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This research was supported by the National Science Foundation under grant number NSF-GJ-96,
and the Office of Naval Research under grant number N-0O00lk-67-A-0112-0057 NR Okk-4o02.
Reproduction in whole or in part is permitted for any purpose of the United States Government.






AN n log n ALGORITHM FOR MINIMIZING STATES IN A FINITE AUTOMATON

John Hoperoft

Stanford University

Introduction

Most basic texts on finite automata give algorithms for minimizing the number of states in a finite
automaton [1, 2]. However, a worst case analysis of these algorithms indicate that they are n2 processes
where n 1is the number of states. For finite automata with large numbers of states, these algorithms are
grossly inefficient. Thus in this paper we describe an algorithm for minimizing the states in which the
asymptotic running time in a worst case analysis grows as n log n . The constant of proportionality depends
linearly on the number of input symbols. Clearly the same algorithm can be used to determine if two finite
automata are equivalent.

The essence of previously published algorithms was to first partition the states according to their
outputs. The blocks of the partitions are then repeatedly refined by examining the successor state on a
given input for each state in the block. States whose successor states on a given input are in different
blocks are placed in separate blocks. When no further refinement is possible, all states in the same block of
the partition can be shown to be equivalent. Consider the example in Figure 1. The initial partition is

(1,2,3,4,5)(6) . Since on input 0 , the successor

Input
states of states 1, 2, 3 and 4 are in the first block Stase 0 1 Output
of the partition and the successor of state 5 is in 1 2 1 0
the second block, the first iteration refines the 2 3 2 0
3 3 0
partition into the blocks (1,2,3,4)( 5) and (6) 4. | 55 4 0
Successive refinements yield (1,2,3)(%)(5) (6) ; 5 & 5 0
6 & 6 1
(1,2) (3) (4) (5) (6) and (1) (2) (3) (4) (5) (6) - Thus,
Next
in this example all pairs of states are inequivalent. State
For this example it is seen that as many as n
Figure 1

iterations may be required and the total number of

steps needed to execute the algorithm if implemented in a straightforward fashion on a digital computer
is n2 .

The algorithm proposed in this paper may also require n iterations but the work per iteration summed
over all iterations yields only n log n . We illustrate the algorithm by an example before specifying it in
detail. Extensive use of list processing is employed to reduce the computation time. First the state table
is inverted to obtain the table shown in Figure 2. The states are partitioned according to their outputs
(l,E,B,M,S) (6) . Next a block and an input symbol on which the partition is refined are selected. Assume
the block (6) and input 0 are selected. The states in each block are further partitioned depending on

whether on input 0 their next state is in block (6) or not. Thus the next partition is (1,2,3,k4)(5)(6)

Note that had we partitioned on the block (l,2,5,h,5) and input 0 we would have obtained the same result.



Input
More generally, once we have partitioned on a block States o] 1 Output
and an input symbol, we need never partition on that 1 - 1 0
, . . . 2 1 2 0
block and input symbol again until the block is
3 2 3 0
split and then we need only partition on one of 4 3 4 0
the two subblocks. Since the time needed to 5 4 5 0
partition on a block is proportional to the 6 5,6 6 I
transitions into the block and since we can always p?i‘;igus
select the half with fewer transitions, the total
Figure 2
number of steps in the algorithm is bounded by
n log n .
Formal description of the algorithm
Let A = (S,I,S,F) be a finite automaton where S is a finite set of states, I is a finite set of
inputs, & is a mapping from S x I into S and F ¢ S is the set of final states. No initial state is
*
specified since it is of no importance in what follows. The mapping 8 is extended to SxI in the usual
*
manner where I denotes the set of all finite length strings of symbols from I . States s and t are
*
said to be equivalent if for each x in I , 5(s,x) is in F if and only if &(t,x) is in F
The algorithm for finding the equivalence classes of S is described below.
Btep VseS and ael construct
-1
877 (s,28) = {t]5(t,a) = s}
Step 2. Construct B(l) = F , B(2) = S-F and for each a in I and 1< i < 2 construct
. -1
a(i) = {slseB(i) and 3 ~(s,a) £ §} .
Step . Set k =3
Step 4. VYacI construct
{11 if |a(1) | < |a(2) |
L(a) =
{2}  otherwise
Step . Select a in I and i in L(a) . The algorithm terminates when L(a) = ¢ for each a in I
Step 6. Delete i from L(a)
Step 7. ¥j < k st @ in B(j) with 5(t,a) ea(i) perform steps Ta, Tb,a7c, and Td.
Step 7a. Partition B(j) into B!(3) = {t|8(t,a) ea(i)} and B"(§) = B(3)-B'(3)
Toep Replace B(Jj) by B'(j) and construct B(k) = B"(j) . Construct corresponding a(j)

and a(k) for each a in I



Btepc . Yael modify L(a) as follows.
L(a) U {3} if 3#L(a) and 0 < |a(d)]| < |a(x)]

L(a) U {k} otherwise

Step Td. Set k = k+l .

8tep . Return to Step 5.

Correctness of algorithm

The claim is made that on termination of the algorithm two states are equivalent if and only if they are
in the same block. The algorithm must terminate since the only times that an index is added to L(a) for
some a in I are in Step Y which is executed only once and in Step 7c. An index is added at Step 7c only
after a refinement of a block of the partition. FEach time Step 6is executed, an index is removed from L(a)
for some a . Thus the algorithm must terminate.

It is easily shownby induction on the number of times Step T7a is executed that if s is in B(i) and
t is in B(j) , 1 % j , then s is not equivalent to t . Clearly, it is true the first time Step 7a is
executed since only two blocks exist, B(1) containing only final states and B(2) containing only nonfinal
states. Blocks are refined at Step 7a only when successor states on a given input have previously been
shown to be inequivalent.

To see that two inequivalent states cannot be in the same block when the algorithm terminates, assume
that states s and t are in B(i) and that s and t are not equivalent. Without loss of generality,
assume & s, a) is in B(j) and &(t,a) is in B(k) where j # k . (If 8(s,a) and 8(t,a) are in the
same block then there exists a shortest x such that 5(s,x) and &(t,x) are in distinct blocks. Clearly
an x exists and hence a shortest x since for some x one or the other of &(s,x) and &(t,x) but not
both is in a final state and each block consists solely of final or solely of nonfinal states. Let a be the
last symbol of x and write x = ya . Then 8(s,y) and 5(t,y) are in the same block, 5(s,y) and 8(t,y)
are not equivalent and &(5(s,y),a) and 8(8(t,y),a) are in different blocks. Replace s by &(s,y) and
replace t by &(t,y) .) Consider the point at which the block containing &(s,a) and &(t,a) was
partitioned so that &(s,a) and &(t,a) first appeared in separate subblocks. At that point one of the
two subblocks was placed in L(a) . When this subblock is removed from L(a) , the block containing s and
t is partitioned with s and t going into separate subblocks. Thus s and t cannot both be in B(i) ,

a contradiction.

Analysis of the running time

The running time of the algorithm is clearly dependent on the implementation. The algorithm has been
programmed in ALGOL. Since the implementation consists of approximately 300 ALGOL statements we shall simply

indicate how the various steps were implemented and discuss informally their running time.



Tlie sets such as 6'1(s,a) , L(a) , etc. werc represented by linked lists in such a way that an item
could be added o~ deleted at the beginning of the 1list in a fixed number of steps. Vectors were also
maintained to indicate if a state was or was ot on a givwn list. This eliminates searching a list simply
to determine if the item is on the list and is escentia :n Step 7c. The sets B(i) and a(i) were
represented as doubly linked lists sothat an item could ve added or deleted anywhereinthelistinafixed
number of steps once the position is given. The structire was such that given a state s , its position in
B(i) and a(i) could be determined in a fixed number of steps.

Steps 1, and 4 are executed only once and eauire time proportional to the product of the number of
states times “le numper of input symbols. Steps Y throush 8 form a simple loop. The time necessary to
traverse the loop for given a in I and i in L(a) 1is proportional to the number of state transitions

+

on input a ferminating on states in B(i) . (To see tiis, note that Steps 5,6 and 8 are finite. In
Step 7 w do not need to examine B(j) for each j < %@ I-o see if there exists a t in B(j) with 8&(t,a)
in a(i) . Rather we look at each state in a{i) and then consult the inverse state table to find each t
such tuat S(t,a) is in a(i) . Each time a new & i: found, the block containing t is located and t
placed or- : 1ict of states to be split off from the vloci. The block is then placed on a list of blocks
which nave been refined if it is not already on the list. Finally we go down the list of blocks which have
been refined and actually partition them. The number of blocks we must look at must be less than the number
of state transitions on input a terminating on states in B(i) . The time necessary to actually partition

a block is proportional to the number of states to be split off. When the number is summed over all blocks

which are partitioned it adds up to the number of state transitions on input a terminating on states in

B(i) .) Tet & be the constant of proportionality.

Consider the time spent in the loop of Step 5 throush 8 for a given input symbol a . Assume that at
step 5 the blocks of the partition are B(1),B(2),...,B(m) and that L(a) = {il’i2’ Cy ir} . Let
{i1«+1’iy+2""’im} ={1,2,...,m} -L(a) . The claim is made that the total time spent on traversals of the

loop for which input symbol a is selected in Step 5 until the program terminates is bounded by

r m
=k() a 2)) .
T =k( L &y log a; + 2 a, Log( i _/(_),
=1 73 7 d=rtl Ty J

Clearly the bound is valid if the algorithm has terminated. If the loop is traversed for an input symbol
other than a , then the time spent is not included in T . However, since blocks get split and the set

I.(a) modified we must show that the new value of T , call it % , is less than or equal to the old value
of T . If a block whose index is in L(a) is partitioned, then a term of the form b log b is replaced by
the expression ¢ log c + (b-c) log(b-c) which decreases the value of T . If a block whose index is not

in L(a) 1s partitioned, then a term of the form b log b/2 is replaced by the expression
‘¢ log ¢ + (b -c¢) log(b -c)/2
where ¢ <b-c . Since c <b/2 and (b-¢)/2 < b/2 ,

c log ¢ + b -c) log(b -c)/2 ¢ log b/2 + (b -¢) log b/2

in

< b log b/2 .

ither case % is less than T . Finally, assume r,4 0 and a and some £ in L(a) has been



selected at Step 5. As we showed earlier, the time around the loop is bounded by ka}l . Thus by induction,

the total time is bounded by

I m

k[al + allog(a!/?) + E a. log 3. + z 8 log(ai‘/'a) 1
J=1 7] J J=rtl 73 J
3t

We must show that this expression is less than or equal to T . That is, we need show

a
a, +a, log a.l/z < &, log &,

Clearly a, +a, log al/2 = az(log al/2 + log 2) = a, log a This completes the proof of the claim.

! 1 [ L

The first time Step 5 is executed the formula for T is bounded by knlog n . Multiply by the number

of input symbols and adding in the time for Steps 1 through 4 yields a total bound proportional to n log n

Experimental results and conclusions

In order to obtain timing information, the algorithm was applied to two classes of finite automata.
Automata in the first class are given by A(n) = ({1,2, . . .,n},{0,1},8,{1}) where 8(1,0) = 8(1,1) = 1 and
5(i,0) = i-1 and 5(i,1) = i for 2 < i < n . Automata in the second class are given (for even n) by
B(n) = ({1,2,...,0}, {0,1},5, {i]1 < i,< n/2}) where 5(i,0) = 6(i,1) = n/2 + 2i-1 and

5(n/b+ 1,0) = 8(n/k+ 1,1) = 2i-1 for 1< i < n/k and &(n/2+1,0) = &(n/2+1,1) = 2i-1 for

n/2 <i<n . The running times on an IBM 360/67 for the two classes are listed in Table 1.
n A(n) B(n)
37 2
100 % 3
1000 5 %% 6 )51
2003 11 %% 13 %
Table 1. time in seconds

Note that A(n) is the example which required n2 steps for previous algorithms.

Our algorithm is particularly suited for A(n) and a detailed analysis shows that the running time
should grow linearly-with the number of states as the experimental evidence indicates. The worst case for
our algorithm is typified by B(n) in which blocks are always partitioned equally. The running time for
B(n) should grow as n log n for both the current algorithm and for previously published algorithms. The
results seem to indicate that the algorithm is practical for minimizing states in finite automata (or testing

equivalence of finite automata) of up to several thousand states.
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