the computational
procedure. Rather, the rearrangement of rows should be done implicitly by
indexing. The direct methods mentioned later in the paper require that B
has a particular structure, which could be altered by the permutation
transformation.

Partition A in the form

where Al is a p by n matrix and A2 is an (n-p) by n matrix. We then

write

where Bl is a p by n matrix. For the remainder of this section, we
assume that detB £ 0.

Suppose we are given a linear equation Aﬁ =y . We partition y in

the same way as A, and write

<
]
Eﬁ

&

N



Let i be any vector of the form

1<)
1l
2l

i

If W is an arbitrary nonsingular p by p matrix, we define an n by p

matrix W by

=]
i

Define the p by p matrix C by

*
Following Hockney [16], we call C the .capacitance ME/ASSUFHG that there

exists a p by 1 Vector P that is a solution to the equation

1-
ey - , 1
Cp=y, -AB . (1)

~ ~

Since A and B differ only in the first p rows, it is easy to wverify that

a solution x to the equation Ax = y_is given by

-1

x =B (i+i£) .

We first show that this method of obtaining the solutiog x will be valid

whenever the original system Ax = y is consistent.

Theorem, If detB # 0 , then

det ¢ - (det A) (det W) éet %et X

¥/ Hockney actually refers to ¢l as the capacitance matrix. Since C may
be singular in our development, we have adopted the present notation.

L




If the system Ax = y is consistent, then Eq. (1) is also consistent,
1

Proof. Partition B~ in the form

where D, is n by p and D, is n by (n-p) . It then follows that
4 Blnl B, D, I 0
BB = = ’
A D, A2D2 0 I
and
N AD AD AD AD,
AB = =
A2D1 A2D2 0 I
Thus we have
-l
C=AB W=ADW ,
and so

det C = det (A".I.Dl) detW

det (AB™Y) detw

_ (detA) (det W)
- det B

To prove the consistency statement, suppose cT Yy = 0 . Write

~

-1

CW El

0 I



and define an n by 1 vector Z by

=1
]

We then have

Bz | )\ .

Since the system Ax = y is assumed to be consistent, we therefore have
-T
T

~

o

. T
y=0, which is the same as y (Zl - 122) = 0 . But then

T 1= T
(- 8E) (- R - E)

which is the' consistency condition for Eq. (1).
The Woodbury formula [18, pp. 123-124]for, the inverse of a matrix

(B + FG) is
-1 -1
(B + FG) - 31 (I -F(1+0cB7F) GB‘l) .

This equation has been used in direct methods for solving the Poisson equation

by George [14], and for the biharmonic equation by Goluwb [15]. If A is nonm-

singular we write

_ A =B+FG ,



where F = W, and G is the p by n matrix given by
-1
G=W (Al - Bl)

For the case in which A is nonsingular, the algorithm we have derived is
equivalent to using the Woodbury formula for A_l.

Suppose that we have a very efficient method for solving equations of
the form B£= w . The solution of the equation Ax = y then proceeds in

~

the following steps:
(1) Compute C =
(2) Compute §~

1
>
w
=

1
«
-

(3) Ssolve the equation CB = ¥ - AX

The solution x_can then be obtained from the formula

X = B-l(i-o-ﬁ’g) . (2)

L . - .= -1
If it is possible to store the vector X and the matrix B = B ¥, then X

can also be camputed from

X =
~

TR

+ fg . (3)

The decision whether to use Eq. (2) or Eq. (3) would be made on consideration
of storage requirements, and on the-relative speed of solving the system in
Eq. (2) versus multiplying by the matrix in Eq. (3). For problems arising
from elliptic difference equations, it is frequently better to use Eq. (2)
because B has a band structure, but the matrix B maybe full.

The type of application we heave in mind for this method is one in which
we have to solve a mmberof equations Ax, =¥; . In this case, we compute
the capacitance matrix and factor it as part of a preprocessing stage. The

solution of each equation Ax, =y, is then approximstely as fast as the time



it takes to solve two equations B'z_= WO

o~

To be specific, let 6(n) denote the mmber of arithmetic operations

necessary to solve a system Bz = w . Then to compute C and form its LU

decomposition in a preprocessing stage requires approximately

pe(n) + klpan + kap3

operations (cf. [19, sec. 2.11). In many cases the matrix Al is sparse,

and this estimate is

po(n) + 1:3133 - ()

operations. To compute the solution to a particular equation Ax = ¥ using

Eq. (2) takes an additional.

26(n) + Kpn + kspz

operations. If Al is sparse and we let W = I, this estimate can be replaced

by

26(n) + kg’ (5)
operations. To compute a particular solution using Eq. (3) requires
6(n) + kpn + kgp’ (6)

operations. In general this estimate cannot be reduced, because the matrix

B may be full,



3. Method of Solution if rank(B) = n-1 . The method derived in Section 2

gives a procedure for finding a p by 1 vector & such that a solution x

to Ax = y also satisfies the equation

o)
Bx =y + .
0
If B is singular, it may not be possible to find such a vector ® . To show
this, suppose BTv =0 but v ;é 0 . In order for © to exist, we must

satisfy the consistency condition

5+ 3oy e @
v(y + 5.e.) = 0 . T
~ s T il

If vTe. =0 for 1 <i < p and va ;4 0 , it is not possible to satisfy

Eq. (7) . However, if A is nonsingular this difficulty does not arise,
because then the only vector v satisfying E{y =~0 and XTS' = 0 for
1<i<p is v = 9 .

We will now describe an algorithm we have used when rank(B) = n-1 and
A is nonsingular. There are two advantages in treating this particular case.
First, the construction is quite simple, and it is easy to see how the method
could be extended to a more general matrix B . Second, the case rank(B) = n-1
has a special significance in the solution of partial differential equations,
because this condition is satisfied by the matrix corresponding to the

Neumann problem. For simplicity, we assume that the matrix W of Section 2

is the identity matrix.

Theorem 2. Assume that A is nonsingular and rank(B) = n-1 , and let u

. . T .
and Vi be two_non-zero vectors satisfying Bu = Bv =0 . Then there exists an

m
integer % with 1 <k <p such that ve. #0 . Define a constant




T -1

= (vie) ©
and let x be a solution to

- - T -

Bx =y - (@v y)e, .
For 1<i<p and i # k let 1, be a solution to

T

By = & - BV g) g o

and let ﬂk =u. Let C be thg p by p matrix whose i-th column Ei

the vector Alni' Then C is nonsingular,-and, if_p is_the solution to

2

~

the solution x to Ax =y is given by

- p
X =X+ B. M.
~ o~ i
Proof. If we partition v in the same way.as y , we have
T T L T T =T i . T
= + = =
AV A1 Vi A2 V5 and B v Bl vy + A2 Vo Thus if B v 9 and
vy = 0 we would have Alv =0 . Since A is nonsingular and v # 0  this

cannot happen, and hence vy % o .

To prove that C is nonsingular, we show that CB = 0 impliesf =0 .

P
Suppose P is an arbitrary vector such that CB =0 . Then X = £Z£ B Di

satisfies Ax = 0 , and hence x = 0 . This implies that Bx = 0 , or

T
i Pi & = o‘(iifi M Si)Sk

1=1

10



Thus Bi =0 for 1 <i<p and 1 # k , and the condition x = 0 then

implies that Bk =0 . Thus B =9 , and so C is nonsingular.

~

Remark. As we discussed in Section 2, the computation proceeds in the following
Steps:

(1) Compute (and factor) C ,

(2) Compute %',

(3) Solve for B.

Thesolution x can then be obtained from the formula
x=x* { Py Ty -
i=1
However, 1if the problem arises from a partial differential equation, it is more

efficient computationally to obtain x 1in the form

~
+Bu ,

X

X =
~

where X 1is a solution to

P
- - T - T
Bx =y - (@vy) e+ iZ_l Bie; - (@ v e5)ey)
itk
and
é=[uT}-c+ f B. W N I It ]_1
~ o~ i 1 o ~L ~ ~ ~ ~

11






4, Applications to Partiasl Differential Fguations by Imbedding. Suppose we

axe given a two-dimensional bounded region R in the x-y plane, and we wish

to find a solution u to the Poisson equation,

u=g on OR .

L]

We ass-me that this differential equation is approximated by a finite differ-
ence equation (cf. Forsythe and Wasow [13 ]), Thus we have a finite set of
unknowns [Ui |1<1ig no} which approximate the solution u at the grid
points. If we denote by Ah a finite difference approximation to the Laplacian
operator A, by R, the discrete interior of the grid, amnd by th the discrete

boundary of the grid, then the discrete Poisson equation can be written in the

form

AhU= f in Rh ’
b

U=¢g onBRh.

Let Rt'x be a discrete rectangular region such that Rh o Rt; and
3R, < R}; UJR! , and lets = dR N Rt'1 . Extend the functions f and g
to the regions Rﬁ ‘“da“n”a“ﬂ respectively, and consider the equation

(9)

AU =f in R -8,
U=g on § U BR;1 ° }
We will solve Eq. (9), and the solution U will then also satisfy Eq. (8).
Equation (9) is a linear equation in the unknowns {Ui |1<1i¢n)

Observe that we may have increased the number of unknowns by the imbedding

process, so that By S 1. We write Eg. (9) as a matrix equation AU = z ’

12



and the matrix A can frequently be chosen to be block tridiagonal with
tridiagonal matrices as the non-zero blocks (cf. [13]).
Let p be the mmber of grid points in Sh We modify the p rows of

A and V corresponding to the equations

This defines a new matrix B and a new right-hand sideNV. An equation

BU = V corresponds to the difference equation

~

f inRI;
g on BRA

AhU

U

(10)

fl

Since Rl'x is a rectangular region, we have very fast methods for solving
Eq. (10). We can now apply the method of Section 2 to solve the equation
AE = L/’ by using the modified matrix B.

To illustrate this construction, let R be a rectangular region with
an interior rectangle removed, such as that shown in Figure 1. For simplic-
ity, we assume that the discrete boundary BRh is a subset of 9R. The
imbedding rectangle 1is RI; = Rh U ShUT . The only function extension re-
quired for this example is that f be defined (arbitrarily) in Sh U Th .

To define this extension, we can set f = 0 in Sy u T,» or we can define £
so that it is combtimuous in all of R}; The advantage of using a continuous
f is that the solution to Eq, (10)is then smooth. However, the direct
methods used to solve Eq,(10) are so accurate that the smoothness of the

solution does not appear to influence the computational results. Therefore,

13



in the examples we have considered, we extend f by setting f 2 (0 in
Sh v Th .

If we let W= I in the method of Section 2, this algorithm is closely
connected with the discrete Green's function for the region Rt; (c£. [13,
PP . 314-318]). In fact, the method is then equivalent to adding suitable
multiples of the discrete Green's function for the points on Sh so that
the boundary conditions on S‘n will be satisfied. Since we have Dirichlet

boundary conditions on Sh’ by a proper ordering of the unknowns we can write

Ay =(1 . 0 |

Since B is positive definite and

c=(x o0)B? (1) ,
0

we see that C is also positive definite in this case. This is advantageous
because Cholesky decomposition can then be used to compute an LLT decomposi-

tion of C (cf. [12, Chap. 23]).

If the grid on Rl; has N points on a side, we have n = N’ . In that

case, we can solve the system BU =;‘7 in approximately

e(N) = 5N2 logaN
operations (cf. [11, p. 260]). The preprocessing then takes
Spl‘lzlogaN + k3p3

operations (cf. Eq. (4)). To solve Eq.(8)for a particular choice of £

and g by using Eq. (2)with W= I takes anadditional



2 2
10N loggN + k6p

operations (cf. Eq. (5)). If we use Eq. (3) to compute the solution, it

takes an additional

5N 10g, N + k, DN +kgp°

operations (cf. Ea.(6)). Thus if p > logzN it is faster to use Eq. (2)
to compute the solution. We also observe that for this problem the matrix
37l is full (23, p. 85], so to store B in using Eq. (3) would require pN°
locations. Thus for large values of p and -N it is both faster and more
economical in terms ofstorage to use Eq. (2) to compute the solution to a
particular equation.

It should be clear that the imbedding procedure can be applied to other
elliptic difference operators with other types of boundary conditions. To

be'a practical procedure, we simply require that we have a fast method for

solving the imbedded problem in the rectangular region.

As another example, consider the region shown in Figure 2. This problem
arises in the time-dependent study of a rotating fluid [10], and the fluid surface
is moving slowly. We are given Dirichlet boundary data on Sh , and Neumann
boundary data on BRh-Sh .Thenimbedding rectangle 1is Rﬁ = Rh U Sh U Th , and
we use Neumann boundary conditions on BRA . Thus B corresponds to the Neumann
problem on R’ , and the rank of B is n-1 . The method of Section 3 can then
be applied, and direct methods for solving the rectangular Neumann problem are
given in [8].

For an example with the Poisson operator in another geometry, consider

the region in the z -r plane shown in Figure 3. This problem arises in the

15



time—-dependent study of a plasma [21], @nd a Poisson equation must be solved

at each time step. The boundary conditions are Dirichlet on Sh and Neumann

on aR}(xl) - We use Neumann boundary conditions on aRy(ll) and BRQ(B) and
Dirichlet boundary conditions on aRﬁ(z) and aRﬁ(h) for the imbedding
region Rﬂ =R U Sh U Th . The elliptic difference equation in Rﬁ is solved
by the method of matrix decomposition [8].

16






5. Applications to Partial Differential Equations by Splitting., There are

many problems for which the imbedding approach is not an economical algorithm.
For example, imbedding the region in a rectangle may introduce an excessively
large mmber of additional unknowns that are not necessary to the solution of
the original. problem. Another instance is one in which the differential oper-
ator or the mesh size changes in different parts of the region. In this
section, we give two such examples. 1In each case, the method of Section 2

can be used to split the problem into two rectangular problems, which can be
solved by the usual direct methods.

Consider the elongated L-shaped region in Figure 4, and the equation

AhII

U

f in Rh )
g on EBRh .

[t}

We assume that points on the line marked T, are all grid points. To define

the matrix B, we replace the equations

o

on Th

by the equations

where g has been (arbitrarily) extended to Th’ The solution of an equation

BU = z‘now consists of solving the two rectangular problems

i

AU =f in Rl(li) ,

U,
i

on BI‘{S’ ’

1]
(1]

for i = 1, 2. We can then apply the method of Section 2 to solve the original

17



problem. This algorithm is similar to one developed in [ 8, Sec. 9]‘ for
non-rectangular regions.
As another example, consider the multiple-material problem shown in

Figure 5, The differential equation 1is

5% (a(x) %}%) + ga'; (T(Y) %‘5) = f(x,y) ,

and

(1)

ol(x) in R ,

az(x) in R(z)

The functions ol(x), oa(x), and «(y) are assumed to be smooth. Dirichlet
data is given on dR,and we require that “'3_2'%6 continuous across the
boundary between R(l) and R(e). The computational procedure is essentially
the same as that for the L-shaped region. The only difference is that in
forming the matrix B we replace the equations for the contimuity of a%l;

across the line Th by the equations

U=¢g on T

As before, the equation BU = V -corresponds to the two rectangular problems

~

du du,
w(x,y) =gx,y on ar(t),

for i =1, 2, These problems can be solved directly by the method of matrix
decomposition [ 8, Sec. 8]. A similar method can be used for the case in

which ¢(y) is only piecewise smooth.

18



It is clear that this splitting method can be applied to the Poisson
equation in regions such as that in Figure 5 when different mesh sizes are
used in R(l) and R(E) . The method developed in [8, Sec. 8] can also be

adapted to include rectangular problems with irregular meshes.

19






6. Computational Results. In Table 1 we have tabulated some computational

results for two regions of the form of Figure 1. In each case, a square
with sides of length 1 has a symmetrically located square removed from its
center. For region 1 the inner square has sides of length %‘-, and for
region 2 the inner sides are of length 13;‘— We solve the Poisson equation
with Dirichlet boundary conditions for the function u(x, y) = xg + y'?.
This function was selected because there is no truncation error, and &ll of
the measured error is due to inaccuracies in the solution of the difference
equations. All of the computations were performed on a CDC 6600 computer.

The iterative methods used are:

SOR : point successive over-relaxation [23, p. 58],

SLOR: successive line overrelaxation [23, p. 801,

ADI : Peaceman-Rachford alternating direction implicit iteration

(2L, Chap. 6].

The iteration parameters used are those for the imbedding rectangle R};, and
for AD1 the parameters for cycles of length four are calculated by the
Wachspress algorithm [24, Chap.6). The initial guess is identically zero,
and the iterations are terminated when the maximum difference between iterates
is less than 1072

The direct method used is variant one of the Buneman algorithm [8, Sec. 1l.
Preprocessing times are given in Table 2. Computational results for a similar
problem are given in [14],

The problem described in Section 4 for the region in Figure 2 has been
treated by Daly and Nichols [10]. The mesh used has 23 x 40 = 920 points.

Using the direct method of matrix decomposition, a particular solution requires

about 30 - 50% of the time required for a point Gauss-Seidel iterative procedure.

20



The problem discussed in Section 4 for the region in Figure 3 has been
treated by Morse and Rudsinski [21], The mesh used has 52 x 98 = 5096
points, and the preprocessing time is approximately 150 seconds. The region
and differential operator are very seldom changed, so the factored capacitance
matrix is stored on magnetic tape. Thus there is essemtially no preprocessing
time for the execution of the program. To solve for a particular solution
requires about 2 seconds, which is approximately 40% of the time required for

a successive line overrelaxation iterative procedure.

21



Table 1. Computational results for solving the discrete Poisson equation.
Region h P Method Maxinmm Computation Scaled
Error Time (Sec.) Computatior
Time
SOR 5.02 (- 6) 3.586 21.866
-3-1-2- 16 | suom 7.63 (-6) 2.654 16.183
AD1 2,36 (-6) 1.128 6.878
1 Direct 4,44 (-13) 0.164 1.000
SOR 8.12 (- 6) 29.388 43,994
a | % | s 7.95 (- 6) 21, b2k 32,072
AD1 3.41 (- 6) 5.642 8.446
Direct 1.90 (-12) 0.668 1.000
SOR 2.35 (-6) 3.570 21.250
£ | 32 | swm 6.48 (-6) 2.558 15.226
AD1 2.11 (-6) 0.870 5.179
2 Direct 3.77 (-13) 0.168 1.000
SOR - 2,02 (- 6) 29,624 43,565
1
& | & | sws 9.96 (- 6) 20.510 30.162
AD1 3.57 (- 6) 5.332 7.841
Direct 1.5% (-12) 0.680 1,000

22



Table 2. Preprocessing time for the direct method results in Table 1.

Region h Preprocessing
Time (Sec.)

) 1.062

1
ran 8.670
b 2.188

2
rary 17.698

L
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