
w= STANFORD ARTIFICIAL INTELLIGENCE PROJECT
= MEMO AIM-139
cry COMPUTER SC |ENCE DEPARTMENT
=’ REPORT NO. STAN-CS-71-189
Do

<x MATHEMATICAL THEORY OF PARTIAL CORRECTNESS

BY

ZOHAR MANNA

JANUARY 1971 DDC

|r FEB 9 157! il
8

| COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

BZ=) ITYrapeng ei,
mentee LY i, orSIN Sa Ed”a 3

MATHEMATICAL THEORY OF PARTIAL CORRECTNESS %/

by

Zohar Manna

Computer Science Department

Stanford University

ABSTRACT: In this work we show that it is possible to express
most properties regularly observed in algorithms in

terms of 'partial correctness' (i.e., the property that

the final results of the algorithm, if any, satisfy some

given input-output relation).

This result is of special interest sinee ‘partial
correctness! has already been formulated in predicate

calculus and in partial function logic for many classes

of algorithms. () J

4 The resesearch reported here was supported in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense
(SD-183) .

A preliminary version of this work was presented under the
title "Second-Order Mathematical Theory of Computatjon" at the
ACM Symposium on Theory of Computing (May 1970) .

Introduction |

We normally distinguish between two classes of algorithms: deterministic

algorithms and non-deterministic algorithms. A deterministic algorithm

defines a single-valued (partial) function, while a non-deterministic algorithm

defines a many-valued function. Therefore, while there are only a few |

properties of interest (mainly, termination, correctness, and equivalence)

for deterministic algorithms, there are many more (determinacy, for example)

for non-deterministic algorithms.

Tn this work, we show that it is possible to express most properties

regularly observed in such algorithms in terms of the 'partial correctness’

property (i.e., the property that the final results of the algorithm, if

any, satisfy some given input-output relation). |
This result is of special interest since 'partial correctness' has

already been formulated in predicate calculus for many classes of deterministic

algorithms, such as flowchart programs (Floyd (1967 a) and Manna (1969)),

functional programs (Manna and Pnueli (1970)), and Algol-like programs

(Ashcroft (1970)); and also for certain classes of non-deterministic algorithms,

such as choice flowchart programs (Manna (1970)) and parallel flowchart

programs (Ashcroft and Manna (1970)). See also Cooper (1969 a, 1969 b).

Similarly, Manna and McCarthy (1970) have formulated ‘partial correctness’

of functional programs in partial function logic.

1

l. Deterministic Algorithms

An algorithm P (with input variable x and output variable z) is

said to be deterministic if it defines a single-valued (partial) function

z = P(x) mapping D_ (the input domain) into D, (the output domain).
That is, for every £eD » P(t) is either undefined or defined with

P(t) €D, .

Examples: In the sequel we shall discuss the following four deterministic

algorithms for computing z = x! where D =D, = {the non-negative integers} .

(a) The flowchart programs P, (Figure 1) and P, (Figure 2). Here

(¥12¥5) Pa (¥1-15¥7-¥,) » for example, means that y; is replaced |
by yp-1 and Ys is replaced by ROE simultaneously.

(b) The functional programs

Py: z = F(x) where

F(y) <= if y = O then 1 else y*F(y-1l) ;

and

Py: z= F(x,0) where

F(x,y) <= if y = x then 1 else (y+1)-F(x,y+1) .

Here '<=' stands for 'is defined recursively by' (see McCarthy (1963)).

2

T

Figure 1: The flowchart program Py for computing z = x!

T

Figure 2: The flowchart program P, for computing z = xi

5

Let ¥(x,z) be a total predicate over D_xD, (called the output

predicate), and let teD . We say that

1. (i) (P,¢) is partially correct with respect to ¥ if

either P(t) is undefined, or P(t) is defined and V(§,P(E)) =T ;

(ii) (P,t) is totally correct with respect to V¥ if P(e) is

defined and V(¢,P(t)) =T ;

(iii) (P,&) is defined if P(t) is defined.

Let Py and P, be any two comparable deterministic algorithms,

j.e., algorithms with the same input domain D, and the same output

domain D, . We say that

2. (1) (P,€) and (Py ¢) are partially equivalent if either P, (8) |
or P,(£) is undefined, or both P(E) and P,(¢) are defined

(ii) (P58) and (P,,¢&) are totally equivalent if both P. (E)
and P(t) ere defined and P,(€) & P,(¢) .

3. (1) (Py5 8) is an extension of (P,, t) if whenever P,(§) is
defined, then so is P, (€) and P, (£) = P,(¢) 3

(ii) (Pys t) and (PB, t) are equivalent if either both P, (8) and

P,(8) are undefined, or both P, (€) and P(E) are defined

Our main purpose in this section is to show that all these properties

can be expressed in terms of partial correctness as described in the

| */following theorem.

¥ For abbreviation, we use ~ ¥ to define the predicate which is T
exactly for those values where V is F , V¥ to mean "for every
output predicate V¥ ...", and d¥ to mean "there exists an output

© predicate ¥ such that ..." .

L

THEOREM 1

(a) (P,t) is totally correct w.r.t. V¥ if and only if (P,&) is not

partially correct w.r.t. ~V¥

(b) (P,€) is defined if and only if (P,t) is not partially correct

w.r.t. F (false);

(¢) (P),&) is partially equivalent to (P,,&) if and only if ¥¥ [(®,,E)
is partially correct w.r.t. ¥ or (P,, t}) is partially correct

w.r.t. ~V¥] ; |

(d) (Pst) is totally equivalent to (P,,&) if and only if WV [(P,¢)

| is not partially correct w.r.t. V¥ _.r (Pst) is not partially
correct w.r.t. ~ ¥] ;

(e) (Py5¢) is an extension of (Py t) if and only if VV [(P58) is

partially correct w.r.t. ¥ implies (Py ¢) is partially correct

w.r.t. V¥] ; and finally

(£) (P,5E) is equivalent to (P,¢) if and only if ¥V [(P},8) is
partially correct w.r.t. ¥ if and only if (Py, ¢) is partially

correct w.r.t. V¥] .

Proof of Theorem 1. The proof of (a) is straightforward. (b) is a

special case of (a) since by definition (P18) is defined if and only

if it is totally correct w.r.t. T (true). (c), (d) and (e) are best proven

by considering the corresponding contra-positive relations and using the

fact that P, (8) and P(E) are defined and P, (8) # P,(¢) if and only

if P,(t) and P,(t) are defined and EV[V(L,Py(E)) # W(L,R(E))] -

(c') (P;,8) is not partially equivalent to (P,,&) (i.e., both P,(€)

and P,(8) are defined and P,(t) # P,(¢)) if and only if I(P58)
is not partially correct w.r.t. V¥ and (Py, ¢) is not partially correct

W.T.te ~V¥] 3

2

(a) (Py t) is not toally equivalent to (Ps t) (i.e., either P.(£)
or P,(%) is undefined, or both P,(£) and P(E) are defined and
P.(%) # P,(¢)) if and only if &V[(P;, t) is partially correct w.r.t. Vv
and (Py k) is partially correct w.r.t. ~ ¥] 3; and

(e') (Pps t) is not an extension of (Py, €) (i.e., either P(E) is
defined and P, (&) is undefined, or both P,(€) and P(E) are defined
and P. (€) # P,(¢)) if and only if aV((Py, €) is partially correct
w.r.t. ¥ and (Py) is not partially correct w.r.t. v]

(f) follows directly from (e) since (P58) is equivalent to (Py E)
if and only if (P,,8) is an extension of (P,,¢) and (Pps t) is an
extension of (Py) ‘

Suppose for a given deterministic algorithm P (mapping integers

into integers) we wish to formulate properties such as being total and

monotonically increasing (i.e., x >X' = P(x) > P(x')). Unfortunately,

our definitions of partial and total correctness are not general enough to

include such simple properties in a natural way. However, we Can include

them by introducing more general notions of partial and total correctness.

Let P, (1<1i=< n) be n deterministic algorithms with input
variables Xs output variables Zs input domains D, , and outputi

domains D_ respectively. Let V(x ZyseeesXp z) be any total predicate
i

over D_ xD, X ...xD_ xD, and let E.eD (L<i<n) . We say thatl 1 n n i

h. (1) (Pys E1)5 0005 (Pps t) are partially correct w.r.t. V¥ if either
at least one of the P, (&;) is undefined, or each P, (8 3) is
defined and V(E Py (8)s eer 8 P(E) =T .

(ii) (Py £1)s cons (Ps £) are totally correct w.r.t. Vv if each
P,(t,) is defined and W(E,Py (8) wees 8p P(E) =T .

6

Note that for n = 1 we obtain properties 1(i) and 1(ii) as special

cases of properties 4(i) and 4(ii), respectively. For n = 2 and

V(x, 525%5) Zp): X; = X52 2) = Zp properties 4(i) and 4(ii) reflect
properties 2(i) and 2(ii), respectively. For n = 2 and

¥(xy5 215% Z,) X, >X, DZ > 2, where P,; and P, are identical to P, |
we obtain the above monotonicity property. |

It is interesting that these general notions of correctness can

still be expressed just Dy means of the usual partial correctness, as

described below.

THEOREM 2

(a) (Pys€q)s WH (P» Ed are partially correct w.r.t. ¥ if end only if
CUZEE 2 1 P, (4) is partially correct w.r.t. V¥,

and P,(&,) is partially correct w.r.t. V,

and P{E,) is partially correct w.r.t. V,

and Yy,-- Vy [¥; (81579) and ... and ¥, (E»¥y,) implies ¥(E Yq cessk HY) 1} ;
(b) (P1584) coos (P58) are totally correct w.r.t. ¥ if and only if

vy.V{ P,(§,) is partially correct w.r.t. V¥;
and P,(£,) is partially correct w.r.t.- ¥s

and ?.(t,) is partially correct w.r.t. ¥,

proof of Theorem 2. It is straightforward that the right-hand side of (a)
implies the left-hand side. To prove that the left-hand side implies the
right-hand side, choose V¥, in such a way that v, (8,504) =T if
and only if P, (£,) is defined and 1, = P, (&,) . (b) follows from (a)

(Py; E,)s nes) (Ps t) are not partially correct Welsbe ~ v »
7

o. Formulation of Partial Correctness of Deterministic orithms

The above results imply that if one knows, for example, how to

formulate partial correctness of a given deterministic algorithm in

predicate calculus, the formulation of many other properties of the algorithm
in predicate calculus 1s straightforward. As a matter of fact, partial
correctness has already been formulated in predicate calculus for many

classes of deterministic algorithms.

In this section we illustrate the flavor of such formulations.

(A) Flowchart Programs and Predicate Calculus

Let us consider, for example, & flowchart program P of the form

described in Figure 3, with a given output predicate ¥(x,2z) over D_xD, .

Here, input(x) maps D into D, , test(x,y) is a predicate over

D, xD, : operator (x,y) maps D, xDy into D, , and output(x,y) maps
D xD into D_ .
xy z

y + input (x)

(QO ------- Q(x;¥)

7

¥ + operator (X,Y) z ~ output (x,y)

mmmmmeeen ¥(x,2)

Figure 3: The flowchart program P

8

We associate a predicate variable (unspecified induction hypothesis)

: Q(x,y) with arc a and the given output predicate V(x,z) with arc 8,

and construct the following formula Wo (x, ¥) ;

3a{ Q(x,input(x)) --- initialization

A ¥yla(x,y) A ~ test(x,y) DO Q(x, operator (x,y))] -== induction

A ¥ylQ(x,y) A test(x,y) DO V¥(x,output (x,y) 13 === conclusion

or eguivalently,

A ¥ylQ(x,y) © IF test(x,y) THEN ¥(x, output (x,¥)) --- conclusion

ELSE Q(x,operator(x,y))]} . --- induction

Here, IF A THEN B ELSE C stands for (AD B) A (~A DC) . Note that

n - IF A THEN 8 ELSE C is logically equivalent to MAADB)A(DA~ADC) .

The key result is that for any given input EeD_ , (P,t) is partially

correct w.r.t. Vv if and only if Wo (E5¥) is true (Manna (1969)).

Example 1: In particular, for the flowchart program P, (Figure 1),
3

it follows ona (Py» t) is partially correct w.r.t. z =x! if and
only if W, (¢,z =x!) is true, where W, (¢,z =x!) is

i | 1

Q{ Q(t,&,1)

- —] - .

Note that for Q(E5¥45¥5) being the predicate y,°¥,! = £! , the formula
in braces { } is true.

¥ Here, D_=D, = {the non-negative integers} , ¥= (¥1095) , and
Dy - fall pairs of non-negative integers} .

9

Example 2: For the flowchart program P, (Figure 2), it follows

similarly that: (P,s t) is partially correct w.r.t. 2 = x! if and only
if W_ (t,z=x!) is true, where W (¢,z=x!) isP P2 2

qq { Q(t,0,1) :

A ¥y,¥y,lQ(E,¥,py,) STF yy = & THEN yp = E ELSE Q(&,¥,+1, (¥;*1) vp) 1}

Note that for Q(E »¥12Y5) being the predicate y, = yit the formula in
braces { 1 is true.

(B) Functional Programs and Predicate Calculus

Consider, for example, a functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output (x,y)

else operatorl(x,y, F(x, operator2(x,y)))

with a given output predicate ¥(x,z) over D_xD, . Here, input (x)

maps D_ into Dy, , test(x,y) is a predicate over D, xD, , output (x,y)
maps D, x Dy into D, , operatorl maps D, xD, XD, into D, , and
operatorz maps D, xDy into D, .

We associate a predicate variable (unspecified induction hypothesis)

Q(x,y,z) with F(x,y) , and construct the following formula Wo (xs Vv)

92 { vz[Q(x,input (x),2) O ¥(x,2)| -- conclusion
A ¥y[IF test(x,y) THEN Q(x,y,output (x,¥)) -- initialization

ELSE vt [Q(x,operator2(x,y),t)

>Q (x,y, operatorl(x, y,t)]1} -- induction

The key result is that for any given input E&eD_ (P,&) is

partially correct w.r.t. ¥ if and only if Wo(E5V) igs true (Manna and
prueli (1970), see also Park (1970).

10

Example 3: For the functional program Py :

z = F(x) where

F(y) <= if y = 0 then 1 else y-F(y-1) ,

it follows that: (Ps; E) is partially correct w.r.t. z = x! if and

only if Wo (E,z=x!) is true, where W_ (E,z=x!) isP
> 3

R{ vz{Q(e,z) oz=8L]

A Yy[IF y =0 THEN Q(y,1) ELSE vt{Q(y-1,t) > Q(y,y-t)11} -

Note that for Q(y,z) being the predicate z = y! the formula in

braces { } is true.

Example 4: For the functional program Py, :

z = F(x,0) where

F(x,y) <= if y = x then 1 else (y+l) F(x,y+l) , |

it follows that: (P), 8) is partially correct w.r.t. z =x! if and

only if W_ (&,z=x!) is true, where W_ (t,z=x!) is
P), By,

Ri vz[Q(t,0,2) oz = Et]

A Yy[IF y = & THEN Q(&,y,1) ELSE ¥t[Q(&,y+1,t) 2Q(L,y, (+1) t) 11}

Note that for Q(¢,y,z) being the predicate z-y! = Et! , the formula

in braces { } is true.

The formulas constructed here are independent of the syntax of the

language in which the algorithms are expressed, and, therefore, we can

use our results to formulate in predicate calculus the equivalence of

algorithms defined by different languages. From part (f) of Theorem 1

it follows, for example, that for every input ¢ , (Py5¢) and (Py, t)
are equivalent if and only if LAL (t,¥) = W, (E,¥)] 1s true.

1 2

11

The reader should realize that the flowchart program P (Figure 3)

can be represented equivalently (see McCarthy (1962)) by the functional

program P' :

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then output (x,y) else F(x,0perator(x,y))

However, Wy, (x,¥%) is

2Q{ vzla(x,input(x),z) > ¥(x,2)]

A YylIF test (x,y) THEN Q(x,output (x,¥))

ELSE vt [Q(x, operator (x,y), t) > Q(x,¥,t) 11} 3

while Wo (x, ¥) was

gf Q(x,input(x))

A YylQ(x,y) © IF test(x,y) THEN ¥(x, output (x,y)) ELSE Q(x,operator(x,y)1} -

Although both Wo(x, ¥) and Wp, (x,¥) essentially formulate partial
correctness of (P,x) w.r.t. V¥ , they seem to be quite different.

Intuitively, the difference between the two formulations is that Q(x,¥)

in Wo (%, ¥) represents all current values of (x,y) at arc a during
the computation of P , while Q(x,y,2z) in Wo (x,¥) represents the

final value of z when computation of P starts at arc « with initial
values (x,y) -

(C) Functional Programs and Partial Function Logic

Consider again a functional program P of the form

z = F(x,input(x)) where

F(x,y) <= if test(x,y) then cutput (x,y)

else operatorl(x,y, F(x, operator2(x,y))) "

with a given output predicate v(x,2z) .

12

We construct the following formula W(x, ¥)

TF{ [*F(x,input(x)) > ¥(x,F(x,input(x)))]
*

A Yy[F(x,y) = if test(x,y) then output(x,y)

else operatorl(x,y,F(x,operator2(x,y)})1} . |

Here, "HAF" stands for "there exists a partial function F mapping

D, xD, into D, such that ..."; "*F(x,input(x)) " stands for the
total predicate (mapping D, into {T,F}) "F(x,input(x)) is defined";

3

and = is just the natural extension of the usual equality relation,
*

defined as follows: A = B if and only if either both expressions A

and B are defined and represent the same element (of D, » in this case)

or both expressions are undefined.

The key result is that for every given EeD_ , (P,t) is partially

correct w.r.t. V if and only if Wo (8 ,¥) is true (Manna and McCarthy (1970)).

Example 5: For the functional program Py -

z = F(x,0) where

F(x,y) <= if y = x then 1 else (y+l) F(x,y+l) ,

it follows that: (Py, €) is partially correct w.r.t. z = x! if and

only if Wp, (& , 2=X!) is true, where "p(t ;2=Xx!) is
ar{ [*F(t,0) > F(¢,0) = &!]

* #
A Yy[F(t,y) = if y = t then 1 else (y+1) F(&,y+1)]} .

Note that for F(&,y) being the partial function

(EL/yt if y<t¢t
F(&,y) =

undefined if y>¢

the formula in braces { } is true.

13

3. Non-Deterministic Algorithms

One natural extension of our study is obtained by considering non-

deterministic algorithms rather than deterministic algorithms.

An algorithm P (with input variable x and output variable z) is

seid to be non-deterministic if it defines a many-valued function P(x) ,

mapping elements of D_ (the input domain) into subsets of D (the

- output domain); that is, for every ED, P(t) is a (possibly empty)

subset Zz of D_ , where each (eZ is the final result of some |

computation of P with input E . |

Examples: We first describe three non-deterministic programs for computing

z = x! , making use of the deterministic programs P,-P) introduced in Cy
Section 1. |

(a) Parallel flowchart program: In Figure I we have described a simple

parallel flowchart program Pg for computing 2 = x! . The program
includes a 'BEGIN-END' block which consists of two branches, the left

branch being the body of program P, and the right branch being the

body of program PF, , after changing the test statements to y, = yi
in both.

1h

C START 2 |

@ (¥1,¥75 Yo) « (x,0, 1)

GC_BEGIN2

: ® ©
|! !

! F F :

| (¥15¥p) = (¥7-Ls¥4) (v7) = G10 (y1+1),)
it——m—._. — ——————

CED 2

®

CLHALT2

| Figure L: The parallel flowchart program Ps for computing z = xi

15

The program is executed as follows. First statement « is

executed. Entering the block either the statements in Pp or the

statements in 7 are executed, chosen arbitrarily. The execution

proceeds asynchronously, i.e€., between the execution of two consecutive

B's , we may execute an arbitrary number of 7's ; and conversely,

between the execution of two consecutive 7's we may execute an

arbitrary number of p's . p and 7 cannot be executed at the

same time. Therefore, one can consider execution to be performed

with a single processor switching between the two branches. We exit

from the block and execute statement & when either of the two branches

reaches the END node. Such parallel programs are discussed in detail |

in Ashcroft and Manna (1970).

(b) Choice flowchart program: In Figure 5 we have described a choice

flowchart program for computing z =x! . A branch of the form o!
js called a choice branch. It means that upon reaching the choice

branch during execution of the program, we are allowed to proceed with

either branch, chosen arbitrarily. Such choice flowchart programs have

been discussed in detail by Floyd (1967 b). |

Note that for any given input x both Pg and Pe yield the

same set of computations. For x = 5 , for example, there are

exactly 8 different possible executions of each program. In general,

for every non-negative input x , there are 2* different possible

computations of each program.

16

T

a - 3) i ee | 8 "

Figure 5: The choice flowchart program P, for computing z = xi

si

(¢) Choice functional program: Consider the following choice functional

program EF, :
z = F(x,0) where

F(y,y') <= if y = y' then 1 else choice(y-F(y-1,¥'),(y'+1) -F(y,y'+1))

The choice function here has the same meaning as the choice branch

in Pg ; it corresponds to McCarthy's (1963) amb (ambiguous) function.
For every non-negative input x there are again 2X different possible

computations of FP, .

17

In this section we shall discuss several properties of non-

deterministic algorithms. For non-deterministic algorithm P and

input EeD we say that

1.(1i) (P,t) is J-defined if there exists a finite computation P

with input ¢ (or, equivalently, P(t) #0);

(11) (P,t) is Y-defined if every computation of P with input ¢

is finite; .

(iii) (P,t) is partially determinate if all finite computations of

P with input ¢ yield the same final result (or, equivalently,

P(t) is either empty or a singleton);

(iv) (P,t) is totally determinate if all computations of P with

input &¢ are finite and yield the same final result.

Let V¥(x,z) be a total predicate over D_xD,_, and let EeD_ .

A finite computation of P with input £ is said to be correct w.r.t. V

if for its final value (, V(t¢,() =T . We say that

2.(1) (P,t) is partially H-correct w.r.t. V if either there exists

an infinite computation of P with input £¢ , or there exists a

finite computation of P with input ¢ which is correct w.r.t. V ;

(ii) (P,t) is totally W-correct w.r.t. V¥ if there exists a finite

computation of P with input ¢& which is correct w.r.t. V ;

(iii) (P,t) is partially V-correct w.r.t. ¥ if every finite computation

of P with input §£¢ is correct w.r.t. V¥ 3

(iv) (P,t) is totally V-correct w.r.t. ¥ if every computation of P

with input & is finite and is correct w.r.t. V¥ .

Let Py and P, be any two comparable non-deterministic algorithms,

j.e., algorithms with the same input domain D, and the same output domain D,

We say that

18

efi) (P,8) and (Py) are partially determinate-equivalent if all

finite computations of Py and with input § yield the

same final result (or, equivalently, P, (€) U P, (8) is either

empty or a singleton). | |

(ii) (P58) and (P58) are totally determinate-equivalent if all

computations of Py and P, with input ¢ are finite and yield
the same final result.

4. (1) (P58) partially extends (Psst) if, for every finite computation

of P, with input ¢ , there exists a finite computation of Py
with input ¢& that yields the same final value (or, equivalently,

P, (8) 2 P,(E))s3

(ii) (P56) totally extends (Poy t) if (Pes Et) partially extends
(P,s 8) , and if there exists an infinite computation of P, with
input & , then there is also an infinite computation of Py with

input E£ .

5.(1) (Py) and (Py t) are partially equivalent if (P58) partially
extends (Ps t) and conversely (or, equivalently, P, (8) = P,(8));

(ii) (P58) and (Py, ¢) are totally equivalent if (PE) totally
extends (Pp; ¢) and conversely.

Our main purpose in this section is to show that all these properties

can be expressed in terms of the two notions of partial correctness,

namely partial F-correctness and partial Y-correctness.

19

THEOREM 5

(a) (P,t) is T-defined if and only if (P,&) is not partially ¥Y-correct

w.r.t. F (false);

(b) (P,t) is Y-defined if and only if (P,t) is not partially J-correct

w.r.t. F (false);

(¢) (P,&) is partially determinate if and only if vy[(p,t) is

partially Y-correct w.r.t. V¥ or (P,t) is partially ¥-correct

w.r.te ~V] 3

(a) (P,t) is totally determinate if and only if vw (P,t) is not

partially @-correct w.r.t. V¥ or (P,t) is not partially d-correct

Ww.r.t. ~V¥] 3;

(e) (P,t) is totally ¥-correct w.r.t. V if and only if (P,&) is not

partially V-correct w.r.t. ~ Vj

(£) (P,t) is totally V-correct w.r.t. ¥ if and only if (P,t) is not

partially F-correct w.r.t. ~V¥ ;

(g) (Pps t) and (P,,E) are partially determinate-equivalent if and
only if Wi(P;,8) is partially Y-correct w.r.t. ¥ or (Py t)
is partially ¥-correct w.r.t. ~ ¥] 3

(h) (Py) and (Py) are totally determinate-equivalent if and only if
Wi (P58) is not partially @-correct w.r.t. V or (Ps E) is not
partially I-correct w.r.t. =~ Vv] 3

(1) (P,¢) partially extends (Ps ¢) if and only if W¥[(P,, 8) is
partially YV-correct w.r.t. V¥ implies (Py €) is partially

Y-correct WeT oto v1 3

(3) (P,8) totally extends (P,,%) if and only if vWi(P,,8) is
partially d-correct w.r.t. V implies (Pps) is partially

: J-correct w.r.t. ¥] ;

20

(k) (Pys8) and (P58) are partially equivalent if and only if

Yl (Py ¢) is partially Y-correct w.r.t. V¥ if and only if (P,s 8)
is partially Y-correct w.r.t. ¥] ;

(1) (Py58) and (P58) are totelly equivalent if and only if Y¥[(Py, E)
is partially 7-correct w.r.t. V¥ if and only if (P58) is

partially F-correct w.r.t. v] .

Proof of Theorem 3: (a), (b), (e) and (£) are straightforward by

definition. (c), (a), (g), (nh), (i), and (j) are best proved by

considering the corresponding contra-positive relations. (k) and (2)

follows from (i) and (j), respectively.

L. Formulation of Partial Correctness of Non-Deterministic Algorithms

For a given non-deterministic program P and an output predicate

¥(x,z) , we would like to construct two formulas Wax, y) and WY (x, ¥)
in predicate calculus, such that for every given input value EeD :

(i) (P,t) is partially d-correct w.r.t. ¥ if and only if WOE, ¥)
is true, and |

(11) (P,E) is partially V-correct w.r.t. ¥ if and only if WY (e,¥)
is true.

Then, using the formulas Wo (x, ¥) and w(x, ¥) , the formulation of the

other properties of P in predicate calculus is straightforward.

Following Ashcroft and Manna (1970), one can formulate properties of

the parallel flowchart Pc by first translating it to the equivalent choice
flowchart program Pe and then make use of the formulas we (x,¥) and6

Wy (x,¥) . We shall therefore illustrate the construction of Wa (x, ¥) and
6

21

WY (x, ¥) only for the choice flowchart program Pe (Figure 5) and the

choice functional program EF, . The main idea behind this formulation is
that the effect of the choice branch is represented by an 'V ' connective

in Wo (x, ¥) , while it is represented by an 'A' connective in w(x, ¥)
(see Manna (1970)).

To construct Wp, (¢ , z=x!) , associate the predicate variable
QUE, ¥15¥]Y0) with are a in Figure 5 and the predicate variable z = xi

with arc Bf . Then Wp, (¢ ,2=x!) is
af Q(t,£,0,1)

A Yy¥y3¥y[Q(E,ys¥vp) DO TF vy = y] THEN yp = EF

ELSE [Q(E,¥;-1,7]5¥1¥p) A QE y+, (¥1+1) vp)113

The reader can verify easily that for every non-negative integer E& , the

formula Wp (¢ ,z=x!) is true for Q(t,y,>¥},¥,) being the predicate
Y,'vqt = E1VE Wp (8 ,z=x!) is similar with the 'A' connective
replaced by 'V'.

To construct Wy, (¢ , z =x!) , associate the predicate variable

Q(y,y',2) with the —_—— variable F(y,y') . Then Wp (¢ , z=x!) is:
w{ vz[Q(E,0,2) oz = &!]

A Vy¥y' [IF y = y' THEN Q(y,¥"51),

ELSE V[Q(y-1,y',t) 2 Q(y,¥'»¥-t)]

A ¥E[Q(y,y'™+1,t) OD yy", (y'+1)-t) 11}

The reader can verify easily that for every non-negetive integer £ , the

formula wy (¢ ,z=xt) is true for Q(y,y',z) being the predicate
z-y'! = yi! f Wy (¢,z=x) is similar with the ' A ' connective replaced
by 'v'. !
Acknowledgments: I am indebted to Fdward Ashcroft and Stephen Ness for many

stimulating discussions and also for their critical reading of the manuscript

and subsequent helpful suggestions.

22

References

E. A. ASHCROFT (1970), "Mathematical Logic Applied to the Semantics of
Computer Programs," Pa.D. Thesis, Imperial College, London.

E. A. ASHCROFT and Z. MANNA (1970), "Formalization of Properties of
Parallel Programs," in Machine Intelligence 6 (Ed. Meltzer and Michie),
Edinburgh University Press.

D. C. COOPER (1969 a), "Program Scheme Equivalences and Second-Order
Logic," in Machine Intelligence 4 (Eds. Meltzer and Michie),
Edinburgh University Press, 5-15.

D. C. COOPER (1969 b), "Program Schemes, Programs and Logic," Computation
Services Department, University College of Swansea, Memo No. 6.

R. W. FLOYD (1967 a), "Assigning Meaning to Programs," in Proceedings of
Symposia in Applied Mathematics, American Mathematical Society,

R. W. FLOYD (1957 b), "Non-deterministic Algorithms," JACM (October 1967).

Z. MANNA (1969), "The Correctness of Programs,” J. of Computer and System
Sciences, Vol. >, No. 2.

Z. MANNA (1970), "The Correctness of Non-deterministic Programs,"
Artificial Intelligence J., Vol. 1, No. 1.

Z. MANNA and J. McCARTHY (1970), "Properties of Programs and Partial

Function Logic," in Machine Intelligence : (Eds. Meltzer andMichie), Edinburgh University Press, 79-90.

Z. MANNA and A. PNUELI (1970), "Formalization of Properties of Functional
Programs," JACM, Vol. 17, No. 3.

J. McCARTHY (1962), "Towards a Mathematical Science of Computation,”
Proc. IFIP Congress 62, North-Holland, Amsterdam.

J. McCARTHY (1963), "A Basis for a Mathematical Theory of Computation,"
in Computer Programming and Formal Systems (Eds. Braffort and
Hirshberg), North Holland, Amsterdam.

D. PARK (1970), "Fixpoint Induction and Proofs of Program Properties,"
in Machine Intelligence 5 (Eds. Meltzer and Michie), Edinburgh
University Press, 59-78.

23

