
| STANFORD ARTIFICIAL INTELLIGENCE PROJECTMEMO AIM-138

| COMPUTER SCIENCE DEPARTMENT
| | REPORT NO. STAN-CS-71-188

THE TRANSLATION OF 'GO TO' PROGRAMS

TO 'WHILE' PROGRAMS

| av
| EDWARD ASHCROFT
| AND

ZOHAR MANNA

JANUARY 1971

COMPUTER SCIENCE DEPARTMENT

| STANFORD UNIVERSITY

Co

THE TRANSLATION OF 'GO TO' PROGRAMS

| TO 'WHILE' PROGRAMS

Lo

by

Edward Ashcroft

Zohar Manna

Abstract: In this paper we show that every flowchart program can be

written without go tostatements by using while statements.

The main idea 1s to introduce new variables to preserve the

values of certain variables at particular points in the program;

or alternatively, to introduce special boolean variables to

keep information about the course of the computation.

The ‘'while' programs produced yield the same final results

as the original flowchart program but need not perform computations

in exactly the same way. However, the new programs do preserve

the 'topology' of the original flowchart program, and are of the

same order of efficiency.

We also show that this cannot be done in general without

adding variables.

1

STATS EE A TNITR aTCErm 1 UE Arran reg "Le BEL TL Tea a BE A AE RT AT Rea TT Tea es Rarra at Th 2 tt ’ o
IL UIE BRU ARS SEN . Coe tT sh A RE SE Sr I ES I SE NI A STE APN ATA Rr FRR Ee Tr sl PEO Trem y ha -

4

3

i
%
[4

GENERAL DISCUSSION

1. Introduction

The first class of programs we consider are simple flowchart programs

constructed from assignment statements (i1i.e., assigning terms to variables)

and test statements (i.e., testing quantifier-free formulas) operating on

a 'state vector' x . The flowchart program begins with a unique start

statement of the form

START (x, ut) . | | |

where x hput is a subvector of x , indicating the variables that have
to be given values at the beginning of the computation. It ends with a

unique halt statement of the form

HALT (Xt put) ’

where x is a subvector of x , indicatingthe variables whose
output

values will be the desired result of the computation.

We make no assumptions about the domain of individuals, or about the

operations and predicates used in the statements. Thus our flowchart

programs are really flowchart schemas (see, for example, Iuckham, Park

and Paterson [1970]) and all the results can be stated in terms of such

schemas.

Let Py be any flowchart program of the form shown in Figure 1.

Note that, for example, the statement x «e(x) stands for any sequence

_ of assignment statements whose net effect is the replacement of vector x

2

A

=

ie |

i ’ ”
q)

]
+ Ww = |

po 2 = 1
5 ~~

it
) MX od|

3 A NE
O : oFmq — 4)
H : bd | Play
2 ~ kad]
1)

=

by a new vector e(x) . Similarly, the test p(x) , for example,

stands for any quantifier-free formula with variables from X .

The flowchart program Py will be used as an example throughout

the paper.

Flowchart programs are usually easy to understand, but if the

program is to be written in a conventional programming language, goto

statements are required. There has recently been much discussion (see,

for example, Dijkstra [1968]) about whether the use of goto statements makes

programs difficult to understand, and whether the use of while or for

statements is preferable. It 1s clearly relevant to this discussion to

consider whether the abolition of goto statements is really possible.

Therefore the second class of programs we consider are while programs,

i.e., Algol-like programs consisting only of while statements of the form

while (quantifier-free formula) do (statement) , in addition to conditional,

assignment and p1ocky statements. As before, each program starts with

a unique start statement, START (x, J , and ends with a unique halt

statement, HALT(x ood
Since both classes of programs use the same kind of start and halt

statements, we can define the equivalence of two programs independently

of the classes to which they belong. Two programs (with the same length

of input subvectors 2; put and the same length of output subvectors
X output) are said to be equivalent 1f for each assignment of values to

x out either both programs do not terminate or both terminate with the

same values in X utput

A block statement 1s any sequence of statements enclosed bysquare
brackets.

TT

2. Translation to while programs by adding variables

(a) Extending the state vector x .

We first show that by allowing extra variables which keep crucial

past values of some of the variables in x , one can effectively translate

every flowchart program into an equivalent while program (ALGORITHM I).

| The importance of this result 1s that the original 'topology' of the

program is preserved, and the new program is of the same order of efficiency

| as the original program. However, we shall not enter into any discussion

{ as to whether the new program is superior to the originalone or not.

s This result, considered in terms of schemas, can be contrasted with those

of Paterson and Hewitt [1970] (see also Strong [1970]). They showed that

although 1t 1s not possible to translate all recursive schemas into

flowchart schemas, 1t 1s possible to do this for 'linear' recursive

schemas, by adding extra variables. However, as they point out, the

flowchart schemas produced are much less efficient than the original

| recursive schemas.

As an example, ALGORITHM I will give the following while program

which 1s equivalent to the flowchart program Pp, (Figure 1):

START (:);

Xx « a(x);

(yhile p(X) do x « e(X); lL

1
- - - - - -

if q(x) then |X « b(x); while r(x) do x « d(x);if q(%) then [% « b(X); while *(¥) do ¥ « AR);
while a(y) A s(x) do

[Xx « c(x);

[while p(x) we 5 — e(x); |
Y «Xj

| ir q(x) then [x « b(x); while r(x) do x « a(x) 1] 1;
if q(y) then x « f(x) else X « g(x); |
HALT (%).

If the test q(x) uses only a subvector of x , then the algorithm will

indicate that the vector of extra variables y need only be of the same

length as this subvector.

Note that on each cycle of the main while statement, the state

vector X is at point B , while ¥ holds the preceding values of x

at point a .

Note also that the two subprograms enclosed in broken lines are

identical. This is typical of the programs produced by the algorithm.

One might use this fact to make the programs more readable by using

subroutines! for the repeated subprograms.

(b) Adding boolean variables.

Inspection of the above example will suggest that we do not need

to introduce a whole vector ¥ , but rather a single boolean variable t

which 1s assigned the value q(x) , as 1llustrated below. This while

program, which 1s still equivalent to the program P., will in practice be

more efficient than the preceding while program, since t requires only

one memory bit whereas y may be a very large vector.

START(%) ;

X « a(X);

while p(x) do x « e(x); .

t « q(x) ;

if t then [x « b(x); while r(x) do x « d(x)];
while t A s(x) do

[x « c(x);—-

while p(x) then x «e(x);

t « q(x);

if t then [x « b(x); while r(x) do x « d(x) 1];
if t then x « f(x) else x « g(qg);

HALT (xX).

6

The translation of flowchart programs into while programs by the

addition of boolean variables is not a new idea. Bom and Jacopini [1966],

Cooper [1967] and Bruno and Steiglitz [1970] have shown that every flowchart |

program can be effectively translated into an equivalent while program

(with one while statement) by introducing new boolean variables into the !

program, new predicates to test these variables, together with assignments

to set them true or false. The boolean variables essentially simulate a

program counter, and the while program simply interprets the original

program. On each repetition of the while statement, the next operation

of the original program is performed, and the ‘program counter' is updated.

As noted by Cooper and Bruno and Steiglitz themselves, this transformation

1s undesirable since 1t changes the 'topology' of the program, giving a

program that 1s less easy to understand. For example, 1f a while program

1s written as a flowchart program and then transformed back to an

equivalent while program by their method, the resulting while program will

not resemble the original.

We give an algorithm (ALGORITHM II) for transforming flowchart programs

to equivalent while programs by adding extra boolean. variables, which is an .

improvement on the above methods. It preserves the 'topology! of the

original program and 1n particular 1t does not alter while-like structure

that may already exist in the original program.

For the flowchart program Pj, for example, ALGORITHM II will produce

the following while program. vo

7

START (x) ;

t ttruey;

while t do

. [while p(x) do x « e(x);

: | if q(x) then [x « b(x);

while r(x) do x «d(x);

if s(x) then x « c(x)

else [x « f(x); t « false]]

else [x — g(x); t ~ false]];

HALT (x) .

Note that each repetition of the main while statement starts

from point y and proceeds either back toy or to 8 . In the latter

case, T¥ is made false and we subsequently exit from the while

statement.

5. Translation to while programs without adding variables

It 1s natural at this point to consider whether every flowchart

program can be translated into an equivalent while program without adding

extra variables (i1.e., using only the original state vector X) . We

show that this cannot be done in general, and in fact there is a flowchart

program of the form of Figure 1 which 1s an appropriate counter-example.

A similar negative result has been demonstrated by Knuth and Floyd

[1970]and Bruno and Steiglitz[1970]. However, the notion of equivalence

considered by those authors 1s more restrictive in that it requires

PB equivalence of computation sequences (i1.e., the sequence of assignment

and test statements in order of execution) and not just the equivalence

8

of final results of computation as we do. Thus, since our notion of

equivalence 1s weaker, our negative result is stronger. oo

Our counter-example 1s a program of the form of Figure 1 in which: |

r 1dentical to g , 8 identical top, Db and e identical |

to g& , and c¢ and d identical to f . |

There 1s also another similar counter-example in which: ,

r identical to g , s identical top , d and e identical T

to g , andb and ¢ identical to f£ .

The fact that these restricted forms are counter-examples 1s especially

interesting since we have found while programs, with no extra variables,

which are equivalent (in our sense) to most of the programs of the form

of Figure 1. In particular, we can do this for any flowchart program of } |
the form of Figure 1 with only two distinct tests and two distinct

operations in which

Cc 1s 1dentical to e ,

or b 1s identical to d ,

or f 1s identical to g .

9

ALGORITHM I: TRANSLATION BY EXTENDING THE STATE VECTOR X

Our algorithm depends on the fact that every flowchart program can

be put effectively into a normal form (see Cooper [1970] and Engeler [1970]).

A flowchart program is in normal form if it is of the form

START (%;) ut)

block

. T(X output

where a block 1s defined recursively as follows:

1. A basic block 1s any tree-like, loop-free, one-entrance piece of

flowchart program (without start and halt statements). For example,

I |
1

| SECIS

X « f(x) | X « £5(x) | |
|

| rd2 |
| x « f) (x) X « T(x)

10

2. Composition

If and are blocks, so is

J oe 0 / ¢ Hn

5. Looping

| If 1s a block, so is

| L | Ter 4

We shall consider only flowchart programs in normal form. By

induction on the structure of the blocks we show how to associate with

each block B(x) (with state vector x) a plece of while program
| - = ¥ - = -

a (2,7) J and with the i-th exit of the block a pair (9; (%,7), T, (x) Yo,
| where P, (X,Y) is the 'exit-condition' and 7; (x) is the 'exit-term',

-% -WW
Y 3 1s a (possibly empty) vector of additional variables introduced by

the translation.

11

such that B(X) comes out of the i-th exit with E if and only if

a (x5) terminates with some E' s.t. P(E") = T and £ = T(E") :

Each Py is a quantifier free formula constructed from the

tests and operations 1n the flowchart. The .'s for a given block are

complete and mutually exclusive.

In each of the three cases we have to consider, the above relationship

between a and (©. Ts) is preserved.

1. B(x) is a basic block (i.e., tree-like, loop-free, one-entrance flowchart)

In this case a, (x) is always null (the empty program), ?, (x) is

the condition that control will take exit i for input x , and 7. (x)
1s the result of performing the assignment statements on the corresponding

path. For example,

[i i BZ) |
X « f(x)

|

| T F |

X & f(x) X £4(x) |

(py (£1(%)), £,(£ (3) GS |

| lS i
(py (£1 (0) AD (E5(2 GN) 5 £,(£5(£(®))Y

where a, (%) is null.
12

2. B(x) is constructed from B'(xX) and B"(X) by composition

We consider two cases:

(a) B" is a basic block.

if 4

BE T= ®&)
1 | n

(@,(%,3)577(%)) @, (%3),7,(%))

| and

| “2 ay, , ie. null
1 \I1 |

Cy (R),8, (x) v_(x),6_(%))

then

Vv - ow o-oo
| | | B' (x) | |

1 2 n |

oo ooX |

EY A CE IS i

where ag (%,5") is ag, (X55) .

15

(b) B" is a non-basic block.

If

=o,&7)
1 n

and

1 m

ETM,8,(8) (E5),6,(8)

then let X, be the subvector of x which is used in exit

conditions Prpe-®, . Let Ys be a new vector of the same

length as Xo. Then y = EAPNAPI NY and

I BE

| 1/ [2 n |

| |

: @, (35> y!) A(x, y') ’ 8 (%)) |

where A (%,) is a (x,y');

Yo © Xo

1h

]

3. B(x) is constructed from B' (x) by looping.

If

CT ay, (57)
1 n

then

[B(%) |

| B' (x) I
|= _

where a (x5) is Qn, (%,¥)3

while P, (%,7) do [x « 7, (2) Cy (257) 1

and Py : SR are complete and mutually exclusive and

Comment : To find {o, hote that the algorithm ensures that each Ps
is a conjunction of literals (i.e., atomic formulas and negations of atomic

formulas), and therefore we can represent ©. by a binary tree; e.g.

(DAQAT , PAQA~T , PA~d, ~D} is represented by tree (a).

15

b

T F
b

T rr r
, |

T F PA ~(Q

PAQAT PAQA ~T PACT PA~T

(a) (o)

If we remove the node in the tree leading directly to the terminal node

representing ¢y y the new tree represents the desired conditions 0) 3
J7

For example, 1f we remove p A ~q from the above set of conditions, we

get the new tree (b) which represents the new set of exit conditions

{pAg, PA~r, ~D} .

Conclusion: This covers all cases of blocks we need to consider. To find

the while program equivalent to a given flowchart program (in normal form)

START (x; 4) |

B(x)

Cnn

we find a (x,7) and {@, (x7), 7(x))] * The desired while program is then

S X,TART (x,

if P; (X,Y) then xX « 7. (x)— ne 1

: else if 9, (x57) then x = 7, (x)

else . . . x «1 (x);

_ T(x tput .

16

Example: Let us consider again the flowchart Program Py (Figure. 1). It is

| already in normal form, and the blocks are indicated in Figure 2. Tne

exit conditions and exit terms for the exits of all blocks are also

indicated. The corresponding «a's are given below:

Gn 1S ny).
1

a is whil®) p(x) do x « e(x) ., —_— pal

oy (x) is null.
5

oi is whi) r(x) do x « a(x)
Lo

| %, (9) is %, (X); y © X53 if a(x) then [x « b(x); UG, (*)
| Note that X, is the subvector of X occurring in the exit

conditions of B, , i.e., in q(x) .

(5,9) 5. ap (%,3)5 while a(@)as(X)dolkec(®)sa, (%3)]p) p)

Thus the original flowchart program 1s equivalent to the following while

| program;

START (%) ;

X « a(x);

while p(x) do x « e(x);

y «X45

if q(x) then [x ~ b(x); while r(X) doX « d(z)];

while q(y)as(x) do

[x « c(X);

while p(x) do x « e(x);

y Xr

if q(X) then [x « b(x); while r(x) do x « d(x)11;

- if q(y) then x « £(x) else x « g(x);

17 =

x « a(x)

. r—— © PU— nitty. = } - B¢

B CC a(x) 2 x « e(x) |
i 1 i !

| 1 SpE Ana® aE) | (A p&) Aa), bE)

(~a(PeE)/ Hax),ex) (a(x) ,Db(x)) Cl

| ; — ee es

| | | Crd 2 (r(x) ,a(x)) |

~a(@)se@) | | EXCH, |

a J E230 | x ~ c(x)] | |

B | rEAnsEEE) Aor ele) oo
(8 (%),T(x)) (s(%),c(R)) |.

C a@ Aas, E) \a@ As@),e@)

| (a (3), £(X)) oo

Figure 2. The flowchart program P, (for ALGORITHM I).

18

Comment : In general the transformation of a program to normal form

results in exponential growth in the size of the program. This can

be reduced 1f we allow the following extra case in the definition of

blocks.

4. Merging (optional)

If 1s a block, so 1s

| B I
soe |

L — |
se ® |

The algorithm can be easily modified to cover this case, but since ‘ |

it would complicate our notation, "© will not discuss it here.

19

F Ba a TV

ALGORITHM II: TRANSLATION BY ADDING BOOLEAN VARIABLES

The second algorithm, ALGORITHM II, translates flowchart programs

| to equivalent while programs by adding boolean variables. It makes use

: of the fact that every flowchart program (without the start and halt

statements) can be decomposed into blocks where a block 1s any piece of

flowchart program with only one exit (but possibly many entrances) .

This 1s obvious since 1n particular the whole body of the given flowchart

program can be considered as such a block. The aim, whenever possible, 1s

to get blocks containing at most one top-level test statement (i.e.,

test statement not contained in inner blocks) since such blocks can be

-- represented as a piece of while program without adding boolean variables.

In particular, if a while program is expressed as a flowchart program,

this latter program can always be decomposed into such simple blocks,

and the algorithm will give us back the original while program.

For any given flowchart program we construct the equivalent while

program by induction on the structure of the blocks. Since the ideas

behind the construction are intuitively simpler, we shall not be as

formal as in the presentation of ALGORITHM I.

For each entrance b. to block B we consider that part B. of

the block reachable from b. . We then recursively construct an equivalent

piece of while program yy (8) 2 as follows. There are two cases to
consider:

Z/ Note that the blocks used here are not related in any way to those
used in ALGORITHM I.

. xf t is a (possibly empty) vector of additional boolean variables
introduced by the translation.

20

Case 1: (a) Bs contains at most one top-level test statement,

or (b) B, contains no top-level loops.

In both cases 7g (%:%) is the obvious piece of while program
requiring at most one top-level while statement (and no extra boolean
variables).

Case 2: B, contains two or more.top-level test statements and at

least one loop.

In this case we choose a set of points on top-level arcs of B, |

(called ‘cut-set' points) such that each loop contains at least one such

point. One point on the exit arc of the block is also included in this

set. We shall translate B, into a piece of while program 7g (X58) with
one top-level while statement in such a way that each iteration of the while

statement follows the execution of B. from one cut-set point to the next.

In this case, 7g (%,%) includes boolean variables introducedto keep track oo

of the current — point. Note that n boolean variables totoseees ty
are sufficient to distinguish between k cut-set points, A <k <2.

Example: We shall illustrate the method using again'the flowchart program

Py (Figure 1). We decompose Py into blocks' as shown in Figure 3. Blocks

By and B, are of type 1 and can each be written as a single while

statement. Block B is of type 2 with a single top-level loop. Thus

it 1s sufficient to choose points «@ and B as the cut-set points. To

distinguish between @& and Bp we need one boolean variable, +t say.

Thus the following while program, using the boolean variable t , can be

generated and 1t 1s equivalent to the given flowchart program P..

21

» — — — —l= 7 7 7
_ _ oo

NN |
CaO> Ed]

y |> | — = —

HN .! || |

CC Hew]
; rr Se _——1 |]

|| oe] R
L = _ = =— 1

Figure 3. The flowchart program P, (for ALGORITHM II).

22

START(%) ;

x « a(x);

t « true;

while t do

[while p(x) do x « e(x);

if q(x) then [x « d(x);

while r(x) do x « d(x);

ifs(x) thenXxX « c (x)

else [x « f(x); t « false]]

else [x « g(x); t « falsell;

HAIT (x) .

N

THE NEGATIVE RESULT

We consider the flowchart program EF, (Figure 4) which has the

structure of Figure 1. The domain D is the set of all pairs of strings

such that the first string, called ‘head', 1s any finite string over

letters {f,g} , and the second string, called 'tail', is any infinite

string over letters {a,B,7} with at most one occurrence of y .

During a computation of Py the only changes in the value of the

program variable are deletion of leftmost letters from the tail and

adding letters f or g to the right of the head. The tests in the

program simply look at the tail, and-therefore the computation 1s determined

’ by the tail of the initial value. Thus, since the program terminates if

and only 1f both tests & and B are false, it implies that P, terminates

if and only 1f the tail of the initial value contains y . Another important

feature of any computation of P, 1s that whenever the leftmost letter of

the tail is @ , the next but one operation must be operation g . Similarly,

whenever the leftmost letter 1s Bf , the next but one operation must be f .

Let us assume that we have a while program P, equivalent to P, which
also has one variable and the same domain D . Although the assignment

statements of E, may use any terms obtained by compositions of the operations
f and g , we assume without loss of generality that each assignment

statement in P, consists of a single operation f or g. The tests in
the conditional and while statements may only use quantifier-free formulas

obtained from tests & and B , and operations f£ and g . Since we use

restrict the tails to the enumerable domain of ultimately periodic

strings, 1.e., infinite strings which eventually repeat some finite
. substring indefinitely.

2h

F \T

g g

Car
BF T |

1}

where test @& means "is letter '' the leftmost letter in tail";

test B means "is letter 'B' the leftmost letter in tail";

operation f means "erase the leftmost letter in tail and add

letter 'f' on the right of head"; and

operation g means "erase the leftmost letter in tail and add

letter 'g' on the right of head".

Figure 4%. The Flowchart Program BP, (for negative result)

25

only one variable, it follows that every sequence of values'describing a

| computation of E, 1s identical to the corresponding computation of E,.
Note also that since there 1s a bound on the depth of terms in the

quantifier-free formulas, there is a bound, M say, on the number of

leftmost letters in the tail that can affect the decision of any test

in E,. Finally, without loss of generality we shall make the restriction
that there 1s no redundant while statement in if i1.e., there is no while
statement with a uniform bound on the number of its iterations.

Since E, must contain some (non-redundant) while statement, let W

be any while statement in r, which 1s not contained or followed by another
4 ’ %

| while statement. The point in Bs immediately after W we shall denote by A .Lemma

For all n (n > 0) there exists strings a,c¢ (0,8) and
de {a,B) (| o = n) wi such that for all strings be (0,B) the
computation starting with tail abcyd passes A with some tail

abcyd , where ab 1s some rightmost substring of ab (possibly empty).

From this Lemma we immediately obtain the following corollary.

Corollarv

For every n , mn >0 , there exists a finite computation of r,
which passes through A with more than n operations still to be performed.

But this contradicts the fact that,, since there 1s no while statement

| following A , the number of operations that E, can perform after a is
: bounded.

d is an infinite string over {&,B} and the length of c¢c is n .

26

Proof of Lemma. By induction on n .

Base step. Choose any computation starting with tail a'a'b'yd!

(a';a",b! ¢ {0,8}, d' ¢ {o,8}" and |a"| = M) that enters W with

tail a'"b'yd' . (Such computation exists by non-redundancy of W .)

Since at most M leftmost letters of the tail can effect the

| decision of any test, on entering ‘W the main test can only look at a" .

| Therefore the test will be true for any tail starting with a".

In particular, the computation starting with tail a‘a"bya"d' ,

| for any b in {o,8) s also enters W at the same point, 1.e., with
| tail a"bya"d' . It must subsequently pass point A , but (noting that

the test in W must be false when passing A) it cannot pass A with

tail a"d' .

| Hence, with a = a'a" , 4 = a"d' , forall strings b in {0,8} ,

the computation starting with abyd must pass A with some tail

abyd where ab is some rightmost substring of ab .

Induction step. Assume we have strings a,c ¢ (,8) and de {a,87 ,

| |c| =n , such that for all strings Db in fo, 8) the computation
starting with tail abcyd passes A with some tail abcyd where ab

1s some rightmost substring of ab .

We find a string ec! ¢ (a,B} , let] = ntl , such that for all

strings b' in fa, 8) the computation starting with tail ab'c'yd

passes A with some tail ab'ec'yd where ab' is some rightmost substring

of ab' .

There are three cases to consider:

27

(1) For all non-empty strings b , the corresponding substring ab

| 1s non-empty. In this case we take c¢!' to be Qc ij

For any string b' in {0,8} the computation starting with

tail ab'Gcyd , passes A with tail ab'ocyd , where ab'

1s a rightmost substring of ab'.

(11) For some non-empty string b = b"a (b" ¢ (a,8}) , the substring

| ab 1s empty, 1.e., there exists computation S starting with

ab"ocyd that passes A with tail cyd . In this case we take ec!

to be Bc .

By earlier remarks about P, and P, it follows that the next
operation in S after passing A must be g .

! Now, for any string b' in {o,B} he computation starting

with tail ab'Beyd must pass A with some tail ab'fcyd where

ab'B 1s some rightmost substring of ab'f .

ab'fBot be empty because this would mean that this

computation passes A with the same tail cyd as for S

but in this case the next operation to be performed is f .

This 1s impossible, since the course of computation from A must

be determined by the tail at this point.

| Hence, the computation must pass A with some tail ab'peyd
(or equivalently ab'c'yd) where ab' is a rightmost substring of ab' .

(iii) For some non-empty string b = b"B (b" ¢ {8}) , the substring ab

1s empty. In this case we take c¢' to be Qc .

We proceed as in case (11) with & and B interchanged and

f and g interchanged.

Q.E.D.

J We could equally well take ¢' to be Be and consider computations
starting with tail ab'geyd .

28

| Acknowledgment
We are indebted to David Cooper for stimulating discussions and

mainly for his idea of using cut-set points which we have adopted in

ATGORITHM ITI.

. References

C. BOHM and G. JACOPINT [1966]

"Flow Diagrams, Turing Machines and Languages with only Two Formation

Rules". CACM, Vol. 9, No. 5, pp. 366-371 (May 1966).

'J. BRUNO and K. STEIGLITZ [1970]

"The Expression of Algorithms by Charts", unpublished memo.

4 . D. C. COOPER [1967]

"Bohm and Jacopini's Reduction of Flow Charts". Letter to the

Editor. CACM, vol. 10, No. 8, pp. 436-4 (August 1967).

D. C. COOPER [1970]

"Programs for Mechanical Program Verification", in Machine Intelligence

’ 6, Edinburgh University Press.
E. DIJKSTRA [1968]

"GoTo Statement Considered Harmful", CACM, vol. 11, No. 3, pp. 1h7-148

(March 1968).

E. ENGELER [1970]

"Structure and Meaning of Elementary Programs", in Symposiumonthe

Semantics of Algorithmic Languages,

D. E. KNUTH and R. W. FLOYD [1970]

"Notes on Avoiding 'GO TO' Statements", CS 148, Computer Science

Department, Stanford University (January 1970).

D. C. IUCKHAM, D. M. R. PARK and M. S. PATERSON [1970]

"On Formalized Computer Programs", Journal of Computer and System

Sciences (June 1970).

M. S. PATERSON and C. E. HEWITT [1970]

: "Comparative Schematology", Unpublished memo.

| H. R. STRONG [1970]

"Translating Recursion Equations into Flowcharts", Journal of

~ Computer and System Sciences (to appear).

29

|

