
STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO AIM-137 ol

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-186

~~ ANEMPIRICAL STUDY OF FORTRAN PROGRAMS

| r BY

T+ NE DONALD E. KNUTH

>

| I IES JESk SLACISALAS WH! !

COMPUTER SCIENCE DEPARTMENT
oo STANFORD UNIVERSITY

Best Avallable Copy noe

| vores BY, A CTIA

Ce

an mplrical Dtudy of FORTRAN Programs

oo Donald , Rnuth

| avsiLract: A cumple of programs, written in VORTRAN by a wide variety
of people for a wide variety of applications, was chosen "at
random" in an attempt to discover quantitatively "what
pros rammers really do." Statistical results of this survey

| | are presented here, together with some of thelr apparent |

implicatione for future work in compiler design. The principal |
~~ conclugion which may be drawn is the importance of a program
“profile,” namely a table of frequency counts which record how

| often each statement is performed in a typical run; there are
| stron; indications that profile-keeping should beco.sie a standard

| | practice in all computer systems, for casual users as well as
~ system programmers. Thie paper is the reportof a three month

study undertaken by the author and about & dozen students and
| representatives of the software industry during the summer 1970.

~~ It is hoped that a reader who studies this report will obtain
a fairly clear conception of how FORTRAN is being used, and
what compilers can do about it. |

ps

This research was supported, in part,by IBM Corporation, by Xerox
| Corporation, and by the Advanced Research Projects Agency of the Office

of the Department of Defense (SD-18%).

Reproduced in the USA. Available from the Clearinghousefor Federal

Scientific and Technical Information, Springfield, Virginia 22151.
| Price: Full size copy $5.00; microfiche copy $f. 95

ESSEEEE

| | an impirleal Jtady ol' FURTRAN Programs

| conald Be Rauth
| | |

| becigners of cospilere and Instructors of computer science usually

oo have comparatively little Information avout the way in which programming

| languages are actually usa by Lyplecal programmers. We think we know what

| programmers cenorally do, but our notlons are rarely based on a representative

sample uf the programe which are actually being run on computers. Since |

oo | compiler widters must prepare Ah system capable of translating a language

| in all its generality, it is easy to fall into the trap of assuming that

complicated constructions are the norm when in fact they are infrequently

used. There has been a long history of cptimizing the wrong things, using
elaborate mechanicms to produce beautiful code in cases that hardly ever

| arise in practice, while doing nothing about certain frequently occurring

situations. For example, the precent author once found great significance

| in the fact that e certain complicated mcthod was able to translate the

statement

| oClIxirT) i= ((ARX)xY)+ 2.768 + ((L-M)%(-K))/Z |

into only 19 machine instructions compared to the 21 instructions obtained

bya previously published method due to Taller et al. (See Knuth [11].)
The fact that arithmetic expressions usually have an average length of only

two operands, in practice, would have been a great shock to the author at |
that time! |

| There has been widespread realization that more data about language

| use is needed;we cen'i{ really compare two different compiler algorithms

| 1

| th we anderstiend re fap data thoy deal with. Of course, the reat 4
| EE EESTNY ERR Ft Lhat Liere du no mach Lhing as a "typical programmer"; there

| | ion renendous curd al fon amon: prosrams written by different people | 0 |
vitlhiditf'terent ack vonn do and gympathies, and indeed there is considerable oo a

| a ~oorariation even in Ai flereny programs written by the same person. Therefore |
| we cannot trash any weasurements to be very accurate, although we can measure oo

| | Lhe devee cf variation in an attempt to determine how significant it is.

Hot all properties of procrams can be reduced to simple statistics; it is
| | novessary to study selected programs in detail in order to appreciate their |
| characteristics more clearly. Tor a survey of early work on performance | |

‘measurement and evaluation, see Calingaert [2] and Cert [31. |
| during the summer of 1970, the author werked together with several oo

oo other people, Ln order to explore the nature of actual programs and the |
oo corresponding implications both for software design and for computer science

| education. Membersof the egroup included G. Autrey, D. Brown,I. Fang, oo I

| N Db. Ingalls, J. Low, F. Maginnis, M. Maybury, D. McNabb, E. Satterthwaite, oo |
| CR. Sites, R. Sweet, and J. Walters; these people did all of the hard work :

| which led to the results in this report. Our results are by no means a | |
oo definitive analysis of programming behavior; our goal was to explore the

various possibilities, as a group, in order to set the stage for subsequent

individual research, rather than to go off in all directions at once. Each oo
oo week the entire group had an eight-hour meeting, in order to discuss what -

| had been learned during theprevious week, hoping that by combining our oo
N N | differing points of view we might arrive at something reasonably close to

| oo A first idea for obtaining "typical" programs was to go to Stanford's |
| Computation Center and rummage in the wastebaskets and therecycling bins. . .
Fo oo | | | |

Tie ave resulis nut stowed Immediatelr what chiould have Leen obwions: EF
wasteiasrets usually receive unde.ca progcrans, Fartihericore, it scems 3

likely thal compilers usually are conironted wilh wuiaebw red pro; roams, Loo) 2
SO 1% Wag necessary 1'cr us Lo chloe wit ler we was oel Lo splhudss Lie :

distrivations of s~ilax crrors, cies, or “oo cancen’ralc on Working F

pro;rams. Cone excellent analliscs of CUO eros have already ween -

made {Freeman [+]; Moulton and imller f1-]), and one of our main coals } 3
was to study tiie effects or varicus Lypes of cptiunizaeliony so we decided -

Le restrict curselres to prosrams whic: actually ra Le completion. u

Tie wastevéasrel method Larned up sone interesting programs, vat 1l was =
rot really satisfactory. 171 we wenlted to amutomale Lilie process, extensive =

typing Trem the listings would are been necessary; sc we %riei encilier x

| tack. Our next method of ccrtaining programs was Lo post a man Lu» tre

card reader at various times; he would ask for permission to cop, dects 3

onto & special file. ‘ifteen programs, totalling about 7002 cards, were 3

| obtained in this way; tui the jor was ~ery time-corsumning since itl was]

: necessary to explain ithe orjecvives of cur prcjiect each: time and te ask

emtarrassing questions about the sigtus of peorle's prosrars.

Tne next approach. was to prote randomly among the semi-prctecied 3

files stored on disks, locking for source text; this was successful. -

resulting in 27 pregrems, totalling atout 22,207 cards. ie added nine 2
| programs from tne UGD subroutine library and three prorsrams from the E.

| "Scientific Subrcutine Package", and some produciion prosrams from ihe 3

) Stanford Linear Accelerator Center. 5 few classical vencicaryk preorars |

| (nuclear codes, weatner codes, and aercspace calculations! were also a
contributed ti I3li representatives, and to top ininss oli we Tirew ir some : 3

| | poograms of personal interest to. members of tue ronp. : Co i AY

BL Drocodire cave dea auite varied collection of programs: some - ¥
| Lar tH Sue galls gone sophisticated, some mule; some important, some | | x

Co tredjaly some Cor production, some ror play; some numerical, some | .

| PL is well -kiown that different programming: languages evolve different Co
| cuvles or pro.rammin., gO our study was necessarily language-dependent. | | |

| For exmmple, one would expect that expressions in APL programs tend to oo .

| | be lon:rer than in FORTRAN programs. But virtually all of the programs oo | |

obtained ty our samplin: procedure were written in FORTRAN (this was the | | | |

| | | first surprise of" tiie swnmer), so our main efforts were directed toward the SE

oo study of FORTRAN programs. oo | |

oo | Was this ‘sample representative? Perhaps the users of Stanford's I

EE comput ers are more sophisticated than the general programmers tobe found } | |

| oo elsewhere; after all we have such a splendid Computer Science Department! |

| But it is doubtful whether our Department had any effect on these programs, oo

~ because for one thing we don't teach FORTRAN; it was distressing to see what

little impact our courses seem to be having, since virtually all of the . Co | |

programs we saw were apparently written by people who had learned programming =

So elsewhere. | Furthermore, the general style of programming that we found | oo

© showed very little evidence of "sophistication"; if it was better than |

| oo average, the average is too horrible to contemplate! (This remark is not

SEER intended as an insult to Stanford's programmers; after all we were invading |

oo their privacy, and they would probably have written the programs differently |

oo y By contacting known usersof ALGOL, it was possible to collecta fairly |
| ~~ representative sample of AILGOL W programs as well. The analysis of :

~~ these programs is still incomplete; preliminary indications are that
~~ the increased flexibility of data types in ALGOL W makes for much more

| variety in the rature of inner loops than was observed in FORTRAN, and = |
that the improvad control structures make GO TO's and labels considerably

| less frequent. A comprehensive analysis of ALGOL 60 programs has
BN recently been completed by B. Wichmann [19]. | EE | |

: We analyzed one PL/I program by hand. COBOL is not used at Stanford's
© Computation Center, and we have no idea what typical COBOL programs are like. |

TT ARI== a — ;

| | il’ they had known the code was {to be serilinized Ly self-appointed cxperts »
| like ourselves. Our purposes were purely scientific, in an attempt to find :

out how things are, without moralizing or judging people's competence. | |
| oo The point is that the Gtanford sanple seems to be reasonably typical of :

oo what might be found clsewhere.) Another reason for believing that our | - |
samplewas reasonably good is that the programs varied from text-editing |

. | | and discrete calculations lo number-crunching; they were by no Co
| | means from a homogeneous class of applications. On the other hand we do

| have some definite evidence of differences between the Stanford sample and

| - oo : another cemple of over L400 programs written at Lockheed (see Section 2 of
| | oo this report). | | - |

N | : a The programs obtained by this sampling procedure were analyzed in |
| oo ~~ various ways. First we performed a static enalysis, simply countingthe

oo number of occurrences of easily recognizable syntactic constructions. |
: Statisticsof this kind are relevant to the speed of compilation. The a |

i oo N oo resultsof this static analysisare presented in Section 2. ‘Secondly, we oo
| | oo selected about 25 of the prograusat random and subjected them to a dynamic | |

| analysis, taking into account the frequency with which each construction RE
oo actually occurs during one run of the program; statistics of this kind are oo

. presented in Section 3. We also considered the "inner loops" of 17 programs,

| - _ | translating them by hand into machine language using various styles of N EE
LU oo | optimization in an attempt to weigh the utility of various local and global

| RE | optimization strategies; results of this study are presented in Section b. |
| x . Section 5 of this paper summarizes the principsl conclusions we reached, |

oo Ca oo and lists several areas which appear to be promising for future study. a |

A es - A |

TTT RE A
EE We cian ined tae wutber off FORTRAN programs to see how frequently oo Le

| Ceertadn cong rue fons are used in practice. Over 250,000 cards SET | .)
| To Bp : Cropresent in Lh prosrans) were analyzed by Mr. Maybury at the computer a. |
| oo center of Jockneed Missiles and Space Corporationin Sunnyvale. - oo oo

a - Ce Table 1. shows the distribution of statement types. A "typical -

. Lockheed program” consists or 120 comment cards, plus 178 assignment SE. oo
oo statements,«5 [F's, Yu G0 TO's, 34 CALL's, 21 CONTINUE's, 18 WRITE's, | N

| - Lt FORMAT. 17 ho's, 1) miscellaneous other statements, and 31 continuation E .
i) cards (rostly involving COMMON or DATA). Essentially the same overall |

distribution otf" statement types was obtained when individual groups of oo IE
Co about, prowrans were tested, so these statistics tended to be rather

stable. We forgol to test how many statements had nomblank labelc. - B oo
The same test was run on a much smaller but still rather large oo EE

oo . - collectionof programs from our "Stanford sample" (ebout 11,000 cards).
Co B Unfortunately the corresponding percentages shown in Table 1 do not agree B

a very well with the Lockheed sample; Stanfordites definitelyvee more
‘assignments and less F's and GO's than Lockheedians. A superficial : - .

oo | examinationof the programs suggests that Lockheed programmers are oo oo |

Co perhaps more careful to check for erroneous conditions in their data. oo :
FETE ne ste tint 1 Sens nm mt Somme apps on 4s Grebo progENh SEE
IE indicating somewhat more regimentation. The professional programmers at oo

oo : © Lockheed have a distinctly different style from Stanford's casual coders.CL

oo Table 1. Distribution of statement types. ST

oo Lockheed Stanford |

- Number ~~ Percent *= Number Percentv* Cs

| Assignment N 78h Ee IEE 5 A oY CH86g i 5%.RCE -IRTP Soy
| | Et HeA TTR + OE SOE RE
: | ~ wore kale 12 EE 4 8

| ~~ CONTINUE | SER 5 309 3 BEE
| WRITE CTaS oh 58 5

| | oo TORMAT T7¢05 ho | 580 TO | |
SE J ho Cbs 5

0. Ram C5639 2 186 0 2 | |

DIMENSION = sho P Eh
= EE ~ CoMMON 2908 1.9 e635 3 oo |

| END 2505 1 21 1 Co
= ~~. BUFFER 2501 oO 0 oo oo
S. ~~ SUBROUTINE 2001 | 1 oo 95 1 0 |

| ~ REWIND EE fa 1 6 =
© MQUIVALENCR 1382 7 113 xr

oo INTEGER 057 SE
RM ss 3. 2 1

| ENCODE 583 3 Rl
~~ DECODE 53%T7 3 0 = oo |

PRINT 345 2 5 =
| ENORY 279.1 5 2 oo

| sOP © a1 1 a
| TOGICAL 10 9 x

IDENT 6 a 0 = :
DOUBLE 3 = 9 xr

oo | PAUSE oo 57 - 6 a
| oo ASSIGN 57 << hk EE

| ~~ COMPLEX oo 6 - co = REE
| ~ NAMELIST 5 «0 = So

~ BLOCKDATA Tr -e. oo oo

SEE COMMENT 5292h (28) 1090 (11) |

Ce * Percentof total number of statements ‘excluding comments andcontinuation =
Co eards.

** The construciion 'IF() statement' counts as an IF as well asa
statement, s- the total is more then 1004. 0

—— ee———————————————————

| : | | Cote ST 0 Toepi were farther Investigated to determinetheir length a
| | - nnd teprhoo! nest inl abou au af theDO statementsused the default .
| | oo | bine remen®, or 1 Lo Mast, HO Loops were quite short, involving only one ori oo | Be

| | oo wo statements: | | oo . oo | oo oo oo |

| a . co Length 1 | Sn 4 | 5 > 5 a . - |
CL wer coke a7 758 S76 1043 lok NB

pereent 0 185 9s 7 13 3

© The depthof DO nesting was sub ject to considerable variation; the following

oo © tuber low 1853 oh kr 18 120 IE

Lo Of the 79733 IF statements scanned, 8858 (304) were of the "old oo
© SWIIF () npnyng or IF (o.) myn, while the other 19%5 (0)

| had the form IF (...) statement; 14258 (71%) of the latter were N B IE

= . CTF (...) GOTO ". (These count alsoas GO 70 statements.) Only 1107 |
© of the 25719 GO TO statementswere computed (switch) GO's.

oo oo | An average of about LS trailing blank columns was found per non-comment
| | card. A compiler's lexical scanner should therefore include a high-speed oo En

a ~ Assignment statements were analyzedin some detail. There were 83304 |
| oo assignment statements in all; and 56751 (684) of them vere trivial : - | |
| | replacements of the form "A =B vhere no arithmetic operations are present:

| Co oo The remaining assignments included 10418 ‘of the form A Be A pa y i.e., oo) -
Co the first operand on the right is the same as the variable onthe left.An

Co To Sr Tee Te So Toe oot of Woe i
I EE (Lod); this was another example of a Lockheed-vs.-Stanford discrepancy. : SE

EE ———— ee ——————————

| attempt was made to rate the complexity of an wos iment, chatenent, | : |
oo counting one point for cach + or = sign, five for cach ¥ , and |

| oo 8 for each / 3 the distribution was oo | | oo
NB N Complete o R CL 5 Wye 7 Be

| | | Number Cpl 1hehy ah doc A Ah 1088 500 2509 ove
Lo © percent Be 13.1.3 3 2.6 5.

| | oo | Occurrences of operators and constants were also tallied: BN oo .
| . Operator + - oo a Cx = notion conetant

| Co Occurrences 17975 10298 12348 A739 1208 90257 3994 oo 49386
| So It is rather surprising to note that 7200 (40%) of the additions had the |
E | oo form atl § 3hy (54) of the multiplicationshad the form — SE : oo
- RE 180 (14) of the divisions had the form af2 5 W27 (39) of the N oo oo

| a exponentiations had the form o**2., (We forgot to count the fairly oo oo
> - | | common occurrences of 2¥Y 2.%a , ax2,, af2. , 2.0% , ete KY . oo oo
i } The program analyzed indices, although it was unable to distinguish oo

| | N subscripted variables from calls on programmer-defined functions. Of the .
! 166,599 appearances of variables, 97051 (584) were unindexed, 50979 (30.5%) N

had one index, 16181 (9.5%) had two, 2008 (14) had three,and 380 (.2%) - Co

. . Another type of "static" test on the nature of FORTRAN programswas oo | | |
oo - : | also made, in an attemptto discover the complexity of control flow in the oo

oo programs.John Cocke's "interval reduction" scheme (see [L4]) was applied

: to fifty randomly-selectedFORTRAN programs and subroutines, and in every

SARE A case the flow graph was reduced to a single vertex after six or less) |
transformations.The average numberof transformations required per oo I

CL HE | The obvious conclusion to draw from all these figuresis that = . . oo
compilers spend most of their time doing surprisingly simple things.

Ch Co oo | 9 | B n oo N | a

| K Cran vlat istics | | } | | 4
| fie static eve tabulated above are relevantto the speed of GN
| compilation, but they do ok really have a strong connection with. the | R Se
| spred of object program execution. We need to give more weight to : | | oo

| | statements that are executed more frequently. | | | | | |
| | | Two different approaches to dynamic program analysis were explored in . - |
| | | the course of our study, the method of frequency counts or program profiles oo

| and the method of program status sampling. The former method inserts Co
counters at appropriate places of the program in order to determine the :

| munber of Limes each statement vas actually performed; the latter method A | |
makes use of an independent system program which interrupts the object } oo |

| pro; ram periodically and notes where it is currently executing instructions. |
Frequency counts were commonly s.udied in the early days of computers |

(see von Neumann and Goldstine [1lk]), and they are now experiencing a |
long =-overdue revival. We made use of a program called FORDAP, which had

© been previously developed in connection with some research on compilation; So]
~~ FORDAP takes a FORTRAN program as input, and outputs an equivalent program oo | |

| - which also maintains frequency counts and writes them onto a file. When |
I the latter program 18 compiled and run, its output will include a listing of

|) oo the executable statements together with their frequency ~ounts. See oo oo | |
Figure 1, which illustrates the output corresponding to a short program, a |
: B | using an extension of FORDAP which includes a rough estimate of the relative | | *

| | cost of each statement (Ingalls (91). The principles of preparing such oo | |
| - a routine were independently developed at UCLA by 8. Crocker and E. Russell [15]; | |

Russell's efforts were primarily directed towards a study of potential oo oo
| : parallelist in programs, but he also included some serial analyses of large | |

oo scale routines which exhibit the same phenomena observed in our own studies. | |

oo ET | | 10 | | | |

ee : SEU a ————————ee————

oo Frequency counts add an important new dimension to the FORTRAN oo
| programs; indeed, it is difficult to express in words just how tremendously } oo

: ! "eye-opering" they are! ven the small example in Figure 1 has a surprise |

| | oo (the frequency rounts reveal that about half the running time is spent in

| Co the subroutine linkage of the FUN function). After studying dozens of |
| | | FORDAPed programs, ani after experiencing the reactions of programmers |

BE B oo who see the frequency counts of their own programs, our group came to the almost
| oo | unanimous conclusion that all software systems should provide frequency |

| oo oo counts to all prograrmers, unless specificallytold not to do so! . oo
| - oo The advantages of frequency counts in debugging have been exploited |
oo by F. Satterthwaite [1€) in his extensions to Stanford's ALGOLW . BE

| EE compiler. They can be used to govern selective tracing and to locate I

Co a | untrngted portions of a program. Once the program has been debugged, its |
frequency counts show where the "bottlenecks" are, and this information oo :

| often suggests improvements to the algorithm and/or data structures. | . | |
For exanple, we applied FORDAP to itself, since it wes written in FORTRAN, | :
and ve immediately found that it was spending about half of its time in oo

| two loops that could be greatly simplified; this made it possible to double
| : the speedof FORDAP, in less than an hour's work, without even looking at oo
oo | oo the rest of the program. (See Example 2 in Section L below.) The same
SE | thing happened many times with other programs. oo

oo Thus our experience has sugrested that frequency counts are so oo
oo | important they deserve a special name; let us call the collection of |

frequency counts the profile of a program. oo oo | oo | oo
| Programs typically have a very jagged profile. with a few sharp peaks. |)

| oo . Asa very rough approximation, it appears that the n-th most important | oo :
| | ‘statement of a program from the standpoint of execution time accounts for EB ;

IEA | | | | EE :

% QITONA NO O tm X-X= NO NOCOOOOOOWNO — dA ©0Oo ~ WOCOOOOO
| pl CWE ~eFrmaoo i
| Deo NNWQO

A
4
Q

5 | {Le MQOooQoom| — MMA wmn
(TV)

2
| o7

|

i
Kw]
[7]

od

Ly
| 0

QL
~~
ord

:
="

- (})

- 2 &
< >
LY on

= <
- 2 x : H
<2 J bt 0 3
wb pm = ord—p 2 LJ a=y =

2s 2 S :[

»

Ww I 0 a ag ™~N N ™
=» ~~ bo

Wud TO» -~ pd od NN =» §he aN oxXI ug ay pon | bow fo €*Y @
< Ded an ~ b J u. * Pty
be >» O XT = < » ~- > + @PS OY& abe j= - » ~N CY KLDe L222 p4 x - "4 mm NNO ope
Ww xX QO pn By | VT) - at > Lr IT XL #%| -l N =, ww —y - p= Sd br oo9) - (N wo f= 'S "y NY WW < MX XX XN
<a ~~a oq ot - 3 Zz ® Nw tw bp— «ks ONL Haw a@a N ne NL LLL
-) NW Ew odd >t US vo ~~ QQ ° bo © "HH ID2DDODOm™ H
WO - Wd. po -y vd 2 (N on diay JV SS VE FURY TS -nwd wes A) 0 CAD - 1 x DN * BBE * Lx
» Qe JA OM & wij Qa, 8 - BE Lrget Nod T EEE ew)| §y < wt JW xX X * QQ & Le) DH >» x HNN MDD

WLI) OO) LOZ po ein J 71 I 4 SDN» FELLER Er

~t ON

Q Oo QO Oo
| wed ~N ~ 4

| 12
|

| t

-n

about (w-l)c of the running time, for some 2 and for small n . We

also found that less than L% of a program generally accounts for more thar

half of its running time. This has important consequences, since it means

| | that programmers can make substantial improvements in their own routines | EE
| by being careful in just a few places; and optimizing compilers can be

made to run much faster since they need not study the whole program with

the same amount of concentration. .

| Table 2 shows how the relative frequency of statement types changes

| when the counts are dynamic instead of static; this table was compiled from

the resultsof 2k FORDAP runs, with the statistics for each program weighted

| equally. We did not have time to break down these statistics further

| (to discover, for examnle, the distribution of operators, etc.), except

in one respect: U5% of the assignment statements were simply replacements

| ~ (of the form A = B where B is a simple variable or constant), when

| counting statically, but this dropped to 35% when counting dynamically.

In other words, replacements tend to occur more often outside of loops

| (in initialization sections, etc.). |

| Table 2. Distribution of executable statements.

oo Static (percent) Dynamic

| oo Assignment 51 67
IF 10 11 |

| GOTO | 9 9

| | DO 9 3 |
CALL 5 b

| WRITE 5 1
| | CONTINUE L | 1
co RETURN 4 >

READ 2 0

| STOP 1 0 |

BA a : _———— : ee ————————ee ee—

| The other approach Lo dynamic statistics-gathering, based on program
| | status sampling, tends to be less precise but more realistic, in the sense
| that. it shows how much Lime 1s actually spent in system subroutines. We

© used and extended a routine called PROGIIME [10] which vas originally
| developed by T. Y. Johnston and R. H. Johnsonto run on System 360
: under MVI. PROGTIME spawns the user program as a subtask, then samples |

| its status word at regular intervals, rejecting the datum if the program
| was dormant since its last interruption. An example of the resulting |

| "histogram"output appears in Figure 2; it is possible (although not

especially convenient) to relate this to the FORTRAN source text. | oo |
| In ‘general, the results obtained from PROGTIME runs were essentially |

what we would have expected from the FORDAP produced profiles, except for
the influence of input/output editing times. The results of FORDAP would
have led us to believe that the code between relative locations 015928 : |

| and 015A28in Figure 2 would consume most of the running time, but in oo |
fact 70%of the time was spent in those beloved system subroutines | | :

| THCECOMH and IHCFCVTH (relative locations O016A88 through 019080). |

- ~ Roughly half of the programs we studied involved substantial amounts of |
| = | input/output editing time, and this led us to velieve that considerable

- | galne in efficiency would be achieved if the compilers would do the editing oo
oo © in-line wherever possible. It was easy to match up the formats with the

oo oo quantities to be edited, in every case we looked at. However, we did not |
oo | have time to study the problem further to investigate just how much of an

| improvement in performance could be expected from in-line editing. Clearly
| the general problem of editing deserves further attention, since it seems

| to use up more than 254 of the running time of FORTRAN programs in spite
SE of the extremely infrequent occurrence of actual input/output statements | |

oC oo reflected in Table 2. | B oo

A—— : .

. RUKNLNG PRP ILL § :
| | IFILL FOR aNply 2 PAIN | OQUOLE&?H

J Prien 2 PLRLENT | |
oo N ¢ PERCENT EN

i (EYY RIN NRL 0 . . ee LE tk LTT STpi ! n .
| AaBltyCl% Ad dscesesnneee * *) oo . TETRSsImocsesss NSH| oo Calliu Q19n(% secesensssssessetnne : * . Lo: Cwilvwy Cl%al4 sede ceassensesnes | * . . | | :

Coll uiYled eesesesosrengrensaes * . . ’ Ine
ite MISH DTT TP IY TTI : oo . : Vio: Ad Sasserue : ’ :
Lanlity Jlvauns seo Tetsstacncnctetes senses Lo ¢ | .) ’ Wh
Cott C3 Q1%1A% voesssesseneverse * + : . :)
Lenk 20 QLSML" osesssssse * . " |) o
(onFaY ClSafa o | : | ‘ . oo A| CARF RE) LISNJSL veveveensnssssnnsenes . . k : E
CARE20 UlM&A EEE eean0008008000900800 0 000000tr ons toneeneenny tort = * | vo
OOBF Lu ULh903 $0000 00ecs rte snnessessssdoes eeesns sescestes . : . TA

PCED OlLANA eesasay ede: ' * | |
| Peal aAns PessssIIEIsItT INL RLY . | | X . CL]CaL220 Ulbuvy eo * ¢ oo oe) 2
; COUN CloLon | Ce | . | X

| Coulty CloLad ’ ’ | Ce | . ’
Co (LoU3CL Olu An vo | * . | . '| Could VILCEN & : ’ « : ,

CACHBU ClaDGYy o ’ | . .
CacAly Ulokny ° . . ‘
Launfu ULbER4 * . BE . :
CalCO0 Gluing ’ ‘ o | . }
CoU% iu Llh=CH @ | . oS . | a . ,
CeLSeu LINFCH - . - . ,

Cel oRL Olares or . oo . : ,
ty nes TTY IRI TTT TT TIT IT IO, : : * oo oo * : .@I5 0 LIuF dd TENG ENSEI INGUIBRGERRSSRY a * | | ’* . vor
Cony UlbE AS Arter erin ATT IIIT III IR I IN ao a a ear ty Hn Sn co . hye
Contry UL?J2u DYSIESRIIRESIIIIIIIISEIPPRISPIPSHINS ’es SORES 000 NEE nAnditsnaRnRr ny SPARI FA CARA THAR AP EY tr
COLULY ULTJ04 S000000006000enauctasadsteste setssdeostne oo A . 3 IER)
Canned ILTu SOACONLARITLESENNIUUNERNNOO | oo : | ’ . aColilCy ClTUAS SP enesussionnssnnnaeeses . . Vo
C401iu ULIUCs wes he . IIIIINNLL 0400000000 . \ to ’e.

Coc Cu L17ALy IEE * ’ > . a
. Cor be) Clag ld ee eeteasstasetNkEOO Utter. * ¢ . :

oo Cot ety Vlv2ey TS FEBRILVENIOCCO ISR UNANTL § * . ‘ 1.2?
| Det d() CliZnd SC vrotunsuesussons ta dono teotsotstionses * | y . Poe

© Cub HEY Jl3cHt 9005800000830 0RCEIRIANGRIIND ’ ‘ . Sd
Lot 9CU UI82A0 Sees ttanssstesesisaateneiodtesess * * . Le

j : CLlNZ0 JIN2(N SI SRSSEnEIANNINSEAROEES ’ * . RA
Cot SCO VINsHY , * . . 100

: © Lhtley UILACY wesrersncvovose . | : : * . '. : |]

| bailey Jlaiid iieetthitiid iid itd ii hbbid dh bit dab debt . : ,
Chedi) ULIhaGgd Ce ot BUIIIBNSIRRNCEOsRS . . p . a.

| | Cot ACO Ultwoo eat eau eietnstettasasen SENPNINIONORPN REOPEN PEON | :
Cavity UNG SERNSASCPALINSNIINORIDNE§ oo . . |ILECU IndsHERARGUESIGSPN IOHRAGOOS * ’ . Co| Cabri Oloaca area IISEIIINILIIIII IRIS I stene oo . | a

| CREEA) ULBGED SE S5S000000000000000008 0000000000000 ’ * . Toe
| COtPEY UIBS04 eateecercecsotsesosrteesse * | . EIS(FHEG 019548 & . | ’ | ‘ . NY(wFCCO GlY2As oo . . ‘ Cy

Corveéd UIVSLY * | . * , 1
| Cortey JL9nQ4 » . * | . . r

So Cub?) Olan oo | . oo * . . 1
 CAFECO Clysod eo . : . :

© CebbRl ClYn4s oe . > . ; i a. :
BEER 1 PITS CRT I . * N . .

CarFou vivgys | . * « :
LaF re) Uldics oe | . ’ | ’ | .

: © Uh)Lku Dl9des oe - . | * . ‘
NS DPIC LLYCR oo . | * | Ce a. .

EER SLYSEM LTH FR | | . : oo . .
CLUE) LIYEUY oe | | . ¢ . BE Sy

LOJALU ClAabe * . | ’ | oe | Ca
© (B0AED UlAeny | . * | ' | K
C0 (31D lites . | : | . y: J : Ce]

. | | Figure 2. Histogram corresponding t0 a PROGT IME run. | |

WW— — — ——— — — ——

. NITE 0 bhie radon nature or the sampling process, two PROGTIMES |
| Ww the same program will nob sive ldentical results. It is possible to
| | SOL acearate frequency counts and accurate running times by using the

’ technique of "hump tracing” (cee ualnes (7, Chapter 3}). Ajump trace |
| routine scans a program down to the next branch instruction, and executes

oo Lie intervening code at machine speed; when a branch occurs the location

transferred to is written onto a file. Subsequent processing of the file

| makes lt possible to infer the frequency counts. The jump trace approach |

does not require auxiliary memory for counters, and it can be used with

| arbitrary machine language programs. Unfortunately we aid not have time |
| | to develop such a routine for Stanford's computers during the limited time

in which our study was performed. | | BN oo |

| ~~ b, The Inner Loops . | |

oo We selected 17 programsat random for closer scrutiny; this section |
a containsa summaryof the main features of these programs. (It is worth

© emphasizing that we did not modify the programs nor didwe discard programs
oo ~ that did not produce results in accordance with our preconceived ideas;

we analyzed every routinewe met whetherwe liked it or not! The resultis

~~ hopefullya good indication of typical FORTRAN programming practice, and |
| ve believe that a reader who scans these programs will obtain a fairly clear

oo conception of how FORTRAN is being used.) First the program profile was
© found, by running it with FORDAP and PROGTIME. (This caused the chief oo
© limitation nm our selection, forwe were unable to study programs for |

| which input data was on inaccessible tapes or otherwise unavailable.) In
each case a glance at the profile reduced the program toa comparatively oo

oo 16 p |

ef —,/— — — / ss — — — — — — — , — — — — — — ———_—_— OO

| small piece of code which represented the majority of the execution time

| } exclusive of input/output statements. These "inner loops" of the programs

| are presented here; the names of jdentlifiers have been changed in order to
clve some anonymity, but no other changes Lave been made. | oo

| In each case we hand-tranclated the inner loop into System/3(0 .
machine language, using five different styles of "optimization": | |

Level 0. Straight code generation according to classical one-pass |

| conpilation techniques. oo |

Level l. Like level O but using local optimizations based on a good
: knowledge of the machine; common subexpressions were eliminated

| | | and register contents were remembered across statements if no

| labels intervene, ete., and the index of a DO was kept in a
: : register, but no optimizations requiring global flow analysis

: - a ~~ were made. | oo : oo B
| Level 2. "Machine-independent” optimizations based on global flow

oo analysis, including constant folding, invariant expression |

oo removal, strength reduction, test replacement, and load-store | |
I motion (ef. Allen [1]).

EE Level 3. ‘Like level 2 plus machine-dependent optimizations based on

A the 360, such as the use of BXLE, LA, and the possibilities | oo
| | - afforded by double indexing. oo

B a Level4. The "best conceivable" code that would be discovered by any
| compiler imaginable. Anything goes here except a change in the

© algorithm or its date structures. oo -

- oo | These styles of optimization are not extremely well defined, but in
oo each case we produced the finest code we could think of consistent with that

ey — - - Ee : -

| SUNT in measly every case this was noticeably better than the

cptanisnt ions produced by the existing FORTRAN compilers; FORTRAN H OPT 02 |
| would presumably be able to reach level 3 if it were carefully tuned.)
| oo Loved L represents the ultimate achievable, by comparison with what is NB |
| realicedby current techniques, in an attempt to assess whether or not oo
| | B an additional effort would be worthwhile. | | | | -

These styles of optimization can best be appreciated by studying
bxample 1 for which our machine language coding appears in the Appendix

| to this paper. Tt is appropriate to restrict our attention solely to the
: ~~ inner loop, since the profiles show that the effect of optimization on |

© this small part of the code is very indicative of the total effect of oo :

| optimizationon the program as & whole. | - | |
oo | - “In order to compare one strategy to another, we decided to estimate

| the quality of each program by hand instead of actually running them with oo

os a timer as in [18]. We weighted the instructions in a crude but not

I atypical manner as follows: Each instruction costs one unit, plus one if

} it fetches or storesan operand from memory or if it is a branch that is |
| taken, plus a penalty for specific slower opcodes: |

| Floating add/ subtract, add 1 | Co
| | Multiply, add 5 | | |

| | Divide, add 8 . | |

oo ‘Multiply double, add 13 | | | oo |
oo Shift, add 1

| oo Load multiple, add 2 n (n registers loaded) oo | |
oo I | ‘Store multiple, add Zn (n registers stored) _ | .

| oo This evaluation corresponds rougnly to 1 unit per 0.7 microseconds on oo |
: oo our model ¢7 computer. Other machine organizations ("pipelining", ete.) |

: would, of course, behave somewhat differently, but the above weights |
oo B - should sive some insight. We also assumed the following additional costs |

| 18 oo | oo |

oo for the time spent in library subroutines (cf. [8]):

| SORT 85 | | :
| N - ~~ SIN, COS 110 | |

| : ERF 10 | So
: | | Complex multiply 0 oo oo | -

I © Real *¥ Integer 75 oo oo oo |

- | Example 1. The first program we studied involved 1LO executable statements,

| | but the following five represanted nearly half of the running time: |
EE | © D02J=1L,N | oo |

| ~ T = ABS(A(I,J)) |

ig=1 | oo | |
2 CONTINUE | oo |

| Statement 1 was executed about half as often as the others in the loop.

| The programs in the Appendix havea "score"of | | |

a for levels 0, 1, 2, 3, L respectively. | oo

| | | The same, program also included another time-consuming loop, |

D03J=1,N
5 A(I,d) = A(I,)*B | |

LL . for which the respective scores are oo |

RE 51, 29, 17, 12, 1 . oo

| oo | cL ~~ In this case level 0 is penalized for calculating the subscript twice.

So Example 2. (This came from the original FORDAP program itself.) Although

oo | ‘there were 455 executable statements, over halfof the program time was

| - spent executing two loops like this: | oo |

I DO 1 J = 38,53 LL
EE IF (K(I).EQ.L(J)) GOTO 3 oo |

| oo 1 CONTINUE |

0 19 I

tt i i — : ;

She ive rv tes of eanglation ive respective scores of

| | ’ I L bo 'y [Cet |

| : | Lavell “le ogeore off Con is obtalned in an interesting way which applies to

I several other loops we had examined earlier in the summer; we call it the | E

technique or combining tests. The array element L(54) is set equal to |

Kii) » so that the loop involves only one test; then after reaching LJ,

it Lh we 70 back to L2. The code is

al LA 80,7) oo |
| C 4,0(0,3) | |

BER 4 (Register5 contains A(I3))

| | BNE Q1 | oo

| IE § & necessary, L(54) could be restored. : -

| oo or course, in this particular case the loop is executed only 16 times,

and so it could be completely unrolled into 32 instructions | |

reducing the "score" to 3. But inactual fact the L table was loaded |

: in a DATA statement, andit containeda list of special character codes; =

a more appropriate program would replace the entireDO loop by asingle }

Co test I | DE | |

EE IF (12(K(D))) 1,2,1 |

SE for a suitable table LT, thereby saving over half the execution time of the |

= program. (Furthermore, the environment of the above DO loop was oo

Co - . | DO 2 T = 7,72 | |

| - so that any assembly language programmer would have reduced the whole business |

Lo to a single "translate and test".) | oo

er — |

| DOJBLE A,B,D .
DO 1K = },N

| B = T(I-K,J+K) |
| l D = D-A*B

} (This is one of the few times we observed double precision being used, although
| the numerical analysis professors in our department strongly recommend

| ~ against the short precision operators of the 360; it serves as another |

| indication that our department seems to have little impact on the users =
| of our computer!) The scores for this loop are : |

oo | | 89 , 61, 38, 13 y 12 | | | | | |

oo here level 2 suffers from some clumsiness in the indexingand a lack of

knowledge that an ME instruction could be used instead of MD. |

oo Example 4. Here the inner loop 1s longer and involvesa subroutine |

| call. The following code accounted for 70% of the running time; the entire

| program had 21k executable statements. | | oo | |

oo © DO 1K =M20 | i oo
a ~ CALL RAND(R) | | |

oo IF (R .GT. .81) N(X) = 1 | | EE
~ 1 CONTINUE | | | oo

| SUBROUTINE RAND(R) EE |
J = I*65539 oo

| 1 J = J+21hTL836L4T7+1 | |

oo R= R*.4656613E-9 | | oo

oo ~~ K=ktl Co | | |

So ~~ RETURN |

| ~ (Here we have a notoriously bad random number generator, which the programmer
must have gotten out ofan obsolete reference bock; it is another example

oo of our failure to educate the community.) Conversion from integer to real

: oo 18 assumed to be done by the sequence So I

VO ratna,

| Por suitable contentsot OPC and SPEC1. By further adjusting these

| constants Lhe multiplication by JAe5OOLAE=9 = 2"°L could be avoided;

bul this observation was relt to be beyond the scope of level4 optimization,

B ~althoushit would occur naturally to any programmer using assembly language.

| The most interesting thing here, however, is the effect of subroutine

| | linkage, since the long prolojue and epilogue significantly increasesthe

time of the inner loop. The timings for levels 0-5 assume standard OS

| . ‘subroutine conventions, although levels2 and 3 are able to shorten the |

| ~ prologueand epilogue somewhat because of their knowledge of program flow.

| For level |, the subroutine was "opened", placed in the loop without any

| linkage; hence the sequence of scores,

SE 119.9, 105.1, 81h, 76.2, 27.2 _

| oo . Without subscripting there is comparatively little difference between = |

So BN levels O and 3; this implies that optimization probably has more payoff |

| | for FORTRAN than we would find for languages with more flexible data structures.

| | Tt wouldbe interesting to know just how many hours each day are spent

| in prologues and epilogues establishing linkage conventions.

Example 5. The next inner loop is representativeof several programs

which had to be seen to be believed. | |

M= (J=1)*10+K-1 | | .
SE oo IF (M.EQ.0) M = 1001 |

| C1 = CI+AL(M)*(Bl**(K=1))*(B2%*(J-1))
© C2 = C2+A2(M)*(B1**(K=-1)) *(B2**(J-1)) | | |

oo IF ((K-1).GE.1)T = AL(M)*(K-1)*(Bl¥*(K-2))%*(B2¥*(J-1))
I : C3= C3+T CT | | -

| Co IF ((K=1).EQ.0) T = 0.0 oo | oo
oo IF ((K-1).GE.1) T = A2(M)*(K=-1)*(Bl**(K=2))%*(B2#*(J-1))

Co Ch = CT |

oo oo IF ((J-1).GE.1) T = AL(M)*(BLl¥*(K-1))*(J-1)%*(B2**(J-2)) |
oo CH = CST |

| 22 |

THI ((7-1) 1.0) T = 0.0
| CIF (0-1) WEL) T= A2(M) *(B1¥*(K=1)) *#(J-1)*(B2X*(.T-2)) |

Ceo ww Cra

oo 1 CONTINU | |

| | After staring at this for several minutes, our group decided it did not |

oo deserve to be optimized. But after two weeks' rest we looked at it again oo

oo and found interesting applications of "strength reduction”,both for the |

| | | exponentiations and for the conversion of K to real. (The latter applies

only in level 1h, which knows that XK doesn't get too large.) The scores

were | | | I | |

Lift, sky, 159, 14s, 10h

Level 1 optimization finds common subexpressions, and level2 finds the

reductions in strength. Level I removes nearly all the IF tests and

| rearranges lhe codeso that Cl and C2 are updated last; thus only |

| oo B1¥*(K-1) is necessary, not both it and Bl**(K-2) . |

Example €. In this case the "inner loop" involves subroutine calls

| } insteadof a DO loop: oo

| SUBROUTINE S(A,B,X) 9 | |
DIMENSION A(2),B(2) 9 | | oo |

~ L=0 | | 5 oo
Y = (B(2)-A(2))*12+B(1)-A(1) 9

| IF (Y.LT.0) GOTO 1 9
oo CX =X | | J Co

| | 1 RETURN | | 9 |
| : END 9 |

oo ~~ SUBROUTINE W(A,B,C,D,X) hb

| ~~ DIMENSION A(2),B(2),C(2),Db(2),U(2),Vv(2)) |
| | CALL S(A,D,X) | oo Lo |
EE IF (X.M.0) GOTO 3 | L |

~~ CALL S(C,B,X) | 2

CL CALL S(C,A,X) 1
B oo CU) = A(2) Co |

| oo ~u(2) = A?) | 1 | |

u(l) = c(1) 0 |
| u(2) = c(2) 0 oo
oo 1 CONTINUE 1 |

oo vil) B(1) 1 |

| vi) « B(R) 1 oo
| | 1F (X.NEWQO) G0 TO 2 1

| | 2 CALL 8(U,V,X) 1
| | 5 CONTINUE | h | oo

| ~ RETURN | L | |
[~~ KND | | . BN | |

| The numbers at the right of this code show the approximate relative |

'requency of occurrence of each statement; calls on this subroutine

| | accounted for {0% cf theexecution time of the program. The scores for

| various optimization styles are |

| oo oo 1545.5, 1037.5 , 753.3 , 736.3, 289 . |

Here 270 of the 1545.5 unitsror level O are due to repeated conversions |

EE of the constant O from integer to real. Levels 2 and 3 move the first |

statement"X - 0" out of the main loop, performing it only if "Y.Ir.o" .
The big improvement in level 4 comes from inserting the code for subroutine

S in line and making the corresponding simplifications. Statements like

ul) = AQ) , u(2) = A(2) become simply a change in base register.

Perhaps further reductions would be possible if the context of subroutine W

| wer. examined, since if we denote 12%A(1)+A(2) by a, 12#B(1)+B(2) by Db,

etc., the subroutine computes max(0, min(b,d)-max(a,c)) .

Example 7. In this program virtually all of the time exclusive of

. oo input/output editing was spent in the two loops - oo

| DO1I =1,N
A = XX¥24Y¥A2-2 *¥X*Y*C (I) | oo

| B = SQRT(4) |

1 D(I) = S(I)*T(K) oo
Q = D(1)-D(N) |

| 2 Q = Q+h.¥p(I)+2.%D(I+1) | oo |

| vhere array D was nol used tubsequently. The scores are |

| TWh, B87, a6, 202, auh |

llere level 1 computes X*™ by "MER 0,0" instead of a subroutine call,

and it computes NDC) by "AER 0,0" instead of multiplying. Level ho | |

| combines the twoDO loops into one and eliminates array D entirely. |

| (Such savings in storage space were presentin quite a fewprograms we oo

looked at; some matrices could be reduced to vectors, and some vectors

Co could be reduced. toscalars, due to the nature of the calculations. oo

: A quantitative estimate of how much space could be saved by such optimization
would be interesting.) | | | | NB | |

- Exemple 8. Ninety percent of the running time of this program was spent

oo in the following subroutine. | oo oo | | oo
oo SUBROUTINE COMPUTE | |

I COMPLEX Y(10),32(10) -
oo © R = REAL(¥(N)) - | |

oo ~ Q = COS(R) I

| P= 1.41421U*PrPRQIC*6. |

| : V = =2.5C*6.%(P/3.-Q¥Q¥*P/2.) | |

| Lo z(1) = SRN Eat Er pd 0 EE| | Z(2) = (0.,-1.)%(Uxy(1)+V*¥(2)) | | oo
| RETURN oo oo . |

~~ This was the only example of complex arithmetic that we observed in our
| ‘study. The scores | | oo | oo |

Co © 8ML.5, 735.5, 336. 336, 249 So

| | reflect the fact that levels O and 1 make six calls on the complex-multiply |

© subroutine, while levels 2 and 3 expend complex multiplication into a
| oo sequence of real operations (with obvious simplifications). Level 4 in |

_ this analysis makes free use of the distributive law, e.g. SE |

5 oc CrPre=r amr) , although this may not be numerically justified.

| Purthermore level L assumes the existence of a single "SINCOS(R)" |

subroutine that computes boththe sine and cosine of its argument in }

| 1:5 units of time; programmers who calculate the sine of an angle usually | oo

want to know its cosine too and vice versa, and it is possible to calculate oo

both in somewhat less time than would be requiredto compute them oo

| individually. | SE

lixample9. A program with 245 executable statements spent70 percent of oo |

© its time in | | | | | oo BN

| DO 2 K.=1,M oo LL

X =0. | | | EE

| DO 11 =1,M | oo oo
| N = (J+J+(I-1)*M2) | | | | | |

B = A(K,I) | | : |
X = X+B*¥Z(N) oo | | | oo |

1 Y = Y+B*Z(N-1) | oo i Co
DY(L) = W¥X | oo | oo DEE

| DY(Ltl) = -WxY | | | | So

when !M was only 3. Scores (for the innermost I loop only) are EE

8, 9, 30, 24, 24 , I So

© reflecting the fact that level k cannot do anythingfor this case.

Example 10. In this excerpt from a contour plot routine, the CALL is only

~~ done rarely: ; I | oo | oo

DO 1 I =L,M oo }
oo 1 17 (X(I-1,J).LT.Q .AND X(I,J) .GE. Q) CALLS(Al,A2,A3,Ak,T,A5)

The scores, assuming that X(I).LT.Q about half the time, are ~~

oo Lo, 31.5, 14.5, 7.5, 5 . EE

~~ Level 3 keeps Q in a register, while level 2 does not. Level 4 is oo Ee

BDoe EEE —nmm—

| especially interesting since it avoids testing X(I-1,J) LI.Q in

those cases where it Is known to be true from the previous loop. We

oo | had noticed similar situations in other routines. |

| } | |

| Lxample ll. This "Tast Fourier transform" example shows that inner

: | loops aren't always signalled by the word "DO". oo |

AL = A(K)*C(J)+AL | | | a
| | Bl = B(K)*C(J)+Bl oo |)

| A2 = A(K)*S(J)+A2 | |
B2 = B(K)*S(J)+B2 | | |

| oo T= HT -
IF (J.GT.M) J = J-M | |

| | IF (K.LT.M) GO TO 1 | | N |

: ~~ The scores are | | . oo

118, 91, (0, S54, 50 ; |

: oo level b is able to omit the second "K = K+1", and to use a BXLE for "J =J+I".

oo Example 12. Unfortunately an inner loop is not always as short as we had

. hoped. This rather long program (1300 executable statements) spent about

half of its time in the following rather horrible loop. . |
© DO3I=LM

JO = J1		
	IF (JO0.EQ.0) JO = J2 oo	
a Jl = J1+1		

| | J = J3+1 | | |

oo oh=Jl | | |
| IF (Jb.BQ.(L(J=-1)+1)) Jk = 1 SE oo

Js =Jl+1 | |
IF(J5.8R.(32+1)) J5 = 1

| | Vl= V(J1,K1,K2) -
oo | © Wl= W(J1,K1,K2) - | |
oo P(J1) = .25%(QL(I)*(V1+V(J3,K3,K2))*(Wl+W(J3,K35,K2)) |
oo +Q2(I) *(V1+V(JI5+1,K5, K2)) *(W1+H (33+1, K3, K2))
SE -Q3(T)*(Va+V(3h,Kh, K2)) ¥ (WW (Ih, Ki,K2)) oo

| re a5, XL 12) |-(U1+U(J30, K1, K2)) *(W1+W4 (JO, K1,K2))))
| | ~ +R1(J1,K1)*R2(XR)*(8(J1,K2+1) *(Wl+W(J1,K1,K2+1)) oo |

-8(J1, K2) *(W1+W(J1,K1,K2-1))) oo

| POOL) PUI) «00h (I) 4 (VI V(t, Ki, KR)) * (WLW (J6, Kb, K2))
| SOTO | | | co oo I |

| LIE (MEL)G0 To | | La
PCIL) POT) +09 (I) Y(VLHV(T 5-1, K3, K2)) %(WL+W(J3-1, K3, K2)) |

| S00 PIL) PIL) L29NQU(T) ¥ (VI (T2+h, K3, K2)) * (WLW (J2+k, K3, K2)) |
| © CONTINUE |

tlere levels .! and 2 have just enough registers to maintainall the

necessary indices; the scores are

Level I observes that Ju can more easily be computed by "J6 = Ji" before Jk

oo | is changed; and the QL(I) terms are included as if they were conditional

| - expressions within the big formula for P(J1) . | |

oo Example 13. Here isa standard "binary search" loop. | | oo

oo 1=0 oo |
K = N+1 |

| 1F (J.EQ.I) GO TO 5 oo
IF (X(J)-X0) 2,4,3 | |

| GO TO 1 oo | |
| 5 K=4J | |

GOTO 1

| ~The scores |

oo © 38%, 33, 21, 2, 10
| © for the inner loop are of interest primarily because level 4 was able to oo

beat level5 by a larger factor than in any other example (except where

~ subroutines were expanded in-line). The coding for level 4 in this case

| consisted of six packets of eight lines each, one for each permutation of

| the three registers 2, B , 7 | | |

So | 28

| Lixgy TA y,0(xB)
ORT, vy,1

| NR oy,HY
0 I JP | |

BE Tha

| CE 0,50) |
| | BL Llyfe | |

Br Lhy oo | |
LIB ... |

Here LI, kJ, kK are respectively acsumed to be in registers a, 7 , B ;

reiister 8 contains <) . Division by 2 can be reduced tc a shift since

| it is possible to prove that I , J , K arc nonnegative. Half of the

| ~ "CR 7, BR LX" could have been removed if X(0) were somehow set

to "-x" : this would save another 10%.

| | Actually the binary search was not the inner loop in the program we

| : analyzed, although the programmer (one of our group) had originally thought

| it would be! The frequency counts showed that his program was actually

spending most of its time moving entries in the X table, to keep it in order

when new elements were inserted. This was one of many cases we observed |

| where a knowledge of frequency counts immediately suggested vital improvements,

~~ by directing the programmer's attention to the real bottlenecks in his

program. Changing to a hash-coding scheme made this particular program

"run about twice as fast. | | |

‘Examples 1hk-17. From this point on the programs we looked at began to

seem rather repetitious. We worked out four more examples, summarized

here with their scores. |

| : DO 1 I = 1,N |
| | ~~ C =C/D*R | |

| 1 D = D-1. (45, b2 , 27 , 21, 20] | |

) DO 1J = I,N

H(I,J) = H(I,J)+S(1)*S(J)/D1-S(¥+I)*S(K+J)/D2
| 1 H(J,I) = H(I,J) |
oo [156 , 103 , 58 , 49, Ll.5]

: 29

| SEAL FUNCTION #(X) |
- Y o- ¥MT0T1048 | | |

| TF {Y.LT.0.0) GO TO 1

| rm CL OFERE(Y)) | low frequency | |
| 1 F = 1.0-0.5%(1.0+ERF(-Y)) |
oo RETURN oe

EAD : |
[219.5 , 208.5 , 191.3 , 191.3 , 151)

| DO LT = L,N oo
1 A= A+B(I)+C(X,I) (b1, 31, 14, 9, 8]

| (The latter example is the loop from 015928 to 015428 in Figure 2.) B |
Cursory examination of other programs led us to believe that the ebove

I | seventeen examples are fairly representative of the programs now being
written in FORTRAN, and that they indicate the approximate effects oo
achievable with different styles of optimization (on our computer) . only

| one of the other programs we looked at showed essentially different |
| characteristics, and this one was truly remarkable 3 1t contained over 700
| | lines of straight calculation (see the excerpts in Figure 3) involving

| no loops, IF's or GO's ! This must be some sort of record for the length

| | of program text without intervening labeled statements, and we did not |
| believe it could possibly be considered typical. - |

| | All but one of the DO loops in the above examples apparently have

variable bounds, but in fact the compiler could deduce that the bounds are
| act 1ally constant in most cases. For instance in Example 17, N is set

equal to 805 at the beginning of the program and never changed thereafter. |

| | Table 3 summarizes the score ratios obtained in three examples; |
0/1 denotes the ratio of the score for level O to the score for level 1,

| | etc. | . oo

It may be objected that measurement of the effects of optimization
is ‘impossible since programmers tend to change the style of their FORTRAN |

- | 30 | |

{ E-

| J23 ==ESL2T#SETN + [S12R* SERN 264. :
: iJ24 ==FES22TUSSETN ¢ ESZ2P*SERN 265.

UAC = ESCETFSFIN + FSHELPX SERN 266, ’
U3l =-ES66T*SETiv ¢ ESCEB®SEQN 267, 3

V3T 3-2, 0((ESLILT+MFESI2T)®XT ¢(MRES22T ¢ESL2T)SSYT)&(C2XC2Y 26 Q, :

: l ~2.0SCRT (HM) (TRESHET®S2XS2Y 249,]
V3R 22242 ((ESLIP+M2ESL2E)e5X3¢(NOES 220 4ES 120) 05 YB) *#C2XC2Y 217C. 3

| 1 —~ ZOD SUR TIM)= JURE SEEY®SZXS2Y 271.
VOT =2~3P{{ESLLITeM2ES12TI *SXT +{MEES22T+ESLI2T)ISYT) eC auXxCaY a A

1 - PED SQHT(M)RTTRESAOTE SG XS4Y 273,

| VAR 28% ((CSLLIE#M*ES 120) #5 XA (MOSES 220¢ESI2B) SYD) RCL XT 4Y 2174,
1 ~8 XDSCRT(NMI*TPRFSOHHRRSLX SAY 2175.

| VOT 2-2 0 ({GS *ESLITAMRESLIZT)SSXTH+H{MRES22T+9. &F S127) &SYT)&C2XCAY 276.

. l —b 2D SCF I(MISTTRESLOT 252X56Y 271. 3

A(3) = ~ALLIMMUL2%2,3X] 1 = 4. ®*A22%ML2%4 ,*X[2 = AL3eM_2%2 8X] 604,

| +T1%64 2X13 &Ch. |

| < ~TMLcCP(AL] + co=A22 + Al3) 604, 2

3 “4 (HEY ISBU2WML 2 507.

Alg) = «ML2%{zo®XTLe {XI24X13)-RETA®X{L/LSC Y=ALL*02S 608, 2

1 ~TMLZO®(XI1/4. +X12 + X[3) 603.

2 + (HXP(KLLIE+MBKI2ZBX)PSALL + MBHY ® (M¥K 22P+K128Y)*SB1 1 61C. %
4 CHXYAMEKEOBESC LL) / 2, bli. E
4 +Y3 e112.

| ALS) = =MLZ2EXiciC, = A22%C2S%1lé6. 613, ’
1 ~ TML20%2.2X13 61 4. :

< +Y4 &15. 3

| Bil4,l6)= #Y13]15 S55. :
Bllayl?7)= +Y1:i1¢ 960, 3
e(15,14)= 2114, 15) Sel, :
Blleyla)=s BULl&y LE) S62, 3
B lT7y14)= B(l4,17) 3613, 3
B{1541) = 0. 964, E
BH(1542) = 0. 965. 3
QU15 43) = =4 3ML28}Y S69. 3
Bl152 15) = «HY&YEMSIxD11IB/(2.%NB) + Yl4l4 967, E
C(15,16)= Yl&al15 She 3
BOL1S,17)= Y1Z1e 36 6 « 3

| B(16415)= E(15,16) 970,
B{17419)= B(15,417) 971.
B16, i= eMLZOHXY 972.

3llés2) = Oa S713. |
Bll&,3) = 0, 974.
4{16,16) = -FXYSHXYRM/(4. *CE6B) 4 YL515 975. j

| | Figure 3. Excerpts from a remerkable program,

21 A

————————————————— ee————————————————————

| Cdable cL bxecution gpeed ratios with various types of optimization. |

| la Lor tar su ha 2.000 1. oo

EU IO fu hod h.8 2.7 1.5 1.1 | :

oo / 1.” AE SO 5.6 3.2 1.1

g A | 1.b 1.0 bob 5.9 3.0 2.8

| 0 1.0 a! 0.5 2.9 1.5 1.2 1.1
5 C1. ny 2.5 AM 300 L300 L3 . |

| y Loo 2 5,5 5.5 2.9 1.3 1.0 oo
| 10 1.0008 5.5 8,0 6.3 2.9 1.5 | oo

11 1: 0 2.20 2% 1.8 1.2 1.1 | |
10 aa he 3 58 1.8 1.1 1.1
1: 1.0 LA 1.8 3.9 33 2.0 2.

| 1% 1.1 le. 2.1 2.3 2.1 1l.b 1.1 |

| 15 1.5 243 2.8 3.3 2.5 1.h4 1.1 | oo
| 1 1.1 1.1 1.1 1.5 1. 1.3 1.3

| 17 1.” 2.0 he Sel 3.9 1.8 1.1 oo

ee ————ESA —————————————

| programs when they now what kind of optimizations are being done for |

| | | them. However, the programs we examined showed no evidence that the | |

| | programmers had any ldea what the compiler does, except perhaps the
| oo | knowledye that "1" is or is not converted to "1.0" at compile time
| “when appropriate. Therefore we expect that such feedback effects are E |

oo very limited. | | | | |

oo Note that level and levelI programs ran 4 or more timesas fast

| : as level 0 programs, in about half of the cases. Level 3 was not too rar -

~~ from level b exceptin Fxamples 4 and 6 where short subroutine code was
| expanded in line; by incorporating this technique and the idea of : :

| replicating short loops, level 5 would come very close indeed to the |

| "ultimate" performance of level 4 optimization. (Before conducting this

| study, the author had expected a much greater difference between levels
| ~~ Sand b and had been experimenting with some more elaborate schemes for E |

oo optimization, capable of coming close to the level L code in the binary

search example above. But the sample programs seem to show that existing |

oo optimization techniques are good enough, on our computer at least.) |

, oo Summary and Conclusions |

: oo oo oo N Compiler writers should be familiar with the nature of programs | |
I their compiler will have to handle. Besides constructing "best cases" and |

| "worst cases" it is a good idea to have some conception of "average
Co cases". We hope that the data presented in this paper will help to give -

| | a reasonably balanced impression of the programs actually being written | | |
f oo toduy. | : |

oo | of course every individual program is atypical in some sense, yet

| oo our study showed that a smell number of basic patterns account for most

| oo |

1 | . — | 8 3

SE The pee RECT SoHE rach ong in uges Perhaps these programs can be aa

Coated to rate wotere ren lio comparison of conipiler and maciiine speeds oo
) N aan ig crrtaiuet with the TAA test” [X/]. See also I. Bryant's comparison - |

ARORA conpilers summarised in [h, Appendix 5, pp. TON-TET]. - oo an

| oo NE sable may not be correct, and so we hope people in other parts ’
a Or ne world will conduct similar experiments in order to see if independent

| . studies Led comparable results. | | -
While atering t.iicgse statistics we bhecame convinced that a comparatively

slmple eae to the present. method of program preparation can make IEE

_ aubotantial Laprovenents in the efficiency of computer usage. The program
Cprotiles (i.e. collections of frequency counts) which we used in our

| analyses turned out Lo be so helpful that we believe profiles should be

| } nade available routinely to all programmers by all of the principal a
oo software systems. | | |

R The "ideal systeu of the future” will keep profiles associated with |

oo | gource pro.rams, usin: the frequency counts in virtuallyall phases ofa
| pro.sran's life. Durin: the debugging stage, the profiles can be quite

oo useful, ».-. Cor selective tracing; statements with zero frequency

| indicate untested sections of’ the program. After the program has been
| debugsmed it aay already have served its purpose, but if it is to be a

| | rrequently used program the high counts in its profile often suggest

oo basic improvements that can be made. An optimizing compiler can also make

oo very efrectave use of the profile, since it often suffices to do time
oo | conswnin:- optimization on only one tenth or one twentieth of a program. |

| : ~The profile can also be used effectively in storage management schemes.

| In eerly days of computini, machine time was king, and people worked |

Co : nard Lo et extremely efficient programs. Eventually machines got larger =
| | : oo and faster, and the payoff for writing fast programs vas measured in minutes oo

| | - |

—

or seconds instead of hours. Moreover, in considering the total cost of

oo computing, people besun to observe that program development and maintenance

costs often overshadowed the actual cost of running the programs. Therefore

| | most of the enphasis in sot'tware development has beenin making programs |
casierto write, casier to understand, and casier 20 change. ‘There is no |

| doubt that this emphacis has reduced total sycten costes in many installations; N
| | but there is algo little doubt that the corresponding lack of emphasis on

| efficient code has resulted in systems which can be greatly improved, and

it seems to be time to right the balance. Frequency counts give an |

| important dimension to programs, showing programmers how to make their } :
| | routines more efficient with comparatively little effort. A recent study | |

| [%] showed that this approach led to an eleven-fold increase in a particular
| compiler's speed. It appears useful to develop interactive systems which |

tell the programmer the most costly parts of his program, and which give |
- © him positive reinforcement for his improvements $0 that he might actually

| enjoy making the changes! For most of the examples studied in Section &
N we found that it was possible for a programmer to obtain noticeably better

| | performanceby making straightforward modifications to the inner loop of’ oo

| his FORTRAN source language program. | |

oo In the above remarks we have implicitly assumed that the design of |

a ~ compilers should be strongly influenced by what programuers want to do.
| An alternate point of view is that programmers should be strongly influenced |

| A N | by what their compilers do; a compiler writer in his infinite wisdom may |

| : ~~ in fact know what is really good for the programmer, and would like to steer B Co
| - a him towards a proper course. This viewpoint has some merit, elthough it has
| often been carried to extremes in which programmers haveto work narder and |

© make unnatural constructions just so the compiler writer has an easier job.

eeee——— EA ieeeeee

| | | | - | |
|

| NB | arenowel Coed regency ects are suppliedto a programmer, it will oo :
| | Fee lear to SNE SREE whieh aspestLs of & lan;rua;e Lhe implementor : |
| | : a LAE hse TO treed most eftlelently: the reporting of this informatien
| | ~ | Co UTR TIT I
i Been Lote the tedl way Lo exert a positive influence on the usersof = |

| ERT ronulis of NEEL sLudy Suwntest several avenues for further research. |
So EE | B | | Rh }

| | | “or eeples whl lonal static and dynamic statistics should be gathered .

| | widen are more Enaniniil with respect to local optimizations.A more
| . | sophistivated study ot these statistics would also be desirable. oo Co

| - Co | _ One survey seems to have ;;iven a reasonably clear picture of FORTRAN
SI . oo } RB as iv ic now aced. | Other lan,run;-es should be studied in a gimilar vay, go » |

| | a RE that software decigners can conceptualize the notion of "typical" programs } oo
I|© in 20BOL, Li0L, PL/1, LISP, APL, SNOBOL, ete. oo
oo © We round that well-done optimizationleads to at least a h-or 5-fold Co
HN . Increasein program speed (exclusive of input/output editing) over straight

translation, in about half of the programs we analyzed. This figure is oo

- based on a computersuch as the 3(0/(7at Stanford, and it may proveto - .
| | be somewhat different on other configurations; it would be interesting : }

LO See LOW auch different the results would be if the seventeen examples : n :
| were worked out carefullyfor other types of computers. Furthermore,

| : | | a studyof the performancegain which would te achieved by in-line format | BE
| oo . editineis letinitely called for. oo - oo oo | :

| Ac we discussed the example programs we sew many occasions where it CT
is natural ror compiler optimization to be done interactively. The programmer

. | could perhaps be asked in Fiample 11 whether or not J will be nonnegative So

and less than “4 hroushout the loop (so that J - J+I can be done oo oo
So with a "load address” instruction); in Example 3 he might be asked whether oo

| Co So : oo So | | 3 . EE E |

E

the distributive law could be used on his formulas; in Example 7 he a

might he asked if X¥¥2+Y¥%2 can ever overflow (if not, this calculation E

§ may te taken out of the loop); and sc on.

B As Llane reader can see, there is congideravle work yet to te done on a

= empirical studies of progranning, much more titan we could achieve in one 3

| summer. a

Acknowledgments 3

This study would not have been successfui without the mary hours of =

volunteer work contributed ty members of the group who were not supported E

by research funds. We also are grateful for computer time contributed by -

the Stanford Linear Accelerator Center, IBM Corporation, and Tockneed E

Missiles and Space Corporation. BB

f 7 3 to.

| SE

Appendix. Examples cf hand translation | |

R The following code was produced from a

f LO 2 J = 1,u -
| T = ABS(A(I,J)) a

IT (7-5) ~,2,1 : :
: l1 5S =717 oo

| 2 CONTINUE

| using “he various styles of hand translation described in Secticn L. Cnly SE

- the inner loop is shown, not the initialization. co

~ Level OC. uu

- Cost 3

Ql ST 9d 2 =

3 M 2, =A{ AROWS) 7 a
| A z,1 2 FE

! LE C,A(3) 2 2
1 LPER G,2 1 a

ST= Gc, 2 =.

a BiH Lz 1.5 a

| | B Ll 2X 3 a
N | Ll LE OT 2x .5 EL

. STE CS ZX .5 |
| | I2 L Syd 2

A 5,=F'1" z A

a BiH Ql 2 §

3 A "dedicated" use of registers, and a straightforward staztement-by-sitatement .
f 2

i approach, are typical of level C. E
t -

Ba Level 1. :

ql ST 55d 2 Fo.

: LA 2 ARCWS 3 CL
; IMR 2,5 2 a
: A 2,1 2 FE

: SIL 2,2 z SE

Fd LPER 3,0 1 J

; EY

Cy oo SFSU) xh | a | a.
: | oo Co hres glo) | EE oC

- | oo TE AESRE

| Cute the ures of La and i, the knowledgeof register contents, and the oo

| | Cremaval of the redundant branch. The redundant LE in location Ll is still

| present teeause the occurrence of a label potentially destroys the ©

LA 3, =A(AROWS*hL) 2 - Lo So

| BN Ql | - 5

tere UPC contains the precomputed address of A(I,N) ; S 1s maintained oo

Co | in floating: resister ov oo |

oo Level oo Lo | I |

B : LI LER 3,0 1x. So
| SE LY BYLE 2,401 2 oo | EE oo

tere resicter .) is preloaded with the address of 12 (for amicroscopic .

|] improvement), and recisters 4 and 5 are preloaded with appropriate values |

| Lo coveriins the BL. | | oo ou

DEE SE SE 39 | |

oo Level 4, | oo oo . g

| | | LPER 0,0 | 1x .5 oo | oo |

: B 3 BNHR 2} : | : Co 1.5% . 5) = - oo i . = * i Pe oo AEEE in nn
I ~~ LL. LER 2,0 1x25

| . CER 0,2 : 1x.5 IE

| | | ~~ Ll.l1 LER 2,0 1x.25 IEEE

Since the loop program is so short it has been duplicated, saving half of

| oo the BXLE's, wnen proper initialization and termination routines are - | oo
{IE appended. (The code would have been written oo BE DE
saw’ 00,3 So

oo LPER 0,0 | | or EE :

LL CR 0,2 oo Co

oo mR 6 I oo

| Ll IER 2,0 EE oo

| oo oo oo B L222) | oo

oo if the frequency counts of this program would have given less weightto

statement) EE

© Note that the FORTRAN convention of storing arrays by columns would |

| “make these loops rather inefficient in a paging environment; a compiler oo

I should meke appropriate changes to the storage mapping function for arrays |

oo - ~~ in such a case. | | - EE a oo ERE _ oo

A I oo =

- rv, [| Sai,w raregan . 2! HER cap tf L TI 1} Ayr Toga 4 a , t NUTR HE . .- . A] . + 1 _ HERS 1 + FER | PIB i JN. JY - eo ail (Why | LQ i
rs a ————— ee = -

! EN TL 1 * ' h | CU cia] = _

’ EN . a! . + Ca HL ae ay tan it . = 1 { oe 1 LR =. - vod
WT ert et ee, CLotew pertorsfinee evalaat ion: survey sud |

- ' [N} a EP. . , ot : nay - Ta, - we .' EE Ta . Td i Mon =! ! RE ry 10 EL), A -1,
ot Cr ———— a am EE EE Sa te rrr. rn

” b +" LL] . aa 0" - a. x HE, EY a PEN Tt 3 Tn LILI - 1 :LEY - a LE EE EE Sl vet 1? 81 Pa I Wil BiG. | RETR R 1 nesls,
: a or : . A NN STN asian 1 T.- cer TAY apar.doT, — . SLETL [SEI PE CPD itd on LS LE LO LI “oa calit'c: lila, .

i EE Y — LA . L} 5 vo : - I SAS LIND. k ! *t) cid Lt. l. ~- Yoo pp. .

Cl i } - Soa fa wr CR H - sa . 1 ry ioe H - M pa LN 3p !Ce EEG BN I TE200 SE £2 DASE 3FOE F'rosrane:in. Lanne ces and thein
} FN— ESSN.=ee A TE —— 3

Covi level To prget inaryte op satherarical Sclence, [Lew Tore a
——A—— ee - - - L] RY -y =

:) . 1 * 1 v 1 H HS + 1 Al 1a v= ~ we Heng "1 r) 3 -~ LIE Be} -H 4 -- arden, Jteptern CLoaied eller, Jleven 5, Streamline or software

i FE —— he ’ h .

: . I. . AAI + ays . A — Ld N LI BEA BY _ LY ~ a a] . + 1 - i }
: a Cres, Lore hd Syrer correction in JCRS, the Cornell Computing

- — en 1 CT Ys Tad 7 cy d PN a I WaT CA aLETC AFT rald roint Computer Conference 0 (174), 15-°L, £

' - . . | Ye FE ~ rr LE se = oe - . a - . - Nom Waa ey 1 CL Tx
LloLeny b NEI Se aeruoTingg of computer progcrans. Fr..lh.

Sadi, Prancewon oniversity, aust Lorex, 10 PD. |

I .) fone h . rs ry Tr ToT roe =F A =v - B ho 3 Ta Ld La - H . .boss Lu ante, TT Tonal 1 Livrary: Mathesatical and Service
te. - LI WEE LA SY Ea 3 LI LED TE] * ST. a - » » SWE [® . a iw hy bry Pr = . 'JLoproorame, Tite voemrer (0-0-4, form T0R3-0 510-0, Tavle 12, CL

. * : RE 1 " —- = _ Y FEE La -
Sean -. » r= -- bJ - Lr :

E »

¥ - A LE an hy - - N sone meee em To. 4 . i _ i I J 1h]

LEER ARE i a - La a

HE =: [EE ’ vo ocd EYEE TE EE a. HN * VON TR Te Pel A Nom o. ¥ v - 1A ri "! HE LA I EL FE a [- CR Shoat So. ea a In wl, arn per l1ormance T.easat emer; »
. PE . SE _. -- . So \- ed .- - I" ae i BEER RE oO — - ~ Le] . ~~ a 3 +

Co. vo. Cow te cal Oo) FE TA I —~ 3 Sp! ill ie ivy ctanioraq, alii ox Nila, FER pp. }

2 cot, Tovar, herr nnat ost pi ale Translation on a Limited :
. Lo. RY Ce at ere ta “er . EE RIC FR 1- Pry va
A “vo. FORE SE OLE TN Lp aloe : il, I no emcer Li 3) y 15-21,

. N EE —— - :

Cl Coo Towa te ranrenigl a deoritirneg, ne Art ol Computer 3
M LE ST = ve Sy Ten = vr - "AAS Lr 3 - Hr a : :
pr TUN YY 0 ae Ly CYT, a88.d AATLSCN=-wesS lel, You Je .

_ Dodie bee any bier SLRS = 4 compiler enipnasizinrg
’ i RE - Te SN -E PS be Lr . ‘og FE)

} EE I to . ro. ae OE EA gE’ 1:38 1 The LA TO 139, let v - 38

CLL “oe TIERS TE RTE LI THT der an It STAT "rl SY olBal ra ¢ AIT OFa" R ab a & . ¥ waa 2] Na EY WS 1:0, ALENT RH Ee ¥ anning Rete 0A LC LL
* . . - — TL LI a sa A IR . - = J ym . i 1p » LL Pr - - -— [AY TT _—Vr Len Dor mr moe lronio comDaLnins instrament, Ss orols.y Institute a.

: =" oN - x ta a T gn ven AE hl - 3 ~i,- ~~ L} - = - Ta- LT I ES [SE HEARN ol Woy te ay NRE -1%u> s x cpr inved in B :
So TesteTD cole el waarke, Vol, a lie Bul, ed., London: 0

Zi .

Er

} P J .| .. Preceding page blank 1.

L] ’ a

. fo

t .

hE H s - a it so EE. - . LE - a ~ 1 a =a a “! 2
= J) Kussell, Le © vy UI automatic Frog. an Ane sis. Divalie Ves 18, =

Scelheol of Mnpineerins and Applied Science, sive oi Jalitvorniea,
- - . - % cy » - . . . —~ ’ ' - Co - Ts)
l.os AnLeles, Jalitvornia, Kepori 49-17, arco leer, ir 3 pn. 3= J h - J J ia

. T 4

o - \ 3 H mn... EVA 3 -— Th EE EE EL RY "1 FE [BF It; oo: .[1+ Caliertiwaite, i. Jource Lan;tiasre delaying Josls. pool. hen is, 3
1 4 IRE SI Me tA a LI “ EE RE :
LVENIOTA Lnlversily,y in preparation.

A A | I GRE HEN OI FN FC SLE IY SL DE RE SLLI £0 V leici vir FR 1 8] EHO EXE Ti,
. . . , Ase LN . J

Copabin: 0 (200), 2-177,
~~ I

. LE TE PLT . — Ha Bs it - a .. LE i 1 LI SE - - RE SE _— 4 te ;
a ! violent, Te ia AEGIL O00E VL dei: CAeUL 10D OPUS :

Janay 1 oo, pn.

3 HE p - = i. * fr.» a . a em - REE 1 LT rT, FT a EEE . or FE 3 a 3[1 I WY cananty, he oi One sleLisuies yom Sash JOH D0 GHG Lal dhaa -

’ YT 3
a. EF - R

i * La

[19] Russell, i. C., Jr. "Automatic Program Analysis." Ph.D. Thesis, |
oo vehool of tnpgineering and Applied Science, Univ. of California,
oo log Aniteles, Calirornia, Report (4-12, March 199, 168 pp. |

| [1] Satterthwaite, Fk. "Cource Lan;uarre Debugging Tools." Ph.D. Thesls,
L ttanford University, in preparation. SE |

| Tar Gelmid, FH. "Rechenzeitenvergleich bei Digitalrechnern,” oo Te TIT Te E So
: Computing (1370), 105-177. | EE RE

| la Wichmann, Be Ae "A comparison of ALGOL (0 execution speeds.” : I : |
National Physical Laboratory, Central Computer Unit Report 2s IE |

| | January 1009, UH pp. | | oo oo |

| © [19] wichmann, B. A. "Scme statistics from ALGOL programs." National
Plivsical Laboratory, Central Computer Unit Report 11, August 1970, oo

