STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-137

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-186

AN EMPIRICAL STUDY OF FORTRAN PROGRAMS
BY

DONALD E. KNUTH

AD7158613

e e = me e ool b s R 2
Py e oy orooiune sar AN "‘17'".'&.‘

1]

| v tred ealt, o !
!

[7 RSN

P e T

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY

]
j. wl r”l.((RS bt ‘ﬁ.;
T EE NV
B IE e 50 1' 3
. . - .. o . PR ‘(‘
Seper toed o \ :&/, : e T U iy
NATIONAL TECHNICAL R R '-.I.J..‘;.LHJ 4 st

INFORMATION SERVICE I O

sgrmghel a ¥a .

avsiract:

An fmplreical Dtudy of FORTRAN Programe

bonald ¥, knuth

A sample of programs, written in PORTRAN by a wide variety
of people for a wide variety of applications, was chosen "at
random" in an attempt to discover quantitatively "what
prosrammers really do." Statistical results of this survey
are presented here, together with some of thelr apparent
implicatione for future work in compiler design. The principal
conclusion which may be drawn is the importance of a program
"profile," namely a table of frequency counts which record how
often each statement is performed in a typical runj there are
strong indications that profile-keeping should beco.sie & standard
practice in all computer systems, for casual users as well as
system programmers. Thie paper is the report of & three month
study undertaken by the author and about & dozen students and
representatives of the software industry during the summer 1970.
It is hoped that a reader who studies this report will obtain

a fairly clear conception of how FORTRAN is being used, and
what compilers can do about it.

‘ s

This research was supported, in part, by IBM Corporation, by Xerox
Corporation, and by the Advanced Research Projects Agency of the Office
of the Department of Defense (SD-18%).

Reproduced in the USA. Available'frcm the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $5.00; microfiche copy $ i} 945

an Dmpirvleal Ctady ol PORTRAI Programs

conald B. o Rauth

Desivgners of cuspllere and Instructors of computer science usually
have comparatively little Infurmation about the way in which programming
languages are actually used by typlical programmers. We Lhink we know what
programmers cenorally do, but our nolions are rarely based on a representative
sample uf' the programe which are actually being run on computers. ©Since
compller wiriters must prepare a system capable of translating a language
in all its generality, it is easy to fall into the trap of assuming that
complicated constructions are the norm when in fact they are infrequently
used. There has been a long hisgtory of cptimizing the wrong things, ucing
elaborate mechanicms to produce beautiful code iﬁ cases that hardly ever
arise in practice, while doinz nothing about certain frequently occurring
situations. For example, the present author once found «reat significance
in the fact that & certain complicated mothod was able to translate the
ctatement

CITx+J] = ((A+X)xY) + 2.7C8+ ((L-M)x(-K))/2
into only 19 machine instructions compared to the 21 instructions obtained
by a previously published method due to Jaller et al. (See Knuth {11].)
The fact that arithmetic expressions usually have an average length of only
wo operands, in praztice, would have been a great shock to the author at
that time!
There has been widespread realization that more data about language

use is needed; we cen'i really compare two different compiler algorithms

CHD we anderstiead e bt

datn vhey deal with. Of course, the great

AT Le LU de Lhat G

g onooraeh Lhimg as a "typical programmer"; there
tnow trenendous variation anons progsvams written by different people
witlidifferent back: vrounds and sympathies, and indeed there is considerable
cariation cven in difterent progsrams written by the same person. Therefore
we cannob trust any uweasurements to be very accurate, although we can measure
the dernvee of variatiosn in an attempt to determine how significant it is.
ot all properties of procrams can be reduced to simple statistics; it is
necessayry Lo sLudy selected programs in detail in order to appreciate their
characleristics more clearly. Tor a survey of early work on performance
measurement and evaluation, see Calingaert (2] and Cerf [31.

During the summer of 1970, the author werked together with several
otiier people, In order to explore the nature of actual programs and the
corresponding implications both for software design and for computer science
education., Members of the group included G. Autrey, D. Brown, I. Fang,

D. Ingalls, J. Low, T. Maginnis, M. Maybury, D. McNabvb, E. Satterthwaite,
R. Sites, R. Sweet, and J. Walters; these people did all of the hard work
which led to the results in this report. Our results are by no means a
definitive analysis of programming behavior; our goal was to explore the
various possibilities, as a group, in order to set the stage for subsequent
'individual research, rather than to go off in all directions at once. Each
week the entire group had an eight-hour meeting, in order to discuss what
. had been learned during the previous week, hoping that by combining our
differing points of view we might arrive at something reasonably qlose to
Trath.

A first.idea for obtaining "typical" programs was to go to Stanford's

Computation Center and rummage in the wastebaskets and the recycling bins.

e

Tris yave results tut shiowed immediatelr what chould have been obvious:

wastebaskets usually receive undelg. ou progcrans. Pariheriore, it scems
1irely that compilers usually are confronted wiii uiaebwnred proyrams, hood
SO i wWag necessar: 1'cr us Lo CLOShe Wit e We o wasel Lo sluds Lhe

" e

2 N Y R T N Pal P ~ e N RN [P L. . \ . - -
distrivutions of s~lax cirrors, oL Ccroto canten’ rete on Worhk

programs. Some excellent arallscs G Cumion €roert have alrcudy vec

made {Ireeman [+ 1; loulicn and imller [1-]), and one o ocur main oals

was to study the effecis o1 vericus Lypes cof cpiLis

10Ny S0 we cecided

tc restrict curselvres to pro.rams

Tiue wastevasrel melhcd lurneldl up some interests

.o programs, Luh 1l was

rot really satisfactory. 11 we wenited Lo autona.e thie process, extensive

[

typing Trom the listings would iave been necessary; sc we triei ancilier

-

tack. Our next method of cttaining programs was £o post a man Ly tne

card reader at various times; he wculd ask for permissicorn to copy dechs
onto a special file. ‘ifteen prosrams, totallins about
obtained in this way; tui the Jobr wes -rery time-corsuming since it was

necessary to explain the ortjecvives of cur prcjiect each: time and t¢ ask

I

emtarrassing questions aboul the stimius of people's prosrans.
Tne next approacli was to prote rendomly amon
files stored on disks, locking for sourvce text; this was successful,
resulting in 27 pregrams, totelling about 20,207 cards. e added nine
prograns from the TSD subroutine library and three prosrars from the
"Scientific Subrcutine Package”, and some produciion prosrams from ihe
Stanford Linear fccelerstor Center. & few classical vencimark presrams
{nuclear codes, weatner codes, and aercspace caleulatnicns! were also
contributed ki I3l representatives, and to top inin

s ofi we Tirew ir some

cograms of personal interest t. members of lie sroup. ‘) : .
I3 [2

PeoDreeedire ave i o audte varied collection of promrams: some

Loy o

oo Sume omal B sone sophisticated, some erude; come important, some
trivialy some tor production, some for play; some numerical, some
comt-inatorial.

fLods well-known that dirterent programming languages evolve different

civles of prosrammins, so our study was necessarily language-dependent.

""""

be longser than in FORTRAN programs. Bubt virtually all of the programs

- obtained bty our samplin: procedure were written in FORTRAN (this was the

rirst surprise of' tie swmmer), so our main efforts were directed toward the
study of PFORTRAN programs.:/

Was this ‘sumple representative? Pefhaps the users of Stanford's
computers are more sophisticated than the general programmers to be found
elsewhere; af'ter all we have such a splendid Computer Science Department!
But it is doubtful whether our Department had any effect on these programs,
because for one thing we don't teach FORTRAN; it was distressing to see what
little impact our courses seem to be having, sincé virtually all of the
procrams we saw were apparently written by people who had learned programming
elsewhere. Furthérmore,the general style of programming that we found
showed very little evidence of "sophistication'"; if it was better than
averace, the average is too horrible to contemplate! (This remark is not

intended as an insult to Stanford's programmers; after all we were invading

~their privacy, and they would probably have written the programs differently

X By contacting known users of ALGOL, it was possible to collect a fairly
representative sample of ALGOL W programs as well. The analysis of
these programs is still incomplete; preliminary indications are that
the increased flexibility of data types in ALGOL W makes for much more
variety in the rature of inner loops than was observed in FORTRAN, and
that the improvad control structuree make GO TO's and labels considerably
less frequent. A comprehensive analysis of ALGOL 60 programs has
recently been completed by B. Wichmann [19].

We analyzed one PL/I program by hand. COBOL is not used at Stanford's

Computation Center, and we have no idea what typical COBOL programs are like.

L

[

it they had known the code was to be serulinized by self-appointed experts
like ourselves. Our purposcs were purely scientifie, in an attempt to find
out how things are, without moralizing or judging people's competence.

The point is that the Stanford sample scems to be reasonubly‘fypical of
what might be lound eclsewhere.) Another reason for believing that our

sample was reasonably gool is that the programs varied from text-editing

and discrete calculations to number-crunching; they were by no

means from a homogeneous class of applications. On the other hand we do
have some definite evidence of differences between the Stanford sample and
another cample of over U00 programs written at Lockheed (see Section 2 of
this report).

The ffograms obtained by this sampling procedure were analyzed in
various ways. [irst we performed a static analysis, simply counting the
number of occurrences of easily recognizable syntactic constructions.
Statistics of this kind are relevant to the speed of compilation. The
results of this static analysis are presented in Section 2. Secondly, we
selected about 25 of the programs at random and subjected them to a Qiﬁﬁﬂiﬁ
analysis, taking into account the frequency with which each construction
actually occurs during one run of the progrem; statistics of this kind are
preserted in Section 3. We also considered the "inner loops" of 17 programs,
translating them by hand into machine language using various styles of
optimization in an attempt to weigh the utility of various local and globtal
optimization sfrategies; results of this study are presented in Section L.
Section 5 of this paper summarizes the principal conclusions we reached,

and lists several areas which appear to be promising for future study.

Jintie Statigtice
weoexunined a larce number off FORTRAN programs to see how I‘reQuently
certain construetions are used in practice. Over 250,000 cards

Cropresentinc Lho

progsrams) were analyzed by Mr. Maybury at the computer
center of Jockneed Missiles and Space Corporation inVSunnyvale.

Jable 1oushows the distribution of statement types. A "typical
Llockheed progsram” consigts ot 120 comment cards, plus 178 assignment
statementg, - .5 [F's, Lv G0 TO's, 34 CALL's, 21 CONTINUE's, 18 WRITE's,
LA PORMAT'ey 1) DO's, 70 miscellaneous other stateﬁents, and 31 continuation
cards (rostly involving COMMON or DATA). ‘Essentially the same overall
distribution of statement types was obtained when.individual groups of
about, "0 provrams were tested, so these'statistics>tended to be rather
stable. We fqrgoz to test how many staﬁeﬁents had nonblank labels.

The same test was run on a much smaller but still rather large
collection of brograms from our "Stanford sample" (ebout 11,000 cards).
Unfortunately the gorrgsponding percentages shown in Table 1 do not agree

very well with the Lockheed sample; Stanfordites definitely vse more

‘assignments and less IF's and GO's than Lockheedians. A superficial

examination of the programs suggests that Lockheed programme:rs are
perhaps moré careful to check for erroneous conditions in their data.
Note also that 2.7 times as many comments appear on the Lockheed progrems,
indicating sbmewhat more regimentation. The professional programmers at

Lockhieed have a distinctly different style from Stanford's casual coders.

Table 1. Distribution of statement types.

Lockheed Stanford

Number Percent * . Number Percent *
Assipnment T8h g h1 SR hB6g e s
¥ DTN NX AUBCE S 816 x* 8.5 %x
@oro ohalo 13 77 8
CAIlL 1y 8 339 I
CONT TNUT SAKEDY 5 309)
WRITE A% h 5083 5
I"ORMAT 7¢85 k %80 L
Do Th76 h W57 5
DATA L8 2 2 3
RETURN 5059 2 186 2
DIMENSION 5hon 2 141 1.5
COMMON 2908 1.5 263 3
END 2505 1 121 1
BUFFER 2501 1 0 0
SUBROUTIN®: 2001 1 93 1
REWIND 1724 1 6 -
QUIVALENCT 1582 .7 113 1
ENDFILE ‘ 765 L / 2 -
THTEGER 657 3 2 3
RFAD 587 3 92 1
ENCODE 583 3 0 "
DECODE 557 3 0 -
PRINT 3h5 2 5 -
ENIRY 279 1 15 .2
STOP 190 A 1 Al
TOGICAL 170 oJ. 9 o1
REAL : 147 .1 3 -
IDENT 106 .l 0 -
DOUBLE 3 - a9 1l
OVERLAY 82 - 0 -
PAUSE 57 - 6 o1
ASSIGN 57 - L - .
PUNCH 52 - p -1
EXTERNAL 25 - 1 -
IMPLICIT C - 16 1.5
COMPLEX 6 - o) -
NAMELIST > - 0
BLOCKDATA 1l - o -
INFUT 0 - 0 -
QUTRUT 0 - 0 -
COMMENT 5292h (28) 1090 (11)
CONTINUATION 2709 {7) 636 (7)

* Percent of total number of statements ‘excluding comments and continuation
cards. ’ ‘ :

** The construcilon 'IF () statement' counts as an IF as well as &
statement, s: the total iz more than 1004.

Shes DT DG Yoeps were turther Investigated to determine their length

nnd depthocf nestined abowr 99t ot Lthe DO statements used the default

ineraement o 1 L Moot

. DO loops were quite shorﬁ, iﬁ%él#ing only one or

tWo oglatements:

N

fonget s 1 2 Y 5 - >5
limber “Olye ey 753 576 1043 1043
Percent <) 13.4 9.5 7 15 15

Phe deptiv of DO nesting was subject to considerable variation; the following
totals were obtained:

Depth 1 2 b] L 5 >5

Number holl 1355 1194 L37 118 120

Percent 53.5) 15 5.5 1.5 1.5

Of the 08733 F statements scanned, 8858 (304) were of the "old

style" IF (...) nl',ne,n5 or IF (...) nl,ziz“‘ while the other 19925 (70%)

had the form I (...) statement; 14258 (714) of the latter were
"IF (...) GO TO ". (These count also as GO TO statements.) Only 1107
of the 25719 GO TO statements were computed (switch) GO's.

An averag‘e of about 48 trailing blank columns was found per non-comment
card. A compiler's lexical scanner should therefore include a high-:p_ced :
skip over blaﬁks.

Assignment statements were analyzed in some detail. There were 8330L

ssignment statements in all; and 56751 (684) of them were trivial
z'eplace'nc'\t;s of the form A = B where no aritrmatic operations are present'—/
The remaining assignments included 10418 ‘of the form A = A opa, i.e.,

the first operand on the right is the same as the variable on the left. An

Y In the otanfO”d sample the corresponding figures were 2379 out of h869
(19%) : this was another example of a Lockheed-vs.-Stanford discrepancy.

attempt was made to rate the complexity ol an asui;mhment ctatement,
counting one pulnt for cach + or - sign, f'ive for cach * , and

8 for each / ; the distribution was

Complexity 0 1 2 5 yoR T 8 9

Number Lol LWCh, 110k 100 ACT 2haG 1988 s0n 2349 552

Percent v8 0 17.y 1.3 .1 L3 5 2 .6 5.6
Occurrences of operators and constants were also tallied:

Operator + - * / *¥ = ‘:tgzi:zg constant

Occurrences 17975 10298 12348 U739 1108 90257 i 599k 49386

It is rather surprising to note that 7200 (L40%) of the additions had the
form o+l 3 54y (54) of the multiplications had the form o*2 ;
180 (44) of the divisions had the form a/2 ; L27 (39%) of the
expénentiations had the form o**2 ., (We forgot to count the fairly

common occurrences of 2% , 204, a¥2. , af2. , 2.0%x , etc.)

The progr#m analyzed indices, although it was unable to distinguish
subscripﬁed variables from calls on programmer-defined functions: Of -the
166;599 appearances of variables, 97051 (584) were unindexed, 50979 (30.5%)
had one ihdex, 16181 (9.5%) had two, 2008 (14) had three, and 380 (.2%)
had four.

Another type of "static" test on the nature of FORTRAN programs was
also made, in an attempt to discover the complexity of control flow in the
programs. John Cocke's "interval reduction" scheme (see [L]) was applied
to fifty randomly-selected FORTRAN programs and éubfoutines, and in every
cage the flow graph was reduced to a single vertex aftgr six or less
transformations. The average number of transformations required per
program was only 2.75.

The obvious conclusion to draw from all these figures is that

compilers spend most of their time doing surprisingly simple things.

9

'

i Cunanie Matlistics

The statie counts tabulated above are relevant to the speed of

campilation, but they do not really have a strong connection with the

spred of object prosram execution. We need to give more weight to
statements that are executed more frequently.

Two different approaches to dynamic program analysis were explored in

the course of our study, the method of frequehcy counts or program profiles

| and the method of program status sampling. The former method inserts
counters at appropriate places of the program in order to determine the
number of times each statement was actually performed; the latter method
makes use of an independent system program which interrupts the object
progsram periodically and notes where it is currently executing instructions.

Frequency counts were commonly s.udied in the early days of computers
(see von Neumann and Goldstine [14]), and they are now experiencing a
lorng-overdue revival., We made use of a prograﬁ called FORDAP, which had

been previously developed in connection with some research on compilation;

FORDAP takes a FORTRAN program as input, and outputs an equivalent program

which also maintains frequency counts and writes them onto a file. When

the 1attér program 18 compiled and run, its output will include a listing of

the executable statements together with their frequency ~ounts. See

Figure 1, which illustrates the output corresponding to a short program,

using an extension of FORDAP which includes a rough estimate of the relative
cost of each statement (Ingalls [9]). The principles of preparing such

a routine were independently developed at UCLA by S. Crocker and E. Russell [15];
Russell's efforts were primarily directed towards a study of potential |
parallelismt in prosrams, but he also included some serial analyses of large

scale routines which exhibit the same phenomena observed in our own studies.

10

Frequency counts add an important new dimension to the FORTRAN
programs; indeed, it is difficult to ekpress in words just how tremendously
"eye-opering" they are! Iven the small example in Figure 1 has a surprise
(the freQuency rounts reveal that about half the running time ies spent in
the subroutine linkage of the FUN function). After studying dozens of

FORDAPed programs, anl after experiencing the reactions of programmers

who see the frequency counts of their own programs, our group came to the almost

unanimous conclusion that all software systems should provide frequency
counts to all prograrmers, unless specifically told not to do so!

| The a&vantages of frequency counts in debugging have been exploited
by F. Satterthwaite [1€] in his extensions to Stanford's ALGOL W
compiler. They can be used to govern selective tracing and to locate
untﬂsted‘portions of a program. Once the program has been debugged, its
frequency counts show wheré the "bottlenecks" are, and this information
often suggests improvements to the algorithm and/or data structures.
For example, we applied FORDAP to itself, since it was written in FORTRAN,
and we immediately found that it was spending about half of its time in
two loops that could be greatly simplified; this made it possible to'double
the speed of FORDAP, in less than an hour's work, without even looking ét
the rest of the program. (See Example 2 in Section 4 below.) The same
thing happened many times with other programs.

Thus our experience has suggested that freguency counts are so
importané they deserve a special name; let us call the collection of
frequency counts the profile of a program.

.Programgs typically have a very jagged profile. with a few sharp peaks.
As a very rough approximation, it appears that the n-th most important

statement of a program from the standpoint of execution time accounts for

PSR INPEr S

06
006
0069
oot¢e
00%s
00%s
ooLe

0009
0096
00081

0gs1
09

11
0s

001

1S0J

o¢

00¢
1113
00€
00¢
00¢
00t

el O
(4]

0021
oozt
0021

MM

NN et oot ot o =t OO ot ot

SNOI1NDJ3X3

~wexBoxd jaous ® Jo ayrjoad ayg °T oInITd

an?y

N¥Nn13

A={I)I3A

He X=X

SO/ (Y14EL%°20212°2411)4R =X
(EL+AHAXINNIRH=Y]
(°2/7214A%2H+XINNIeH=E1
(°2/7T14AZHOINNIN=2]
(ASXINNInH=T]

NI=F T 00

Né¢[=1 2 OO0

IX=%

TA=A

*Z2/H=2H
(IIAENNETACIXSHENNS IZNY INTLINDUENS

ON3

NENn134

X/°1= NN3
(ASXINNS NOTLAINNS

GN3

d019%

o1 01 09

(T)veX (c®I) 3J1TuM

431SeX=X

) IN3T*T=] 0O€f 01
ox=x

He(INF)IVIVII=dILS
(VEINTITCEINFSDASOXSHENNY) ZNY T7TIV)
JAOXSY (2'9) JiIum
0Z%0%%02 (1N31) 4d1
INFTCINFOHEOARSOY (T1%S) vy

SIN3AI1IVIS 378VLIIIIXI

12

0%
o€

02

21

-n
about (a-1)a”" of the rumning time, for some 2 and for small n . We
also found that less than 4% of a progrem generally accounts for more than

half of its running time. 'mis hag lmportant consequences, since it means

that programmers can make substantial improvements in their own routines i ?“WWl
by being careful in just a few places; and optimizing compilers can be

made to run much faster since they need not study the whole program with

the same amount of concentration.

Table 2 shows how the relative freguency of statement types changes
when the counts are dynamic instead of static; this table was compiled from
the results of 24 FORDAP runs, with the statistics for each program weighted
equally. We did not have time to bireak down these statistics further
(to discover, for examnle, the distribution of operutors, etc.), except

in one respect: U45% of the assignment statements were simply replacements
(of the form A = B where B is a simple variable or constant), when
counting statically, but this dropped to 35% when counting dynemically.
In other words, replacements tend to occur more often ocutside of loops

(in initialization sections, etc.).

Table 2. Distribution of executable statements.

Static (percent) Dynanmic
Assignment 51) 67
IF 10 11
GO TO 9 9
DO 9 3
CALL 5 >
WRITE 5 1
CONTINUE L 7
RETURN 4 3
READ 2 0
STOP 1 0

The other approach Lo dynamic statistics-gathering, based on program
vtabtus vampling, tends to be less precise but more realistic, in the sense
that. 1t shows how much Lime is actually spent in system subroutines. We
used and extended a routine called PROGTIME [10] which was originally
developed by T. Y. Johnston and R. H. Johnson to run on System 360
under MVT. PROGTIME spawns the user program as a subtask, then samples
its status word at regular intervals, rejecting the datum if the program
was dormaﬁt since its last interruption. An example of the resulting
"histogram" output appears in Figure 2; it is possible (although not
especially convenient) to relate this to the FORTRAN source text.

In general, the results obtained from PROGTIME runs were essentially
vhat we would have expected from the FORDAP produced profiles, except for
the ihfluence of input/output editing times. The results of FORDAP would
have led us to believe that the code between relative locations 015928
and 015A28 in Figure 2 would consume most of the running time, but in
fact 704 of the time was spent in those beloved system subroutines
THCECOMH and IHCFCVTH (relative locations 016A88 through 019080).
Roughly half of the programs we studied involved substantial amounts of
input/output editing time, and this led us to believe that considerable
gaine in efficiency would be achieved if the compilers would do the editing
in-line wherever possible. It was easy to match up the formats with the
quantities to be edited, in every case we looked at. However, we did not
have time to study the problem further to investigate just how much of an
-improvement in performeance could be expected from in-line editing. Clearly
the general problem of editing deserves further attention, since it seems
to use up more than 254 of the running time of FORTRAN programs in spite

of the extremely infrequent occurrence of actual input/output statements

reflected in Table 2.

1h

ABd,
Cieean
Lablty
Capliv
[T IRV
Cenlln
Cas ity
Cont v
Lantty
Cout (0
Lenk gy
Canka
[£ 12)
CANRE 20
Qhub (y
Lot el
CACCED
Coulty
CaL220
Caudn
(sulto
(LT EIQ]
Cevii
[T Y 1)
Cagaly
Launty
[£15-14]
Cot® ¢u
CeLteu
Caloey
(WU LY
Leodlu
Cadnty
(ot
(oLuLy
[T
Calilcy
[CNE D]
Cae Cty
CoLEe)
Col ety
Uwe gl)
Cotnbu
Lot 9Cy
[T/ L]
(LI 1471
Cacdey
Lo AWy
Jet Ael
Chedty
(ot ACO
Cet Aty
(bl
[L14 %]
(e
cettrty
(€13 114]
(FCCO
Corvién
Cortey
Cautt 29
CakE0
Ceb bt
[3 $1V;
Carfouy
LeFre)
(& 3211
(92 (C
(& TLY
LOust)
(VALY
LI0AEY
[3 R.¥)

WUKNLNG BRJFILL PUR LNIQTY e

FALN | QUOLENDH
? ’!n::hl f v&:gtul & PERCEN? 6 PERCENY N peReE Y

MLy ~sececccecscssncmcsecansessnscscscnsenencnnen eotd! t 248 t en

CUNO\) . R - --..I-.I.--..t.-ﬂ'--.-..t.-...-.---t-.-.‘c-....--.-.-.-‘c. LI ¢
Clh%Ad svesscsvrnne . N . . 1
alanCn *sssesenenes . : : . -
ClYal4 seseceaceossesene . . * N me
vivtes ’ X
J1n s : : R
FILYY ¥ * . . zﬁt
Jlheds . : : : .
Q19444 vessseseencrarse . . * * ',
[(BLLTAAEN Y I T TTY :w
C1Safs o . . ! : Y
L:SQJu SOITLENATISOITNTENEINSICIE 0000040000000 SQS ssssens e : : 1l
NILT TN . * .

Clhyad e 0enveeve vt senennesdesdotssenses . . . ;;:
UlbA2y ¢ . . : : |
QIGARY Sn0aoatedvseveseesenssons ety N . . Thn
Clngdy o . . . * o
Ulbuvy @ . . .) '
CloLon = . N N R []
tloLad o ’
Qluyan @ »
MITIA S . o . . ’
Clodey o H
Ulotnd o)
UlbERe @ }
GlLiag e '
Lin=Ce o '
LInrgd o '
Olarey o
CInkhd sussastessssnsnnssesdsne st » R . v
LIGFgd Feneereer sneusnnitassst 1000000000000t snIodtttitnrRstttteestuRltseRnotoesodueRttuensrer i nnur FRue c 8 . ey
QI0FAY 0GRS AT INRNENERIACEURDI006 000000000030 C0RCOROCOTORDNOREOUrCRASENARBICENASARI AT RFANNI AR RA AART A0 BT [
ULy L
V17004 000000006000 onanchasatetesteesttsidteosone : : : S ia
Y17)u4 esstesiavsencssosvasntdtgs oo . K . 1
CLTUAS 0000ttt enussnnnandsitsstrontsnttodsstsde . . . Ty
vilut s wes A
LiTAsy e
Clagdl2d Ceoetsasscecedenksssstonie R . . 1,0
JIB24y cedensvasevvssstronynans . . R 1.,
ClUZad YL erotuasnvseisons s loto e o0ndeitdsnees . . R Y
Jldcds 900000cesesscenesesttnERtINS N . . P
Vl82A0 S04008a0s00000erisnatenstsinedess o . . B2
JIn2(N st ensspnnsnvssvssrseess . . . 10
DILEY LI . . o . '
VILAC) eteevrsvrvonese N . : . R (3N
MICEIL AR LI I L L L L g A T Y T L T T ey LY T TR T T Y Y T, . v,

Uldeyn seeseangncen . . . L
LYY : SIRBECEI0S04USIERININIOINPINCOEDIIEIOS . . A
Uitinthe weesstsetete ssnbdene, . . . IR
UIBGdd SUANSKSEERACLANSINIGOEINNE ¢ . N . caa
DInedd HERAGUESI S PN IENB NGO ORIV IR VEVO00E I 000D IPCETCOROIRES R o . Ly
0l84Cu vrsensee L1 L1 T T R N . . [N
ULl84EQ ot enssnsee (13T I I R Y YT P YN YY) . . . ‘o,
VIE504 oateeeereesestresoestons e o . . 1,
19548 ¢ L
DPICTY.T I . . f 1
OlNLy * » . . . r
J198Q9e e 1
Ul%a6n = '
Clysol ¢ -
Clonldn o '
(TR QR T W B *
[FART L N] N . . . !
Ul2icn oo
DILLY. 1.3 . . . M
Cl194a3 = '
(VI L TH O M
CI9EUY e i
ClAabd » . . . R .
UiAary '
ik e 1

Figure 2. Histogram corretgonding {0 a PROGTIME run.

I L Voo % “yoe) . M 3
RITTURARN) Lﬁ“ randon nature off the sampling process, two PROGTIMEs

o the same program will not ofve ldentical results. It is possible to
Cebaccurate requeney counts and accurate running times by using the
teciinique of "Jump tracing" (see uaines [7, Chapter 3}). & Jump trace
routine scans a program down to the next branch instruction, and executes
the intervening code at machine speed; when a branch occurs the location
transterred to is written onto a file. Subsequent processing of the file
makes 1t possible to infer the frequency counts. The Jump trace approach
does not require auxiliary memory for counters, and it can be used with
arbitrary machine language programs. Unfortunately we did not have time
to develop such a routine for Stanford's computers during the limited time

in which our study was performed.

W, The Inner Loops

We selected 17 programs at random for closer scrutiny; this section
contains a summary of the main features of these programs. (It is worth
emphasizing that we did not modify the programs nor did we discard programs
that did not produce results in accordance with our preconceived ideas;
we analyzed every routine we met whether we liked it or not! The result is
hopefully a good indication of typical FORTRAN programming practice, and
we believe that a reader who scans these programs will obtain a fairly clear
conception of how‘FORTRAN is being used.) First the program profile was
found, by running it with FORDAP and PROGTIME. (This caused the chief
limitation ~»m our selection, for we were unable to study programs for
which inbut data was on inaccessible tapes or otherwise unavailable.) 1In

each case a glance at the profile reduced the program to a comparatively

16

small picce of code which represented the majority of the execution time
exclusive of input/output statements. These "inner loops" of the programs
are presented herei the names of ldentifiers have been changed in order to
vive some anonymity, but no cther changes have bveen made.

In each case we hand-translated the inner loop into System/EGO

machine language, using five different styles of "optimization":

Level 0. Straight code generation according to claséical one=-pass
conpilation techniques.

Level 1. Like level O but using local optimizations based on a good
knowledge of the machine; common subexpressions were eliminated
and register cohtents were remembered across statements if no
labels intervene, etec., and the index of a DO was kept in a
regzister, but no optimizations requiring global flow analysis
were made.

EEi?lJ?' "Machine-independent” optimizations based on global flow
analysis, including constant folding, invariant expression
removal, strength reduction, test replacement, and load-store
motion (ef. Allen [1]),

Level 5. Like level 2 plus machine-dependent optimizations based on

| the 300, such as the use of BXLE, LA, and the possibilities
afforded by double indexing.

Level 4. The "besi conceivable" code that would be discovered by any
compiler imaginable. Anything goes here except a change in the

algorithm or its date structures.

These styles of optimization are not extremely well defined, but in

each case we produced the finest code we could think of consistent with that

17

level,

vptantantions prodaced by

would presumably be able to reach level 5 if 1t were carefully tuned.)

Vin nearly every case Lhis was noticeably better than the

¥ the exlstling FORTRAN compilers; FORTRAN H

OPT 02

Level b represents the ultimate achievable, by comparison with what is

realiced by current techniques, in an attempt to assess whether or not

an additioral et'tort would be worthwhile.

These styles of optimization can best be appreciated by studying

Mxample 1 for which our machine language coding appears in the Appendix

to this'paper. 1t is appropriate to restrict our attention solely to the

inner loop, since the profiles show that the effect of optimization on

this small part of the code is very indicative of the total effect of

optimization on the program as & whole.

In order to compare one strategy to another, we decided to estimate

the quality of each program by hand instead of actually running them with

a timer as in [18]. We weighted the instructions in a crude but not

atypical manner as follows:

Each instruction costs one unit, plus one if

it fetches or stores an operand from memory or if it is a branch that is

taken, plus a penalty for specific slower opcodes:

Floating add/subtract,

Multiply,
Divide,
Multiply double,
Shift,

yoad multiple,

Store multiple,

add 1
add 5
add 8
add 13
add
add

add

Ui+ I

n (n registers loaded)

n (n registers stored)

This evaluation corresponds rougnly to 1 unit per 0.7 microseconds on

our model 7 computer. Other machine organizations ("pipelining", etc.)

| would, of course, behave somewhat differently, but the above weights

. should gzive some insight.

We also assuméd the following additional costs

18

for the time spent in library subroutines (ef. [8]):

SQRT 85
SIN, COS 110
ALOG 120
ERF 120
Complex multiply "0
Real ** Integer T5

Example 1. The first program we studied involved 140 executable statements,
but the following f'ive represented nearly half of the running time:
DOEJ-:l,N
T = ABS(A(I,J))
- IF (T-8) 2,2,1
1 85=T7
2 CONTINUE

Statement 1 was executed about half as often as the cthers in the loop.
The programs in the Appendix have a "score" of
37.5, 28.5, 1, 8, 7
for levels 0, 1, 2, 3, 4 reapectively.
The same program also included another time-consuming loop,

DO 3J
3 A1,J)

1L,N
A(I,0)*B

for which the respective scores are

5., 29, 17, 1;2, 11

In this case level O is penalized for calculating the subscript twice.

Example 2. (This came from the original FORDAP program itself.) Although
there were 455 executable statements, over half of the program time was
spent executing two loops like this:

DO l‘J = 38,53

IF (K(I).RQ.L(J)) GO TO 3

1 CONTINUE
2 LI N)

19

e Uive wt o ter of teanslation cive respective scores of

] l‘\' . [N 'y » ;'..‘:‘ .

Level Nte geore off Lh i obtalned in an interesting way which applies to
geveral othier loops we had examined earlier in the summer; we call it the

Pechinique of combining tests. The array element L(54) is set equal to

Xi1) s s0 that the loop involves only one test; then after reaching L3,
ivr 7 9% we yo back to L2. The code is
Gl LA 5,8(0,%)
C o h,000,3)
BER © (Register 5 contains A(I.3))
¢ h,]&(_),f))
BNE Q1

Il:..‘ L)

It necessary, L(54) could be restored.
Of course, in this particular case the loop is executed only 16 times,

and so it could be completely unrolled into 32 instructions

¢ LYy
BER §
C h,L(39)
BIR 9

C h:L(55)
BER 9

reducing the "score" to 3. But in actual fact the L table was loaded
in & DATA statement, and it contained a list of special character codes;
a more appropriate program would replace the entire Do‘loop by a single
test |
IF (LT(K(I1))) 1,2,1
for a suitable table LT, thereby saving over half the execution time of the
program. (Furthermore, the environment of the above DO loop was
boO 2 I =7,72 |
o that any assembly language programmer would have reduced the whole business
to a single "translate and test".)

20

hxumple -,

DOUBLF A,B,D

DO 1K =+),N

A = T(I-K,1+K)

B = T(I-K,J+K)

1l D = D-A*B

(This is one of the few times we obserVed double precision being used, although
the numerical analysis professors in our department strongly recommend
against the short precision operators of the 360; it serves as another
indication that our department seems to have little impact on the users
of our computer!) The scores for this loop are

89] 67 2 38 F] 13 b 12 ;

here level 2 suffers from some clumsiness in the indexing and a lack of

knowledge that an ME instruction could be used instead of MD.

Example 4. Here the inner loop is longer and involves a subroutine
call. The following code accounted for 70% of the running time; the entire
program had 214 executable statements.

DO 1 K = M,20

CALL RAND(R)

IF (R .GT. .81) N(X) = 1
1 CONTINUE

SUBROUTINE RAND(R)
J = I*65539
IF (J) 1,2,2
1 J = J+2147u836L7+1
2 R=J
R = R*.L4656613E-9
I=J
K = K+l
RETURN
END

(Here we have a notoriously bad rgndnm number generator, which the programmer
must have gotten out of an obsolete reference bock; it is another example
of cur fallure to educate the community.) Conversion from integer to real

is assumed to be done by the sequence

21

AR R R SR
ot

L wind

A AN |
ror suitatle contents ot UM and SPMC1. By further adjusting these
constants Lhe multiplication Ly JAeS5CO1L3E=9 =~ 2'51 could be avoided;
bul this obgervation was relt to be beyond the scope of level 4 optimization,
althouwsh it would occur naturally to any programmer using assembly language.

The most interesting thing here, however, is the effect of subroutine

linkage, since the long prolojue and epilogue significantly increases the
time ot the inner loop. The timings for levels 0-5 assume standard OS
subroutine conventions, although levels 2 and 3 are able %o shorten the
prologue and epilogue somewhat because of their knowledge of program flow.
For level l, the subroutine was "opened", placed in the loop without any
linkare; hence the sequence of scores,

119.9 , 10%.1, 81.4, 76.2, 271.2 .
Without subscripting there is comparatively little difference between
levels O and 5; this implies that optimization probably has more payoff
for FORTRAN than we would find for languages with more flexible data structures.

It would be interesting to know just how many hours each day are spent

in prologues and epilogues establishing linkage conventions.

Example 5. The next inner loop is representative of several programs

which had to be seen to be believed.

D0 1K = 1,N

M = (J-1)*10+K-1

IF (M.EQ.0) M = 1001

Cl = C1+AL(M)*(Bl¥*(K=1))*(B2%*(J-1))

C2 = C2+A2(M)*(Bl**(K=-1)) *(B2%%(J-1))

IF ((K-1).FQ.0) T = 0.0

IF ((K-1).GE.1) T = AL(M)*(K-1)%(BL¥*(K-2))*(B2#*(J-1))

Cs = C3+T

I+ ((K=1) .EQ.0) T

IF ((X-1).GE.1) T
T
T

N2 (M) % (KoL) (BL¥* (K-2)) #(B2W* (3-1))

Ch = Cl+T

IF ((J-1).5Q.0)
IF ((J-1).GE.1l)

C5 = C5+T

ii?M)*(Bl**(K-l))*(J-l)*(Ba**(J-E))

won

22

0.0
A2(M) *(B1**(K=-1)) *(J-1) *(B2x*(T-2))

TF ((J-l).rn.n) T
Il‘l \(J"l) l\:Ecl) ‘l‘
Ctr = G

1 CONTINUN

Hou

After staring at this for several minutes, our group decided it did not
deserve to be optimiced. But after two weeks' rest we looked at it again
and found interesting applications of "strength reduction", both for the
exponentiatijons and for the conversion of K to real. (The latter applies
only in level l, which knows that K doesn't get too large.) The scores
were

15(7 , bky o, 159, 1hy , 1oh .
Level 1 optimizalion finds common subexpressions, and level 2 finds the
reductions_ih strength. Level I removes nearly all the IF tests and
rearranges lhe codé so that Cl and C2 are updated last; thus only

B1¥*(K-1) is necessary, not both it and Bl**(K-2)

Example €. In this case the "inner loop" involves subroutine calls

instead of a DO loop:

SUBROUTINE S(A,B,X)
DIMENSION A(2),B(2)

[/

% -
Y (B(2)-A(”))*12+B(l)-A(l)
IF (Y.LT.0) GO TO 1
X =Y
1 RETURN
END
SUBROUTINE W(A,B,C,D,X)
DIMENSION A(2),B(2),C(2),b(2),U(2),v(2)
X =0
CALL S{A,D,X)
IF (X.PQ.0) GO TO 3
CALL s(C,B,X)
IF (X.BQ.0) GO TO 3
CALL s(C,A,X)

[t}

RFOORE=DHEMDND e FO\OWNOOVOOVDY

U(1) = A(1)
u(2) = A(2)
IF (X.NE.O) GO TO 1
U(1) =c(1)
u(2) = c(2)
1 CONTINUE

23

CALL 8(B,D,X)

1
v(l) . B(1) 1
Vi) o« (D) 1
1F (NJNEW) G0 TO 2 1
V(1) = D(1) o]
v(2) = D(2) 0

2 CALL s(u,v,X) 1l

5 CONTINUE L
RETURN L
KND L

The numbers at the right of this code show the approximate relative
t'requency of occurrence of each statement; calls on this subroutine
accounted for (0% cf ﬁhe execution time of the program. The scores for
various optimization styles are

1545.5 , 1057.5, 753.3, T736.3, 289 .
Here 270 6r the 1545.5 units ror level O are due to repeated conversions
of the conétant 0 from integer to real. Levels 2 and 3 move the first
statement "X = 0" out of the main loop, performing it only if "y.IT.O" .
The big improvement in level 4 comes from inserting the code for subroutine
S in line and making the corresponding simplifications. Statements like
U(1) = A(1) , U(2) = A(2) become simply a change in base register.
Perhaps further reductions would be possible if the context of subroutine W
wer examined, since if we denote 12¥A(1)+A(2) by 8, 12%B(1)+B(2) by b,

etc., the subroutine computes max(0, min(b,d)-max(a,c)) .

FExample 7. In this program virtually all of the time exclusive of
input/output editing was spent in the two loops

DOL1T=1,N
XERDHY D2, ¥X#YHC (T)
SQRT(A)
100.*B+1.5
(I) = S(I)*T(K)
Q = D(1)-D(N)
PO 21 = 2,"’,2
2 Q = Q+h.*D(I)+2.%D(I+1)

nonou

A
B
K
D

2k

wiere array D was nol used tubsequently. The scores are
Thi , B8, 510, 202, 2y%6
ltere level 1 computes X**2 by "MER 0,0" instead of a subroutine call,
and it computes -0.AD(I41) Ly "AER 0,0" instead of multiplying. Level 4
combines the two DO loops into one and eliminates array D entirely.
(Such savings in storage space were present in quite a few progfams we
looked at; some matrices could be reduced to vectors, and some vectors
could be reduced to scalars, due to the nature of the calculations.

A quantitative estimate of how much space could be saved by such optimization

would be interesting.)

Example 8. Ninety percent of the running time of this program was spent
in the following subroutine.

SUBROUTINE COMPUTE

COMMON ...

COMPLEX Y(10),2(10)

R = REAL(Y(N))

SIN(R)

c0S(R)

C*6.*(P/3.-Q*Q*P)
1.414214*P*PrQ*C*6.

T/2.
-2.%C*6.%(P/3.-Q*Q¥*P/2.)
(O.,-l.)*(S*Y(1g+T*Y(2)g

N<CH®OnOW
o0 onn

N
—~~
N
N N
non

(0., =1.)*(U*Y(1)+V*Y(2)

.

This was the only example of complex arithmetic that we observed in our
study. The scores

841.5 , 735.5, 336, 336, 29
reflect the fact that levels O and 1 make six calls on the complex-multiply
subroutine, while levels 2 and > expand complex multiplication into a
sequence of real operations (with obvious siMplifications). Level U in

this analysis makes free use of the distributive law, e.g.

25

VRS SO Jop

«*3M) , although this may not be numerically justified.
Purthermore level L assumes the existence of a single "SINCOS(R)"
subroutine that computes both the sine and cosine of its argument in

1.5 units of time; programmers who calculate the sine of an angle usually
want to know its cosine too and vice versa, and it is possible to calculate
both in somewhat less time than would be required to compute them

individually.

Ixample 9. A program with 245 executable statements spent 70 percent of
its time in

2. K.= 1,M
2 1,M

QO

non

O xgoyY
(LI T]
o O

011I=2LM
(J+J+(I-1)*M2)
A(K,T)
X+B*Z(N)
Y+B*Z(N-1)

L) = WX

L+l) = -WxY
L+2

<<

'_J
POg W=
W~~~ n I it 1

n

when M was only 5. Scores (for the innermost I loop only) are
8+, €, 30, 2b, 2b ,

reflecting the fact that level I cannot do anything for this case.

Example 10. In this excerpt from a contour plot routine, the CALL is only

done rarely:

DO1TI=L,M
1 IF (:((I"IIJ) .LT.Q .AND X(I,J) .GE. Q) CALL S(M’AQ,Aj)Ah)F(’AS)

The scores, assuming that X(I).LT.Q abcut half the time, are

Lo, 315, 1k.5, 7.5, 5

Level > keeps Q in a register, while level 2 does not. Level & ig

26

especlally interesting cince ii avouds testing X(I-1,J).LI'.Q in
those cases wherc it Is known to be true from the previous loop. We

had noticed similhr situations in other routines.

Lxample 1l. This "{Tast Iourier transform" example shows that inner

loops aren't always signalled by the word "DO".

1 X = K+l
Al = A(K)*C(J)+Al
Bl = B(K)*C(J)+Bl
K = K+l
A2 = A(K)*S(J)+A2
B2 = B(K)*S(J)+B2
J = tT+I

IF (JOGT-M) J = J'M
IF (K.LT.M) GO TO 1

The scores are

118, 91, O, sk, 50O

-e

level 4 is able to omit the second "K

K+1" , and to use a BXLE for "J =J+I".

Example 12. Unfortunately an inner loop is not always as short as we had
hoped. This rather long program (1300 executable statements) spent about
half of its time in the following rather horrible loop.

DO 3 I = l,M

JO = J1

IF (JO0.EQ.0) JO = J2

Jl = J1+1

J3 = J3+1

Jh = Jhsl

IF (J4.BQ.(L(J-1)+1)) Jh = 1

J5 = Jl+l

IF (J5.BQ.(J2+1)) J5 = 1

Ul = U(Jl,Kl’KQ)

vVl = V(J1,K1,K2)

Wl = W(Jl,Kl,K?)

P(J1) = .25%(QL(I)*(VI+V(JI3,K3,K2))*(WI+W(J3,K3,K2))
+Q2(T) *(V1+V(JI3+1, K3, K2)) *(WL+W (I3+1, K5, K2))
-q3(T) *(VA+V(4, Kb, K2)) % (W (34, Kb, K2))
+n*((u1+u(.r5,n,m)g*mm(.rs,m,xa))
+R1(J1, K1) *R2(XQ)*(8(J1, K2+ 1) #(WLl+W(J1, K1, K2+1))

-8(J1, K2) *(W1l+W(J1,K1,K2-1)))

o

27

ohuEeG 1) o oTo

RE J’“J.

N (R e) b L(J-1)

POIL) - PILY ~ 00 Qi (T) ¥ (VI V(T Kb, K2)) % (WLHW (36, Kb, K2))

O To
! fe (MaFa.1) G0 To » _
POIL) o P(IL)+ .00 (T) ¥(VIHV(T5-1, K3, K2)) % (WL+W (J3-1, K3,K2))
S0P
S PIL) P(ILY+ L 25%QU(T) ¥ (VIrv(T2+h, K3, K2)) *(WltW(T2+, K3, K2))
© CONTINUL ‘

Hlere levels ! and > have just enough registers to maintain all the
necessary indices; the scores are

TaY , w8, 2he

, 238, 207 .
Level I observes that Ju can more easily be computed by "J6 = Jh" bvefore Jh
is changed; and the QL(I) terms are included as if they were conditional

expressions within the big formula for P(J1) .

Example 13. Here is a standard "binary search" loop.

= N+1

I+K) /2

1F (J.EQ.I) GO TO 5
Ir (X(J)-X0) 2,4,3
I+J

GO TO 1

K=J

GO TO 1

= 0
(

1R 1]

Sy R

oo

e

1

The scores

8z, 35, 27, 21, 10

ol

for the inner loop are of interest primarily because level 4 was able to
beat level 5 by a larger factor than in any other example (except where
subroutiﬁes wére expanded in-line). The coding for level L in this case
consisted of six packets of eight lines each, one for each permutation of

the three registers @, B, 7 :

28

Liagy 1A y,0(,8)

ORL 7,1
NR O y,8
CR Nk
B Lha
Cl0,X(02)
BL Llrpe
BE Lhy

L1IXB ...

Here LI, LJ, LK are respectively acsumed to be in registers QO , v , B 3
rejister 8 contains - . Division by 2 can be reduced tc a shift since
it is possible to prove that I , J , K arc nonnerative. Half of the

"CR 7,05 BF L5X" could have been removed if X(0) were somehow set

to "-=" 3 this would save another 104.

Actually the binary search was not the inner loop in the program we
analyzed, although the programmer (one of our group) had originally thought
it would be! The frequency counts showed that his program was actually
spending most of its time moving entries in the X table, to keep it in order
when new elements were inserted. This was one of many cases we observed
where a knowledge of frequency counts immediately suggested vital improvements,
by directing the programmer's attention to the real bottlenecks in his
program. Changing to a hash-coding scheme made this particular program

run about twice as fast.

Fxamples 1lk-17. From this point on the programs we looked at began to

seem rather repetitious. We worked out four more examples, summarized

here with their scores.

D-1. (b5, k2, 27 , 21, 20]

+S(1)*5(J)/D1-S(K+I)*S(K+J) /D2

= o]
~
—
-
[
S
o N
jmofihe o

,N
(1,3)
(1,9)
[156, 103, 58 , 49, Ll.5]

REAL FUNCTION #(X)
- Y- MNMLTOT1048
¥ (Y.LT.0.0) GO TO 1
Foo OL5%(1.0ERV(Y))
RZ-I‘I'I:'RN) (v (¥)) ." low frequency
1 7 = 1.0-0.5*(1.0+ERF(-Y))

RETURN

EAD
[219.5 , 208.5 , 191.3 , 191.3 , 151]
DO LT =1,N .
1 A = A+B(I)*C(X,I) (b1, 31, 14, 9, 8]

(The latter example is the loop from 015928 to 015428 in Figure 2.)

Cursory examination of other programs led us to believe that the above
seventeen examples are fairly representativé of the programs now being
written in FORTRAN, and that they indicate the approximate effécté
achievaﬁle with different styles of optimization (on our computer). Only
one of the other programs we looked at showed essentially different
characteristics, and this one was truly remarkable; it contained over 700
lines of straight calculation (see the excerpts in Figure 3) invdiving.
no loops, IF's or GO's ! This must be some sort of record for the length
of program text without intervening labeled statements, and we did not |
believe it could possibly be considered typical.

All but one of the DO loops in the above examples apparently have
variable bounds, but in fact the compiler could deduce that the bounds are
act 1ally constant in most cases. For instance in Example 17, N 1is set
'equal to 805 at the beginning of the program and never chahged tﬁereafter.

Table > summarizes the score ratios obtained in three exa@ples;

0/1 denotes the ratio of the score for level O to the score for level 1,
etc, . |

I¢ may be objected that measurement of the effects of optimization

is ‘impossible since programmers tend to change the style of their FORTRAN

30

J23 ==ES12T#2SETN + £ S12B*SERN 264,
Y24 =-ES22T#SETN ¢ ESZ2B*SERN 2695,
UAC = ESCET#SETIN + ESELPRSERN 266,
U3l =-ES66T#SETiv ¢ ESCEB®SEBN 267,
V3T 2=2,%((ESLL1T+pP¥LS12T)0 XT ¢ (MRES22T ¢ESLL2T)eSYT)& 2XC2Y 269,
; 1 =2+ DSCRT(M)®{TRELHLT®S2XS2Y 249,
V3R 22,2 ((ESL1P+MRESL2E)e5XAe(MEES2204ES5120) 05 YH)Y*C2RC2Y 21C,
i =2 DR T(M)® JURESEEY®SZIXS2Y 271.
V4T =~3 ¥ [{ESLLITeM2ES 12T)eSXT ¢ {MEES22T4ESLI2T) oSy V) *CaxCay 2172,
1 ~ B EDSQHT(M)RTT®ESALTES4XS4Y 2713,
VAR =2=8 ¥ ((ES110eri*ES12B) %S5 XB ¢ (MEES228¢ES1I2B) *SYD)}RC L RC LY 2174,
1 =B *xDSCRT(MIXTRRFS66B%54XSGY 2175,
VOT ==2 0 ((G *ESLITIM*ESTIZT)SSXTH{MRES22T+9 , &FS12T) &SYT)%C2XChY 276.
L =0, XD SCRT(MISTTRESGOT #52X56Y 271,
A(3) = =~ALLIMML2%2,3X]] = 4, *A22%ML2%q . *X[2 - Al3eNML2%2 ,%X]] 6064,
1 +T1%64 ,2X][3 €Ch.
< ~TMLZC*(ALL + co=A22 ¢+ Al3) 606,
3 ~4 J¥EY¥SBU2*ML ¢ 607.
Alg) = «ML2%{.5X]Le(XI24X13)-BETARX{L/LSC)=ALL*025 609,
1 “TML 202 (x[1/4. +%x12 + Xx{3) 609,
2 +(HXP(KLLIE+MBKI2BX)2SALL +MeHY ® (M*K 22P+K1283Y)*SB1L 1 61C.
3 +HXYIMeKEOR®SC 1LY /2. 611,
4 +Y3 €12.
ALS) = =MLZEX{ i G, = A22%CS%l6. 613,
1 -~ TrL20O%2.#oX I3 . 6l4a,
< +Y4 €15,
Bll4,l0)= #v13l5) $5%.
Bllayl?7)= +¥Y1il¢ 60,
£l15,14)= 2114, 15) Sel,
Blléeyla)= BLLl4,16€) Se62,
B 17yl4a)= B(l4,1T7) 9363,
B{1541) = O. 964,
8(1542) = Oa 965.
QU155 43) = =4 M2}y S6a.
BU15215) = «HY=Y*MSQ«D11d/(2.%NB) + Yl4le 967,
gl15,416)= Yl&l5 Sag,
BU1S,17)= Yléle 966G,
Bl16415)= £(15,416) 70,
B{17,19)= B{1l5,417) 971.
BO16y 1i= eMLZOHXY 972 .
d(lé2) = 0a S713,
Bllé43) = 0. ; 974.
{16,16) = <PXYSHXYSM/ (4, 3CE6B) 4 Y1515 $75,

Figure 3. Excerpts from & remarkable progrem.

31

dable . Execwtion gpeed ratios with various types of optimization.

sxample v 0/ 0/ o/L 1/ 2/4 3/

la Lof RN N 5ol h.1 2.0 1.1

1o oo S0 bl h.8 2.7 1.5 1.1

' 1.0 et Lt e 5.4 2.6 © 1.h4

1.” N ‘ol 5.6 3.2 1.1

h .l 1.y 1.0 L.k 3.9 3.0 2.8

.0 a0 13,1 5.2 1.5 1.4

Lo 20 AN | 5.4 3.0 2.6 2.5

o 1.9 b 0.5 2.9 1.5 1.2 1.1
8! 1.1 QY 2.5 a.h 3.0 1.3 1.3

9 L. 28 5.5 5.5 2.9 1.3 1.0

10 1.2 0.8 5.3 8.0 6.3 2.9 1.5
11 1.7 2.0 2.2 2.4 1.3 1.2 1.1
1w 0. S 23 5.8 1.8 .l 1.1
1’ 1.0 1.4 1.8 3.9 3.3 2.7 2.1
1 1.1 L.t c.l 2.3 2.1 1.k 1.1
15 1.5 2435 2.8 3.3 2.5 1.4 1.1
1 1.1 1.1 1.1 1.5 1.k 1.3 1.3
17 1.° 2.0 LA 5.1 3.9 1.8 1.1

programs when they know what kind of optimizations are being done for
Lnem. However, the prograns we examined showed no covidence that the
programmers had any ldea what the compiler does, except perhaps the
knowledye that "1" s or is not converted to "1.0" at compile time
when appropriate. Therefore we expect that such f'eedback effects are
very limited.

Note that level » and level ! programs ran 4 or more times as fast
as level O programs, in about half of the cases. Level 5 was not too far
from level b except in Fxamples i and G where short subroutine code was
expanded in line; by incorporating this technique and the idea of
replicating short loops, level 3 would come very close indeed to the
"ultimate" performance of level 4 optimization. (Before condueting this
study, the author had expectel a much greater difference between levels
3 and 4 and had been experimenting with some more elaborate schemes for
optimization, capable of coming close to the level L code in the binary
search example above. But the sample programs seem to show that existing

optimization techniques are good enough, on our computer at least.)

Summary and Conclusions

Compiler writers should be familiar with the nature of programs
their compiler will have to handle. Besides constructing "best cases" and
"worat cases" it is & good idea to have some conception of "average
cases". We hope that the data presented in this paper will help to give
a reasonably balanced impression of the programs actually being written
toduy.

Of course every individual program is atypical in some sense, yet

our study showed that a small number of basic patterns account for most

!
W

T ST | . H
AU PReT RO i use.,

Pernaps these programs can be
A comparison of conipiler and machine speeds
Pran e citabned witio the "HAMY test™ [L7 1. See also F. Bryant's comparison
AUFORTRAL compilers summaricaed in (B, Appendix f, pp. TOWTET).

Cur sauple may not be correct, and so we hope people in other parts
ot tne world will conduet similar experiments in order to see if independent
studies rield comparable results.

While catherin: these statistics we became convinced that a comparatively
simple c.ancse to the present method of program preparation can make
aubotantial taprovements in the efficiency of computer usage. The program
protiles (i.e., collections of frequency counts) which we used in our
analyvses Lurne& out Lo be so helpful that we believe profiles should be
made available routinely to all programmers by all of the principal
software systems.

‘The "ideal system of the future” will keép profiles associated with
source proyrams, usin,; the frequency counts in virtually all phases of a
prosram's life. Durins the debugging stage, the profiles can be quite
useful, o.-. or selective tracing; statements with zero frequency
indicate untested sections ot the prcgram. After the program has been
debu,wmed it may already have served its purpose, but if it is to be a
frequently tsed proysram the high counts in its profile often suggest
basic improvements that can be made. An optimizing compiler can also make
very eftective use of the profile, since it often suffices to do time
consumin: optimization on only one tenth or one twentieth of a program.

The profile can also be used effectively in storage management schemes.

in eerly days of computinig, machine time was king, and people worked

nard ‘o ret extremely efficient programs. Eventually machines got larger

and faster, and the payoff for writing fast programs was measured in minutes

zh

or seconds instead of hours. Moreover, in considering the total cost of
computlng, people bepun to observe that program development and maint.enance
costs often overshadowed thie nctual cost of running the programs. Therefore
most of the emphasis in software development has been in making programs
casier to wrlte, casier to understand, and casier t§ chanire. There is no
doubt that. this emphacis has reduced total syctem costs in many installations;
but there is also little doubt that the corresponding lack of emphasis on
efficient code has resulted in systems which can be greatly improved, and
1t seems to bpe time to right the balance. Frequency counts give an
important dimension to programs, showing programmers how to make their
routines more efficient with comparatively little effort. A recent study
[%] showed phat this approach led to an eleven-fold increasc in a particular
compiler's speed. It appears useful to develop interactive systems which
tell the programmer the most costly parts of his program, and which give
him positlve reinforcement for his improvements so that he might actually
enjoy making the changes! For most of the examples studied in Section &
we found that it was possible for a programmer to obtain noticeably better
performance by making straightforward modifications to the inner loop of'
his FORTRAN source language program.

In the above remarks we have implicitly a#sumed that the design of
compilers should be strongly influenced by what programmers want to do.
An alternate point of view is that programmers should be strongly influenced
by what their compilers do; a compiler writer in his infinite wisdom may
in fact know what is really good for the programmer, and would like to steer
him towards & proper course. This viewpoint has some merit, although it has
often been carried to extremes in which programmers have to work narder and

make unnatural constructions just so the compiler writer has an easier job.

s
Coowel ced repeney oo nte

¢ are supplied to a programmer, it wlll
clear to e gt which aspests of a language the implementor
At ogen oo treat mogt ertlelontlye the reporting.of this information .

Seeng Lo e the tedt o way Lo oexert a posilive influence on the users of

Joeoresults o our sludy suwwcest several avenues for further research.
Jor exaeple, additional statlc and dynamic statistics should be gathered
whivh are more moaninstul with respect to local optimizations. A more
sophistivated study o these statistics would also be desirable.

(i surver seems to have glven a reasonably clear picture of FORTRAN
ag it ic now aved. Other lanyuages should be studied in a similar way; so'
that software designers can conceptualize the notion of "typical" programs
in JOBOL, 'LiOL, PL/1, LISP, APL, SNOBOL, etc.

We tound that well-done optimization leads to at least a h-or S5-fold
increase in prosram speed (exclusive of input/output editing) over straight
Lraﬁslation, in about half of the programs we analyzed. This figure is
nased on a computer such as the 5(0/(7 at Stanford, and it may prove to
be somewhat;differcnt on other confisurations; it‘yould be interesting
L0 see oW Auch different the results would be if the seventeen examples
were worked out carcfully for other types of computers. Furthermore,

a study of the performance gain which would te achieved by in-line format
editin- is :wt'i.n-ie,'ely called for.

Ao we discussed the exanple programs we Saw many occaaionsvwhere it
ig natural tor compiler optimization to be done interactively.’ Thevﬁrogrammer
could perhaps be asked in Fzample 11 whether or not J will be nonnegative
and less than fg‘ throuchout the loop (so that J = J+I can be done

with a "load aadress” instruction); in Example 8 he might be asked whether

the distributive law could be used on his formulas; in Example 7 he

might be asked if X*¥2+Y**2 can ever overflow (if not, this calculation

may te taken out of the loop); and o on.

As the reader can see, there i3 consideravle work yet to ve done on

empirical studies of progranning, much more tian we could achieve in one

suammner.

Acknowledgments

This study would not have been successful without the mary hours of
volunteer work contributed bty members of the group who were not supported
bty research funds. We alsc are grateful for computer time contributed by
the Stanford Linear Accelerator Center, IBY Corporaticn, and Tockheed

Missiles and Space Corporatiomn.

Appendix. Examples cf harnd translation

The following code was produced from

Ny
QonH AL
=
~~
-}

ONTILUE

using “he various styles of hand translation descrited in Secticn L. Cnly
the inner loop is shown, not the initialization.

Level C.

{1 8T S, J 2
L %3 2
M 2, =A(AROWS) 7
A 2,1 2
SLL %2 2
1E C,4(3) 2
LPER G,2 1
ST= 0,7 2
D G,T 2
SE 0,8 z
BiH 2 1.5
B Ll 2% .5
L1 LE C,T 2% .5
STE C.S Zx.5
I2 L 5,J 2
4 5,=Ft1! 2
C 5,0 2
B Gl 2

A "dedicated" use of registers, and a straightforward statemert-by-statement

aprroach, are typical of level C.

Level 1.

Gl ST 5,3 2
LA 2, AROWS 1
MR 2,5 £
A 2,1 2
SIL 2,2 z
LE 5,4(3) 2
LFER 2,0 1
STE Q,T 2

(DS . N
THINE 1.5
Ll L“ Ye s ‘-.:.‘(.t“
" 21X Y
bl 0adloy) 1
o il o
I Wb n

TN LI

wute the ures o LAoand JH, the knowledge of register contents, and the
renoval 0 e redundant braneh. The redundant LE in location Ll is still
present teceause the occurrence of a label potentially destroys the

recister contents.

L.evel .

-:‘...1 !Ail: 0,0(\), ,")
LPER 0,0

[AE‘:R :v I3 ‘_\,
SER h,D

By L2
| 11 LER 2,0
’ L' A %, =A(ARONS L)
-] Sy SPEC
Al Ql

IV VE VTR TIE S B T
X \n
-

itere UPI contains the precomputed address of A(I,N) ; S is maintained

in floatiny: recister .

LOVCl g .

ol Ik 2,0(0,3)
LPYR 0,0
CER 0,2
BNHR 2

L1 LER 0

LY OBYLE Z,%,01

.5
X 5

O D

tere registc@) is preloaded with the address of L2 (for a microscopic

f

improvement), and recisters 4 and 5 are preloaded with appropriate values

soveriins the By L.

Level 4,

LE
LPER
CER-
BNHR
LER
LE
LPER
CER
BNHR
LER
BXLE

Ql

L1.1
2.1

Ll.1
- Ll.2

0,0(0,32) 2x .5

O)O lx 05

0’2 o lxt.s T L LT I ST TP -,
2 1.5% .5
2,0 lx .25

0,4(0, 3) 2% .5

0,0 Ix.5

0,2 1lx .5

O 1.5x% .5

2,0 1x .25

B,h,Ql 2% .5

Since the loop program is so short it has been duplicated, saving half of

the BXLE's, wnen proper initialization and terminetion routines are

appended. (The code would have been written

LE
LPER
CER
BHR
LE
LPER
CER
BHR
BXLE

Ql

12.2
LER
B
LER
B

Ll.1l

'L1.2

0,0(0,3)
0,0

0,2

2
0,4(0,3)
0,0

0,2

6

3,4,Q1

2,0
12.1
2,0
12.2

if the frequency counts of this program would have given less weight to

 statement 1.)

\

Note that the FORTRAN convention of storing arrays by columns would

make these loops rather inefficieat in . paging environment; a compiler

should make appropriate changes to the storage mapping function for arrays

in such a case.

Lo

Fitiiorruphy

fon. A, Heve in Automat lc

. et nee evalaation:
IS L RS "-'.)J 1
ha
.. LT s e e Y nesarsive esis,
oL s Dee e G Upplied Solueiw fernia,
Poroeler. u tn, Repart el

L urad Ly . ie Prosraming Lannwces and their
vt dbherirate o datherarical GCelence, Lew Yore
P R I 0, T ppe
HENE topten . "Slremamline o software
- ¢ L [Qelober La0), u-r
NS TN eoiad correction in UCRS, the Jornell Computing
BT U ! 1t Computer Conference M {173 :4), 15-7k,
! computer programs.’ Fu.l.
1.7 pp.
I
1
in
! sram perlrormance measurement .’
'y Otanford, California, 70 pp.
j o Translation on a lLimited
11, f{flovemter 3,9}, 18.21.
c1 Computer
RN
N pilur empnasizirg
N , o aTdst ine, . "Plannirg asnd coding of
IS oo Lronie compaiins instrament,” 5 orols.; Institute
arvced Ut Lt, Princeton, L. J., 1047-194%; reprinted in
st Tt wrre, Vel i, AL il Teubt, ed., Iondon:
SHAN S IR o 3 S .

., Preceding page blank

[2,] Russell, i. C
Schicol of lay

l.os Mm

"Automatic I'ropcam Anelsis. Dhoeiss Yhiesis,
i Applied Cceience, niv. ot Calivornia,

. TLCEiG,
\ Vi
LI 1
Py .

ional

arinrn

Sy IR P ey T T 3 T
From SsGL prorans. avionaa
pater Unit o lenori UHE N A

o

Y

|1y !

(1)

Ly

[19]

Eussell, e oy dre "Automatic Program Analysis." Ph.D. Thesis,
School of knpineering and Applied Science, Univ. of California,
los Aniceles, Calirornia, Report (1-17, March 199, 1(8 PP .

Satterthwaite, k. "Oource Lanjuage Debugging Tools." Ph.D. Thesls,
Stanford Universiiy, in preparation.

Sehmid, E. "Rechenzeitenverpleich bei Digitalrechnern,™
Computing » (L7¥70Q), 102-177. ‘

Wiclmann, B¢ A. "A comparison of ALGOL (0O execution speeds.”
National Physical laboratory, Central Computer Unit Report 3,
January 1009, 8 pp.

Wichmann, 8. A. "Scme statistics from ALGOL programs." National
Phiysical Laboratory, Central Computer Unit Report 11, August 1970,
QO pp.

