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ABSTRACT: In this work we show that it is possible to express
most properties regularly observed in algorithms in
terms of 'partial correctness' (i.e., the property that
the final results of the algorithm, if any, satisfy some
given input-output relation).

This result is of special interest e&ne‘ea'\’partial

correctness' has already been formulated in predicate
calculus and in partial function logic for meny classes

of algorithms. ( )
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Introduction

We normally distinguish between two classes of algorithms: deterministic
algorithms and non-deterministic algorithms. A deterministic algorithm
defines a single-valued (partial) function, while a non-deterministic algorithm
defines a many-valued function. Therefore, while there are only & few .
properties of interest (mainly, termination, correctness, and equiva.lence)
for deterministic algorithms, there are n;any more (determinacy, for example)
for non-deterministic algorithms.

In this work, we show that it is possible to express most properties
regularly observed in such algorithms in terms of the 'partial correctness’
property (i.e., the property that the final results of the algorithm, if
any, satisfy some given input-output relation). .

This result is of special interest since 'partial correctness' has
already been formulated in predicate calculus for many classes of deterministic
algorithms, such as flowchart programs (Floyd (1967 a) and Manna (1969)),
functional programs (Manna and Pnueli (1970)), and Algol-like programs
(Asheroft (1970)); and also for certain classes of non-deterministic algorithms,
such as choice flowchart programs (Manna (1970)) and parallel flowchart
programs (Ashcroft and Manna (1970)). See also Cooper (1969 a, 1969 b).
Similarly, Manna and McCarthy (1970) have formulated tpartial correctness'’

of functional programs in partial function logic.



1. Detemministic Algorithms

An algorithm P (with input variable x and output variable z) is

said to be deterministic if it defines a single-valued (partial) function

z = P(x) mapping D, (the input domain) into D, (the output domain).
That is, for every ger » P(E) is either undefined or defined with

P(¢t) €D, .

Examples: 1In the sequel we shall discuss the following four deterministic

algorithms for computing 2z = x! where Dx = Dz = {the non-negative integers} .

(a) The flowchart programs P, (Figure 1) and P, (Figure 2). Here
(yl,ye) - (yl-l,yl-ye) » for example, means that ¥, is replaced
by yl-l and Yo is replaced by Y15 » simultaneously.

(b) The functional programs

Py: z = F(x) where
F(y) <= if y = O then 1 else y*F(y-1) ;

and

P): ‘z = F(x,0) where

F(X,¥) <= if y = x then 1 else (y+1)-F(x,y+1) .

Here '<=' stands for 'is defined recursively by' (see McCarthy (1963)).
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(yl’ '.VQ) « (x,1)

(y2¥5) « (¥7-L5¥;°¥,) Z e,

]

Figure 1: The flowchart program P, for camputing z = x!

C_smart >

(¥1¥5) « (0,1)

(¥15¥,) &« (y7+1, (y1#1) *¥,) Z eV,

Figure 2: The flowchart program P2 for computing 2z = x!



Let V¥(x,z) be a total predicate over D _xD, (called the output

predicate), and let teD, - We say that

1. (3) (P,t) 1is partially correct with respect to V¥ if

either P(t) is undefined, or P(t) is defined and WV(&,P(¢)) =T ;

(i1) (P,&) is totally correct with respect to V¥ if P(t) is

defined and V(&,P(¢)) =T ;

(iii) (P,t) is defined if P(t) is defined.

Let Pl

j.e., algorithms with the same input domain Dx and the same output

and P2 be any two comparable deterministic algorithms,

domain Dz . We say that

2. (iv) (Pl,g) and (Pe,g) are partially equivalent if either Pl(g)

or P2(§) is undefined, or both Pl(g) and ‘Pz(g) are defined
(ii) (Pl,g) and (PE,E) are totally equivalent if both Pl(g)
and Pz(g) ere defined and Pl(g) = Pa(g) .

Ze (1) (Pl,g) is an extension of (Pa,g) if whenever P2(§) is
defined, then so is Pl(g) and Pl(g) = Pg(g) -

(i1) (rl,g) and (P2,§) are eguivalent if either both Pl(g) and
Pz(g) are undefined, or both Pl( ¢) and Pz( t) are defined
and Py(5) = By(t) -

Our main purpose in this section is to show that all these properties

can be expressed in terms of partial correctness as described in the

*
following theorem —-/

¥ For abbreviation, we use ~ ¥ to define the predicate which is T
exactly for those values where ¥ is F, V¥ 1o mean "for every
output predicate V¥ ...", and IV to mean "there exists an output
predicate ¥ such that . L




THEOREM 1

(a) (P,&) 1is totally correct w.r.t. V¥ if and only if (P,&) is not

partially correct w.r.t. ~V ;

(b) (P,€) 1is defined if and only if (P,t) is not partially correct

w.r.t. F (false);

(c) (Pl,g) is partially equivalent to (Pe,g) if and only if WV [(rl,g)

is partially correct w.r.t. ¥ or (Pe, t) is partially correct

wer.t. ~ V]

() (Pl,g) is totally eguivalent to (Pe,g) if and only if WV [(Pl,g)

is not partially correct w.r.t. ¥ _r (Pa,g) is not partially

correct w.r.t. ~ ¥] 3

(e) (pl,g) is an extension of (pz,g) if and only if ¥V {(Pl,g) is

partially correct w.r.t. ¥ implies (PE’ ¢) 1is partially correct

w.r.t. V] ; and finally

(£) (Pl,g) is equivalent to (pa,g) if and only if YV [(Pl,g) is

partially correct w.r.t. V¥ if and only if (P2, t) is partially

correct w.r.t. V] .

Proof of Theorem 1. The proof of (a) is straightforward. (b) is a

special case of (a) since by definition (Pl,g) is defined if and only

if it is totally correct w.r.t. T (true). (c), (d)and (e) are best proven
by considering the corresponding contra-positive relations and using the
fact that P,(¢) and P () are defined and P, (8) # P,(8) if and only

if P,(8) and P,(8) are defined and TV V(E, Py (8)) # W(E,P,(8))] -

(e") (Pl,§) is not partially equivalent to (Pz,g) (i.e., both Pl(g)
and P,(E) are defined and P, () # P,(&)) Aif and only if W (P> ¢)

is not partially correct w.r.t. ¥ and (Pe,g) is not partially correct

W.!‘.t. ~r w} ;




(av) (Pl,g) is not toally equivalent to (Pe,g) (i.e., either Pl(g)
or P2(§) is undefined, or both Pl(E,) and P2(§) are defined and

Pl(E,) # PQ(E,)) if and only if IV[(P;, £) is partially correct w.r.t. ¥

and (Pz, ) is partially correct w.r.t. ~ V] 3 and

(e') (Pl,g) is not an extension of (Pe,g) (i.e., either pz(g) is
defined and Pl(g) is undefined, or both Pl(g) and Pe(g) are defined

and Pl(g) £ P2(§)) if and only if 3V( (Pl,g) is partially correct

w.r.t. ¥ and (P2,§) is not partially correct w.r.t. v] .

(f) follows directly from (e) since (Pl,g) is equivalent to (Pz,g)

if and only if (Pl,g) is an extension of (PE,E,) and (Pa, E) is an
extension of (Pl,g) i

Suppose for a given deterministic algorithm P (mapping integers
into integers) we wish to formulate properties such as being total and
monotonically increasing (i.e., x >Xx' = P(x) > P(x') ). Unfortunately,
our definitions of partial and total correctness are not general enough to
jnelude such simple properties in & natural way. However, we can include
them by introducing more general notions of partial and total correctness.
Let P, (L<i<n) be n deterministic algorithms with input
variables X: s output variables Z; > input domains Dxi , and output
domains D, respectively. Let %(xl,zl,... ,xn,zn) be any total predicate
i

over DxlxDzlx...xDxnxDzn and let Eie:Dxi (L<i<n) . We say that

4, (i) (Pl, 51), coes (P gn) are partially correct w.r.t. ¥ if either

at least one of the Pi(gi) is undefined, or each Pi(g i) is

defined and '@(E.l,Pl(ﬁl),--o,E.n:Pn(in)) =T .

(11) (Pl’ §l), ai "(Pn’ E,n) are totagx correct w.r.t. V¥ if each

P,(t;) 1is defined and V(e Py (8 e P (8))) = T

6



Note that for n = 1 we obtain properties 1(i) and 1(ii) as special
cases of properties 4(i) and k(ii), respectively. For n = 2 and
w(xl,zl,xg,zz): X) = X522 =25 properties k(i) and 4(ii) reflect
properties 2(i) and 2(ii), respectively. For n = 2 and
w(xl, Z15%p 22): X, > %Xy D2y >z, where P, and P2 are identical to P,
we obtain the above monotonicity property.

It is interesting that these general notions of correctness can

still be expressed just by means of the usual partial correctness, as

described below.

THEOREM 2

(a) (Pl’ 51), " ..,(Pn, En) are partially correct w.r.t. ¥ if and only if

CUE .Ewn{ Pl(gl) is partially correct w.r.t. ¥y

and P2(§2) is partially correct w.r.t. V,

and Pn(gn) is partially correct w.r.t. V¥,

and Yy;-- .Vyn[ \vl(gl,yl) and ... and \ifn(gn,yn) implies ;(gl’yl’ - gn,yn) 11 ;
(v) (Pl,gl), cees(Pys gn) are totally correct w.r.t. ¥ if and only if
AR ..’Nn{ Pl(gl) is partially correct w.r.t. *1

and P2(§2) is partially correct w.r.t. ¥,

.
-
-

and Pn(gn) is partially correct w.r.t. ¥,

implies Sy,..-8y,[¥;(8y;y,) and...and v, (&,,¥,) and ¥(Ep¥pr e erbpp¥) 1Y

Proof of Theorem 2. It is straightforward that the right-hand side of (a)

implies the left-hand side. To prove that the left-hand side implies the
right-hand side, choose V; in such a way that vi(g i’ni) =T if

and only if P,(g;) is defined and n; = P, (¢,) - (b) follows from (a)
since (Pl,gl), — (Pn,gn) are totally correct w.r.t. ¥ if and only if

(Pl,gl), —— (Pn, §n) are not partially correct WoTobe ~V¥ o
T



o. TFormulation of Partial Correctness of Deterministic Algorithms

The above results imply that if one knows, for example, how to

formulate partial correctness of a given deterministic algorithm in

predicate calculus, the formulation of many other properties of the algorithm

in predicate calculus is straightforward. As a matter of fact, partial
correctness has already been formulated in predicate calculus for many
classes of deterministic algorithms.

In this section we illustrate the flavor of such formulations.

(A) Flowchart Programs and Predicate Calculus

Let us consider, for example, & flowchart program P of the form

described in Figure 3, with a given output predicate ¥(x,2z) over BxxDz .

Here, input(x) maps D into Dy , test(x,y) is a predicate over
Dnyy , operator(x,y) maps D xD y into Dy , and output(x,y) maps

Dxny into I)z .

C_START D

¥y + input(x)

¥ ~ operator (x,y) z ~ output(x,y) l

Figure 5: The flowchart program P
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We associate a predicate variable (unspecified induction hypothesis)
Q(x,y) with arc a and the given output predicate V(x,z) with arc B,

and construct the following formula wP(x,w) :

3Q{ Q(x,input(x)) --- initialization
A YylQ(x,y) A ~ test(x,y) D Q(x,ggerator(x,y))] --- induction
A ¥y[Q(x,¥) A test(x,y) D V(x, output (x,¥)) 1} - === conclusion

or eguivalently,

{ Q(x,input(x)) --- initialization
A ¥ylQ(x,y) o IF test(x,y) THEN ¥(x, output (x,¥)) --- conclusion
ELSE Q(x,operator(x,y))]} . --- induction

Here, IF A THEN B ELSE C stands for (A>B) A (~ADC) . Note that
D - IF A THEN B ELSE C is logically equivalent to (DAADB)A(DA~ADC) .

The key result is that for any given input EeD_ , (p,t) 1is partially

correct w.r.t. V¥ if and only if WP(g,\}') is true (Manna (1969)).

Example 1: In particular, for the flowchart program P, (Figure 1),
*
it follows tha.t:—/ (Pl’ t) is partially correct w.r.t. z =x! if and

only if W_ (&,z=x!) is true, where W (t,z=x!) is
! o |

7Q{ Q(§,§,l)

A ¥y, ¥y, [Q(Es¥,s¥,) DTIF y; =0 THEN y, =&t ELSE Q(E,¥,-1,y,¥p) 1} -

Note that for Q(g,yl,ye) being the predicate y2'yl! = ¢! , the formula

in braces { ]} is true.

= Here, D =D, = {the non-negative integers} , ¥ = (yl,yz) , and
Dy = {all pairs of non-negative integers} .

9



Example 2: For the flowchart program P, (Figure 2), it follows
similarly that: (Pz, t) is partially correct w.r.t. z = x! if and only

if W. (&,z=x!) is true, where W (e,z=x!) 1is
Py Py
W{ Q(t,0,1)

Note that for Q,(g,yl,ye) being the predicate y, = ¥it oo the formula in

braces { } is true.

(B) Functional Programs and Predicate Calculus

Consider, for example, & functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if 'b_Q_s.t_(x:Y) then M(X:Y)

else operatorl(x,y,F(x,w_rg(x,y))) 4

with a given output predicate ¥(x,2z) over D_xD, - Here, input(x)
maps D into Dy , test(x,y) is a predicate over Dxny ,» output(x,y)
maps D xny into ])z , operatorl maps l}xx-(Dyxl)z into Dz , and

operator2 maps Dxny into Dy .

We associate a predicate variable (unspecified induction hypothesis)

Q(x,y,z) with F(x,y) , and construct the following formula WP(x, ¥)

{ ¥z[Q(x, input (x),2) D V(x,2) ] -- conclusion
A Yy[IF test(x,y) THEN Q(x,y,outm‘c(x,y)) -- initialization

ELSE Vt[Q(x,ggeratoﬁ(x,y),t)

DQ(x’y’QEeratorl(X,y,t))n} - induCtion

The key result is that for any given input &eD_ , (P,t) is

partially correct w.r.t. ¥ if and only if WP(E,W) is true (Manna and

Pnueli (1970), see also Park (1970)).

10



Example 5: For the functional program P3 s

z = F(x) where

F(y) <= if y = O then 1 else y-F(y-1) ,

it follows that: (P3,§) is partially correct w.r.t. z = x! if and

only if W_ (E,z=x!) is true, where W_ (§,z=x!) is
Ps P

{ vzlQ(e,z) oz=¢]
A Yy[IF y =0 THEN Q(y,1) ELSE vt[Q(y-1,t) o Q(y,¥y-t)]1} .

Note that for Q(y,z) being the predicate z = y! the formula in

braces { } is true.

Example 4: For the functional program P :

z = F(x,0) where

F(x,y) <= if y = x then 1 else (y+1) F(x,y+l) ,

it follows that: (Ph,g) is partially correct w.r.t. z =x! if and

only if WP (¢,z=x!) is true, where LS (t,z=x!) is
L 4

EQ{ VZ[Q(g,O,Z) Dz = kL]
A Yy[IF y = & THEN Q(&,y,1) ELSE ¥t[Q(E,y+1,t) D2Q(E,y, (y+1)*t) 11} -

Note that for Q(&,y,z) being the predicate z-:y! = t! , the formula
in bracee { } is true.

The formulas constructed here are independent of the syntax of the
language in which the algorithms are expressed, and, therefore, we can
use our results to formulate in predicate calculus the equivalence of
algorithms defined by different languages. From part (f) of Theorem 1
it follows, for example, that for every input ¢ , (Pl,g) and (Pi’ t)

are equivalent if and only if V*[Wpl(g,vb) = W?S(g,‘t)} is true.

i s N



The reader should realize that the flowchart program P (Figure 3)
can be represented equivalently (see McCarthy (1962)) by the functional

program P! :

= F(x,input(x)) where

F(x,y) <= if test(x,y) then output (x,y) else F(x,operator(x,y)) -

However, Wy, (x,¥) 1is

4Q{ va[Q(x,input t(x),2) D ¥(x,2)]
A Yy[IF tes't(x:Y) THEN Q(x,y,output (x9Y))

EISE Vt{Q(x,ogerator(x,y),t) > Q(x,y,t) 11} 3
while ‘WP(x, ¥) was

3a{ Q(x,input(x))
A Yyla(x,y) o IF test(x,y) THEN ¥(x, output t(x,y)) ELSE Q,(x,ogerator(x,y))}} ’

Although both WP(X,*) and Wy, (x,¥) essentially formulate partial
correctness of (P,x) w.r.t. V¥ , they seem to be quite different.
Tntuitively, the difference between the two formulations is that Q(x,¥)
in WP(x,v) represents all current values of (x,y) at arc «a during
the computation of P , while Q(x,y,2) in Wor (x,¥) represents the

final value of z when computation of P starts at arc o with initial

values (%,¥) -

(C) Functional Programs and Partial Function Logic

Consider again a functional program P of the form
= F(x,input(x)) where

F(x,y) <= if test(x,y) then cutput (X,¥)

else operatorl(x,y,F(x, ogeratore(x,y))) .

with a given output predicate v(x,2z) .

12




We construct the following formula ﬁP(x,'&) :

aF{ [*F(x,input(x)) > ¥(x,F(x,input(x)))]

*
A Yy[F(x,y) = if test(x,y) then output(x,y)

else operatorl(x,y,F(x,operator2(x,y)))1} .

Here, "dF'" stands for "there exists a partial function F mapping
Dxny into D, such that ..o"5 " ¥F(x,input(x)) " stands for the
total predicate (mapping D, into {r,F} ) "F(x,input(x)) dis defined";
and : is just the natural extension of the usual equality relation,
defined as follows: A : B if and only if either both expressions A
and B are defined and represent the same element (of Dz , in this case)
or both expressions are undefined.

The key result is that for every given E£eD_, (P,t) is partially

correct w.r.t. V¥ if and only if ﬁP(g »¥) is true (Manna and McCarthy (1970)) .

Example 5: For the functional program Ph :

z = F(x,0) where

F(x,y) <= if y = x then 1 else (y+1) F(x,y+l1) ,

it follows that: (Ph,g) is partially correct w.r.t. z = x! if and

only if W_ (8, z=x!) is true, where W_ (t,z=x!) is
Py Py

ar{ [*F(&,0) o F(¢,0) = &!]

A ¥y[F(E,y) = if y = & then 1 else (y+1)-F(t,y+1)]} .

Note that for F(&,y) being the partial function

(e1/y1 if y<¢&
F(§:Y) = 1
undefined if y>¢

the formula in braces { } is true.

15



3. Non-Deterministic Algorithms

One natural extension of our study is obtained by considering non-
deterministic algorithms rather than deterministic algorithms.
An algorithm P (with input variable x and output variable z) is

said to be non-deterministic if it defines a many-valued function P(x) ,

mapping elements of Dx (the input domain) into subsets of Dz (the
- output domain); that is, for every €EeD_ , P(t) is a (possibly empty)
subset Z of D, , where each (eZ is the final result of some

computation of P with input E§ .

Examples: We first describe three non-deterministic programs for computing
z = x! , making use of the deterministic programs Pl'Ph introduced in
Section 1.

(a) Parallel flowchart program: In Figure 4 we have described a simple
parallel flowchart program PS for computing 2z = x! . The program
jncludes a 'BEGIN-END' block which consists of two branches, the left
branch being the body of program Pl and the right branch being the
body of program P2 , after changing the test statements to ¥y = yi

in bcth -

1k



@ (yl’ yi: YQ) L (x’ O, 1)

(¥1r¥o) = 1L (31+1My,)

|
g G R )

"

'I(yl,ye) - (¥1-Ly1¥,)
=3 T T~ -

@ z ¥,

Figure L: The parallel flowchart program P,). for computing z = x!
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(v)

The program is executed as follows. First statement «a is
executed. Entering the block either the statements in B or the
statements in 7y are executed, chosen arbitrarily. The execution
proceeds asynchronously, i.e., between the execution of two consecutive
B's , we may execute an arbitrary number of 7¥'s ; and conversely,
between the execution of two consecutive y's we may execule an
arbitrary number of B's . B eand 7 cannot be executed at the
same time. Therefore, one can consider execution to be performed
with a single processor switching between the two branches. We exit
from the block and execute statement & when either of the two branches
reaches the END node. Such parallel programs are discussed in detail

in Ashcroft and Manna (1970).

Choice flowchart program: In Figure 5 we have described a choice
flowchart program for computing 2z = x! . A branch of the form g

is called a choice branch. It means that upon reaching the choice

branch during execution of the program, we are allowed to proceed with
either branch, chosen arbitrarily. Such choice flowchart programs have

been discussed in detail by Floyd (1967 b).

Note that for any given input x both PS and P6 yield the
same set of computations. For x = 3 , for example, there are
exactly 8 different possible executions of each program. In general,
for every non-negative input x , there are X  aifferent possible

computations of each program.

16



(v15¥}5¥,) & (%,0,1)

Nw257.) = @=Ly, v)l [327,) - 71+ (v3+1) -y, )
1°Y2 1" ¥V 1*Y2 1 1 2

fe—

_+

P

(e)

Figure 5: The choice flowchart program Pg for computing z = x!

Choice functional program: Consider the following choice functional
program P,( :
z = F(x,0) where

F(y,¥') <= if y = y' then 1 else choice(y-F(y-1,y'), (y'+1) F(y,¥y'+1)) -

The choice function here has the same meaning as the choice branch
in Pg ; it corresponds to McCarthy's (1963) amb (ambiguous) function.
For every non-negative input x there are again 2* aifferent possible

computations of P7 .

17



In this section we shall discuss several properties of non-
deterministic algorithms. For non-deterministic algorithm P and

input §er we say that

1.{1) (P,t) is T-defined if there exists a finite computation P
with input ¢ (or, equivalently, P(t) # ¢ );
(11) (P,t) 1is Y-defined if every computation of P with input ¢
is finite;

(1ii) (P,t) is partially determinate if all finite computations of

P with input & yield the same final result (or, equivalently,
P(t) 1is either empty or a singleton);

(iv) (P,t) is totally determinate if all computations of P with

input & are finite and yield the same final result.

Let V¥(x,2) be a total predicate over D _xD, , and let EeD_ .

A finite computation of P with input & is said to be correct w.r.t. ¥

if for its final value ( , V(t,{) =T . We say that

2.(1) (P,t) is partially T-correct w.r.t. V¥ if either there exists

an infinite computation of P with input & , or there exists a
finite computation of P with input ¢ which is correct w.r.t. V¥ ;

ii P,t) is totally W-correct w.r.t. V¥ if there exists a finite
( ’

computation of P with input ¢ which is correct w.r.t. V¥ ;

(iii) (P,t) is partially Y-correct w.r.t. ¥ if every finite computation

of P with input ¢ is correct w.r.t. V¥ ;

(iv) (P,&) is totally V-correct w.r.t. V¥ if every computation of P

with input ¢ is finite and is correct w.r.t. V.

Let Pl and P2 be any two comparable non-deterministic algorithms,

‘i.e., algorithms with the same input domain Dx and the same ocutput domain !)2

We say that
18



3.(1)

(i1)

L. (1)

(id)

5.(1)

(i)

(Pl,g) and (P2,§) are partially determinate-equivalent if all

finite computations of Pl and I’2 with input § yield the
same final result (or, equivalently, Pl(ﬁ) U P2(§) is either
empty or a singleton).

(PI,E) and (Pa,g) are totally determinate-equivalent if all

and P

computations of P >

1
the same final result.

with input ¢ are finite and vield

(Pl,g) partially extends (Pe,g) if, for every finite computation

of P, with input ¢ , there exists a finite computation of Pl

with input ¢ that yields the same final value (or, equivalently,
P (8) 2 P,(8) )3
(P,t) totally extends (Py,t) if (P,t) partislly extends

(Pa, t) , and if there exists an infinite computation of P, with

2
input & , then there is also an infinite computation of Pl with
input ¢ .
(Pl,g) and (P2,§) are partially equivalent if (Pl,g) partially

extends (Pe, t) and conversely (or, equivalently, pl(g) = Pa(g) )3

(Pl,g) and (P2,§) are totally equivalent if (Pl,g) totally
extends (P2,§) and conversely.

Our main purpose in this section is to show that all these properties

can be expressed in terms of the two notions of partial correctness,

namely partial F-correctness and partial Y-correctness.

19



THEOREM 3

(a) (P,t) is T-defined if and only if (P,&) is not partially Y-correct

w.r.t. F (false);

(b) (P,t) is Y-defined if and only if (P,8) is not partially d-correct

w.r.t. F (false);

(¢) (P,&) is partially determinate if and only if yy[(Pp,t) 1is

partially Y-correct w.r.t. V¥ or (P,&) is partially V-correct
w.r.‘t. ~W] ;

(@) (P,&) is totally determinate if and only if ¥y[(P,e) is not

partially T-correct w.r.t. V¥ or (P,t) is not partially d-correct
w.r.t. ~V¥]

(e) (P,t) is totally F-correct w.r.t. V¥ if and only if (P,&) is not

partially Y-correct w.r.t. ~ v 3

(f) (P,&) is totally V-correct w.r.t. ¥ if and only if (P,t) is not

partially “-correct w.r.t. ~V¥ ;

(&) (Py» E) and (P2,§) are partially determinate-equivalent if and
only if WI(P]_,E,) is partially Y-correct w.r.t. V¥ or (Pe,g)
is partially Y-correct w.r.t. ~ ¥]

(h) (Pl,g) and (Pa, t) are totally determinate-equivalent if and only if

i (Pl,g) is not partially @-correct w.r.t. V¥ or (P2, t) is not
partially J-correct w.r.t. ~ v]
(1) (p),t) partially extends (P,,8) Aif and only if wWi(p,8) is

partially Y-correct w.r.t. V¥ implies (Pg,g) is partially

Y-correct w.r.t. V] ;

(3) (Pp,&) totally extends (P,¢) if and only if wWi(p,,t) is

partially -correct w.r.t. V¥ implies (Pl,g) is partially

q-correct w.r.t. ¥} ;



(k) (?l,g) and (P2,§) are partially equivalent if and only if

w[(Pl,g) is partially y-correct w.r.t. V¥ if and only if (P-e,g)

is partially ¥-correct w.r.t. v] 3

(1) (py,t) and (P,yt) are totally equivalent if and only if W¥[(P,,¢)

is partially 7-correct w.r.t. V¥ if and only if (Pé,g) is

partially F-correct w.r.t. v] .

Proof of Theorem 3: (&), (b), (e) and (f) are straight forward by

definition. (c), (d), (g), (h), (i), and (j) are best proved by
considering the corresponding contra-positive relations. (k) and (2)

follows from (i) and (j), respectively.

L. Formulation of Partial Correctness of Non-Deterministic Algorithms

For a given non-deterministic program P and an output predicate
¥(x,z) , we would like to construct two formulas Wg(xgw) and w‘(x,v)

in predicate calculus, such that for every given input value §er :

(i) (P,t) is partially S-correct w.r.t. V¥ if and only if W(E,¥)
is true, and ‘
(i1) (P,E) is partially V-correct w.r.t. ¥ if and only if W (e, V)

is true.

Then, using the formulas Wg(x,v) and Wv(x,v) , the formulation of the

other properties of P in predicate calculus is straightforward.

Following Ashcroft and Manna (1970), one can formulate properties of
the parallel flowchart P5 by first translating it to the equivalent choice
flowchart program P, and then make use of the formulas W% (x,¥) and

w; (x,¥) . We shall therefore illustrate the construction of Wz(x,v) and
6

2l



Wv(x,ﬁ) only for the choice flowchart program P, (Figure 5) and the
choice functional program P7 . The main idea behind this formulation is
that the effect of the choice branch is represented by an 'V' connective
in W(x,¥) , while it is represented by an 'A ' connective in W (x,W)
(see Manna (1970)).

To construct W;G( ¢, z=x!) , associate the predicate variable

Q(g,yl,y'l,yE) with arc @ in Figure S5 and the predicate varieble 2z = x!

with arc B . Then wgé(g ,2=x!) is

{ Q(t,€,0,1)
A Yy ¥3¥y,(Q(E, ¥ ¥ sYp) D TF ¥y = ) THEN y, = EF
ELSE [Q(&,¥;-1,¥],¥; ¥p) A (6,77, ¥1*L, (v7+1) ) 11} -
The reader can verify easily that for every non-negative integer £ , the
formula W (§, z=x!) is true for Q(g,yl,yl,ye) being the predicate
Yo' ¥yt o= g yl. . W (E, ,z=x!) is similar with the "A ' connective
replaced by 'V'.

To construct W; (E, 2 =x!) , associate the predicate variable

7
Q(y,y',2z) with the function varisble F(y,y') . Then W; (¢, 2z=xt) is:

T
M { vz[Q(t,0,2) Dz = g!]

A Yy¥y'[IF y = y' THEN Q(y,¥'51),
ELSE ¥£[Q(y-1,¥',t) D Q(¥¥'y-t)]
A YE[Q(y,¥y™+1,t) D Q(ysy', (y'+1) -£) 11} -
The reader can verify easily that for every non-negetive integer £ , the

formula W (¢, z=xt) is true for Q(y,¥y', z) being the predicate

7
z.y'! = yi . wg_{(g ,z=x!) is similar ‘with the 'A ' connective replaced
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