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PREFACE

The purpose of the work reported here has been to develop a
computer program for manipulating signature trees as a gen-
eral research tool for exploring machine learning and pattern
recognition. Application of the program to speech recogni-
tion was done simply to test its effectiveness for a specific
problem. Other areas of potential utility are visual pattern

identification and time series analysis.

A signature tree is a binary decision tree used to classify
unknown patterns. At any node in the tree, the decision to
take a particular branch is determined by a single feature in

the unknown pattern. The tree is automatically generated

during the Yearning" phase of the program; and during the

"identification" phase, the tree completely controls feature

extraction procedures.

The signature tree method was devised in an attempt to genera-
lize and extend the signature table machine learning technique

developed by A. L. Samuel for checker playing.

The program may be viewed as a means of testing of hypotheses

about characteristic features of patterns. This 1is accomplished
by program selection of a small set of features from a user
supplied list. In a manner of speaking, the user "suggests"

a set of features that may be sufficient for recognition and

then the program selects the "most useful" suggestions and
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applies them in the proper order to achieve the recognition
in the fewest number of steps. Just how the program deter-
mines which user supplied suggestions are, in fact, the "most
useful", 1is determined by the heuristics associated with the
signature trees. The most useful trees in terms of speed and
accuracy are trees with the smallest number of nodes as is ex-

plained in the main test.

Several notions from my personal philosophy of artificial in-

telligence have guided the development of the program,

(1) Hyperpfane selection, data base analysis, and
tree generation are all accomplished through a

single recursive procedure.

(2) The program accepts "advice" through the user

supplied hypothesis list.

(3) Generality and flexibility are innate since the
program can process any data bases stored
in reasonable formats and since the program
forces the user to supply his own feature ex-

tractors.

(4) Although time has not permitted the implementation
of a signature tree language, this is the intended

next step.
The author has found that the system can be quite
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helpful in identifying functional sets of fea-
ture extractors. It effectively eliminates re-
latively useless feature extractors while pre-
serving the useful ones. It also circumvents

the need to explicitly consider the order of
application of the extractors since the signature

tree heuristics determine the ordering.






INTRODUCTION

Limited speech recognition by adaptive signature trees is be-
ing investigated. Motivation for this work comes from the
success of the signature table method as employed by Samuel1

in his research on machine learning using the game of checkers.

The signature tree heuristic requires a data base of known
"template" patterns stored in an array which we shall here-
after refer to as the lexicon. By applying feature extractors
to all the patterns, the lexicon can be reordered to place
patterns with similar features in the same portion of the lexi-
con. This reordering reduces search time for finding an entry

in the lexicon when used with an appropriate indexing scheme.

On one extreme, the existence of a single feature value (or
lack of it) can be used to order the utterances in the lexicon
so that all utterances in a specified portion of the lexicon
have (or do not have) that feature value. Existence of the
feature in an unknown utterance reduces the length of the lexi-
con search but does not eliminate the need for a search. On

the other extreme, the one of primary interest here, a suffi-

. cient number of features can be utilized to eliminate the need

for a search entirely.



Significant increases 1in speed of lexicon searches can be
obtained by utilizing the signature tree indexing heuristic.
This increase in speed results from eliminating redundancy
as will be explained shortly. Howé&er, since redundancy 1is
often useful to correct identification, there can be a cor-

responding decrease 1in accuracy.

The method has been applied to computer recognition of human
speech. It has achieved an identification rate of 5 utter-
ances per second (not including preprocessing time) with 90%
correct identification for short lists on a DEC PDP-10. This
is quite fast but the accuracy is not especially good. How-
ever, machine learning is the subject of greatest interest
here and the method does very well in this respect. For
example, training on a list of twenty-two different utter-
ances, each spoken once, enables the machine to correctly
predict only 50% of the words spoken again by the same speaker.
But when the training data consists of four examples of each
.utterance (for a total of 88 utterances), the percentage
correct rises to 90%.. When an exhaustive search is made of
the-lexicon rather than using signature tree indexing, the
score rises to between 95% and 100%. However, the exhaustive

search is about 30 times slower in this example.

While it was originally intended that Samuel's form of the

signature tables be preserved in the speech work, preliminary
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studies carried out by Samuel and Astrahan and independent-
ly by the author indicated that significant modifications in

the method were needed for speech.

The author made at least four" (4) major modifications in the
method: (1) The size of an individual signature table was
reduced to two entries indexed by a single input parameter.
(2) The selection of the single input parameter to a table
became dynamically adjustable during program execution (which
means that the interconnections between tables became dynami-
cally determined). (3) The terminal nodes in the signature
table tree pointed to entries in a data base. (4) The genera-
tion of signature tables was done by a recursively defined
function. These changes and others led to basic departures
from signature table approach to machine learning. In fact,
the changes culminated in new heuristic methods which are

collectively known as the signature tree heuristics.

Special attention will be paid to Samuel's approach after a

description is given of the present technique.

1.1 Feature Space: Let the lexicon contain M different
pattern classes, e.g., M different words. Let there
be N feature extractors. The N feature extractors re-

turn feature values that allow the pattern classes to
be represented in an N dimensional feature space. An
example of a feature extractor is a subprogram that
measures the area under a curve or counts the number

of maxima in a 'curve.



Let £, be the integer value returned by feature ex-
1]
tractor j when applied to a pattern of class i. For

example, f18 might be the integer returned for the
utterance number 1, e.g., "Heilo", by subprogram 8 that
perhaps counts the number of syllables. (Note well
that "feature extractor" is used here to mean a subpro-
gram that returns an integer, not real, value for the

measured feature.) Fi = filvl + fi2V2 + ...ENVﬁ

where 1< i = M. The Vi's are mutually orthogonal

PN

i V.-V.=\‘... o e
unit vectors, i.e., i 3 Cij dflj stands for

the ensemblé-average of £~ that is:
11

Lk .

where ki is the number of times a pattern belonging to
class i appears in the lexicon and fij(n) is the integer
value returned by feature extractor j for the nth occur-

rence of a pattern in class 1i.

1.2 Pattern Classification by Minimum Absolute Difference

Error: The absolute difference error, e (?3, for any
1

. vector fj is defined by

N
e = ), (fik‘fk) = (F)-f'
k=1
Suppose that the arraybfij has been filled for all i
and j values. Then the class of an unknown pattern G

can be identified as that wvalue of k for which ey (G) 1is

minimized where 1= k< M. For a point of reference,
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this is what would be done in an exhaustive lexicon
search 1f the lexicon contained only average feature
values for each class. Since the expectation of an
exact match between an unknown pattern and any of the
templates is nearly zero, the entire lexicon would be
searched for the best, though not perfect, fit. The
best match would be defined to be the one that. produces

the smallest absolute error.

The minimum absolute error criterion for identifying
patterns has a geometrical interpretation which goes

as follows:

The cluster center of a pattern i in the N dimensional

feature space is located by‘F; where

~ N ~
Gy 2
=1
The problem of identifying an unknown pattern is solved
by finding the cluster center closest to the feature
space point of the unknown. The nearest cluster center

o~

to the unknown is that wvalue of k that minimizes e (c).

This method, which is based on the utilization of average
feature values, improves its performance as the number
of samples increases, since the mean feature values are
improved. This provides an alternative to an exhaustive
search of a lexicon containing every sample as a unique

point in feature space. Surprisingly the large increases
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in lookup speed and savings in core storage obtained
by averaging are accompanied by little loss of accu-
racy. (The conditions under which a lexicon of aver-
age feature values is just as”accurate as the full
parent lexicon are not well defined. This should be
investigated. However, we do not attempt to do so

here.)

So far, no explanation has been made of signature tree
heuristics, but we are now in a position to consider

them. -

2.1 Signature Trees: Signature trees are binary decision

trees used to partially or totally identify patterns.
Distinctive features of an unknown pattern are used

one at a time to index the sequence of nodes which com-
pose the tree. The terminal nodes of the tree point

to lexicon entries that either identify the pattern or
restrict the number of candidates. Automatic genera-
tion of the "best" tree, the tree with the greatest
expectation of correctly identifying new patterns, is

a primary goal of this research.

Before tree generation can start, a number of represen-
tative patterns, appropriately identified, must be
available in the lexicon. Algorithmic feature extrac-

tors can then be applied to all patterns in the lexicon
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to produce measurements of features.

2.2 Introduction to Tree Generation: Let %nbe a subset
of m integers selected without replacement from the
set S of the first M positive integers 1, 2,...M, 1
< m< M. A simplified version of the signature tree
method is based on the following hypothesis: Given
the array f. .. 1< i=M, 1< j%£ N, for some ‘specific

J
value of j, call it k, the following is true:

<?%£> <X < <§$>

where-y 1s any element of the set Sm and h is any one
of the remaining elements in S_Snf Restated, there
exists a feature k that serves to partition the set of
all pattern classes into two nonempty subsets where

one subset is composed of all pattern classes that have

average feature values less than x and the other subset

is the compliment of the first.

Restated again, all pattern classes do not return the
same average value for feature k and so we may choose

a number x such that some average feature values will

be larger than x and some will be smaller. This fact
can be used to reorder the entries in the lexicon of
average feature values. For instance, all patterns in
Sm could be placed below those in Eﬁ, the compliment

of Sm. Of the pattern classes in Sm created by fea-
ture extractor k, there will be some that can be separ-
ated further by another feature extractor. This process
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can be repeated until there is only one pattern class
left in the specified lexicon range at which time the
process ends. The process is recursive and can be
easily programmed for compute£ execution. The end re-
sult is a tree structure, a signature tree, the nodes
of which contain the numbers x and k to identify the
appropriate feature extractor and test value. The
terminal nodes point to locations in the lexicon where

a particular pattern class is stored.

The generation of a signature tree can be a good deal
more sophisticated than suggested above. As it stands,
the resulting tree is needlessly liable to produce
errors in recognition. In particular, an unknown
pattern which does not yield feature values exactly
equal to its average feature values can take the wrong
branches in the signature tree. In order to minimize
the taking of wrong branches, the tree generator could
consider probablistic distribution functions of patterns
in the lexicon. It would search for test feature values
. that separate different pattern classes and in so doing
affect the other classes so as to separate a minimal
number of elements from other elements of the same
class. This heuristic which perhaps seems intuitively
clear has an information theoretic justification which

is given below.
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2.3 Trees that Extremize Entropy: A definition of an "op-

timal" set of hyperplanes can be given in terms of
minimizing and/or maximizing entropy (or the informa-
tion theoretic H). Maximizing H, the information con-

tent, 1is the same as minimizing entropy, S.

Let the information in the lexicon serve to determine
p(k,fj4)., the probability density of fij for ail i and
j. The integer k is a dummy index that runs over the

range of values allowed for fi (Feature values, the

i
fij's, are integers that typically range from 0 to 15.)
If we-restrict the value of a particular feature and
allow all the other feature values to remain free, we
have specified a hyperplane in the N dimensional space.
Let this plane be defined by HP(B,b) where B is the
parameter number and b is the value of the parameter.

Pi(fiB < b) is the probability that pattern i has feature

values less than b for feature B.

b-1

and
bmaxfin)

PiEg =D ), pk.f;p)
k=b
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lammgfiB)is the maximum value permitted for f;;. We

define the entropy, S, of the hyperplane HP(B,b) as

M
s=-), Pifg = b) In Pj (i = b)
i=1

=

- ) Piffiig < b) In Py (fig < b)
i=1

The hyperplane that produces the minimal entropy, S,
which is the maximum information H, 1is defined to be

the "best" hyperplane for discriminating between differ-
ent patternclasses. This is the hyperplane that would
be used at the node in the signature tree. Hyperplanes
that yield the minimal entropy tend to split a minimal
number of class clusters and those classes that are
split have a minimal number of elements split from like
elements. Trivial hyperplanes that separate no classes
but do yield minimal entropy values must be thrown out:
The criterion for hyperplane acceptance is that clusters
centers must lie on both sides of the hyperplane. A
simple verbal statement of the entropy minimization ar-
gument is as follows: The goal is to separate a minimal
number of like points in feature space with hyperplanes

that separate different points.

We have just defined the entropy of a single node in a
tree. But what about the entire tree? 1Is the entropy

of the entire tree simply the sum of the node entropies?
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The answer is no. Moreover, minimizing the entropy of
entire tree is not necessarily the thing to do. Minimiz-
ing the entropy of the entire tree would tend to produce
long skinny trees. But ghort fat trees can be just as
accurate as the skinny ones and in addition have a shorter
mean traversal time. So entropy extremization for the
entire tree and entropy extremization at nodes are opera-

tionally dealt with independently.

For the sake of completeness, a recursive formula is
given for the entropy of a tree branch. From this the

entropy' of the entire tree may be generated.

Let the level of tree nodes be labeled so that the root
node level is 1l; the next node level is 2, etc. Choose

a node at level n. S (n,i) is the entropy of this

node

node for pattern class 1i. sk(n,i) is the total of the
branch

node entropy for pattern class i, Snode (n,i), and all

other contributions from the nodes below that node that
are on the k branch, where superscript k indicates
that the branch that contains the node n is the right or

left branch from the node at n - 1.

s%ranch(n) = Ei:: Sllgranch(n’i) - Z Snode @) + Zi: P(f;g < bin) Slgranch(nﬂ’i)
1

+ zl‘:; P(t;; = bin) slira.nch(nﬂ 1)
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Returning to the topic of entropy extremization, note
that hyperplanes that lie between a maximal number of
different pattern classes tend maximize tree entropy.
The entire hyperplane selection process could thus be
based nn an entropy mini-max principle. However, we

shall not pursue this possibility now.

2.4 Tree Shape, Accuracy and Speed: If there are M pattern

classes to be separated, then the smallest binary tree
that can produce this separation has M-1 nodes, regard-

less of shape.

Proof: It is required that exactly M pointers to group
identification lists be produced by a tree of
binary nodes. Let there be M binary nodes. Each
node has one input channel and two output channels.
All but one of the nodes have their input channels
connected to other nodes, so m-1 of the 2M output
channels are used for internode connections.

This means that mt+l channels are available for
pointers to group identification lists. Hence
m+l = M. Thus the smallest number of binary

nodes that can separate M groups is M-1 regard-

less of the way they are interconnected.

If the tree has one terminal node, then the tree is a
linear list (and it is quite "skinny"). The mean number

of nodes traversed before locating a specific pattern
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class is, therefore, (M-1)/2.

If every tree node points to another node wherever
possible, then the resulting tree is as "fat" as possi-
ble. If M= 2x, where M is the number of classes to be
separated, then there are M/2 terminal nodes, and the
number of nodes traversed in locating a pattern is exactly

X.

All trees have shapes between the above two extremes
(fat and skinny). If T is the mean number of nodes
traversed, then ln M& TS M/2 for any binary tree
using the minimal éumber of nodes.

It is conjectured that maximizing tree entropy (as dis-
tinct from node entropy) as mentioned at the end of
section 2.3, minimizes T, the mean number of tree nodes
that need to be traversed to find a specific pattern
(provided that the maximization proceeds under the con-
straint of utilizing only those hyperplanes that pro-
duce a minimal number of nodes). It may be possible to
rigorously prove. this in some simple way but to do so

is not attempted here.

The plausibility argument goes as follows: Minimizing
tree entropy tends to create skinny trees and maximiz-
ing tree entropy tends to create fat ones. We have
just seen that fat trees have smaller T values than

skinny ones. Therefore, maximizing tree entropy tends
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to minimize T.

In summary, the shape of the tree has no relation to its
discriminatory power but doesaffect the mean number of

nodes that must be traversed in pattern classification.

2.5 Sizes of Trees: In section 2.4, we found that the small-

est number of nodes in a binary tree with M terminal
branches (pointing to M pattern classes) is M-1. Achiev-
ing this minimal tree size is the desired goal but not
always attainable. The actual tree size 1is determined
by the feature space. If different classes do not tend
to occupy different portions of feature space then dis-

crimination is difficult and the tree size is large.

Figure 1 shows two examples of patterns in a two dimen-

sional feature space.

I I

Fig. 1. Two hyperplanes are available, b, and h.,.
In case I, bl is sufficient to dlscrimi te
between patterns A and B. But in case II
both bl and b2 must be used.
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For the sake of illusration, we assume that only two
hyperplanes are available, H(B;,b1) and H(By,b2). The
lexicon contains four pattern elements, two of class A
and two of class C. In case I of Figure 1, a single

node tree using H(B1,b1), is all that is needed to separ-
ate class A from class C. But in case II, both hyper-
planes are needed. The corresponding trees are shown

in Figure 2.

- A A .
L '/" L
H(B,b,) E H(B,,b,) E
120y A X 1 L/;’ \\g\ ¢ | x
— | |
c Al C
C .
node o] \\\‘\ ,/" o]
N N
C ’ \\\\ c
H(821b2)
I I
Fig. 2. Tree structures and lexicons used to
separate patterns A and C as shown in
Figure 1.

The point of the illustrations in Figure 1 and Figure 2

is that the feature space representation of patterns
directly determines the tree size. If we assume that
none of the n pattern classes exist such that

like class elements are nearest neighbors to each other

in the feature space,then it is possible that the number
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of hyperplanes required for total discrimination could

be as large as n-1. But n-1 is an upper limit.

Example: A lexicon of 1000 utterances containing
only 22 different words could require as
many as 999 hyperplanes. On the other
extreme, it could achieve total discrimina-

tion with only 21 hyperplanes.

In general, the maximum number of signature tables

possible is x where:

1) x is one less than the number of samples in the

lexicon, or

2) x = 2b where b is the number of bits used

to represent a point in feature space.

Case 1 applies if the number of samples is less than
2b; otherwise case 2 applies. For example, if there
are 10 feature values, each ranging between 0 and 7,
thus using 3 bits, then the number of bits, b, used to
. represent a point in feature space is 30. If there are

104 sample patterns in the lexicon then case 1 applies

4
because 230> 10 .

Onjecture: The effectiveness of the feature space in
classifying patterns is reflected in the
size of its optimal signature trees: the

smaller the trees, the better the space.
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This can be understood as follows. Let the total
volume of feature space be partitioned first into

n subvolumes and then into m subvolumes where m> n.
On the average, a randomly located feature point in
the m space will be closer to a partition than a ran-
domly located feature point in n space. Thus any
"noise", fluctuations, in the location of the feature
point 1is more likely to carry it across a partition
boundary in m space than in n space. If the subvolumes
are created by the hyperplanes of the signature tree,
then the larger subvolumes created by smaller trees
are clearly less susceptible to error producing noise.

This fact gives rise to the following heuristic:

The primary goal of the signature tree method is to
guide the construction of a feature space that mini-
mizes the tree size, and, if possible, produces a
tree with only M-1 nodes where M is the number of

pattern classes.
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3. DATA BASES AND LEXTICONS

The data base is a computer file containing relatively unre-
fined data compared to a lexicon which is a more compact ver-
sion of the same file. The lexicon exists explicitly for the
purpose of identifying patterns and is usually constructed

after some sort of preparatory analysis of the data base.

3.1 Data Base: In the research on speech reported here, the
data base is a one-dimensional array containing M utter-

ances, for a total of 25*M words of array storage.

The first word in each 25 word block is reserved for a
pattern label which is identification number or symbol.

(This is sometimes called the "key" by other writers.)

The next 16 words contain digitized amplitude and zero
crossing values for an utterance.(3) Amplitude and zero
crossings are recorded every 10 milliseconds with averag-
ing over the 10 millisecond intervals by a hardware pre-
processor. A typical utterance is "How are you?" and
lasts about one second. However, most utterances can
still be recognized when averaging is increased to cover
much longer time intervals. For instance, an entire
utterance regardless of its length can be scaled to fit
into 32 time units for our work with no apparent loss of
key features. There are three zero crossing and three

amplitude measurements per time unit, each using three

bits, for a total of*18 bits. PDP-10 computer words
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have 36 bits. Consequently, the entire utterance is

stored in 16 computer words.

The remaining 8 words in each 25 word block are used

for storage of global features of the utterance. Glo-
bal features are measured as required during growth of
a signature tree and stored within a byte field of one

of the 8 words.

3.2 Lexicons: The lexicon used for identification of utterances
could be the entire data base, or it could consist of the
utterance label and one or more of the eight words of
global feature values; or it could be nothing more than
the utterance label. The reason that the lexicon can be
nothing more than pattern labels is that the information
for discrimination is contained in the signature tree
structure. Significant savings in storage can result
from using a lexicon of utterance labels and the appro-
priate signature tree, in place of the full data base.

For example, let there be a list of 22 words each spoken

4 times for a total of 88 utterances. Let n be the number
of data base words per pattern and M be the number of
classes. In this case M = 22. Let the mean number of
sample patterns per class be m. In this example, m = 4.
It is possible to reduce the storage requirements from
n*m*m for the full data base to (M-1)*2+M. The (M-1)*2
term comes from the fact that each of the (M-1) nodes in

the signature tree uses two computer words. The M term
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is the number of computer words required by the
con of utterance labels. The storage reduction
M(n*m-3)+2. If we set m = 25, then the storage
ment could be reduced from 2200 to 64, which is
sive. Achieving this maximum reduction depends
the feature extractors and the hyperplanes they

But the maximum reduction noted in this example

lexi-

is
require-
impres-
upon
generate.

is fre-

quently attained in the applications reported in section

6.

The savings-in storage is one of the most interesting

and potentially useful aspects of the signature
method especially for large vocabularies and/or

number of different speakers.
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4, FEATURE EXTRACTORS

A feature is defined to be anything in a pattern that can be
measured. A feature extractor is a subprogram that measures

a feature and returns an integer value. (The restriction to
integer feature values is not a universal convention; it is
used here because the feature values are used for array index-

ing more than anything else.)

For example, let the pattern be a two-channel time series.

The features could include: number of maxima and minima;
slopes greater or smaller than X: areas under curves; ratios
of areas; distances between adjacent minima; second deriva-
tives; moving averages; fourier power spectra averaged over

a given frequency range: autocorrelations; cross correlations;
the kitchen sink. Feature extractors would return scaled in-

teger values for each of these features.
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5. SAMUEL'S SIGNATURE TABLES

(2)

The signature table technique is a perceptron-like pattern
classification method. It is based on a sequence of table
look-up operations where each table is a multi-dimensional
array. An individual signature table can be viewed as an n
dimensional hyperplane in an m dimensional feature space,
where n is equal to the number of input parameters to the
table and m is the total number of parameters available to
all the tables. The array indexes for any given table are

specified by previous tables or by feature measurements per-

formed directly on a pattern.

Samuel uses signature tables to evaluate the relative merit

of various board positions in the game of checkers. A small
set of board parameters, e.g., 12, are used as input variables.
A typical arrangement might have three first level tables, each
table having four input parameters, with each input parameter
coming from a board feature measurement (such as "piece count").
ﬁach level one table would contain integer values that would
serve to index one or more of the tables at the next level. At
"level two", one or two tables would operate in the same way

as level one tables except that their input would come from
level one tables. Their output would index yet another table

which would contain the "score", where the score gives the re-

lative value of the board pattern being examined.
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Initially, the signature tables are empty. They are filled
during the "learning" stages of the program. The data used
in learning can be discarded once it has been processed since
the number of times a pattern projects onto a hyperplane is
recorded in a cell on the hyperplane at the point of inci-
dence. For this method to have any hope of success, the
different training patterns projected on a hyperplane must
tend to fall on different portions of the hyperplane. Other-
wise, when an unidentified pattern falls on a point on a
hyperplane, no information could be gained to help identify
it. When the user does not possess a preconceived notion

for the appropriate hyperplanes, and he usually does not,
then the real problem becomes one of finding appropriate
groupings of input parameters, It was precisely this pro-
blem that led to the signature tree system. The signature
table method provides no means of automatically connecting
individual tables dynamically. And not having this flexibi-
lity severely limits the application of the technique to re-
search problems. This shortcoming is eliminated in the

signature tree technique developed in this paper.
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6. APPLICATION TO SPEECH HECOGNITION

Moderate success has been attained in the application of the signature
tree method to speech recognition. An accur;cy of around 90% was obtained
for the twenty-two different utterances used in the training runs. For
such a short list of utterances this accuracy is not particularly good, by
itself; but it becomes interesting when the speed, "learning" properties,

and flexibility of the program are considered.

Speed: The through-put identification rate is five to ten times faster

than the excellent programs of Astrahan(3); and Vicens and Reddy.(4) (How—
ever, their programs identify word lists three to five times longer and
with higher accuracy than this one. If the present program were used on

the longer lists, its speed advantage would be somewhat diminished.)

Learning: An improvement in the correct identification rate of nearly 40%

is observed as the number of examples of each utterance increases from one

to four. This is probably the most outstanding success of the program.
Flexibility: New hypotheses and changes in data base formats can be en-

tered in only a few minutes, the time it takes to type in a subroutine.
This should increase the fabrication rate of good feature extractors and

ultimately lead to superior speech recognition.

A few of the SAIL procedures used to assist in feature extraction are as

follows (their names give the flavor of their intended function):
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TOTAL ENERGI_PER TIME UNIT, FIND MAJOR CHANGES_IN_TOTAL_ENERGY,
ALL_CH_ARE ZERO, ALL CH HAVE_ENERGY, FIND_MINIMUM IN_ENERGI_PER-
CH, MOVING AVERAGE, ENERGI_BETWEEN MINIMA, TOTAL_E AROUND-MAX-
PEAK, FIND_RANGE OF VOWEL, COUNT_MAXIMA, FORM-CHANNEL-RATIOS,

COMPACT-UTTERANCE, and GENERATE-TEMPLATE.

The entire program is written in PDP-10 SAIL. In the actual runs, to

avoid disc storage problems, the entire data base of 10 speakers was seldom
used; most experiments were done with the five pronunciations of the utter-
ance list by Lee Erman. This required DATA BASE core array storage of 2750

thirty-six bit computer words.

A typical machine "learning" experiment is carried out as follows: The
first 550 DATA BASE words, which contains the first 22 utterances, is pro-
cessed. Various feature extractors are applied in the order determined by
the user through a list prepared with the STOPGAP text editor. When a fea-
ture value is found that serves to separate one or more of the 22 utter-
ances from the rest, then atree node is created and the number of the fea-
ture extractor is stored in the node: Also stored in the node are pointers
to the top and the bottom of the DATA BASE sublists created by the feature

value (see Figure 3).
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Fig. 3. Terminal tree node that separates utterances one and

. two from utterances three through twenty-two.

Since there is only one data point for each utterance class, finding
hyperplanes that lay between different utterance classes is virtually
assured. In practice, the resulting signature trees nearly always have
only 21 nodes (as would be predicted). When tested on utterances 89
through 110, which is the fifth set stored from 2225 through 2750 in

DATA BASE, the scores are usually 50% correct. When the system is fur-
ther trained with utterances 1 through 44, a 21 node tree usually results
and its scores are centered on 68% correct when tested on utterances 89
through 110. Learning on utterances 1 through 66 gives 77% correct, and
learning on utterances 1 through 88 gives 86% correct. This is always

accomplished with fewer than 30 nodes per tree.

Plotted in Figure 4 are average scores for the tree method and the ab-

solute minimum error method.'
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Fig. 4. Average percent correct plotted vs. the number of training
samples for each utterance. Absolute minimum errors are

"0"'sy trees are" "', .

The 100% score for the tree method on sample set 5 is a consequence of the
fact that the same utterances were used in training as were used in identi-

fying the utterances.

As a point of comparison, the mean feature values were tabulated for the

first 22 utterances determined, and utterances 89 through 110 were then

processed as unknown utterances, and predictions were made using the least

absolute error criterion. Scores ranges from 85% to 95% for several sets
of feature extractors. Similarly mean values were tabulated for 44, 66,

88 and 110 utterances and then tested on utterances 89 through 110. The
result is shown in Figure 4. The minimum absolute error approach was more
accurate simply because it incorporated more redundancy. But the speed ad-
vantage of the tree method stood out clearly; the minimum absolute error

approach took between 20 and 30 times longer in the identification phase

-31-



than the tree method did.

The values plotted in Figure 4 are averages obtained from ordering the
trial feature extractors differently and/or omitting certain feature ex-
tractors. However, these results represent optimal overall performance

combinations of features.

Table 1 is computer output which shows the 22 utterances given in the

data base along with response of the program for a particular run. The
program correctly identified 19 of the 22 utterances, it used a tree with
22 nodes (signature tablés); 88 utterances were used in growing the trees
(four examples of each utterance); a maximum of 400 hyperplanes were avail-
able to the program from which it selected 22 to grow the tree. The four
columns of numbers show which utterances were put in the same hypercell by
the tree hyperplanes. For example, the cell that is pointed to by the key
features of utterance 89 in the data base, which happens to be the "make"
in column one, is a cell containing four 1l's. Consequently, utterance "1",
which is the numeric identifier for "make", is predicted and "make" is

-

written in column two.

If the cell contained more than one utterance class, e.g. 1 1 1 2, then
the utterance which occurs the greatest number of times is predicted; in
this example, utterance 1 would be predicted. However, a cell with more
than one utterance class will occur only when there are no hyperplanes to
separate the classes. In the case shown in Table 1, all the cells (there
are 23 of them) contain only one utterance class each. Furthermore, only

utterance 22 failed to lie totally in one cell.
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Tablel

THE TOTAL NUMBZR OF SIGNATURE TABLES =22

THE TREE STRUCTURE AND DATA BASE ARE FROM FILE TREZ®
THE NUMBER OF UTTERENCES I N THz TRAINING SAMPLE=88
THE BEGINNING UTTERENCE NUMBER IS 89

THE ENDING UTTERENCE NUMBER IS 110

THE MAXIMUM DEPTH PERMITTED IN TRAINING = 400
GI VEN UTTERENCE UT PREDI CTED

KAKE MAKE i 1 i 1
UNI TE UNI TE 2 2 2 2
DELETE DELETE 3 3 3 3
ONE ONE 4 4 4 4
EI GHT EIGHT 5 5 5 5
THREE ~ GELETE 3 S 3 3
WHOLE WHOLE 7 7 7 7
GCTAL OCTAL 8 8 8 8
EXCHANGE EXCHANGE 9 9 9 9
CORE CURE 18 18 12 10
MULTI PLY MULTI PLY 11 11 11 11
SI'X SIX 12 12 12 12
SUBTRACT UNITE Z 2 2 2
SCALE MAKE 1 1 1 1
CIRECTIVE DIRECTIVE 15 15 15 15
QUTPUT OUTPUT 16 16 16 16
[ NTERSECT I NTERSECT 17 17 17 17
REGISTER REGI STER 18 18 18 18
FINE, THANK YOU FINE, THANK YOU 19 19 19 19
GOOD  MDORNI NG GOOD MORNING 20 20 20 20
HOW ARE YOU HOW ARE YOU 21 21 21 21
EXCUSE ME EXCUSE ME 22 22 22
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A tree that contains only one utterance class per cell will correctly
identify all utterances used in the training set. If the tree of this run
had been used to identify utterances 1 through 110, it would have missed

only 3 utterances, the same number it missed on utterances 89 through 110.

Great effort was expended optimizing the speed of the program and with

good success. For example, to grow the tree for this run, which required
testing some 400 hyperplanes and 88 utterances, required only one minute
PDP-10 compute time. The identification of the twenty-two utterances, 89
through 110, required about 10 seconds.

Many variations on this basic scheme were tried; one in particular yielded
91% correct prediction scores. The trick here was simply to simultaneous-—
ly employ three or more signature trees grown on the same training data

but forced to use different hyperplanes. This provided something of a "re-

dundancy" check; it helped to eliminate the effects of "noisy" measurements.
Figure 5 shows a typical utterance that has been compacted for storage in

the DATA_BASE. There are six variables Al, 71, AZ’ZZ' A3,Z3, each of

which can assume eight values between 0 and 7.
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Fig. 5. Amplitude and zero crossing versus time for each of the

three speech preprocessing filters for the utterance
"register".

No normalization was attempted. The original array which typically con-

tained %x=200 time units was reduced to a 32 time unit array by averaging

over x/32 + 1 time units at once and storing the result in a single time

unit and repeating 32 times. Compaction of the speech data in this

fashion, as crude as it is, preserved enough information for interword

discrimination.
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CONCLUSIONS

When the number of labeled patterns available to train an
automatic recognition system is small, the predictive accu-
racy of a signature tree systeﬁ is poor; a minimum error cri-
terion using as many features as possible can be much more
accurate. When enough data is available to establish proba-
bility distributions of feature values for pattern classes,
the signature tree method allows a large increase in speed
of the recognition system over the minimum error approach

with little degradation of accuracy.

The signature tree method selects a minimal set of feature
extractors from a large set supplied by the user. In this
fashion, the man-machine unit "learns" which features are

the most useful in pattern discrimination. For particular
types of patterns, e.g., those arising in speech or vision
research, general "front end" feature extractors will pro-
bably be discovered that will greatly increase the overall

power of the signature tree method.

Presently under development are two major additions to the

- signature tree heuristics repertoire: a linear discriminant
preprocessor which forms linear combinations of feature
extractors,and a technique for copying noisy patterns into
both of the sublists created by a feature value. Forming
linear combinations of input parameters increases the number

of hyperplanes available for creating tree nodes. As the
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system stands, 1t only uses hyperplanes perpendicular to

the coordinate axes. Linear combinations of features will
create "skew" hyperplanes. The other addition, that of
duplicating patterns so to make them appear on both branches
from a node, 1is expected to greatly reduce errors resulting

from "noise" (random fluctuations) in parameters.

The spectacular learning rate (a 40% increase in the number

of correct identifications in the course of increasing the
number of exemplary samples per utterances from one to four)

is somewhat artificial. By utilizing a combination of the
minimum error criterion and the signature tree technique (in-
stead of simply using the signature tree), a much higher

score could have been obtained at the outset, thus lessening
the range for possible improvement. In this case, a shift

in emphasis from score optimization to speed optimization
would be appropriate. Using the minimum error criterion

slows the identification rate significantly but improves
accuracy. Increasing the number of samples in the training
set allows the signature trees to function more accurately,
thus allowing the trees to replace the minimum error criterion,
whiéh results in an overall increase in speed. So, the "learn-
ing" aspect of the signature tree method can be applied to

optimize speed or accuracy depending on how it is used.
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. 5
Automatic Control Systems”™ theory is closely related to the signature

tree method. In particular, the control systems field has produced a number

of algorithms for generating "decision surfaces" in hyperdimensional fea-

ture spaces, e.g. linear, polynomial and statistical discriminant functions.

While the signature tree heuristics presented here offer little help in
generating binary discriminant functions | control theory offers little help

in combining a large number of binary decisions. gowever, an ideal total

system is possible with the binary discriminant functions serving to supply

trial hyperplanes to a signature tree generator. p symbiotic union of

automatic control systems with signature trees seems likely and is being

investigated by the author.
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