
STANFORD ARTIFICIAL INTELLIGENCE PROJECT

| MEMO AIM-136
COMPUTER SCIENCE DEPARTMENT

| REPORT NO. STAN-CS-70-183
|

| MACHINE LEARNING THROUGH SIGNATURE TREES.
APPLICATIONS TO HUMAN SPEECH

BY)

GEORGE M. WHITE

OCTOBER 1970

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

RELIG

I

-

STANFORD ARTIFICIAL INTELLIGENCE PROJECT OCTOBER 1970

MEMO NO. AIM-136

COMPUTER SCIENCE DEPARTMENT

REPORT NO. CS183

MACHINE LEARNING THROUGH SIGNATURE TREES.

APPLICATION TO HUMAN SPEECH.

by

George M. White

ABSTRACT: Signature tree "machine learning", pattern recognition
heuristics are investigated for the specific problem of

computer recognition of human speech. When the data base

of given utterances 1s insufficient to establish trends
with confidence, a large number of feature extractors

must be employed and "recognition" of an unknown pattern

made by comparing its feature values with those of known

. patterns. When the data base 1s replete, a "signature"
tree can be constructed and recognition can be achieved

by the evaluation of a select few features. Learning

: results from selecting an optimal minimal set of features

to achieve recognition. Properties of signature trees
and the heuristics for this type of learning are of
primary interest 1n this exposition.

The research reported here was supported in part by the Advanced Research

Projects Agency of the Office of the Department of Defense (S8D-183), and
in part by a Public Health Service Post Doctoral Research Fellowship.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: Full size copy $3.00; microfiche copy $.65.

LC

”

-

| |

PREFACE

The purpose of the work reported here has been to develop a

computer program for manipulating signature trees as a gen-

eral research tool for exploring machine learning and pattern

recognition. Application of the program to speech recogni-

tion was done simply to test its effectiveness for a specific

problem. Other areas of potential utility are visual pattern

identification and time series analysis.

A signature tree 1s a bilnary decision tree used to classify

unknown patterns. At any node in the tree, the decision to

take a particular branch 1s determined by a single feature in

the unknown pattern. The tree 1s automatically generated

during the Yearning" phase of the program; and during the

: "identification" phase, the tree completely controls feature

extraction procedures.

The signature tree method was devised 1n an attempt to genera-

lize and extend the signature table machine learning technique

a developed by A. L. Samuel for checker playing.

The program may be viewed as a means of testing of hypotheses

about characteristic features of patterns. This 1s accomplished

by program selection of a small set of features from a user

supplied list. In a manner of speaking, the user "suggests"

a set of features that may be sufficient for recognition and

then the program selects the "most useful" suggestions and

—o—

7

applies them 1n the proper order to achieve the recognition

in the fewest number of steps. Just how the program deter-

mines which user supplied suggestions are, 1n fact, the "most

useful", 1s determined by the heuristics associated with the

signature trees. The most useful trees in terms of speed and

accuracy are trees with the smallest number of nodes as 1s ex-

: plained in the main test.

Several notions from my personal philosophy of artificial 1in-

telligence have guided the development of the program,

(1) Hyperplane selection, data base analysis, and

tree generation are all accomplished through a

single recursive procedure.

(2) The program accepts "advice" through the user

supplied hypothesis list.

(3) Generality and flexibility are innate since the

program can process any data bases stored

in reasonable formats and since the program

forces the user to supply his own feature ex-

tractors.

(4) Although time has not permitted the implementation

of a signature tree language, this 1s the intended

next step.

The author has found that the system can be quite

-3=

helpful in identifying functional sets of fea-

ture extractors. It effectively eliminates re-

latively useless feature extractors while pre-

serving the useful ones. It also circumvents

the need to explicitly consider the order of

application of the extractors since the signature

tree heuristics determine the ordering.

d=

|

INTRODUCTION

Limited speech recognition by adaptive signature trees 1s be-

ing investigated. Motivation for this work comes from the

success of the signature table method as employed by Samuel

in his research on machine learning using the game of checkers.

The signature tree heuristic requires a data base of known

"template" patterns stored in an array which we shall here-

after refer to as the lexicon. By applying feature extractors

to all the patterns, the lexicon can be reordered to place

patterns with similar features 1n the same portion of the lexi-

con. This reordering reduces search time for finding an entry

in the lexicon when used with an appropriate 1ndexing scheme.

On one extreme, the existence of a single feature value (or

lack of 1t) can be used to order the utterances 1n the lexicon

so that all utterances 1n a specified portion of the lexicon

have (or do not have) that feature value. Existence of the

feature in an unknown utterance reduces the length of the lexi-

con search but does not eliminate the need for a search. On

the other extreme, the one of primary interest here, a suffi-

. cient number of features can be utilized to eliminate the need

for a search entirely.

—5—

EE

Significant increases 1n speed of lexicon searches can be

obtained by utilizing the signature tree indexing heuristic.

This increase 1n speed results from eliminating redundancy

as will be explained shortly. However, since redundancy is
often useful to correct identification, there can be a cor-

responding decrease 1n accuracy.

The method has been applied to computer recognition of human

speech. It has achieved an identification rate of 5 utter-

ances per second (not including preprocessing time) with 90%

correct 1dentification for short lists on a DEC PDP-10. This

1s quite fast but the accuracy 1s not especially good. How-

ever, machine learning 1s the subject of greatest interest

here and the method does very well 1n this respect. For

example, training on a list of twenty-two different utter-

ances, each spoken once, enables the machine to correctly

predict only 50% of the words spoken again by the same speaker.

But when the training data consists of four examples of each

utterance (for a total of 88 utterances), the percentage

correct rises to 90%. When an exhaustive search 1s made of

the-lexicon rather than using signature tree indexing, the

score rises to between 95% and 100%. However, the exhaustive

search 1s about 30 times slower in this example.

While 1t was originally intended that Samuel's form of the

signature tables be preserved in the speech work, preliminary

| 6

studies carried out by Samuel and Astrahan and 1independent-

ly by the author indicated that significant modifications 1n

the method were needed for speech.

The author made at least four" (4) major modifications in the

method: (1) The size of an individual signature table was

reduced to two entries indexed by a single 1nput parameter.

(2) The selection of the single 1nput parameter to a table

became dynamically adjustable during program execution (which

means that the interconnections between tables became dynami-

cally determined). (3) The terminal nodes 1n the signature

table tree pointed to entries in a data base. (4) The genera-

tion of signature tables was done by a recursively defined

function. These changes and others led to basic departures

from signature table approach to machine learning. In fact,

the changes culminated 1n new heuristic methods which are

collectively known as the signature tree heuristics.

Special attention will be paid to Samuel's approach after a

; description 1s given of the present technique.

1.1 Feature Space: Let the lexicon contain M different

pattern classes, e.g., M different words. Let there

be N feature extractors. The N feature extractors re-

turn feature values that allow the pattern classes to

be represented in an N dimensional feature space. An

example of a feature extractor 1s a subprogram that

measures the area under a curve or counts the number

of maxima in a 'curve.

=]—

Let £, be the integer value returned by feature ex-
1]

tractor j when applied to a pattern of class 1. For

example, fig might be the integer returned for the

utterance number 1, e.g., "Hello",by subprogram 8 that

perhaps counts the number of syllables. (Note well

that "feature extractor" 1s used here to mean a subpro-

gram that returns an integer, not real, value for the

measured feature.) F, = £,.V, + £..V. + . ..£.V
i i111 12 2 iN N

where 1< i = M. The V's are mutually orthogonal
1 1 02 L J 7 —_ \,

unit vectors, 1.e., Vv. Vv, Cp of; stands for
the ensemble average of f . that 1s:

11

Cy k; |
QEPRTn=1

where k, 1s the number of times a pattern belonging to

class 1 appears in the lexicon and £5) is the integer
value returned by feature extractor j for the nth occur-

rence of a pattern 1n class 1.

4.2 Pattern Classification by Minimum Absolute Difference

Error: The absolute difference error, e (F), for any
1

~ vector F, 1s defined by

[ad N nd

ei =), | (fe - fic) | = (& - f|k=1

Suppose that the array, fj; has been filled for all 1
and J values. Then the class of an unknown pattern G

can be 1dentified as that value of k for which ey, (G) 1s

minimized where 1% k<M. For a point of reference,

-8-—

this 1s what would be done in an exhaustive lexicon

search 1f the lexicon contained only average feature

values for each class. Since the expectation of an

exact match between an unknown pattern and any of the

templates 1s nearly zero, the entire lexicon would be

searched for the best, though not perfect, fit. The

best match would be defined to be the one that. produces

the smallest absolute error.

The minimum absolute error criterion for 1dentifying

patterns has a geometrical 1nterpretation which goes

as follows:

The cluster center of a pattern 1 in the N dimensional

feature space 1s located by F, where
N

Gy) Gy)
=r

The problem of identifying an unknown pattern 1s solved

by finding the cluster center closest to the feature

) space point of the unknown. The nearest cluster center

to the unknown 1s that value of k that minimizes ey. (G) |

This method, which 1s based on the utilization of average

feature values, improves 1ts performance as the number

of samples increases, since the mean feature values are

improved. This provides an alternative to an exhaustive

search of a lexicon containing every sample as a unique

point in feature space. Surprisingly the large increases

—9-

:

in lookup speed and savings 1n core storage obtained

by averaging are accompanied by little loss of accu-

racy. (The conditions under which a lexicon of aver-

age feature values 1s just as accurate as the full

parent lexicon are not well defined. This should be

investigated. However, we do not attempt to do so

here.)

So far, no explanation has been made of signature tree

heuristics, but we are now in a position to consider

them. -

2.1 Signature Trees: Signature trees are binary decision

trees used to partially or totally identify patterns.

Distinctive features of an unknown pattern are used

one at a time to index the sequence of nodes which com-

pose the tree. The terminal nodes of the tree point

to lexicon entries that either identify the pattern or

restrict the number of candidates. Automatic genera-

tion of the "best" tree, the tree with the greatest

expectation of correctly identifying new patterns, is

+ a primary goal of this research.

Before tree generation can start, a number of represen-

tative patterns, appropriately identified, must be

avallable in the lexicon. Algorithmic feature extrac-

tors can then be applied to all patterns 1n the lexicon

~ -lo-

to produce measurements of features.

2.2 Introduction to Tree Generation: Let 8 be a Subset
of m integers selected without replacement from the

set S of the first M positive integers 1, 2,...M,1

<m< M. A simplified version of the signature tree

method 1s based on the following hypothesis: Given

I the array FY 1= i=M, 1< 3j%£ N, for some ‘specific
| value of j, call it k, the following 1s true:

(tay <x < (on
| where-y 1s any element of the set S and h 1s any one

of the remaining elements in 5-5 Restated, there

exists a feature k that serves to partition the set of

all pattern classes into two nonempty subsets where

one subset 1s composed of all pattern classes that have

average feature values less than x and the other subset

1s the compliment of the first.

Restated again, all pattern classes do not return the

same average value for feature k and so we may choose

a number x such that some average feature values will

be larger than x and some will be smaller. This fact

can be used to reorder the entries 1n the lexicon of

average feature values. For instance, all patterns in

Sm could be placed below those in Sm, the compliment

| of Sm. Of the pattern classes in Sm created by fea-
ture extractor k, there will be some that can be separ-

ated further by another feature extractor. This process

-11-

can be repeated until there 1s only one pattern class

left 1n the specified lexicon range at which time the

process ends. The process 1s recursive and can be

easily programmed for computer execution. The end re-

sult 1s a tree structure, a signature tree, the nodes

of which contain the numbers x and k to 1dentify the

appropriate feature extractor and test value. The

terminal nodes point to locations 1n the lexicon where

a particular pattern class 1s stored.

The generation of a signature tree can be a good deal

more sophisticated than suggested above. As it stands,

the resulting tree 1s needlessly liable to produce

errors 1n recognition. In particular, an unknown

pattern which does not yield feature values exactly

equal to 1ts average feature values can take the wrong

branches in the signature tree. In order to minimize

the taking of wrong branches, the tree generator could

consider probablistic distribution functions of patterns

in the lexicon. It would search for test feature values

. that separate different pattern classes and in so doing

affect the other classes so as to separate a minimal

number of elements from other elements of the same

class. This heuristic which perhaps seems intuitively

clear has an information theoretic justification which

1s given below.

-12-

|

2.3 Trees that Extremize Entropy: A definition of an "op-

timal" set of hyperplanes can be given in terms of

minimizing and/or maximizing entropy (or the informa-

tion theoretic H). Maximizing H, the information con-

tent, 1s the same as minimizing entropy, S.

Let the information in the lexicon serve to determine

i p(k,£54), the probability density of £55 for ail 1 and
| j. The integer k is a dummy index that runs over the

| range of values allowed for £4 (Feature values, the
| fi4' Sr are integers that typically range from 0 to 15.)

If we-restrict the value of a particular feature and

allow all the other feature values to remain free, we

have specified a hyperplane in the N dimensional space.

Let this plane be definedby HP(B,b) where B is the

parameter number and b 1s the value of the parameter.

P;(f.n< b) is the probability that pattern i has feature

values less than b for feature B.

bh-1

Piffip <b) =), Plfip)
k=0

and

bmax in)

Pig = b)), p(k.fig)
k=b

-13-

b max Lip) is the maximum value permitted for ff... We

define the entropy, S, of the hyperplane HP (B,b) as

M

$=-) Piyfig = b) In P; (fig = b)
i=1

M

-) Piffig < b) In Py (fig < b)
i=1

The hyperplane that produces the minimal entropy, S,

which 1s the maximum information H, 1s defined to be

the "best" hyperplane for discriminating between differ-

ent patternclasses. This 1s the hyperplane that would

be used at the node in the signature tree. Hyperplanes

that yield the minimal entropy tend to split a minimal

number of class clusters and those classes that are

split have a minimal number of elements split from like

elements. Trivial hyperplanes that separate no classes

but do yield minimal entropy values must be thrown out:

The criterion for hyperplane acceptance 1s that clusters

centers must lie on both sides of the hyperplane. A

simple verbal statement of the entropy minimization ar-

gument 1s as follows: The goal 1s to separate a minimal

number of like points 1n feature space with hyperplanes

that separate different points.

We have just defined the entropy of a single node in a

tree. But what about the entire tree? Is the entropy

of the entire tree simply the sum of the node entropies?

~14-

The answer 1s no. Moreover, minimizing the entropy of

entire tree 1s not necessarily the thing to do. Minimiz-

| ing the entropy of the entire tree would tend to produce
| long skinny trees. But short fat trees can be Just as
| accurate as the skinny ones and in addition have a shorter

mean traversal time. So entropy extremization for the

1 entire tree and entropy extremization at nodes are opera-
§ tionally dealt with 1ndependently.

For the sake of completeness, a recursive formula 1s

given for the entropy of a tree branch. From this the

| entropy' of the entire tree may be generated.

| Let the level of tree nodes be labeled so that the root
node level 1s 1: the next node level is 2, etc. Choose

| a node at level n. 8S 4. (n,1) is the entropy of this
node for pattern class 1. s®(n,1) is the total of the

! branch

node entropy for pattern class i, S de (n,i), and all
other contributions from the nodes below that node that

| are on the k branch, where superscript k indicates

| that the branch that contains the node n is the right or
| left branch from the node at n - 1.

Sf ranch (0) =) Sf ranch @:1) B) Shode 1) *) P(g < b,n) Spranch @+1:1)| i

+ L P(t,, = bn) SyCanc1 4D)

-15-

|

Returning to the topic of entropy extremization, note

that hyperplanes that lie between a maximal number of

different pattern classes tend maximize tree entropy.

The entire hyperplane selection process could thus be

based nn an entropy mini-max principle. However, we

shall not pursue this possibility now.

2.4 Tree Shape, Accuracy and Speed: If there are M pattern

classes to be separated, then the smallest binary tree

that can produce this separation has M-1 nodes, regard-

less of shape.

Proof: It 1s required that exactly M pointers to group

identification lists be produced by a tree of

binary nodes. Let there be M binary nodes. Each

node has one input channel and two output channels.

All but one of the nodes have thelr input channels

connected to other nodes, so m-1 of the 2M output

channels are used for internode connections.

This means that m+l channels are available for

pointers to group identification lists. Hence

: m+l = M. Thus the smallest number of binary

nodes that can separate M groups 1s M-1 regard-

less of the way they are interconnected.

If the tree has one terminal node, then the tree is a

linear list (and it 1s quite "skinny"). The mean number

of nodes traversed before locating a specific pattern

-16-

class 1s, therefore, (M-1)/2.

| If every tree node points to another node wherever

| possible, then the resulting tree is as "fat" as possi-
| ble. If M = 2%, where M is the number of classes to be

separated, then there are M/2 terminal nodes, and the

number of nodes traversed in locating a pattern is exactly

All trees have shapes between the above two extremes

(fat and skinny). If T is the mean number of nodes

traversed, then In M$ T<£ M/2 for any binary tree
| using the minimal amber of nodes.

It 1s conjectured that maximizing tree entropy (as dis-

tinct from node entropy) as mentioned at the end of

section 2.3, minimizes T, the mean number of tree nodes

that need to be traversed to find a specific pattern

(provided that the maximization proceeds under the con-

straint of utilizing only those hyperplanes that pro-

a duce a minimal number of nodes). It may be possible to

rigorously prove. this in some simple way but to do so

1s not attempted here.

The plausibility argument goes as follows: Minimizing

tree entropy tends to create skinny trees and maximiz-

ing tree entropy tends to create fat ones. We have

just seen that fat trees have smaller T values than

skinny ones. Therefore, maximizing tree entropy tends

-17-

to minimize T.

In summary, the shape of the tree has no relation to 1ts

discriminatory power but doesaffect the mean number of

nodes that must be traversed 1n pattern classification.

2.5 Sizes of Trees: In section 2.4, we found that the small-

est number of nodes 1n a binary tree with M terminal

branches (pointing to M pattern classes) is M-1. Achiliev-

ing this minimal tree size 1s the desired goal but not

always attainable. The actual tree size 1s determined

by the feature space. If different classes do not tend

to occupy different portions of feature space then dis-

crimination 1s difficult and the tree size 1s large.

Figure 1 shows two examples of patterns in a two dimen-

sional feature space.

B, B,
bs

A A a le
- - - - - “b, — == = —— —),

C C C A
I

LL Bs
I II

Fig. 1. Two hyperplanes are avallable, b, and h,.
In case I, bl 1s sufficient to dtscrimifiate
between patterns A and B. But in case II
both bl and b2 must be used.

-18-

For the sake of illusration, we assume that only two

hyperplanes are available, H(Bj,b1) and H(By,b2). The

lexicon contains four pattern elements, two of class A

| and two of class C. In case I of Figure 1, a single

node tree using H(B1,b1), is all that is needed to separ-

oc ate class A from class C. But in case II, both hyper-

| planes are needed. The corresponding trees are shown
in Figure 2.

| H (85, by)
| - A |

lL «dun

H(B,,b,) . E H(B1,bY) Na 3 €
C | C

NL - 0 aN pd 0
N H(B2,by)

I II

| a Fig. 2. Tree structures and lexicons used to
separate patterns A and C as shown 1n
Figure 1.

| | : The point of the illustrations in Figure 1 and Figure 2
| | 1s that the feature space representation of patterns

directly determines the tree size. If we assume that

a none of the n pattern classes exist such that]

like class elements are nearest neighbors to each other

in the feature space, then it 1s possible that the number

-19-

of hyperplanes required for total discrimination could

be as large as n-1. But n-1 1s an upper limit.

Example: A lexicon of 1000 utterances containing

only 22 different words could require as

many as 999 hyperplanes. On the other

extreme, 1t could achieve total discrimina-

tion with only 21 hyperplanes.

In general, the maximum number of signature tables

possible 1s x where:

1) x 1s one less than the number of samples in the

lexicon, or

2) xX = 2b where b 1s the number of bits used

to represent a point in feature space.

Case 1 applies 1f the number of samples 1s less than

2°. otherwise case 2 applies. For example, if there

- are 10 feature values, each ranging between 0 and 7,

thus using 3 bits, then the number of bits, b, used to

represent a point in feature space is 30. If there are

10% sample patterns in the lexicon then case 1 applies
4

because 230 10 .

Conjecture: The effectiveness of the feature space in

classifying patterns 1s reflected in the

size of 1ts optimal signature trees: the

smaller the trees, the better the space.

-20~-

This can be understood as follows. Let the total

volume of feature space be partitioned first into

n subvolumes and then into m subvolumes where m> n.

On the average, a randomly located feature point in

the m space will be closer to a partition than a ran-

domly located feature point in n space. Thus any

"noise", fluctuations, in the location of the feature

point 1s more likely to carry 1t across a partition

boundary in m space than in n space. If the subvolumes

are created by the hyperplanes of the signature tree,

then the larger subvolumes created by smaller trees

are clearly less susceptible to error producing noise.

This fact glves rise to the following heuristic:

The primary goal of the signature tree method is to

guide the construction of a feature space that mini-

mizes the tree size, and, 1f possible, produces a

tree with only M-1 nodes where M 1s the number of

pattern classes.

-21-

3. DATA BASES AND LEXICONS

The data base 1s a computer file containing relatively unre-

fined data compared to a lexicon which 1s a more compact ver-

sion of the same file. The lexicon exists explicitly for the

purpose of identifying patterns and is usually constructed

after some sort of preparatory analysis of the data base.

3.1 Data Base: In the research on speech reported here, the

data base 1s a one-dimensional array containing M utter-

ances, for a total of 25*M words of array storage.

The first word in each 25 word block 1s reserved for a

pattern label which 1s identification number or symbol.

(This 1s sometimes called the "key" by other writers.)

The next 16 words contain digitized amplitude and zero

crossing values for an atvarancs. Amplitude and zero

crossings are recorded every 10 milliseconds with averag-

ing over the 10 millisecond intervals by a hardware pre-

processor. A typical utterance 1s "How are you?" and

lasts about one second. However, most utterances can

. still be recognized when averaging 1s 1ncreased to cover

much longer time intervals. For instance, an entire

utterance regardless of 1ts length can be scaled to fit

into 32 time units for our work with no apparent loss of

key features. There are three zero crossing and three

amplitude measurements per time unit, each using three

bits, for a total o0f*18 bits. PDP-10 computer words

-22~

have 36 bits. Consequently, the entire utterance 1is

stored in 16 computer words.

The remaining 8 words 1n each 25 word block are used

for storage of global features of the utterance. Glo-

bal features are measured as required during growth of

a signature tree and stored within a byte field of one

of the 8 words.

3.2 Lexicons: The lexicon used for identification of utterances

could be the entire data base, or it could consist of the

utterance label and one or more of the eight words of

global feature values; or 1t could be nothing more than

the utterance label. The reason that the lexicon can be

nothing more than pattern labels 1s that the information

for discrimination 1s contained in the signature tree

structure. Significant savings in storage can result

from using a lexicon of utterance labels and the appro-

priate signature tree, 1n place of the full data base.

For example, let there be a list of 22 words each spoken

4 times for a total of 88 utterances. Let n be the number

of data base words per pattern and M be the number of

classes. In this case M = 22. Let the mean number of

sample patterns per class be m. In this example, m = 4.

It 1s possible to reduce the storage requirements from

n*m*m for the full data base to (M-1)*2+M. The (M-1)*2

term comes from the fact that each of the (M-1) nodes in

the signature tree uses two computer words. The M term

~23=

1s the number of computer words required by the lexi-

con of utterance labels. The storage reduction 1s

M(n*m-3)+2. If we set m = 25, then the storage require-

ment could be reduced from 2200 to 64, which 1s 1mpres-

sive. Achieving this maximum reduction depends upon

the feature extractors and the hyperplanes they generate.

But the maximum reduction noted in this example 1s fre-

quently attained in the applications reported 1n section

6.

The savings—-1in storage 1s one of the most interesting

and potentially useful aspects of the signature tree

method especially for large vocabularies and/or a large

number of different speakers.

-24~

4, FEATURE EXTRACTORS

A feature 1s defined to be anything in a pattern that can be

measured. A feature extractor 1s a subprogram that measures

a feature and returns an integer value. (The restriction to

integer feature values 1s not a universal convention; 1t 1s

used here because the feature values are used for array index-

ing more than anything else.)

For example, let the pattern be a two-channel time series.

The features could include: number of maxima and minima;

slopes greater or smaller than X: areas under curves; ratios

of areas; distances between adjacent minima; second deriva-

tives; moving averages; fourier power spectra averaged over

a given frequency range: autocorrelations; cross correlations;

the kitchen sink. Feature extractors would return scaled in-

teger values for each of these features.

~-25-

5. SAMUEL'S SIGNATURE TABLES

The signature table technique 1s a perceptron-like ‘2’ pattern

classification method. It 1s based on a sequence of table

look-up operations where each table 1s a multi-dimensional

array. An individual signature table can be viewed as an n

dimensional hyperplane 1n an m dimensional feature space,

where n 1s equal to the number of input parameters to the

table and m 1s the total number of parameters available to

all the tables. The array indexes for any given table are

specified by previous tables or by feature measurements per-

formed directly on a pattern.

Samuel uses signature tables to evaluate the relative merit

of various board positions in the game of checkers. A small

set of board parameters, e.g., 12, are used as input variables.

A typical arrangement might have three first level tables, each

table having four input parameters, with each input parameter

coming from a board feature measurement (such as "piece count").

Each level one table would contain integer values that would

serve to 1ndex one or more of the tables at the next level. At

"level two", one or two tables would operate in the same way

as level one tables except that thelr input would come from

level one tables. Their output would index yet another table

which would contain the "score", where the score gives the re-

lative value of the board pattern being examined.

-26-—

Initially, the signature tables are empty. They are filled

during the "learning" stages of the program. The data used

in learning can be discarded once 1t has been processed since

the number of times a pattern projects onto a hyperplane is

| recorded 1n a cell on the hyperplane at the point of 1nci-

dence. For this method to have any hope of success, the

different tralning patterns projectedon a hyperplane must

tend to fall on different portions of the hyperplane. Other-

wise, when an unidentified pattern falls on a polnt on a

hyperplane, no information could be gained to help identify

it. When the user does not possess a preconceived notion

for the appropriate hyperplanes, and he usually does not,

then the real problem becomes one of finding appropriate

groupings of input parameters, It was precisely this pro-

blem that led to the signature tree system. The signature

table method provides no means of automatically connecting

individual tables dynamically. And not having this flexibi-

lity severely limits the application of the technique to re-

; search problems. This shortcoming 1s eliminated in the

signature tree technique developed in this paper.

-27~

0. APPLICATION TO SPEECH HECOGNITION

Moderate success has been attained in the application of the signature

tree method to speech recognition. An accuracy of around 90% was obtained

for the twenty-two different utterances used in the training runs. For

such a short list of utterances this accuracy 1s not particularly good, by

itself; but it becomes interesting when the speed, "learning" properties,

and flexibility of the program are considered.

Speed: The through-put identification rate is five to ten times faster

than the excellent programs of Astrahan (3); and Vicens and Reddy. (¥ (How—

ever, their programs identify word lists three to five times longer and

with higher accuracy than this one. If the present program were used on

the longer lists, 1ts speed advantage would be somewhat diminished.)

Learning: An improvement in the correct 1dentification rate of nearly 40%

1s observed as the number of examples of each utterance increases from one

to four. This 1s probably the most outstanding success of the program.

Flexibility: New hypotheses and changes 1n data base formats can be en-

tered in only a few minutes, the time 1t takes to type in a subroutine.

This should increase the fabrication rate of good feature extractors and

ultimately lead to superior speech recognition.

A few of the SAIL procedures used to assist in feature extraction are as

follows (their names give the flavor of their intended function):

-28-

|

TOTAL ENERGI_PER TIME UNIT, FIND MAJOR CHANGES_IN_TOTAL ENERGY,

ALL CH AREZERO, ALL CH HAVEENERGY, FINDMINIMUMIN_ ENERGI_PER-

CH, MOVING AVERAGE, ENERGI BETWEEN MINIMA, TOTAL_E AROUND-MAX-

PEAK, FIND_ RANGE OF _VOWEL, COUNT_MAXIMA, FORM-CHANNEL-RATIOS,

COMPACT-UTTERANCE, and GENERATE-TEMPLATE.

The entire program is written in PDP-10 SAIL. In the actual runs, to

avoid disc storage problems, the entire data base of 10 speakers was seldom

used; most experiments were done with the five pronunciations of the utter-

ance list by Lee Erman. This required DATA BASE core array storage of 2750

thirty-six bit computer words.

A typical machine "learning" experiment 1s carried out as follows: The

first 550 DATA BASE words, which contains the first 22 utterances, 1s pro-

cessed. Various feature extractors are applied in the order determined by

the user through a list prepared with the STOPGAP text editor. When a fea-

ture value 1s found that serves to separate one or more of the 22 utter-

ances from the rest, then a tree node 1s created and the number of the fea-

. ture extractor is stored in the node: Also stored in the node are pointers

to the top and the bottom of the DATA BASE sublists created by the feature

value (see Figure 3).

-20-

oo

EEE

19 13 etHiss SUEa ———— | |

node 20

oC 2

Fig. 3. Terminal tree node that separates utterances one and

two from utterances three through twenty-two.

Since there 1s only one data point for each utterance class, finding

hyperplanes that lay between different utterance classes 1s virtually

assured. In practice, the resulting signature trees nearly always have

only 21 nodes (as would be predicted). When tested on utterances 89

through 110, which is the fifth set stored from 2225 through 2750 in

DATA BASE, the scores are usually 50% correct. When the system is fur-

ther trained with utterances 1 through 44, a 21 node tree usually results

and its scores are centered on 68% correct when tested on utterances 89

through 110. Learning on utterances 1 through 66 gives 77% correct, and

learning on utterances 1 through 88 gives 86% correct. This 1s always

accomplished with fewer than 30 nodes per tree.

Plotted in Figure 4 are average scores for the tree method and the ab-

solute minimum error method.’

-30-

loo :

O oO Oo 0

90 - 0

A

80— g

A

70

A

60

A

50

2 3 4 S

Fig. 4. Average percent correct plotted vs. the number of training

samples for each utterance. Absolute minimum errors are

"0"'s: trees are" "1.

The 100% score for the tree method on sample set 5 1s a consequence of the

fact that the same utterances were used in training as were used 1n identi-

fying the utterances.

As a point of comparison, the mean feature values were tabulated for the

.° first 22 utterances determined, and utterances 89 through 110 were then

processed as unknown utterances, and predictions were made using the least

absolute error criterion. Scores ranges from 85% to 95% for several sets

of feature extractors. Similarly mean values were tabulated for 44, 66,

88 and 110 utterances and then tested on utterances 89 through 110. The

result 1s shown in Figure 4. The minimum absolute error approach was more

accurate simply because 1t incorporated more redundancy. But the speed ad-

vantage of the tree method stood out clearly; the minimum absolute error

approach took between 20 and 30 times longer 1n the identification phase

- 3]1-

i

oo

than the tree method did.

The values plotted in Figure 4 are averages obtained from ordering the

trial feature extractors differently and/or omitting certain feature ex-

tractors. However, these results represent optimal overall performance

combinations of features.

Table 1 is computer output which shows the 22 utterances given in the

data base along with response of the program for a particular run. The

program correctly identified 19 of the 22 utterances, 1t used a tree with

22 nodes (signature tables) ; 88 utterances were used 1n growing the trees

(four examples of each utterance); a maximum of 400 hyperplanes were avail-

able to the program from which 1t selected 22 to grow the tree. The four

columns of numbers show which utterances were put 1n the same hypercell by

the tree hyperplanes. For example, the cell that is pointed to by the key

features of utterance 89 in the data base, which happens to be the "make"

in column one, is a cell containing four 1's. Consequently, utterance "1",

which 1s the numeric identifier for "make", 1s predicted and "make" is

written in column two.

If the cell contained more than one utterance class, e.g. 1 1 1 2, then

the utterance which occurs the greatest number of times 1s predicted; in

this example, utterance 1 would be predicted. However, a cell with more

than one utterance class will occur only when there are no hyperplanes to

separate the classes. In the case shown in Table 1, all the cells (there

are 23 of them) contain only one utterance class each. Furthermore, only

utterance 22 failed to lie totally in one cell.

-32-

| Tablel

THE TOTAL NUMBZR OF SIGNATURE TABLES =22

THE TREE STRUCTUREAND DATA BASE ARE FROM FILE TREZD
THE NUMBER OF UTTERENCES I N THz TRAINING SAMPLE=88

THE BEGINNING UTTERENCE NUMBER IS 89

THE ENDING UTTERENCE NUMBER IS 110

THE MAXIMUM DEPTH PERMITTEDIN TRAINING = 400

GI VEN UTTERENCE UT PREDI CTED

KAKE MAKE 1 1 i 1

: UNI TE UNI TE 2 2 2 2

DELETE DELETE 3 3 3 3

ONE ONE 4 4 4 4

"EI GHT EIGHT 5 5 5 5

THREE ~ GELETE 3 3 3 3

WHOLE WHOLE 7 7 7 7

GCTAL OCTAL 8 8 8 8

EXCHANGE EXCHANGE 9 9 9 9

CORE CURE 16 18 18 10

MULTI PLY MULTI PLY 11 11 11 11

SIX SIX 12 12 12 12

SUBTRACT UNITE fa 2 2 2

) SCALE MAKE 1 1 1 1

CIRECTIVE DIRECTIVE 15 15 15 15

QUTPUT OUTPUT 16 16 16 16

I NTERSECT I NTERSECT 17 r1 17 117

REGISTER REGI STER 18 18 18 18

FINE, THANK YOU FINE, THANK YOU 19 19 19 19

GOOD MDRNI NG GOOD MORNING 20 20 20 20

HOW ARE YOU HOW ARE YOU 21 21 21 21

EXCUSE ME EXCUSE ME 22 22 22

-33-

A tree that contains only one utterance class per cell will correctly

identify all utterances used in the training set. If the tree of this run

had been used to identify utterances 1 through 110, it would have missed

only 3 utterances, the same number it missed on utterances 89 through 110.

Great effort was expended optimizing the speed of the program and with

good success. For example, to grow the tree for this run, which required

testing some 400 hyperplanes and 88 utterances, required only one minute

PDP-10 compute time. The identification of the twenty-two utterances, 89

through 110, required about 10 seconds.

Many variations on this basic scheme were tried; one in particular yielded

91% correct prediction scores. The trick here was simply to simultaneous-

ly employ three or more signature trees grown on the same training data

but forced to use different hyperplanes. This provided something of a "re-

dundancy" check; it helped to eliminate the effects of "noisy" measurements.

Figure 5 shows a typical utterance that has been compacted for storage in

the DATA BASE. There are six variables Al, 71, Boy Zo, LEVEY each of
which can assume eight values between 0 and 7.

-34-

oT |—- -
~ Lr

|

i |
i

I Fol P= —
Cd 8 16 24 3

Fig. 5. Amplitude and zero crossing versus time for each of the

three speech preprocessing filters for the utterance

"register".

No normalization was attempted. The original array which typically con-

tained x=200 time units was reduced to a 32 time unit array by averaging

over x/32 + 1 time units at once and storing the result in a single time

unit and repeating 32 times. Compaction of the speech data in this

fashion, as crude as it 1s, preserved enough information for interword

discrimination.

-35-

i

“

i

’

4

:

CONCLUSIONS

When the number of labeled patterns available to train an

automatic recognition system 1s small, the predictive accu-

racy of a signature tree system 1s poor; a minimum error Cri-

terion using as many features as possible can be much more

accurate. When enough data 1s available to establish proba-

bility distributions of feature values for pattern classes,

the signature tree method allows a large 1ncrease 1n speed

of the recognition system over the minimum error approach

with little degradation of accuracy.

The signature tree method selects a minimal set of feature

extractors from a large set supplied by the user. In this

fashion, the man-machine unit "learns" which features are

the most useful in pattern discrimination. For particular

types of patterns, e.g., those arising in speech or vision

research, general "front end" feature extractors will pro-

bably be discovered that will greatly increase the overall

. power of the signature tree method.

Presently under development are two major additions to the

- signature tree heuristics repertoire: a linear discriminant

preprocessor which forms linear combinations of feature

extractors,and a technique for copying nolsy patterns into

both of the sublists created by a feature value. Forming

linear comblnations of input parameters increases the number

of hyperplanes available for creating tree nodes. As the

~36-

|

system stands, 1t only uses hyperplanes perpendicular to

the coordinate axes. Linear combinations of features will

create "skew" hyperplanes. The other addition, that of

duplicating patterns so to make them appear on both branches

from a node, 1s expected to greatly reduce errors resulting

from "noise" (random fluctuations) in parameters.

The spectacular learning rate (a 40% increase 1n the number

of correct identifications 1n the course of increasing the

number of exemplary samples per utterances from one to four)

is somewhat artificial. By utilizing a combination of the

minimum error criterion and the signature tree technique (in-

stead of simply using the signature tree), a much higher

score could have been obtained at the outset, thus lessening

the range for possible improvement. In this case, a shift

in emphasis from score optimization to speed optimization

would be appropriate. Using the minimum error criterion

slows the identification rate significantly but improves

accuracy. Increasing the number of samples 1n the training

set allows the signature trees to function more accurately,

thus allowing the trees to replace the minimum error criterion,

which results 1n an overall increase 1n speed. So, the "learn-

ing" aspect of the signature tree method can be applied to

optimize speed or accuracy depending on how 1t 1s used.

-37-

Automatic Control Systems ’ theory is closely related to the signature

tree method. In particular, the control systems field has produced a number

of algorithms for generating "decision surfaces" in hyperdimensional fea-

ture spaces, e.g. linear, polynomial and statistical discriminant functions.

While the signature tree heuristics presented here offer little help in

generating binary discriminant functions control theory offers little help

in combining a large number of binary decisions. However, an ideal total

system 1s possible with the binary discriminant functions serving to supply

trial hyperplanes to a signature tree generator. a symbiotic union of

automatic control systems with signature trees seems likely and 1s being

investigated by the author.

-38-

n

ACKNOWLEDGEMENTS

| The author would like to thank A. L. Samuel for encourage-

ment, guidance and inspiration for this work on signature

trees. Enlightening conversation about automatic speech

recognition with Raj Reddy 1s also greatly appreciated.

| Gratitude 1s expressed to John McCarthy and Les Earnest

a for providing a free and stimulating environment for this

research.

—-— 39=-

: THR muta eTSree

BIBLIOGRAPHY

1. Samuel, A. L., Some Studies in Machine Learning Using the Game of

' Checkers. II = Recent Progress, IBM J of R&D. 3, #6, 601-617,
Nov. 1967.

2. Minsky, Marvin and Seymour Papert, Perceptions, The M.I.T. Press,
1969.

} 3. Astrahan, M. M., Speech Analysis by Clustering or the Hyperphoneme
Method, A. I. Memo 124, Stanford Artificial Intelligence Project.

4, Vicens, P., Aspects of Speech Recognition by Computer, A. I. Memo
85, Stanford Artificial Intelligence Project.

3. Fu, King-sun, "Learning Control Systems - Review and Outlook",

IEEE TRANS. Automatic Control, Vol. AC-15, No. 2, p. 210-221,

April 1970.

-40-

|

