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Abstract

This paper is an investigation of the organization of a parallel micro-computer designed to emulate a
wide variety of sequential and parallel computers. This micro-computer allows tailoring of its control
structure so that it is appropriate for the particular computer to be emulated. The control structure of
this micro-computer is dynamically modified by changing the organization of its data structure for control.
The micro-computer contains six primitive operators which dynamically manipulate and generate a tree type
data structure for control. This data structure for control is used as a syntactic framework within which
particular implementations of control concepts, such as iteration, recursion, co-routines, parallelism,
interrupts, etc., can be easily expressed. The major features of the control data structure and the primitive
operators are: (1) once the fixed control and data linkages among processes have been defined, they need not
be rebuilt on subsequent executions of the control structure; (2) micro-programs may be written so that they
execute independently of the number of physical processors present and still take advantage of available
processors; (5) control structures for I/0 processes, data-accessing processes, and computational processes
are expressed in a single uniform framework. An emulator programmed on this micro-computer works as an
iterative two-step process similar to the process of dynamic compilation or run time macro-expansion. This
dynamic compilation approach to emulation differs considerably from the conventional approach to emulation,

and provides a unifying approach to the emulation of a wide variety of sequential and parallel computers.
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I. INTRODUCTION

In the past few years, there have been two trends in computer architecture that have significant
implications for the architecture of micro-computers. The first trend is the development of computers whose
machine languages are optimized for a particular higher level language. This trend is execmplified by the
languages of machines such as the B65001 for ALGOL, Abram's APL MaChinee, Melbourne and Pugnire's Fortran
Machinei, etc. These machine languages represent a broader class of languages than is conventionally consi-
dered a machine language, e.g., a von Neumann machine language. We shall refer to this broader class as
Intermediate Machine Languages (IML's). The tailoring of an IML to a specific higher level language is
accomplished by incorporating instructions in the IML which "directly implement (i.e., mirror)" the primitive
operations of the higher level language (e.g., a procedure call in ALGOL is directly mirrored, including the

modification of the addressing environment, by the VALUE CALL instruction in the B6500) . Thus, instead of

implementing the semantics of higher level language primitive operations through an unnecessarily long and
complicated sequence of instructions, the IML is designed so that there is a single or, at worst, a short
sequence of IML instructions that efficiently carry out the operation. Therefore, by tailoring of a machine
language more closely to a particular higher level language, the mapping between the higher level language and

in
machine language is simpler and results in more compact and efficient generated code

The second trend in computer architecture is the development of computers which are able to carry out
parallel activity at the functional unit level, instruction level, or process level. This second trend is
exemplified by machines such as the CDCGGOOS, which permits asynchronous parallel operation of functional
units, the ILLIAC-IV6, which permits coordinated execution of multiple copies of a single instruction stream,
and the dual processor CDC 6500, which permits the execution of multiple asynchronous instruction streams.

These two trends in computer architecture are not disparate but rather are separate aspects of a more
general trend towards the design of complex problem oriented computers whose architecture departs considerably
from a classical von Neumann architecture. Both the B6500 and the ILLIAC-IV represent an integration of these
two trends in computer architecture; the B6500 is a multi-processor system which permits the allocation of
multiple processors to the execution of a single ALGOL program, and the ILLIAC-IV has a parallel organization
designed for problems involving an array structured data base.

In parallel with the development of problem oriented computers, there has been an effort toward providing
a systematic and flexible approach to the hardware design of a specific computer, This effort has led to the
development of micro-computers, e.g., the IBM 360/h07, with read-only control memories containing micro-programs
which emulate a specific von Neumann type computer. Recently, there has been an attempt to combine complex
problem-oriented camputer design with micro-computer design, implementing a specific architecture by modifying
the read-write control memory of the micro-computer. It is hoped that the goal of emulating a wide range of
problem-oriented computers can be realized by modifying dynamically the control memory of a single micro-
computer. This goal cannot be attained on micro-computers whose architecture is essentially of the von Neumann
type. This paper offers an architecture for a micro-computer with a control data structure and primitive
operations that permits a systematic approach to the emulation of a wide variety of sequential and parallel

intermediate machine languages.



A. Traditional Micro-Computer Architecture

Current micro-computers employ a simple sequential control structure and an instruction semantics for
transferring data between registers. These features are quite adequate for emulating machine languages with simple
control structures and instructions which operate on simple data structures. However, Intermediate Machine
Languages (IML's) that are tailored for the execution of higher level languages are not this simple since the
complexity of the higher level language operations is reflected in the semantics of the IML's instructions and
control structure. If the current trend in the development of higher level languages is maintained, these
problem-oriented IML's will employ increasingly more sophisticated control structures such as recursion,
co-routines, parallelism, etc., and instructions for accessing complex data structures, such as lists, trees,
arrays, etc. As will be arqued below, these IML's call for a more sophisticated control structure in the
micro-computer.

The control structure of a language, L , consists of a set of control rules, CRL ,» and a data structure

for control, CDS commonly called state information, program environment, etc., on which the control rules

L’
operate. The control rules determine, at each meaningful unit of activity of the language, which statement

or statements of the language will next be executed. For example, the CDS of a simplified computer could
consist of a program counter and an interrupt, register; the CR of this simplified computer could be the
following paradigm: "if there are no interrupts pending, then execute the instruction at the location
specified by the program counter, otherwise, store the program counter at a fixed location in the program
memory, turn off the interrupt bit, place the address of the interrupt handling routine in the program counter,
and then execute the first instruction of the interrupt handling routine". This definition of a control
structure makes a clear distinction between the control structure of a language and the execution of control
statements of a language, e.g., conditional branch instructions, etc. The control statements of a language
implicitly, rather than explicitly, affect sequencing by modifying only one part of the control structure,
namely, the CDS; the actual sequencing of statements occurs only by the interpretation of the control data
structure by the control rules. For example, consider the results of executing the control statement "branch
to location X" in terms of the control structure of the simplified computer discussed previously; the branch
statement, when executed, places the address X in the program counter; however, the next instruction to be
executed may not be at address X since during the time the branch instruction was executed, an interrupt
could have occurred.

By examining the program structure of an Intermediate Machine Language emulator, we can see the short-
comings of the typical current micro-computer architecture. The program structure is shown conceptually in
Figure 1. The "controlprocess" activates the "decoding process" with data that identifies the next instruction
of the emulated computer to be executed; the "decoding process" then analyzes the instruction to be executed so
as to determine the semantic routine, together with its appropriate calling sequence, whose activation will
perform the semantics of the emulated instruction. After the appropriate semantic routine has been executed,
the flow of control returns to the control process which, based on the results of executing the decoding
process and the semantic routine, selects the next instruction to be emulated. This basic cycle is conven-

8
tionally called the "Do Interpretive Loop" (DIL)~
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Figure 1. Conceptual Program Structure of an Emulator

In micro-computers designed to emulate a specific computer architecture or family of computers with
similar architectures, the control and decoding processes of emulators of these architectures are usually
implemented in the hardware of the micro-computer, and the semantic routines of the emulators are implemented
as micro-programs. When such a micro-computer is used to emulate an IML which was unanticipated by the designer
of the micro-computer, the hardware implementation of the control and decoding processes cannot be used. The
micro-language designed as a means of coding the semantic routines must then also be used to code the control
process and the decoding process. However, there are no features in the micro-language designed to facilitate
the coding of control or decoding processes, nor can the instruction sequencing of the micro-computer be used
directly to control the flow of activity among the control process, decoding process and semantic routines of
the emulator. This lack of features in the micro-language for general purpose emulation is an especially
serious shortcoming when an IML with complex sequential or parallel instruction sequencing is to be emulated.
Additionally, existing micro-computer architectures do not contain multiple micro-processors, and thus parallel
activity indicated by the IML can only be emulated by sequentializing the parallel activity.

This paper presents a way to emulate sophisticated IML's by (1) defining a micro-computer with a
powerful and general control structure, and (2) supplying features (totally missing in current micro-caumterd
to tailor the control structure of the micro-computer so that it corresponds to the one needed for the particular
IML being emulated. This tailoring results in the control structure, instruction semantics, and primitive
data-accessing operations of an IML being more directly implemented (i.e., mirrored) in the corresponding
control structure, instruction semantics, and primitive data-accessing operations of the micro-computer on
which the IML emulator is executed. For example, if the semantics of an IML instruction require a particular
form of iteration, then that form of iteration will appear in the tailored control structure and will not
have to be programmed as a sequence of micro-instructions. An additional by-product of tailoring is that the

structure of the IML is directly observable in the program structure of its emulator.



B. Variable Control Structure as the Basis of a Micro-Computer Architecture

The control structure of this micro-computer is dynamically modified by changing the organization (form)
of its data structure for control. These modifications to the CDS are specified by a control structure
definitional language called the Structure Building Language (SBL). The SBL can manipulate and build up the

_organization of the CDS only in ways understandable to the control rules of the micro-processor; the CDS, in

a very general sense, can be considered a control structure definition program which, when interpreted by the

CR of the micro-computer, defines a particular sequential or parallel control structure for sequencing of
micro-instructions. Current micro-computers consider a micro-program as a linear sequence of instructions
with no explicit internal structure (topology). The CDS can be thought of as a variable structure template
which defines a particular internal structure for the micro-program memory. An SBL program is quite
different from a sequence of control statements since the control structure definition program constructed

in the CDS by the SBL program is separated from (external to) the micro-program. This separation of the
control structure definition program from the micro-program permits the static part of the internal structure
of a micro-program to be generated only once for repeated executions of the micro-program.

An integral part of the technique used by the SBL to define a control structure is to explicitly represent
in the CDS the relationships between the execution of micro-instructions and the data environment in which
these instructions operate. In particular, the sequencing of micro-instructions involves specifying the
address of the micro-instruction to be executed and local and global parameters which define the data context
for the execution of that micro-instruction. Thus, a close relationship between control and data environment
allows the state of the emulated computer to be integrated directly into the CDS. Thereafter, SBL statements
can be used to dynamically modify the CDS to reflect the state transitions occurring in the emulated computer.
Additionally, the CDS can be used to define (1) control structures for sequencing micro-instructions which
then carry out the semantics of the emulated instruction, (2) control structures for I/0, and (3) control

structures for data-accessing operations.



II. MICRO-COMPUTER ARCHITECTURE

The micro-computer architecture pictured in Figure 2 can be characterized in terms of three basic hardware

subsystems. The first subsystem is an arbitrary set of functional units. Each of these units can be

independently activated and can have an arbitrary number of inputs and outputs, where that number need not be

fixed, and may be data dependent. For example, 4 functional unit could be a floating point multiplier, or,

more generally, an arbitrary input/output device. A functional unit can receive input data fram three sources:

the memory subsystem, another functional unit, or the micro-processor subsystem. A functional unit obtains

(and stores) data by requests to the micro-processor subsystem, which has complete responsibility for

determining the source (or sink) of the data which is requested and for generating the appropriate control

signals to accomplish the data transfer. Ip this manner, the micro-processor subsystem acts as a generalized

I/0 controller and separates the process of data-accessing from that of computation.
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FIGURE 2. Micro-Computer Hardware Organization



The second subsystem is a memory. This memory is bit-addressable and can be activated to store or
retrieve an arbitrary length string of bits. This memory holds the program to be emulated, and can serve as a
storage buffer for communication between the functional unit subsystem and the micro-processor subsystem.

Other types of memory organizations, such as word-oriented, bit-slice, associative, etc., can also be included
in the system's architecture by making them functional units. The memory subsystem is itself not just

another functional unit because the process of field (bit-string) extraction and manipulation is recognized as
an integral part of general purpose emulation; the language of the micro-processor contains instructions that
directly retrieve and store fields of the emulated computer's program memory. Thus, there exists a direct
connection between the micro-processors and the memory subsystem because accessing the memory subsystem is a
primitive operation of the micro-processors.

The third subsystem is composed of an arbitrary number of identical micro-processors and two additional
memories. The micro-processor subsystem controls the dynamic interactions among functional units, between the
functional unit subsystem and the memory subsystem, and among micro-processors. The execution of the micro-
processors is controlled through data stored in the micro-program and process-space memories; these two
memories contain, respectively, the static and active parts of the control structure of the micro-processor
subsystem. The micro-program memory holds micro-programs and is not normally modified during an emulation;
the micro-program memory is similar to the control memory of a conventional micro-processor. The process-space
memory holds the control data structure constructed by the SBL and is frequently modified during emulation.

The process space memory stores the state of the emulator, the state of the emulated computer, and the state
of micro-processor subsystem. The process space memory, in addition, contains a set of auxilliary working
registers which are dynamically allocated to micro-processors for temporary storage.

The micro-processors can be executing concurrently. The process space memory stores the control data
structure which coordinates the activity among virtual micro-processors. If there are not enough micro-
processors to carry out the parallel activity specified by the CDS, the available micro-processors are scheduled
on a first-come first-served basis. The state of the micro-processor subsystem maintains this mapping from
virtual activity to actual activity. This transformation from virtual processor activity to actual micro-
processor activity may lead to indeterminate results depending upon the number of micro-processors available.
However, as will be described in Section IV.C, the SBL contains control primitives that allow the micro-
progremmer to construct appropriate synchronization rules (e.g., Dijkstra's semaphore, Saltzer's wakeup-
waiting switch, lock-step execution, etc.) which preserve the inherent parallelism among processes, while at
the same time guaranteeing that the scheduling of virtual parallel activity will always result in determinate
computation, independent of the number of actual micro-processors.

The ability to manipulate the control data structure allows the tailoring of both the hardware and software
of this architecture to various IML's. The hardware tailoring involves the addition of specialized functional
units which carry out operations commonly used in the problem class (e.g., floating-point multiplier, matrix
multiply unit, etc.) or the addition of micro-processors. These hardware modifications can be made without
modifying the language of the micro-processor. The software tailoring involves building up an appropriate
control data structure in process space memory which integrates the state of the emulated computer with the
Btate of its emulator. Thereafter, changes in the state of the emulated camputer can be directly reflected

in changes in the state of its emulator.



In order to emulate a camputer using this system, the program which is to be run on the. emulated computer
is stored bit-wise in the memory subsystem in the same order as it would be stored in the emulated computer's
memory. The micro-processor must then perform the following tasks: (1) fetch from the memory subsystem the
instruction(s) of the emulated computer which is (are) to be executed in the next step; (2) analyze this
instruction and generate the appropriate sequence of functional unit activations or calls to micro-programs
which will perform the computations specified by the instruction. In addition, the sequence of functional
unit activations must be coupled with accesses from and stores to the memory subsystem to provide the input
and output data set for each unit. This sequence of functional activations may result either in concurrent

operation of functional units or a pipelining of data through a series of functional units.






III. MICRO-PROCESSING SUBSYSTEM

The main orientation in the design of this micro-computer is the incorporation of a facility for
defining a variable control structure in the hardware of its processor. This design emphasis has led to a
micro-processor that contains two basic classes of instructions. One class, called the Integer Function
Language (IFL), is used to program address arithmetic functions while the other, called the Structure Building
Language (SBL), is used to construct dynamically the control structure of the micro-processor subsystem.

The Integer Function Language is a highly specialized micro-code language specifically designed for the
task of address arithmetic involved in computing the effective address of an operand, decoding an instruction,
etc. The IFL is also used to construct programs which simulate the actions of functional units, e.qg.,

a floating point multiplier, etc. The IFL departs from conventional micro-languages in three ways: (1) the
result of executing an IFL program is to return an integer value to the calling routine; (2) each IFL program
has parameters passed to it; and (3) IFL instructions do not operate on a fixed set of registers, but rather
on the parameters which are passed to an IFL program. Each IFL program can be thought of as a definition of a
function which, when executed, may have side effects. -

The SBL, on the other hand, is used to define the control structure of a process. A process consists of
the execution of a sequence of statements which either activate an IFL program or activate a functional unit.
The control structure for sequencing these process statements specifies not only the sequence of activations,
but also the appropriate input and output data sets for each activation. The generation of these input and
output data sets may itself be based on the results of activations of IFL programs or the activations of
functional units. The SBL sequences IFL programs both implicitly and explicitly as will be seen more clearly
in the next section. The explicit sequencing results from the control structure constructed by the SBL; the
implicit sequencing occurs when an IFL program is invoked during the execution of an SBL statement. The SBL
statements, in themselves, have no ability to do arithmetic computations other than to add to or subtract from
a parameter a constant. Thus, whenever a more sophisticated parameter calculation is required by an SBL
statement in order to modify or build up a Control Data Structure, an IFL routine is implicitly invoked by
the SBL statement so as to perform the desired parameter calculation.

The SBL is not designed to define the sequencing of individual IFL instructions since the control
structure necessary for address arithmetic algorithms is simpler and less variable than that required for
processes; the control structure for IFL instructions is build-in rather than dynamically constructed.

Address arithmetic functions can therefore be executed without invoking the overhead of a variable control
structure.

The rest of this paper will discuss the techniques employed by the SBL to generate a variable control
structure. The IFL will not be discussed further in this paper. However, an example of an IFL program is
contained in Appendix A, and a complete discussion of the IFL is contained in a previous paper by the

authorlo N






IV. STRUCTURE: BUILDING LANGUAGE

The basis of the syntax and semantics of the SBL is a fixed set of control structure definitional
prototypes (templates) that, when expanded, modify the CDS so as to define a particular type of control
structure. An SBL statement (macro) specifies one of the fixed set of prototypes together with a set of IFL
address arithmetic functions. Each prototype represents a parameterized model of a basic control concept,

e.g., iteration, selection, hierarchy, synchronization, etc. The specification of particular values for the
parameters of the prototype defines a particular instance of a basic control concept. The programming of an
emulation on this micro-computer is done by creating a dynamic mapping between the control structure and
instructions of the emulated computer, and the set of control structure definition prototypes. This dynamic
mapping is represented in the address arithmetic algorithms specified in the SBL macro that are used to
calculate the parameters of the prototype. An emulator programmed in this micro-computer works as an iterative
two-step process (i.e., it generates an instance and then executes the instance) similar to the process of
dynamic compilation or run-time macro expansion. This dynamic compilation approach to emulation differs
considerably from the conventional approach to emulation (i.e., calling subroutines of micro-instructionsg)
done on existing micro-processors, and directly reflects (as will be seen in the next paragraphs) the
conceptualization of the structure of an emulator pictured in Figure 1.

The CDS is in the form of a tree whose non-terminal nodes are calling sequences to SBL macros or to IFL
programs, and whose terminal nodes are calling sequences to hardwired control rules (clocking processesll)
which sequence the non-terminal nodes, control the activity of functional units, or control the accessing of
data from the memory subsystem. Terminal nodes can be considered as instructions for a control structure
definition programwhich, when interpreted by the control rules of the micro-processor, defines a particular
control structure for the micro-processor subsystem. An example of a CDS is pictured in Figure 3.

The execution of an SBL macro is factored into three separable phases: a binding, an expansion, and an
activation phase. The binding phase occurs when a macro calling sequence is generated in a non-terminal node
in the CDS by the expansion or activation phase of another SBL macro; in particular, the non-terminal node
contains the address of an SBL macro stored in the micro-program memory, and the parameters to be associated
with expansion phase of the macro. For example, the binding phase analog in an ALGOL procedure is the

machine code that sets up the parameters for the procedure call.

Example lA:f/ Consider the emulation of an instruction, FAD I 20, where FAD specifies a
floating add operation, I specifies indirect addressing, and the accumulator is the second
and result operand. The first step in the emulation of this instruction on this micro-processor
is the following: An SBL macro generates a non-terminal node in the CDS which is a binding
between a parameter, IR (instruction register), whose value is the instruction to be emulated,
and an SBL macro IEXEC. This binding phase step is the analog of the control process of an

emulator, and is pictured in Figure LA.

The expansion phase, which is the second phase, occurs when SBL macro calling sequence stored in the non-
terminal nodes is executed, and results in the generation of sets of son nodes of the non-terminal node. The

number of son nodes generated and the particular calling sequence stored in each son node is defined by the

*
¥ Examples IA, 1B, 1C, 2, 3, and b form an integrated sequence Wiaich explains Figure 3.
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*An oblong box is a non-terminal node; a rectangle is a terminal node; an
underline indicates an IFL calling sequence; and a superscript on a macro
calling sequence, e.g., the D on OPFETCHP, indicates the control structure
prototype that the macro invoked.

parsmeterized prototype specified by the called SBL macro stored in the micro-program memory. The prototype
parameters are either specified as immediate data or computed by either adding immediate data to one of the
SBL calling sequence parameters, or invoking an IFL program whose parameters are the SBL calling sequence
parameters. The set of son nodes generated by the parsmeterized prototype consists of a terminal node (i.e.,
calling sequence to a hardwire control rule) and a possibly empty set of non-terminal brother nodes which
define the immediate environment on which the hardwired control rule operates. For example, the expansion
phase analog in an ALGOL procedure is the execution of machine code that performs procedure initiation

when a procedure is called, e.g., allocation of memory for a run-time stack, transferring the procedure

parsmeters to the run-time stack, etc.
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Example 1B: The second step in the emulation of the instruction FAD I 20 is the expansion of

the macro calling sequence IEEN(IR)- The SBL macro, IEXEC, specifies a control structure definitional
prototype which generates a CDS that controls a functional unit. The parameters of this prototype specify
the functional unit to be activated, and the set of non-terminal nodes that will be used to generate
the input and output data set of the functional unit. These prototype parameters, with the exception
of the name of the functional unit, do not vary from one execution to another execution of the macro
IEXEC; thus, these non-varying parameters are specified in the body of macro IEXEC as immediate data.
-Whereas, the varying prototype parameter is computed by an IFL program called OFCODE; this IFL program,
called with parameter IR, extracts the op-code of the instruction and then determines the name of the
appropriate functional unit. The expansion of the SBL macro calling sequence, TEXEC(IR), results in a
CDS pictured in Figure 4B; the terminal node in Figure 4B contains a calling sequence to an IFCP control
rule where the first parameter specifies the functional unit, e.g., floating pointer adder, to be
activated and the second parameter specifies the number of non-terminal input nodes, e.g., the nodes

I1 and 12. This expansion phase step is the analog of the decoding process of an emulator.
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The activation phase, which is the third phase, results in the execution of a hardwired control rule
whose calling sequence is stored in the terminal node generated by the expansion phase. The execution of
the hardwired control rule, in turn, results in further execution of SBL statements, the activation of IFL
programs, or the activation of functional units. For example, the activation phase analog in an ALGOL

procedure is the execution of the machine code for the procedure.

Example IC: The third step in the emulation of the instruction FAD I 20 is the execution of the
calling sequence FCP(1,2) stored in the terminal node. The hardwired control rule FCP activates
functional unit 1 with two inputs, and then stores the output; the two inputs are generated by
executing nodes Il and 12 , and the output stored by executing node Ol ; the expansion of these
nodes results in Figure IC where the hardwire control rule MEM controls access to the memory subsystem.
In this case of node 12 , the expansion of the data-descriptor macro calling sequence, OPFEICH(IR),
requires the implicit execution of an IFL program, OPADD; this IFL program does the address arithmetic,
in this case indirect addressing, required to locate the operand of the instruction. The other two
nodes' Il and 01 generate a fixed data-descriptor which specifies the area in the memory subsystem
set aside as the accumulator. This activation phase step is the analog of the semantic routine of an

emulator.

The examples IA, 1B, and I indicate the three phases involved in emulating IML instructions. However, it
should be pointed out that for the emulation of additional IML instructions with the same basic format (e.g.,

op-code, indirect bit, address) the binding and expansion phases can be eliminated. Thus, the overhead

involved in the binding and expansion phases need be incurred only once for each different instruction format
of the emulated computer. Additionally, if there does not exist a functional unit to carry out the semantics
of the emulated instruction, then these semantics can be programmed in terms of the IFL; this IFL program,

called a pseudo-functional unit, is then activated by the FCP control rule in the place of a functional unit.

*
A. SBL Macro Proto‘types—/

There are six possible SBL macro prototypes: data-descriptor (D) , function (F) , selection (8),
iteration (I) , hierarchical (H) , and activation (C) . An SBL macro whose prototype is either a data-
descriptor prototype or a function prototype is called a subsystem command macro, while a macro whose
prototype is one of the remaining four is called a structure building macro. The subsystem command macros
generate a CDS that controls the interaction between the memory subsystem and the functional unit subsystem.
The CDS of a more complex process is constructed through the execution of a seqeunce of structure building
macros that use as their basic building block calling sequences to subsystem command macros. If the basic
building blocks are just data-descriptor macro calling sequences, then the structure building macros define
the control structure of a data-accessing procedure. The SBL macros can also be used to define an I/0
control structure which, for example, duplicates the effect of an I/O channel. An I/O control structure can
be considered the definition of a macro-instruction when the functional unit being controlled in an
arithmetic device. This later use of SBL macros was shown by Example 1. The idea of a generalized I/O
control structure to control arithmetic units has been proposed in a previous paper by the author J_'l., and

by Lasslz as a basis of the design of a high speed computer.

*

—/ This section discusses the semantics and use of SBL macro prototype but does not discuss the internal

- machine language format for SBL macros. A discussion of internal machine lanquage format of the SBL
macro and 8180 IFL instructions is contained in a previous paper by the author.l
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The control data structures generated by expanding each of the six macro prototypes are pictured in

Figure 5. The non-terminal nodes pictured in Figure 5 contain SBL macro calls which have a fixed format

consisting of an address g and a parameter p , e.g., q(p) . The address, g , specifies the location of
an SBL macro in the micro-program memory, and the parameter p 1s used in the computation of the parameters

of the prototype. The terminal nodes contain calling sequences to one of five hardwired control rules:

MEM (Memory Subsystem Command), FCP (Function Clocking Process), SEL (Selection Clocking Process), SCP

(Sequential Clocking process), and ASP (Activation and Synchronization Clocking Process). In order to

DATA DESCRIPTOR
PROTOTYPE

FUNCTION PROTOTYPE

__——-——/_—”—'I L

1 in

FCP(fu,inyef,s)| (g () ). ( 95 (Psp) )
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SELECTION PROTOTYPE ( a(») )
SEL(QO, INC, C:PO) (q0+INC) (PO)

( I )
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SCP(M,V, c’pO’kO) qi(pi) 1=1,n

where M(Pi’ki) = Q47 0 V(Pi:ki) = (pi+1’ki+l) » until k .. =0
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'r-(_q:l)(P)
ACTIVATION PROTOTYPE
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FIGURE 5.

CDS Resulting from Macro Prototype Expansion
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distinguish for future discussions the parsmeters of SBL macro calling sequences from those of the hardwired
control rule calling sequences, the SBL macro calling sequence parameters will be called external parameters
and the hardwired control rules calling sequence parameters will be called internal parameters. A more
detailed discussion of the format and use of the external and internal parameters stored in the CDS will be
delayed to Section IV.B.
The MEM control rule defines an access path to the memory subsystem; the MEM control rule is activated
with three internal parameters: f , the format of the data-item, e.g., floating-point format, etc.;
a , the beginning bit address of the data-item in the memory subsystem; and, £ , the bit length of the
data-item. When executed, the MEM control rule activates the memory subsystem to fetch (or store into) a
bit string bounded by addresses a and (a+!-l) , and then sends this data together with the format field, f
to the requesting functional unit or IFL program. The MEM control rule calling sequence neither specifies
the particular functional unit or IFL program that receives or generates the data-item, nor whether the
operation is a store or fetch. These specifications of functional unit and operation are defined by the FCP
control rule which activates the data-descriptor macro calling sequence. Thus, the same data-descriptor
macro can be used with many functional units and may be used either for a store or fetch operation. The use
of a format field, f , in the specification of both input and output allows the functional unit to be very
sophisticated in being able to perform, if desired, arithmetic operations involving operands and results of
different types and lengths.
The FCP control rule activates a functional unit and then controls the generation of the input and

output data set of the functional unit; the FCP control rule is activated with four internal parameters:

fu , the name of a functional unit or IFL program; in , the number of input set generator nodes (the

number of output set generators are the remaining brother nodes); ¢f , control information sent to the
functional unit upon its activation; and § , an address in the memory subsystem where the status of the
functional unit at the termination of its operation is stored. When executed, the FCP control rule

activates the functional unit fu with control information, «cf , and then waits for a request by the
functional unit for input or output data. If input data is requested, then the calling sequence ql(Pl) is
activated to generate a single input value. Upon further requests for input ql(pl) is executed again until
it produces no more data (e.g., it is terminated) and then qe(pe) is activated. The same process is then
repeated with q2(p2) . If an output is requested, qin+1(Pin+l) is activated to store a value. Upon
further requests for output, an analogous process to the input case just described is carried out.

A functional unit can also operate in the mode where it requests all its input data simultaneously, in which
case all the input generators Il...Iin are simultaneously activated to generate inputs. At the termination
of operation of the functional unit, the status of the unit is stored starting at address, s , in the memory
subsystem. The function macro prototype generates a CDS that clearly divorces data-accessing from the
camputational algorithm. This separation facilitates the definition of control structures which (1) directly
emulate different types of IML instruction formats, e.g., one address, two address, etc.; (2) specify

*
interconnection patterns among functional units, —/.e.g., a pipeline of functional units, a tree of functional

* . . .
Y The method of generating a CDS for these alternative functional unit control structures is discussed
~ more fully in a previous paper by the author+’.
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units, etc.; and (3) allow the incorporation of functional units into the functional unit. subsystem that
have complex input and output requirements, e.g., a matrix multiply unit.

The SEL control rule proveides a mechanism for the conditional expansion of the CDS, and serves a
purpose in the SBL analogous to the CASE statement in AIGOL, or the Computed Go To statement in FORTRAN. The
SEL control rule is activated with four internal parameters: 4y + an address in the micro-program memory of
the base of an array of SBL macros; INC, an index into the array of SBL macros; c¢ , control information
which specifies the mode of execution of the generated macro calling sequence; and po , the external
parameter of the generated macro calling sequence. When executed, the selection clocking process (SCP) stores
in its brother node the SBL macro calling sequence (qO+INC)(pO) » and then expands and activates this calling
sequence based on the control information ¢ . The possible modes of executing a macro-calling sequence will

be discussed in the next section.

Example 2: Consider a machine language which has several instruction formats. The emulation of
instructions of this machine language could be programmed, e.g., have a separate function macro,
IEXECF , for each format, J . A selection macro IDECODES , could be used to implement a decoding

process that selects the appropriate function macro given a parameter, IR, whose value is the emulated

instruction:

TDECODE® (IR)

SEC (IEXEC, IFORMAT (IR), ¢, IR)

where IFORMAT is an IFL program that selects the appropriate index into the array of function macros

based on the format, J , of the emulated instruction.

The SCP control rule is used to define the control structure of a sequential process, and serves a
purpose in the SBL analogous to the FOR-LOOP in ALGOL, the DO-LOOP in FORTRAN, or the MAPCAR function in LISP.
When executed, the SCP control rule sequentially generates and executes as its brother nodes a list of macro
calling sequences:

Qq(P)seeer23(R5) 5 gy (Pyyq)seeay(®) -

The sequential clocking process (SCP) defines only a sequential control structure since each macro calling
sequence qi(Pi) is completely executed before the next calling sequence qi+l(pi+l) is generated. The SCP
control rule is activated with five internal parameters: the first two parameters, M and V , are the
addresses of IFL programs; the third parameter, ¢ , specifies the mode of executing a list of macro calling
sequences; and the remaining parameters, Py and ko , are used to construct the initially macro calling

sequence in the list; the M program called with parameters (Pi’ki) computes q.

141 2 the address of a macro.

g - is constant, then M can be the address of a rather than the address of an IFL program that
computes qi . The V program, also called with parameters (Pi'ki) computes (Pi+l’ki+l) . The generation

of calling sequences continues until kh+l =0
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Example 3: The iteration macro can be used to construct a control structure that implements the
instruction fetch cycle of an emulated computer. Consider the iteration macro calling sequence,
ISEQL(PC) , which generates an SCP control rule with following internal parameters: M = ]:DEXJODES
(in this case M is an address of SBL macro rather than an IFL program), V = IFEICH , Py = IR ,
and ko = PC where the IR parsmeter contains the emulated instruction just executed, and the K
parameter the address of the next instruction to be emulated. The IFL program IFEICH(IR,KC) extracts
the instruction of the emulated computer specified by K, stores this instruction as the new value of
IR, and updates PC by one. The SCP control rule, with the above parameters, generates a sequence of
calls to the selection macro IDRODEDﬂwith a parameter whose value is the next instruction to be

emulated:

SCP(IDECODE, IFEICH, ¢, IR, EC) TDECODE® (IR)

There are two modes of activating an SCP control rule; these two modes are indicated through the control
information, c y used to activate the iteration macro calling -sequence that generated the SCP control rule.
In the normal mode, the SCP generates and executes macro calling sequences until kn+l = 0 while in the other
mode, called single cycle, the SCP suspends its activity after the execution of each macro calling sequence,
qi(pi) i = 1,n ; upon the reactivation of the suspended SCP, depending upon whether qi(pi) is itself
terminated or‘suspended, either the next calling sequence qi+l(Pi+l) will be generated and executed or else
the suspended qi(pi) will be reactivated. This latter mode of activating an SCP allows the concept of
"time grain" to be introduced into the SBL definition of a process's control structure. The time grain of a
process refers to the smallest unit of a process's activity that can be controlled; the boundaries of a time
grain are the only discrete points in the activity of a process where the process's state may be considered.
The two modes of activating an SCP control rule allows the time grain boundaries of a sequential process to

be defined as either the termination of the process or the suspension or termination of each process

statement.

Example 3A: Consider the iteration macro calling sequence A(p) which, when activated, generates
and executes the following list of macro calling sequences BI(ll)...BI(ln) . Likewise, consider the
iteration macro calling sequences BI( 3 i) which, in turn, generates and executes the following list
of maecro calling sequences ‘C:i.(Jl) "'Ci(Jm) . If the macro Al is activated for a single cycle, and
the internal parameter, c , of the SCP node of A specifies execution for &ll cycles, then the time
grain boundary of A is the completion of each macro calling sequence BI(ti) . However, if the c¢
parameter associated with the SCP node of A is set for a single cycle, which implies that SCP node
of B(li) is activated for a single cycle, then the time grain of the A is the time grain of the
Ci(J) . This successive functional decomposition of a sequential process through a hierarchy of

iteration macros can be continued until the desired time grain of the process is achieved.

The concept of time grain can be employed to represent concisely such control concepts as interrupts,
monitoring, etc. In particular, the control structure of a sequential process that is being monitored for

a specified condition can be constructed so that the process is suspended after the smallest unit of work
which can effect the condition being monitored is performed. Thus, before reactivating the suspended process

the condition being monitored can be checked, and if necessary, an appropriate interrupt process activated.
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The ASP control rule, unlike the other three built-in control rules FCP, SEL and SCP, does not implement
a predefined pattern of sequencing non-terminal nodes, but rather is a building block upon which arbitrary,
possibly non-sequential, clocking processes can be defined. The activation of the ASP control rule results
in the modification of the "state" of a single non-terminal node where the location of the non-terminal node
is not fixed but rather specified by parameters of an ASP calling sequence. The ASP control rule is used in
conjunction with a hierarchical macro prototype to define a clocking process which sequences the son nodes
of the hierarchical macro. A hierarchical macro calling sequence, qH(p) , when expanded, generates a list
of macro calling sequenceslglgpl)--:gn(an and expands the macro calling sequence (g+1)(p) . The dotted
box in Figure 5 is used to indicate that results of expanding (g+l) (p) 1is placed in the CDS instead of a
non-terminal node containing the calling sequence (gq+l)(p) . For example, if (g+l) is an iteration macro,

then the expansion of qH(p) results in the following CDS:

The activation of qH(p) then results in the activation of the terminal node which is generated by the
expansion of (g+l)(p) , e.g., in the above case, the SCP control rule would be activated. The CDS generated
by the expand macro (q+l) defines the control structure of the clocking process which initially sequences
the sone nodes of the hierarchical macro; the basic statements of this clocking process are calling sequences
to activation macros. The execution of these activation macro calling sequences results in the activation of
ASP control rules; these ASP control rules, in turn, control the expansion and activation of the son nodes

of the hierarchical macro.

Example 4: Consider the emulation of a conventional computer with an interrupt structure. The
control structure of the emulator for this computer can be constructed by combining together the
control structures discussed in Examples 1, 2 and J, and then adding as a superstructure a macro,
COMPUTER', which specifies an interrupt control structure. Figure 3 represents this combined
control structure, where SEQUNIT is a clocking process that activates the node ISEQI(pc) for one
cycle at a time (which means the grain boundary of ISEQ is the emulation of a single instruction),
and then checks whether an interrupt requires servicing; if it does, then the node INTHANDLER is

executed, else the node ISEQI is reactivated and the basic sequencing cycle is repeated.

A more detailed explanation of the hierarchical macro prototype and the ASP control rule is contained in

Section IV.C.

B. Control Data Structure

The CDS is in the form of a tree due to the ease of specifying such control concepts as hierarchical
structure (functional decomposition), parallelism, co-routines, and recursion. Representation of hierarchical
structure and recursion is possible because additional levels (e.g. son nodes) may be dynamically built in the

tree by expansion of non-terminal nodes (macro calling sequences). Representation of parallel and co-routine
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control structures is possible because brother nodes in the tree may be treated as distinct, independent
processes each with its own state information. A tree data structure is also a convenient syntax framework
(using father, brother, etc., relationships between nodes) for defining distributed control systems. The
control structure of a complex system can sometimes be conveniently represented through hierarchical structure
where in each sibling set (or structural level) of the tree there is embedded a simple control rule (via a
clocking processlh) that initiates the sequencing of its brother nodes. If additional clocking processes

are contained in the sibling set, control may pass to these processes after initialization. Thus, instead of
one complex control rule for the entire system, the control can be distributed throughout the system. In
addition, since the control rules can be coded such that their addressing structure is not based on their
absolute locations in the tree, but only on their relative position in the tree, one copy of a single clocking
process can be used at different points in the tree. The simultaneous execution of many calling sequences to
the same macro body is permitted because information local to each macro expansion and its subsequent
activation is stored in the CDS.

A tree is the form of a CDS generated by SBL macros but does not necessarily reflect the dynamic
sequencing of nodes. This separation between generation and sequencing is possible because the execution of
an SBL macro is factored into three separable phases: the generation of a CDS, caused by the binding and
expansion phases, can thus be separated from the execution of a CDS, caused by the activation phase. The only
built-in sequencing associated with the tree is that a father node must be expanded before any of its sons.
The CDS is just a convenient framework within which sequencing rules can be expressed. Thus, control
structures whose CD8's are not normally represented as tree structures can also be programmed in the SBL since
the tree is the form for generation of the control data structure but not necessarily the form for the passing

of control during execution.

2, The

Example 6: Consider the parallel control structure defined by a fork-join instruCtiahi
fork-join control structure is normally represented in terms of the directed graph in Figure 5&.
However, if the correct clocking processes are attached to a tree of processes, then the fork-join
control structure can be represented in terms of a tree, as viewed in Figure 5b: the clocking process
Control-1 sequentially executes the process specified by macros "PARL AB" and C. Control-2 clocking
process executes processes A and B in perallel, and is not terminated until both processes A and B are

terminated.

58 5b

Fork A,B Fork! A,B

| i |
A B \ Control-1
L e =d

r—-——-"
Join A,B + Control-2 CPA A ) B

e — - - -

FIGURE 5. Fork-join Instruction
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The separability of the three phases of macro executions also avoids the unnecessary rebuilding of the CDS
when the form of the control data structure (e.g., the number of sone nodes at a particular level in the tree)

does not vary from execution to execution. The SBL is defined so that only the dynamic parts of the CDS

must be rebuilt; the static parts of the CDS once defined need not be regenerated. For example, the only parts
of the CDS pictured in Figure 3 that need to be rebuilt for the emulation of each instruction are the values

of the internal parameters calculated by IFL programs. As well, the separation between the binding phase, and
the expansion and activation phase allows the external parsmeters used in executing and rebuilding parts of
the CDS to be different from those used to initially generate the CDS.

Each non-terminal node in the CDS can be considered the state vector of a process, where the process is
defined by the control structure generated by the expansion of the macro calling sequence stored at the node.
The built-in control rule that is used to activate a non-terminal node will be called the external clocking
process (ECP) of the node, while the built-in control rule that is activated as a consequence of the node being
activated will be called the internal clocking process (ICP) of the node. For example, in Figure 3, the ECP
of non-terminal node IDECODE(IR) is the SCP control rule contained in its brother node, while the ICP of
this node is the SEL control rule contained in its first son node. The process state vector in
each non-terminal node has six componenets (q,p,s,c,r,d) where q(p) is a macro calling sequence,

s 1s the current state of the process, ¢ 1is control information associated with the activation of the
process, and r and d are pointers to nodes that, respectively, define the immediate global control and
data environment of the process. The current state, s , of the process refers to the state of the ICP
associated with the node, and has seven possible values: (1) ICP is wunexpanded; (2) ICP is being
expanded; (3) ICP is expanded; (4) ICP is being executed; (5) ICP is being suspendedf/;(é) ICP is
suspended; and (7) ICP is terminated. The control information, c , specifies (1) the time grain of the
process, (2) the conditions under which the process will signal its external clocking process, and

(3) the conditions under which the process's control structure is rebuilt. The time grain of a process can
be either the activation of a single process statement or the duration of the process. The internal clocking
process will either return control to the external clocking process after each activation or it will retain
control until the process is terminated. The immediate global control pointer, r , (conventionally called
a return link) specifies the address of the external clocking process that will be reactivated. The c component
also specifies whether a process' control structure will be partially rebuilt after each execution of the
process, or either partially or completely rebuilt after the process is terminated. The immediate data
environment pointer, d , is used by the tree address mechanism to locate nodes in the process space memory.
The values of r and d when a node is initially generated are the addresses of, respectively, its father
node's internal clocking process and its father node. However, these are default options for r and d

They can be overridden by the activation macro in order to create a control data structure to pass control in
a manner different from that of a tree structure.

The p camponent of a process state vector, which is the parameter of the macro calling sequence
(e.g., the external parameter), contains either an immediate integer value or a pointer; there are three

types of pointers: (1) a pointer to the p component of the process state vector of another node;

*
—/ The fifth state indicates the node is currently executing but will be suspended at the end of its current
time grain.
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(2) a pointer to a field in the memory subsystem; and (3) a pointer to a block of auxilliary registers.
The first type of pointer allows the representation of the static data relationships among external parameters
contained in the CDS. In particular, the first type of pointer facilitates the definition of broadcast type
control structures and control structures for parameter passage. It allows modification of external parameters
at one level in the tree to be directly reflected in other levels of the tree without explicitly modifying
those parameters at other levels. The second type of pointer allows the state of emulator to be directly
mapped on to the state of the emulated computer. This mapping is accomplished by storing part of the state of
emulator in the memory subsystem instead of entirely in the process space memory. Thus, SBL operations on
external parameters can be directly reflected back into changes in the contents of the memory subsystem. In
particular, this second type of pointer capability is very valuable in the programming of an emulator for a
computer whose state vector is in its memory (€.g., the FDP-11 16 computer whose program counter is stored
as register T in its memory); this can be done by having the CDS contain a pointer to the field in the memory
subsystem which contains the program counter, rather than storing the value of the program w. in the CDS
itself. Thus, the emulator does not have to process in a special way instructions of the emulated computer
that can possibly modify the field in the memory subsystem that contains the program counter. Further, the
second type of pointer capability allows the state vector of an emulated computer to be stored in a single
field in the memory subsystem and references to it by external parameters to be distributed throughout the
control data structure. Thus, by modifying a single field in the memory subsystem, the control data structure
can be modified to reflect a new state vector for the emulated computer. The third type of pointer allows a
macro calling sequence to contain multiple parameters rather than just a single parameter. An IFL program
which is called with this third type of pointer as a parameter can then directly store and retrieve data
from a block of auxilliary registers.

The expansion of a SBL macro g , using parameter p , generates the form of a control structure and
the internal parameters of the control structure definition that are not modified (constant) from one
execution to another. After the expansion of the macro gq , the value of the expansion parameter p can be
changed by an activation macro to ﬁ J and used as execution parameters of the process defined by the expanded
macro. The internal parameters, which vary from execution to execution, are not calculated at macro
expansion time, but instead, are recalculated based on the execution parameter 5 ,» upon each new execution
of the process defined by the control structure. The programmer can define which of the internal parametrs
vary by setting appropriate fields in the macro body. Varying internal parameters are distinguished from
constant internal parameters in the control data structure by storing, respectively, the name of an IFL
program in the parameter field of the terminal node instead of an external parameter. Thus, only dynamic
parts of a-control structure need be rebuilt on each execution, and only parameters with varying values need

be recalculated.
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C. Nonsequential Control Structures

The hierarchical macro provides a mechanism for defining control structures that contain more than

one clocking process (path of Contr01),l7 especially control structures that distribute control through a
hierarchy of control levels. A distributed control structure, constructed by a sequence of hierarchical macros,
can be used to define, depending upon the number of clocking processes that are simultaneously executed,
either quasi—parallel18 or parallel control structures. In addition, many sequential control structures can
also be easily defined in terms of a distributed (quasi-parallel) control structure, e.g., a subroutine call
mechanism: the execution of the subroutine call suspends the clocking process of the caller, and activates
the clocking process of the subroutine; the return from the subroutine then terminates the clocking process
of the subroutine and reactivates the clocking process of the caller. The block structure and procedure calls
of ALGOL and co-routines are other examples of sequential distributed control structures. In essence, the
hierarchical macro allows the structure of a complex process to be functionally decomposed into a set of
executions of less complex processes. The hierarchical macro, in order to represent this functional decomposition,
must define (1) the set of less complex processes, and (2) the sequencing algorithm (clocking process) for
this set of processes. A clocking process is constructed out of calls to the ASP control rule. The ASP control
rule combines the control functions of process activation including parameter passage and process synchronization.
The ASP control rule performs these control functions through operations on the process state vector stored at
a node.

The ASP control rule pictured in Figure 5 is called with four internal parameters. The first two
parameters, n and 1 , specify the relative address of a node in the CDS; the third parameter, EXE:
is a template for a process state vector where for each of the components of the vector there is stored in
the template either a value or null symbol; the fourth parameter, syn, is used to synchronize the activity
of the ASP control rule with the activity of the process located at (n,1) . The relative addressing schema
used to locate a node in the CDS is the following: brother' .father" 'base-node , where the base node is the
node containing the activation macro calling sequence; the d component of the process space vector is used
to locate the father node. This relative addressing capability can be used very advantageously in the
definition of recursive distributed control structures since a clocking process does not have to know the
exact level of the tree it is controlling.

The activation of the built-in clocking process ASP results in the modification of the state vector of
the process located at relative address Zn,l) in the process space memory. This process' state vector is
modified by replacing the value of each of its components by the corresponding svt component whenever this
corresponding svt component is not null. Thus, the only components of the state vector of the activated
process which vary from execution to execution of the process need be recalculated. The static components
of a process state vector (the fixed control and data linkages of a process) are defined either by default
options when the process' state vector is initially generated or by the activation macro which initially
expands the macro calling sequence that defines control structure of the process. Thereafter, the
activation macro that activates the process has a template state vector whose components are null

whenever the corresponding components of the process' state vector are static. At the
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same time as the modification of the process' state vector is completed, the s component of the state
vector of the ASP clocking process is modified, depending upon the syn parameter, to be either the
suspended or the terminated state. Through this mechanism of simultaneous modifying of two state vectors,

the activity of one process can be synchronized with the activity of another process.

Example T: Consider two processes A and B, where process A calls process B as a subroutine call by
executing and then waiting for termination of an ASP clocking process. In turn, the ASP clocking
process activates the process B and modifies B's state vector so that process B will signal a return

when it is terminated, and this return will be to the ASP clocking process. At the same time, the

syn parameter of ASP is set up so that after process B's state vector is modified the ASP clocking

process is suspended. When process B is terminated, ASP will then be re-awakened and will go to the

terminated state. This action in turn will allow process A to continue processing since process A

has been waiting on the canpletion of the ASP clocking process. If process A was not synchronized with
the activity of process B then §yn parameter of ASP would be set up so that after process B is
activated the ASP process is terminated. Thus, process A after process B is activated will immediately
continue processing. Process A while waiting for ASP process to terminate is not suspended because the
action of suspending process A may be significant to A's external clocing process since the suspending
of A means that process A has canpleted a time grain. Thus, this implementation of subroutine call
permits A's external clocking process to view A as executing while process B is executing, but at the

same time A's internal clocking process is waiting on B's canpletion.

The ASP clocking process can only activate a process for execution (e.g., change the s component of
the process' state vector to executing) when the process' current state is unexpanded, expanded, suspended
or terminated. In the case that ASP clocking process attempts to execute an already executing process, the
ASP clocking process either is suspended or goes into a busy wait until the process to be executed is no
longer executing. The time grain of the node that generates the ASP determines which one of these options
is taken: if the time grain is a single cycle the ASP is suspended, otherwise it busy waits. Thus, if two
processes simultaneously issue ASP's which activate the sameé node (shared process), only one ASP will be
allowed to execute the shared process. The other ASP will then either wait till the shared process is
completed, or possibly at some later time try to execute the shared process. This paradigm for sequentializing
the execution of a shared process can then be used as a basis for constructing synchronizing primitives for

cooperating processes.

Example 8: Consider the implementation of Dykstra's P and V semaphores in terms of the

ASP clocking process. Let PV be a shared process where the p component of its state vector
specifies the name of a semaphore variable to be operated on and whether a P or V operation is

to be performed, and the r component is the address of the process that activated PV

A process Li performs a P or V semaphore operation by activating an ASP clocking process

whose time grain is termination, 8Syn parameter in the case of P operation specifies suspended
while for a V operation specifies terminated, (n,1) parsmeters specify the relative address

of the PV process, and the svt contains the correct calling sequence for either a P or V
operation. The PV process when activated by ASP for a P operation checks whether the semaphore
variable specified in the calling sequence can be decremented, if it can, then the operation is completed
and th PV process is suspended. This suspension of PV results in termination of ASP which then
permits process Li to continue. In the case that the semaphore cannot be decremented, the PV
process modifies its own state vector component so that it does not return to ASP when it is suspended.

- It then extracts the address of the ASP process from its state vector, places this address in queue
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associated with the semaphore name, and suspends itself. Thus, the ASP clocking process still
remains in the suspended state, and therefore process Li cannot continue. The PV process when
executed for V operation increments the semaphore variable, and then checks whether there is a
queued ASP process on that semaphore variable that can now be executed. If there is, this ASP
node address is stored in the r component of PV state vector, and PV process then suspends
itself which results in the queued ASP process being re-awakened. The ASP clocking process that
executed the PV process for a V operation terminates immediately after the PV process

state vector has been modified, and thus Li can continue processing while a V operation is
being done. If the PV process is busy, when ASP attempts to execute it, then ASP goes into a
busy wait. However, this busy wait is not on a semaphore variable but only on the process which

updates the semaphore.

The ASP can also be used to create a new copy of a process (node) instead of calling a shared process. This
creation of a new node occurs when the (n,1) parameters are (0,0) . The new node is the root node of a
separate tree, and only the ASP clocking process can access this tree. It may also be advisable, for
efficiency reasons in implementing lock-step (broadcast) control structures,that an ASP clocking process be
able to simultaneously activate all the sibling nodes at a level in the tree, and then be able to wait for

all of them to signal a return.
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SUMMARY COMMENT AND FUTURE RESEARCH

This paper is an investigation of the idea of a micro-computer whose control structure is modifiable.
This investigation attempts to indicate the advantages of a variable control structure micro-computer
architecture over conventional micro-computer architectures: (1) a wide variety of complex sequential and
parallel IMLs can be emulated on a single micro-computer; (2) the programming of emulator is simple and
uniform, such that the program structure of the emulator reflects the architecture of the computer it
emulates; and (3) a variety of hardware arithmetic units, I/0 devices and varying numbers of micro-
processors can be easily incorporated into the organization of the micro-computer.

Future research on this micro-canputer organization will attempt to develop more rigorous arguments
for the merits of this proposed method for emulation. In particular, a simulator for this
micro-computer organization and emulators for complex sequential and parallel IMLs will be programmed. In
addition, it is planned to investigate the possibility of adding to the SBL primitive operators which control
access to nodes in the CDS, fields in the memory subsystem, and functional units in the functional unit
subsystem. Thus, it is proposed to integrate the concept of protection (capabilities, access path, etc.)
into the definition of the control structure of a process which is where the definition of protection
naturally belongs. In the preliminary investigation of this idea, it appears that the concepts of protection
discussed by Dennis and Van HornlY, Lampsonlg, etc. can be easily specified, with the addition of two or
three primitives to SBL, in the framework of the proposed data structure for control. Thus, emulators for
operating systems IMLs will be more easily implemented, and it will be possible to protect a micro-code

from interference by other micro-programs.
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APPENDIXA

Consider the addressing structure of the epp—-6. Each pe—6 word is 36 bits long and is divided into
three fields for addressing; an indirect field, I , (Bit 13), an index field, B , (Bits 14-17), and an
address field, A , (Bits 18-35). The index registers in the ppop-6 are the first 16 words in memory.
pop—6 allows indirect addressing with indexing at each level of an arbitrarily long indirect chain. The
36-bit wide memory can be represented in the memory subsystem starting at bit 0 so that work K of the
PDP-6 begins at bit address M[K*36] and ends at M[K*36l-35] . The following IFL program finds the address
of the last word in an indirect chain given the address of the first word of the chain as its p parameter

and 1 as its k parameter.

Comments
PDEADD: if k = 0 then p else p := P*36, go to Converts virtual address to physical address
[k] (CHAIN, EXTRACT-A); and then gets value associated with physical
address.
CHAIN:p := [EXTRACT-A]+ [EXTRACT-B], Basic sequencing of indirect addressing.
k := [EXTRACT-I], go to PDGADD;
EXTRACT-A:M(p+18, 18); Extracts address field.
EXTRACT-B: p := M(ptlh, ), x := 2, Extracts index field and then calls procedure
go to PD6ADD; to get value of index.
EXTRACT-I: M(p+l3, 1); Extracts indirect field.
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