
STANFORD ARTIFICIAL INTELLIGENCE PROJECT

MEMO A IM-135

COMPUTER SCIENCE DEPARTMENT

REPORT NO. CS-179

MLISP -

BY

DAVID CANFIELD SMITH

OCTOBER 1970

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERS ITY

H CTE hh

LEY

r

\ STANFORD ARTIFICIAL INTELLIGENCE PROJECT October, 1970
MEMD AIM-135

COMPUTER SCIENCE DEPARTMENT

REPORT NO, CS179

N ML]SP

by

David Canfleid Snith

ABSTRACT1 MLISP 1s eo high 1 ave] | Ist-processing and asymbol-~-
manipulation |anguage based oo n the programming language

| LISP, MLISP programs are translated Into LISP programs and
then executed or compiled, MLISP exists for two DuUPDOSES:
(1) to facl|litate the writing and understanding of LISP
programs} (2) to remedy certain Important deflclencles In
the Iist=processing ability of LISP,

This research was$ supported by Grant PHS MH066-45«09 and by the
Advanced Research Projects Agency ofthe Departmentof Defense under
aontraot SD=183, This report supersedes and replaces Al Memo 84,

Reproduced In the USA, Avaliable from the Clearinghouse for Federal

, Scientific and Technical Information, Springfield, Virginia 22151,
Pplcei Full slze CopY $3,00; microfiche cCypy $ 65,

We

-

a

L MLISP TABLE OF CONTENTS |
PAGE

SECTION 1 -- INTRODUCTION EE ENE ENE ENE NEN ENE EEE EEE 3

SECTION 2 -- SYNTAX

2.1 Syntax eonventions, COMMENTS EEE EEE EEE EE EEE EE EEE 6
2.2 Complete MI SP synt ax LN I A BB NE DLN BEL TEN I BN A REL RN BN BN BE NCI I RN BE BN 8
2,3 Reserved words and synbols, pre~def|ned symbols EK 12
2.4 Pre=def ned at ons CIE I EL A A A A A A EN NE NEN EN NNN NNERERE RK) 13
2.5 Inflx operat or precedences EE EEE NEE EEE EE EE EEE EE EEE 14

SECTION3 -- SEMANTICS I 1
3.1 {program N EE EEE EEE EE ENE ENN EE EEN EN EE EEE NN EEE EE EERE 17
3,2 expression) BEER EEE EEE EEE ES EE EEE EE EE EEE EEE 18
J. <Infix_operator) EERE EERE EERE REE EE EEE EEE EET 20

Jed ,A Craguilar_Infix> ENE EE EE ENE EE EEE EE EEE EEE EEE 21
3.3.8 {vector_Inf|x> $00 0 9 0 1 0 0 TPN EYEE ggg 26

3.4 <prefix_operator> EEE EEE EEE NS EE NEN EE EEE EE EEE 29

L 3,5 <bloeck> SS DE RE NE AN I BEE AE IE AE I A EE BE BA AE I A EE I NNER 313,6 <funotion_definition>, CLAMBDA _expression> EENEEER EL 34
3.7 <DEF INE expression EE EEE EEN EEE EEE EEE EEE EE EEE 37
3,8 <JF_expressjon> EEE REE ERE RE EE EE EY 40
3.9 <FOR_expressiond LA I I BO I ONL BB BN LN NE AN IE BE BE BN BN BEAN BN BN BE IN I NR I A J 472
3.10 <WHILE_expression>, UNTIL _expression) EES EREEEREEEE 50
3,11 <ass|gnment_expression> I I I RR RN I A I BE BE SRR IE I RT RASA ST I I 52
3,12 <function_cal |> NEE EEE EEE ENN EN EEE EEE EEE 60
3,13 <index_expression> EEE EERE EEE EE EE EE EE EEE EEEY 61
3,14 <|1st_express|on> I IN RE RS A I BRE BRE SRE SEN SE NEN SPP 62
3,15 {quoted_expressjon> EE EEE EEE EEE SEEN NN EEE EE EEE 63
3,16 <|dentifler> ETEE EE EE TE ETTE 64
3,17 <numnber > CO EE I I AE A A I I a I A ENN EN EN EN NEN ENN NNN EEE EE RN 65
3,18 <string> 10 09 0 80 8 08 0.090 080 0000800900000 0000000 gpgrog 67

SECTION 4 -- USER OPERATION OF ML]ISP

4,1 How to transiate, run and conpile M.ISP programs v1 68
4,1.,A Trans|ating MLISP programy NE I I BE RE RN I I A RFR A I 68
4,1,8B Trans at ng Under program €ontro| EERE ERE ENEERN RE 76
4,1,C Loading CoM lled r Grams LA A IL I NB DLN BN DN IY I IN IE I NBN 72

4,2 Reconstructing The ML sR system Pa I eter et tare 73
4,3 MLISP sourcefllies CS I I I BNL BN BLE NE 2 IE RE I RE BN DN EIN BN RN AE ON RRR NE I I J 75

br

SECITON 5 -- RUN=TIME FUNCTI ONS

5.2 QutInGun-timetrrunctions’Ings EERE III IR
AJ LL I I I BNL IL NE BN BE BN DNC INE I IN BNC JET I NE I BN BI |

MLISP TABLE OF CONTENTS 2

SECITON 6 == SAMPLE M.ISP PROGRAM

8,1 The program In MLI SP EEE NEE EE EEE EN EEE EEE 81
6,2 1¢ts8 LISP trgnsiation ARE EERE ENE RN I IN I SA SSSA A a 34

SECTION7 == THE MLISP SCANNER

7.1 Wat t ho ML.I SP scanner does EEN EE NEE EEE FN EEE 07
7.2 An egquivgient SaqNnNer, written In MLISP LI BB BN BB BN BN BE BN 89
7.3 1It8 LISP transiation ERE RRR RE RE EY 94

SECTION 8 adn BIBLIOGRAPHY EE ENE EN EEE EEE ENN EE ERE 99

3

S MLISP I NTRODUCTI ON = SECTION 1 3

. INTRODUCT]JON « SECTION 1

Mbst Drogramm|mg |anguages arc designed with the dea that the syntax
® houlci be Sstrueturedto produce offlolent code for the computer,

Fortran and Algol are outstanding examples, Yet, |tla apparent that
HUMANS spend more time with any glvem Program than the COMPUTER.
Therefore, |% has been our Intention to construct & language whleh Is
as transparent|y c¢|ear and understandable to a HUMAN BEING as

possible, Considerable effort has been spent to make the Syntax
concise and uncluttered, It redyees the number of parentheses
required by LISP, Introduces a nore mnemonle and natural notation,

clarifies ¢thefjow of control and permlts comments, S ONE
"meta~axpressions” are added to Improve the |Ist=processing power of
LISP, Strings and string manipulation features, partiocular|y useful
for Input/output, are Included, In additions, a substantial anpunt of
rsdundanoy has been bul|¥ Into the language, permltting the
programmer to ©hoOse® the nost naturafway of writing routines from a
variety of possibilities,

LISP Is a llst~processing and symbo|=manipulation language created at
MIT by John MoeCarthy and his students (McCarthy, 1965), The
outstanding feature8 of LISP are! (1) the simplest and most eclegant

b ayntax of any language In ex|stence, (2) high-level symbol
manipulation capabi||tles, (3) an efficlent set of |l!st=processing
primitives, and (4) an oas| |y=usabje power of recursion.
Furtherrore, LI SP automatioally handles all Internal storage

managenent, freelmg the user to concentrate on problem sojving, This
Is the single most [mportant Improvement over the other maj or
list=processing language, IPLeV, LISP has found applications In many
Important artificlal Intelligence Investigations, including symbolic
mathmatlies, natural-language handling, theorem proving and joglc.

Unfortunate|y, there are several Important weaknesses in LISP.

Anyone who has attenpted to understand aLISP program written by
another programmer tar even by himself a nonth ear|fsr) quickly
becomes aware of several difficulties!

A, The flow of control Is very difficult to follow, In fact, It
Is about as dlifflcult to follow as machine language or Fortran, This
makes understanding the purpose of routines(|.e, what do they do?)
difficult, Sinee comments are not usually permitted, the programmer
Is unable to provide written assistance,

By, An |nordinate amount of time must be spent ba ancing
parentheses, whet her In wrlting a LISP program or tryl ng to
understand one, It Is frequently dlfflcult to determine where one
expression ends and another begins, Formatting utility routines
("oretty-print") he|p} but every LISP programmer knows the dublous
pleasure of laboriously matehing left and rlght parentheses In a

function, guhen all he knowsisthat one Is missing sonewhere!:c, The notation of LISP (prefix notatlon for functions,
parentheses around all funetlons and argunents, ea%te,), while uniform

MLISP INTRODUCTION = SECTION 1 4

from ga |Ogleclan’s point of view,|!s far from the most natural or

mnemonle for a language, This olumsy notation also makeslIt
difficult to understand LISP progr ams, Since M.ISP prograns are
translated Into LISP s=expressions, all of the elegance of LWXSP Is
preserved at the translated |evei} but the unpleasant &speocts at the
surface level are eliminated,

Dy There are important omissions |n the |lIst=progessing
capabilities of LISP, Those ape somewhat remedied by the M.ISP
"meta~expressions”, expressions which have ne direct LI SP
correspondence but instead are tranajated Into ®eguences of LISP

Instructtons, The M.ISP meta=expressions are the FOR expression,
WHILE expression, UNTIL expression, index expression, assignment
expression, and vector operations, The particular deflolency each of
these attenpts to overcome |s discussed In the subsection of SECTION
3 describ|ng the metamexpressjon In detall,

M.ISP was written at Stanford Unlvers|ty by Horace Enea for the IBM
360/67 (Enea, 1968), The present author has Inplenented MLISP on the
POP- 10 t|me-shared computer, He has rewrlitan the translator,
expanded and simp|lfled the syntax» and Improved the rup=time
roy tines, All of the ohanges and additions are Intended elther to
make the language more readable and understandable or to make [t more
powerful,

MLISP programs areflrst translated into LISP programs, and then
these are passed to the LISP interpreter or compiler, As |ts nane
Imptles, MISP la a"meta=LISP" language; MLISP programs may be
viewed as a superstructure over the underlylng LISP processor, All
of the underlylng LISP functionsareavaliabje to MISP programs, In
addltlon to several powerful M.ISP run-time routines, the purpose of
having Sueh a superstructure Is to Inprove the readabl |lty and

“wrlteablijtyo fLISP, long (In)famous for |ts obscurity, Since LISP
Is one of the npst elegant and powerful symbolemanipulatlion languages
(but not one of the nost readable), |t seems appropriate to try to
facllltate the use oflt.

MLISP has been running for severa] years on the Stanford PDPe1pd
time=shared conputer, It has been distributed to the DEC User
Services Group (DECUS), The M.UISP translator and run-time routines
are thenselves complied LISP progr ams, The Stanford version runs
under the Stanford LISP 1,6 system (Quam, 1969), Some effort has
been mmde to keep the translator as maghine Independent as pogsibie;

In theory M.ISP eoutd be Implemented on any machine wlth a working
LISP system by making only m nor changes, The one probable exception
to this ls the M.ISP scanner} to enable Scanning (where nost of the
time Is spent) to be as offlclont as possible, the translator uses

machine language scanning routines, While these routine9 have
greatly Inoreased translation speed (MLISP now translates at a rate
of 3200-5000 |Iines per mlinute,), %thelruse nean8 that soneone wishing

L ML ISP INTRODUCTION « SECTION 1 5

to Impjement MLISP on a system without LISP 1,6 will have to USe an
® aulvgent seanner package, For th|s reason, a who|e section of thls
manual (SECTION 7) |g devoted to Ppregenting an eylvalent gecanne,,

While LISP was created wlth the goa] of being machine independent, [t
has turned out that most LISP systems have unique features, The
situation Is so difficult that Anthony Hearn has attempted to define
"a uniform subset of LISP 1,5 capable of assembly under awlde range
of ex|sting compliers and Interpreters," cajled STANDARD LISP (Hearn,
1969), MLISP helps to alleviate this situation by Introducing
another (eve| of machine Independence to Implement M.ISP on aglven
LISR system, one changes the under|ying transiator rather than the

surface syntax, Dr, Hearn has also constructed an MLISP=|lke
language ca| led REDUCE (HEARN, 1970),

pETE LA

g Wr end

\ ML ISP SYNTAX «= SECTION 2.1 6
, SYNTAX= SECT]JON 2,1

The completeMLISPayntax Is contajned In the following section.
Several sets of meta=-symbolisarceused to Simplify the Presentation of

the syntax:
(1) <> « ANGLED BRACKETS enclose non~=termlinal symbols.

(2) {) = BRACES encjose optiona| elements; l.,e, the <eclenents Inside

tray or may not be present,

(3) (})* = These sPecla| meta=symbo|s cnclose optional elenents Whl¢h
may bo present 0 or nore times (|,e, the enclosed clenents need
not be present5 but there 18 no IImjt to the nunber of tines they
may occur),

(4) €2 = "HORSE SHOES" enclose alternative clements, which are

separated by commas, The user mmy select any one of the emeclosed
elements to form a |egalsyntacticexpression,

(5) The BNF symbo|s ti= and |are used to deflme syntax elenents,
The left-hand slde of the #32 symbol Is the syntax elenent being
defined} the right-hand side Is Iltsdefinition, The vertleal bar

q (IMs used to Indicate alternative definitions,
(6) All other symbo}s stand for themselves,

There are several features of MLISP that amnot explleltiyIn the
syntax?
(a) IGNORED CHARACTERS = All spaces, carrlage returns, [Ine feeds,

form feeds, tabs, vertloal tabs, and altmodes are Ignored by the
. scanner,

(b) COMMENIS = Any sequence of characters cnclosed between percent
signs (X) Is taken to be a comment, The scanner lgnores
comments, consldering them to be completely non-existent;
ABCX<anything>X%DEF|s the sane a9 ABCDEF as far as the soannsr Is
concerned, NOIE: the comment Symbo|(%) may not be used In any
ot her capacity than to start or end a coment!! The
MLISPedef ined atom PERCENT (vajue is X%) faclliitates deajling with
the percent sign In other capaelties,

The user should note that there are no "statements" in MLISP;
averything returns a value, even FORe|o0ops, WHILE-|oops, etc,

: Therefore, all major syntactic entities arc "expressions",
b

MLISP SYNTAX = SECTION 2.1 I

DISCLAIMERS For reasons of simpllelty, thesyntax presented below is
slightly different from the one the translator aotually uses, The

only difference Is that Infix operators do not allhave the same
precedence, Instead they are organized Into a precedence (hierarchy)
system, Example!

A « Bo C « 0D CONS L

Is the same as

((A + (B » C)) = D) CONS L,

~~ From this It mmy be Seen that * takes precedence over + and *, and
al I three take precedence over CONS, The complete precedence system
is explalned In the section on Inflx operators (SECTION 3,3), Giving
Infix operators different precedences helps to out down on the number

of parentheses needed,

L ML ISP SYNTAX =' SECTION 2,2
. SYNTAX = SECTION 2,2

<{program> 11 = <expressjon> .

Cexpression> siz <Cs|mple_expression>

(<Inflx_operator> <simple_expressiond)s

+ £|nfix_operator> tis <regular_infix>
| Cvector_Infix>

Creguljar_|nflx> Plz Coy /) +) = ty 4, @y 2, FE) SS, 20 €r &) As |s vo
ident|fier>

<vector_infix> CT ott= Cregular_Infix> e

<prefix_operator> siz <Cregular_prefix>
| Cveotor_prefix>

Cregular_prefix> iz C4, =, =>
| {identifier>

{vector_pref|x> tie <regular_prefix> o

(simple_expression> i1x <blockd
| Cfunction_definition>
| <LAMBDA_expression>
| CDEF INE _expression>
| CIF _expression>
| FOR_expression>
| CWHILE expression)
| CUNTIL_ expression
| <ass|gnment_expressjon>
| {funotion_call|>
| CIndex_expressiond>
| Clist_expressjon)

<auoted_expression>
| <atom>

| <preafix_operator> <aimple_expression>
| (<expression>)

>

4 <block> tis BEGIN
{<declaration> })»

(<expression> j})#

MLISP SYNTAX= SECTION 2,2 e

(Cexpression?)
END

{declaration Its NEW <ldentifler_|jist>
| SPECIAL <ldentifler_|ist>

C|dentifler_I|Iistd ttn Cidentifler> (, <identiflerd)s
| Compty>

(function _definition> tim cEXPR, FEXPR, LEXPR, MACRO> (ldentifler>
(<iambda_ldentiflier_!ist>)} <expression

CLAMBDA _ expression? i 1s LAMBDA
(<|ambda_ldentifler_Iist>)} <expression

Ciambda_ldentifler_|lstd>itn (SPECIAL) <identifler>
(» (SPECIAL) <lidentifierd)s

| Cempty?

(DEFINE expression? tis DEFINE <DEFINE_cjause> () <DEFINE_clause>)w

CDEFINE_claused tis CODEFINE_symbol> PREFIX
COEF INE_symboi> (PREFIX) <ajternate_name>

| DEF INE_symbol> (PREFIX) (<a|ternate_pamed)
Cinteger> <|nteger>

COEF INE _symbol> tis Cldent|fler
| Cany character except Xo

<alternate_name tis <Cldenti{flerd
| <any oharacter except X,} or ,?

C]F_expression> tis] F{expression>

THEN <expression> (ALSO <expressiond>)+
(ELSE <expression> (ALSO <expressiend)#)

(FOR_expression its <FOR_ocjause> (<KFOR_clause>)+
Dp» ColLLECT, 3 <lidentifler>> <expressir
(Nell <expression>)

L ML ISP SYNTAX « SECTION 2.2 10

(FOR_clause> tts FOR (NEW) <identifler> cIN, ON> <expression>

| FOR {NEW} Cident|fler> - <expresslion>
TO <expression> (BY <expresslion>)

(WHILE expressiond tte WHILE {expression «D0, COLLECT:, <expression?

CUNTIL_expressiond> 11s <cDO, COLLECT> <expression> UNTIL <expression>

<assignment_expressjon> (i®8 <(reguiar_assjgnment>

. (array _ass|gnment)

| <Index_assignment>| Cdecompositiond

<regular_assignment) sims Cldent|fler> + <expression)

Carray_assignment) tiz <ldent)fler> (Capgument_Il|ist)>) « Cexpression>

L {index_assignment> tte Cldentiflerd> [<argument_Iist>] « <expression?

<decomposit]on> tix <simple_expression> «eo <expresslond

Cfunctlion_oa| (> tis Cjdentifier> (<argument_I|Ist>)
| CLAMBOA expression i (<apgupept_llst>)

Cargument_| lst tis <expression> (, <exprassiond)s
Compty?

(Index_express|ond> tis <Csimple_expression> [<argument_|]st> 3

(jist _expression> tis < <argument_IIist>

{quoted _expression> 11s ' <(s~expressjon>

(s=gxpression> ti» <Catom>

. | 0
: | (<s=expressjon> , <s-expression>

(<s=expression> ({,) <s-expressiond}s

ML SP SYNTAX= SECTION 2,2 11

{atom its <identifier>
<nunber>

| Cstr ing?

Cidentifler> tts Cletteprd> (c<|ettor>, <digltd>)e

(letter) RR ¢A, B, Co vee Zo ap by, €o vey 20 1, !2
| <|lterally_character> <any character except

<|{teral|y_charactep> iis 7

<number> tt= <Cinteger>

| OcTAL <octal_integer>
| <rea|>

{Integer its Cdigltd (<digit>)e

<dlglt> iim eB, | 2,3,4, 3 6, 7 8,9

<octa|_Integer> itz Cogota|_digit> (<octal|_digltd>)s

octal _dligity its eB, 1, 2, 3, 4, 5, 6, 72

Creal?” 11% dinteger> <exponent>
| C<integer> , <integer> (<exponant>}

Cexponent> tis E (e+, =2) (|nteger>

(string> its " (<any character except " ang X>)e

L ML]SP SYNTAX = SECTION 2,3 12

es SYNTAX = SECTION 2:9

Reserved word8 for MLISP!

BEGIN FOR EXPR
NEW IN FEXPR

SPECI AL ON LEXPR
END TO MACRO

IF BY DEF INE
THEN 00 LAMBDA

ALSO COLLECT OCTAL
ELSE UNTIL WHILE

Reserved symbois for MLISP!

() C J 4
} ’ ' ! .>

Symbols preedef ined in MLISP!

~ Synbol MLISP Trans|ation

P TIMES

/ QUOTI ENT
+ PLUS

- DI FFERENCE (MNUS If usedas a prefix;
? PRELIST (see SECTION g.2)
‘ SUFLIST (see SECTION 2.2)
® APPEND

% EQUAL

Ne GUAL (see SECTION 5,2)
S LEQUAL (see SECTION 5,2)
2 GEQUAL (see SECTION 9,2)
é MEMBER

4 ANO

: A AND
b | OR

v OR °

bo) NOT

ML ISP SYNTAX = SECTION 2,4 13

, SYNTAX = SECTION 2.4

Atons having MLISP=def ined vajuest

Atom value Ascl| (octal)

TRUE 1) 124
FALSE NIL none

F NIL none

CIRCLEX ° 26

COLON ! 72
COMVA ’ 34
DASH - 5%

DBQUOTE " 42
DOLLAR) 44

EQSIGN ~ 5 75%

LARROMNW - 137
LABR < (left angled bracket) 74
LPAR ((leftparenthes|s) 52

LSBR C (left square bracket) 133
PERCENT 4 43
PER]QD } 56

pLUSS + 53
0 ¢ 477

RABR > {right angled bracket) 74
RPAR) (right parenthesl|s) 31
RSBR J (plght square bpacket) 133
SEM COLON } | 73

SLASH / 57
STAR * 52

UNDERBAR . 32

TAB <tab> 1d

LF Cline feed> 12
VT Cyr dloal tabo 13

FF Horm feed? 14
CR {carriage return> 15

BLANK <blank> 4()
ALTMODE altmode> 175

L ML ISP SYNTAX= SECTION 2,5 14

. SYNTAX« SECTION 2.5

Precedence of Inf|x operators In MLISP (from highest to lowest), The
fol lowing table |s Included here purely ff or reference’ If is
explained fully In SECTION 3,3, Any function8 not present In the
table below wlll hrvr the default precedence (precedence |evel3) and
default binding powers,

Binding Power

Symbol Function Precedence Left Right

* TIMES | 700 75¢

TI MES TIMES 1 700 750

TIMES #TIMES i 700 750

/ QUOTI ENT 1 700 750
QUOTT ENT QUOTIENT 1 700 750
* QUO *QUO 1 700 750

* PLUS rd 600 650
PLUS PLUS 2 600 650

«PLUS oPLUS 4 600 650
g . DIFFERENCE 2 690 650

DIFFERENCE DI FFERENCE 2 600 650
oDIF «DIF 2 600 650

<default> 3 500 550

® APPEND 4 450 400
APPEND APPEND 4 450 ag?

® APPEND # APPEND 4 450 400
NCONC NCONC 4 450 400
CONS CONS 4 450 age

XCONS XCONS ‘4 450 400
CAT CAT 4 450 400

EQ EQ 5 300 350
NEQ NEQ J 300 350

EQUAL 5 300 350
EQUAL EQUAL 5 300 35¢

¥ NEQUAL 5 300 350
NEQUAL NEQUAL 5 300 350
LESSP LESSP 5 300 350
*LESS # ESS J 300 350

, s LEQUAL 5 300 350
LEQUAL LEQUAL 5 300 350
GREATERP GREATERP 5 300 35C
* GREAT * GREAT 5 300 350

- ee Ce

ML ISP SYNTAX = SECTION 2,5 15

2 GEQUAL ° 300 350

GEQUAL GEQUAL 5 300 350
¢ | MEMBER | 5 300 350
MEMBER | MEMBER 7B 300 350
MEMQ MEMQ 5 300 352

4 AND 6 200 230
A AND 6 200 250

AND AND 6 200 250

B OR 7 100 139

Vv OR T 100 152
OR OR 7 100 150

L ML]ISP SEMANTICS = SECTION 3 16
. SEMANTICS =-SECTJON 3

This section presents the meaning of each of the elenents In the
syntax, First the syntacticparts about to be expliainedare ||ated.

than thelr nranlng |e explained In detall, Finally, a serles of
expampies |||ustrates them, and In many cases their actual LISp
transiations e rl) glven,

| It |s assumed that the user has a working knowledge of LISP, If not,
Weissman’s PRIMER (We|ssman, 1967) provides a good tutorial.
McCarthy's PROGRAMMERS MANUAL (McCarthy, 1965) la the standard
reference nmnual, In addition,the user should familiarize himself
with the mmnual for his LISP system, since, as was pointed out, LISP
systems may vary from eomputer to computer,

In this section the symbol "=" npans "Is translated Into",

-

ML ISP SEMANTICS= SECTION 3.1 17

, SEMANTICS = SECTION 3,1

{program> 1i& <Cgxpression> .

An MLISP program |s an expression followed bya perlod, Usually the
program Is a serles of expressions enclosed In a BEGIN=END pair} |.e,
it |8 black, Thls permits nore than one M.ISP expresslon to b ec
transjated at thes a m e time, The transjation of thr program gets
bound to the funetlon RESTART aftertransiationhas been completed.
Example! |f the M.ISP program Is

~ BEGIN
NEW Xi

X o READ())

PRINTSTR("] JUST READ " CAT Xi
END,

then RESTART would be defined to be

(DEFPROP RESTART

(LAMBDA NIL
(PROG (X)

(SETQ x (READ))

(PRINTSTR (CAT (QUOTE "I JUST REAR ") X))))
EXPR)

Basical|y the RESTART function serves to glve a name to thr maln body
of the program, so that the user oan execute his program at any time
by call Ing It, For example, typing (RESTART) to LISP Would oause tho
above program to be executed,

' Any expression whose translation Is NIL (l,e, function definitions
and DEFINE expressions) are not Inejuded In the RESTART function;

only executable (non=NIL) expressjonsare Inciuyded, Example! If (he
M.ISP program ls

BEGIN

NEW X,Y}

EXPR MAX (X,Y)) If X2 Y THEN X ELSE YI

EXPR TPRINT(X); TERPRI PRINT X}
TPRINT MAX(X eo READC(), Y « READ())}

END

then RESTART would be defined to be

(DEFPROP RESTART

(LAMBDA NIL

(PROG (X VY)

(TPRINT (MAX (SETQ X (READ)) (SETQ Y (READ))))))
EXPR)

. MLISP SEMANTICS = SECTION 3,2 18

, SEMANTICS = SECTION 3,2

Cexpression> iis (simpie_expression> (<Infix_operator><simple_expression>}s

An expression|s ons or more simple expressions Separated by Infx
operators!

<simple_sexpression> |
¢simple_expression> <Infix_operator> <s|mple_expresson>
¢simple_exprassion> <|nfix_operator> <simple_expression>

<infix_operator> <simple_expression>
te -

From th|s description, |t appears that all Infix operators have the
same precedence, However» several often-used LISP functions have
been given different precedences from the others, This often enables.
one to eliminateparentheses that would be necessary to group the
terms In anexpressjon, The preoedences have been chosen to be as

naturaland usefulto the LISP programmer as possible, Example!

g A+B#C = DYE | XsY & Z3W
ls the same as

(CA + (BeC)) = D)| ((XmY) 8 (2=W)),

but the forner |9 far more readablethan the latter, The precedence
system Used|sexp|alnedin detaliInt he followingseection on Inflx
operators (SECITON 3.3),

Examples of expressions!

A » A

(A) - A

Y » (NOT A)
‘A - (QUOTE A)

wAw “ (QUOTE nAn)

<A> - (LIST A)

16 - 16

123,45€E+10 - 1,2345€12
OCTaAL 100 - 64 (decimal)

"THIS ISA STRING" - (QUOTE "THIS 1S A STRING,")

_ "ANOTHER "CAT "STRING' « ~ (CAT (QUOTE "ANOTHER ") (QUOTE "STRING'))

‘(A (d,C) D) - (QUOTE (A (B,C) D))

Cth,’ (B,C),'D> - (LIST (QUOTE A) (QUOTE (B,C)) (QUOTE D))

ML]SP SEMANTICS = SECTION 3,2 19

A+ 10 - (PLUS A 10)

A + 1 - (ADDL A)
Ae 10 - (DIFFERENCE A 119)
A =} - (SUB A)

A /B= C * (QIFFERENCE (QUOTIENT A B) C)
((A / B) « (C) “ (DIFFERENCE (QUOTIENT A B) C)
QUOTIENT(A,B)= (C - (DIFFERENCE (QUOTIENT A 8) C)
DIFFERENCE(A 7 B,C) - (DIFFERENCE (QUOTIENT A B) C)

X ee L * (MEMBER X L)

X = Y) (EQUAL X Y)

LL eo L2) (APPEND 11 L2)
L1 ¢ L2 o L3 - (APPEND L1 L2 L3)
A CONS B CONS NIL - (CONS A (CONS B NIL)
(A CONS B) CONSNIL - (CONS (CONS AB) NIL)

A + B GREATERP 10 » (GREATERP (PLUS A B) 18)
A#B + C CONS Liel?2 - (CONS (PLUS (TIMES A B) €) (APPEND L1 L2!
A CONS Bs C | »Y “ (OR (EQUAL (CONS A B) C) (NOT Y))
X = 7 & Yn AB - (AND (EQUAL X 7) (EQUAL Y (QUOTIENT A B)!
X EQ "A | X EQ 'S8 - (OR (EQX (QUOTE A)) (EQ X (QUOTE B)))
AABAC VaA A «B 0) (OR (ANDA B C) (AND (NOT A) (NOT BY)

A «B « (-» (SETQA (SETQ B €C))
A . B(l)eC - (SETQ A (STORE (Bl) C))

A #Be(- (TIMES A(SETQ B C))

Ae B® -» (SET A (TIMES B G))A «Be (C a» D - (TIMES A (SETQ@ B (TIMES C Dy))
A «Bs (C «0D “ (SETQ A (TIMES B (SETQ C D)))

IF FOO(X,Y) THEN - (COND

BEGIN NEW N} (¢(FOO x VY)
N + X MAX Y} (PROG (N)

X «Ye NIL; (SETQN (MAX X ¥))
PRINTSTR "HO HO"; (SETQ X (SETQ Y NIL))
-PRINT N (PRINTSTR (QUOTE "HO HO™M))

END (PRINT NW

ELSE PRINISTR "HA HA" (T(PRINTSTR (QUOTE "HAKA"))))

DEFINE FOO PREFIX AND &, OR | 100 15@, SUFLIST ¢ 490 491;

EXPR MAX (X,Y)} IFX2YTHEN X EISE Y

FOR NEWI IN L COLLECT <CAR I> UNTIL I = (STOP)

WHILEA NEQ@ 'STOP 0D00Ae« READ

DO A « READ() UNTIL hEQ ‘STOP

L MLISP SEMANTICS eo SECTION 3,3 20

» SEMANTICS = SECTION 3,3

CInfix_operator> tis <ragular_Iinflix>
| {vector _Iinfix>

Creguilar_Infix> 113 c8) /, *+) =) *, 4, @, 8, 2, S$, 2, €, &) As |2 V2
| Clidentifler>

Cvector_Inf|x> tis <Creguiar_infix> eo

A n Infix operator |s elther a regular Infix or a veetor Infix, A
regular Infix Is any of the symbols |isted, or an |dentifjer which Is
the name of a function taking two arguments, A veotor Inflx |s a
reguiar infix foljowed by the vector |ndlicator (eo),

) iinl

MLISP SEMANTICS «= SECTION 3,3 21

(A) Regular Infixes

The mormal LISP way ofweliting function calls IS the "prefix
notation," the function name occuring first followed by Its
arguments!

MLI SP permits functions oalled With two arguments to be written In
the "Inflix notation,” t he functionnameosccyringbetween the

arguments)
A PLUS 8,

In addition, certain commonly-wad LISP and MLISP functions have been
given abbreviations:

A * Bs

Below la a oomplete [lst of these abbreviations, The user can define
abbreviations for hls own functions, or ohange the M_LISP=def ined
ones, by using the DEFINE express|ion(SECTIONS,7),

Abbreviation Function

* TI MES

/ QUOTT ENT
+ PLUS (May be used a@a prefix.)
- DIFFERENCE (MINUS |f used as 2a prefix)

* PRELIST (see SECTION 5,2)
$ SUFLIST (see SECTION 5,2)
@® APPEND
LJ EQUAL
x NEQUAL (see SECTION 5,2)
S LEQUAL (see SECTION 5,2)
> GEQUAL (see SECTION 5,2)
¢ MEMBER
& AND

A AND

OR

Vv OR
- NOT (This Is a prefix, not an Inflix,)

Inf|x operators d o not al} have the same precedence} sont take
priority over others when expressions arc parsed, Example!

A+B (CC -~D/ ELE

Is parsed!

A+ (Bs Cy) « (D / EE),

A precedence System for Infix operators has been Setup (a)to help
eut down on the numper of parentheses needed’ and (b) because nost

programming languages have a precedence system and so haying one |s
more natural to a Programmer than not having one,

s ML ISP SEMANTICS= SECTJON 3,3 22
Listed below iI8 (he completeprecedence system for Infix operators in

MLISP, Any function which does not appear explleltiy In the table
below wll! be assigned the default Dprecedenc® and bindingpowers
(unless the user assigns different ones with the DEFINE expression).
For reference, the table below |s a|so|isted In SECTION 2,5,

Binding Power

Symbol Function Precedence Left Right

» TIMES i 700 750

TIMES TIMES i 700 750

sTIMES oTIMES i 700 750
/ QUOTT ENT 1 700 750
QUOTIENT QUOTI ENT 1 700 750
sQUO «QUO i 700 750

+ PLUS 2 600 650
PLUS PLUS 2 600 650
*PLUS oPLUS 2 600 650
- DIFFERENCE 2 600 650

L DIFFERENCE DIFFERENCE 2 600 650«DIF «DIF 2 600 650

{defaul|t> 3 500 550

] APPEND 4 450 420
APPEND APPEND 4 450 age

» APPEND APPEND 4 450 400
NCANC NCONC 4 450 400

CONS CONS 4 450 400

XCONS XCONS 4 450 400
CAT CAT 4 450 ag0

EQ EQ 5 300 350

NEQ NEQ 5 300 350
EQUAL 5 300 330

EQUAL EQUAL 5 300 350
NEQUAL 5 300 350

NEQUAL NEQUAL 5 300 350

LESSP LESSP Pp 300 350
so LESS «| ESS 5 300 350
< LEQUAL 5 300 350

- LEQUAL LEQUAL 5 300 350
b GREATERP GREATERP . 5 300 330

* GREAT «GREAT 5 300 350
> GEQUAL 5 300 350
GEQUAL GEQUAL 5 300 350

ML ISP SEMANTICS = SECTION 3.3 23

¢ MEMBER d 300 350

MEMBER MEMBER 5 300 350
MEMQ MEMO 3 300 350

§ AND 6 200 230
A AND 6 200 250

AND AND 6 200 250

| OR I 100 150
v

OR (RR iy 100 400 150 $50

The reader has probably noticed that the last two oolumnr In thls
table are labled Binding Power = Left and Right, Basically, the
"binding powers" of an infix operator are the strengths with whieh It
"binds" or pulls on the elements to the left and right of |%s The
concept of blndlng powersissufficlent tt oo ocompletely specify any
precedence system For example, consider!

A+38% (

Both * and ® are trylm@ to attroh B as the second argunent for the fr
functions (PLUS and TIMES), But the |6ft blndlng power of # (788)Is
greater than the right binding power of + (650), so this expression
would be parsed!

A+ (B « C),

As another exanple, suppoSe the user has defined a two-argunent
function MAX, Since MAX does not ocour expliecltly In the precedence

system above, the default blndlng powers (500 and 550) are used.
Then

A MAX B MAX C

is parsed?

(A MAX B) MAX C

since for default fungtlions the right blndlng power Is greater than
the left blndlng oowerf, This Is also true for all other functions
except those on precedence |eve| 4, (h e¢ s=-expression bulliding
functions (APPEND, CONS, e%t¢.)» For a LISP user, It 18 not only nore
natural but nore efflelent to have the assoofatlon of these fumoctlons
go to the right!

4 CONSBCONSCCONSNIL

|s parsed!

.

g MLISP SEMANTICS « SECTION 3.3 24
A CONS(B CONS (C CONS NIL), i

The uSepr should study the precedence system above, Parentheses muy
be useda t any ¢timetoalter the assoclations of the precedence
system, but hopeful|y It has been constructed carefully enough ss o
that the user wWll| sejdom have to do thls,

Aljuser~def|ned(nfixfunoctions normally gct assigned the defaylt
binding powers, Note that ¢hl® noans that user-defined functions |
normal |ytake precedence over sone LISP and MLISP functions (those on
precedence levels 4 = 7), However: the user can assign different

binding powers to his functions, or even to the funotlona above, by
means of the DEFINE expression (SECTION 3,7), With the DEFINE
expression, he orn set up any Precedence System he choses,

ML]SP SEMANTICS = SECTION 3,3 25

The rationajefor the precedence system!

| «, TIMES, #TIMES Flrst come the arithmetic functions,
/» QUOTIENT, «QUO whl oh operate only on numbers and

whloh Yleld only numerlioa| values,

2 +, PLUS, *PLUS As |s natural, multiplication and
=) DIFFERENCE, #DIF division take precedence over

addition and subtraction,

3 «fl I others Then come all user-defined functions,

and all LISP and MLISP funotlons not
|Isted here expilcitiy,

4 @®, APPEND, «APPEND, NCONC These arc followed by functions whieh
CONS, XCONS operate on s=expressionstobulld new
CAT s~expressions,

5 EQ Of lower precedence are funotlons
g» EQUAL which operateo n s=express|/ons, but
2, NEQUAL whloh Yleld only boolean values,
<» LEQUAL, LESSP, *LESS
2» GEQUAL, GREATERP, ®GREAT
€, MEMBER, MEMQ

6&6 &, A, AND Of lowest precedence arc functions

which operate only on boolean values,
and whieh ylejd only boolean values,

7 |» VY,» OR A8 |s8 natural, OR ha® a lower
precedence than AND; In fact OR has
the [oowest precedence o f any
function,

In addition to Inflx operators, prefix operators and the ass] gnment

operator (e¢) have ajso been Implemented using binding powers, The
binding powers fo,p,refixes ape =1 and 1088} those for the agglgnmeng

operator ape $001 and O, These may be changed by the DEFINEexpression, They are ||sted only for reference’ the use of prefixes
and assignmentexpressions|s explained better by the Syntax,

. ML.I SP SEMANTICS = SECITON 3,3 26
(B) Vector Infixes

Vector Infixes are a very powerfu| M.ISP concept, They provide a
concise ncans of mapping funotlons onto one Or two lists, a facil] ity

not readily avaljable In LISP, They developed from the observation
that |!s8ts may be regarded as any=d|imensional vectors, The LISP
system then becomes an Infiniteedimensional vector space, Scalars In

this veetor apace are atons, Vector [nfixes (and veotop prefixes)
arean attenpt to define sone primitive operations over thisvector

' space, Basically vector Infixesarefunctionswhioh aremapped onto
thelr vector (|19¢) arguments to yleld a vector (list) o ff results,

much |Ikeatwo-argunment MAPCAR,

SupposeV = (vl, v2, ,,, vm) and W ® (wil,w2,,4y, Wn) are two vectors
(1,80 |ISte), Addltlon of two vegtors|s accomplished by}

V +0 W = (vi*twl, ve+we, feo VK*WK) where K sminimen),

Miltlplloatlon by ascajar?

10 we yv = (i10evy, 10%v2, ,,, 12®ym)

q v #e 10 = (vield, voei2, ,., vmeigQ)
Multiplication of two scalars?

10 =e 20 = 18 « 20 = 200

To Illustrate these vector primitives, we Wl|l use themto write the

Eyclidean Inner prod ce!
k

V + W 3 ECv] + wl)

|=1 |
Flpst Obge8pve (hat If we CONS the function PLUS onto a |lst of
numbers, we get an executable expression!

"PLUS CONS (1 2 3 4 5) 2 (PLUS 12345),

Then:

EXPR INNERPROD (V,W)3 EVAL (‘PLUS CONS V +e HW)

isthe desired Inner produet funmotlion using vector operations, It Is
worthwhile noting that we could also wrlte!

EXPR INNERPROD (V,W)3

BEGIN NgW SUM;
SUM « 33
FOR NEW v INV FOR NEW w IN W pO SUM« SUM+ (v+w)}
RETURN SUM

END

ML ISP SEMANTICS = SECTION 3.3 27

or equlivajentiy!l

EXPR INNERPROD(V,W)} FOR NEWv IN V FOR NEWw IN Wj PLUS y+w

Vectoroperations, however, provide the most concise means of writing
the function,

The next |ogieal step | n the devejopmento +f veotor orerationsist o
permit virtually any two=argument LISP, MLISP or user~def ined
function to be used asavector operator!

Vv #0 8 (vi * wl), vd ®» w2y»,¢s vk * wk)
V CONS. W 8 (vl CONS wi,v2 CONS wW2irseg9vk CONS wk)

V FOQe W 8 (viFOO wiyv2FOO w2,.., vk FOO wk)

whereIn each oase kamin(jength V, length W),

Note!

(a) The resulto {vector operations| oa vector (l.e, |I8t), uniess

both argumentsaresoaiars (atoms),
(b) The |ength of the result vegctor!s the shorter o f the |engths of

the two vootor arguments, or the [engthof thevector argument| ¢
the other argument |s a scajar,

Following an Infix operator by the vaotor Indicator (e)does not
change |ts precedence, In determining the parsing of an expression,
the presence of absence of e |8 Ignored!

| A +40 B we C CONS*

is parsed exact|y thesame 38

A+ Be C CONS L,
namely

(A +o (B «#0 C)) CONSe |,

In addition to two-argunent vector Infixes, one-argunent vector
pref Ixes are iso permitted, Thesearc discussed In the following
section on prefix operators (SECTION 3,4), Exempnle:

ATOMe '(A B (C) D) = (TT NIL T),

mm

" ML ISP SEMANTICS = SECTION 3,3 28

Examp(eso fInfix operators!

A + 180 - (PLUS A 10)
A + 1 - (ADDL A
A =-10 - (DIFFERENCE A 10)
A = 1 - (SUB1 A)

A/B «C - (DI FFERENCE (QUOTIENT A B) C)
((A 7 B) « C) - (DIFFERENCE (QUOTTENT A B) C)

: QUOTIENT(A,B) » C - (DI FFERENCE (QUOTIENT A B) C)
DIFFERENCE(A / B,C) - (DI FFERENCE (QUOTIENT A B) €)

X € L - (MEMBER X L)

X = ¥ - (EQUAL X y)
[1 eLe ae (APPEND L3% L2)
LieI12 ®L3 - (APPEND Li [2 L3)
¢A,B,C> ® FOO(X,Y) . (APPEND (LIST A BC) (FOO X vy))
A CONS B CONS NIL ~ . (CONS A (CONS B NIL))
(A CONS B) CONS NIL * (CONS (CONS A B) NIL)
<A CONS BD - (LIST (CONS A B))
A CONS L+3 @ X - (CONS A (APPEND (SUFLIST L 3) X))

| A + B GREATERP 10 . (GREATERP (PLUS A 8) 18)
| A%B + C CONS L “ (CONS (PLUS (TIMES A 6) CO) L)

A CONS B 8 C | =Y - (OR (EQUAL (CONS A B) C) (NOT Y))
X 8 7 8 Y = AB . (AND (EQUAL X 7) (EQUAL Y (TIMES A B)))
X EQ ‘A | X EQ’B - (OR (EQ X (QUOTE A)) (EQ X (QUOTE B)))

Vector Infixes!

1(12 3) #8 (4 5 6) s (57 9)
'(f 2 3) eo "(4 5 06 7) 2 (4 10 18)

2 we '(12 3) (24 6)

2 we (31 2 3) +0 (4 5 6) s (6 9 12)

240 ('(1 2 3) +e ‘4 5 6)) 2 (10 14 18)

*(1 2 3) CONS@' (A B C D) » (¢1 . A)(2 , B) (3 , C))
*((1 2) (3 4)) ee '((A B) (C D))s ((12 AB)(34 C DY)

‘((A 8 C)Y(D E F) (GC H])) te]= (CA) (D) (G))
"((A BC) (DEF) (GH I) s0 1s ((B C) (E F) (H 1)

("JOHN *" "MARY ") CAT. '("DOE" "SMTH')

3 ("JOHN DOE" "MARY SM TH")

AT. ("JOHN," CAT. '("DOE" "SMTH'))

x (JOHN _DOQE JOHN_SMITH)

MLISP SEMANTICS = SECTION 3,4 29

« SEMANTICS = SECTION 3,4

Cpref|x_operator> its <Cregular_prefix>
| <vector_pref|x>

<regular_prefix> a+ C4, =, ad
| <ldentifierd

{vector _pref|x> tts Crogular_prefix> o

4 prefixoperatoris @® thot aregular prefix or a vector prefix, A
regular prefix Is any of the symbols ¢, = oor =, oor an [demtifier
representing any one-argument functlionwhich theMLISP translator
know8 about, A vector prefix is a regular prefix followed by the
veotor Indicator (eo),

Regular pref |xes

The mmin purposes of prefixes are toclarify expressionsandt o

® jinkat@ parentheses, NOTX |sbetterthan NOT(X), though both are
legals and =X|s even better, The trans{ator knows about all
one~argument LISP andML1SP functions, | naddition, the <tramsiator
notes aj| one~argument EXPR’s transiated, Latero nin theprogram
(l,0, after the function definition), that function my be used 1 ike
any other prefix, Example!If the function definition

EXPR FOO (X)3 TERPRI PRINT X |
Ogourfed In o Program, then In the rest of the proorgm fojlowing this
definition It would be legaltotreat FOO a8 a prefix,

This |8 on® way that the translator ©&R be nnde aware Of user=-def|ned
prefixes, Another way Is to use the DEFINE expression (SECTION 3,7):

DEFINE FOO PREFIX
has the effect of stating Co the translator that the function FOO,
regardless of Its definition (If any), wlll only have one argument In
the rest of the Drogram and 90 shou|dbe treated asapref|x,

Vector prefixes

Vector prefixes arc avery Interesting and very powerful extension of
prefix operators, The concept of vector operationswas explalned in
the preceeding section, Th ebasic Ideals thatvector prefixes

operate on not Just one; but on 8 whole [18% of arguments, and they
return a whole |18% of values, The prefix operator 1I|8 mapped onto
the (lst, with the operator applied to each element [n it, This
enables mny complexexpress|ionsto be written oonclise|y, Vector
prefixes nny al80 Operate on atons (8calars) |[nstead of |[sts,

| ML ISP SEMANTICS = SECTION 3,4 30
Examp |98 of prefix gperators!

+ X - X .

«X » (MINUS XO

= X - (NOT X)

NOT X * (NOT X)
NOT (X) = (NOT X)

ATOM FOO(X,Y,2 ¢« 10) - (ATOM (FOO X Y (PLUS 2 18)))

NULL CDR & - (NULL (CDR L))
TERPR] PRINT CAR L -» (TERPR] (PRINT (CAR L)))
LENGTH L + 18 -* (PLUS (LENGTH L) 19)
-4 K =B A «C 5 (AND (NOT A) (NOT 8) (NOT OO)
NUMBERP X v «ATOM X » (OR (NUMBERP X) (NOT (ATOM X1)))

NOT ATOM X = READ() » (NOT (ATOM (SETQ@ X (READ))))
NOT ATOMX & READ() -* (AND (NOT (ATOM X)) (READ))
NOT' ATOMX CONS READ() = (CONS (NOT (ATOM X)) (READY)

Veotor prefixes!

. Suppose L = (A B (C D) NIL EY,

ATOMe | LJ (TT NNL T T)
NOTe ATOM. L a (NILNILT NIL NUL)
n® | a (NIL NIL NIL T NIL)
LENGTHe T a (a 0 2 0 @)

+e (1 2 3 4) » (1 23 4)

wo ’(1 2 3 4) J (w] «2 =3 =4)

NUMBERPe (4 2 3 4) 8 (T TTT
ADD1e (1 2 3 4) = (2 3 4 5)
«0 SUBle (1 2 3 4) 3 (0 =1 «2 «3)

: z (THISIS4 LIST OF STRINGS)
ATe "STRINGS" s STRI NGS

AT "STRINGS" 3 STRI NGS

STRe ' (MORE STRINGS) = ("MORE" "STRINGS")
STR "(MORE STRINGS) = "WORE STRINGS)"

ATOMe 10 8 T

ATOM 19 a T

NUMBERPe 10 5 T
NULL® 10 8 NIL

_ CAR. ‘(CA 1) (B 2) (C 3)) a (A B C) |
CDR. "((A 1) (B 2) (C 3)) 2 (C1) (2) (3))
CADRe '((A 1) (6 2) (C 3)) 3 (1 2 3)
NUMBERPe CAQRe ‘((A 1) (B 2) (C 3)) = (TY TT)

MLISP SEMANTICS = SECTION 3,5 31

« SEMANTICS = SECTION 3,95 :

Each of the remaining sub=sectlions In SECTION 3 explains anexample
of a simple expression,

<block?> tts BEGIN
(<declaration> })}*

(Coexpression> j)#
{(Cexpresslion>)

END

(declaration 1312 NEW C|dentifler_|Ist>
| SPECIAL <|dentifler_Iistd

<identifler_|ist> sis <C|dentiflier> (, <identiflerd>)w
| <ampty?

A block Is the reserved wor d BEGIN, followed by any number of
declarations separated by semicolons (}), foljowed by any numberof
expressions separated by semleolons, followed by the reserved word
END, The last expression need not have a aemloolon after It. A
declaration |s elther of the reserved words NEW or SPECIAL, followed
by an Identifier |]st, An ldent(fler TI |st Is any number of
[dent!flers (possibiy none) Separatedpy commas,

A block Is translated Inte a PROG, Any variables (|jdentiflers)
declared using the NEW declaration become the PROGvariables, Check
your LISP manual to 8ee whether or not PROC variables are
automatically Inmitiajlized to NIL In your versionof LISP, The scope
of NEW variables |s the scope of the PROG, |,e, ynti! the matching
END, NEW varlablesmay also be declared SPECIAL. Fach expression

following the deciarations untli|the END becomes , statement I" thePROG, There 8should be a semicolon after sach expression, wlth the
® xocrptlon that the last semicolonis optional, END closes off the
PROG,

SPECIAL declarations are somewhat wunlgue In that they have no

translation} Instead they have an effect on the transiator. Aflag
for the LISP 1,6 compller Is put on the property |18t of eaoh
var lable decjared SPECI AL, thisflagenables the compller to oomplle
free varlab|es and global variables correctly,

SPECIAL deciarations have the effect of declaring thelr variables
SPECIAL throughout the entire program, regardiess of the phys|oal
location of thedecjaration In the program, This enables the USer to
mark varlabjes SPECIAL wherever [t Is convenient to do So, and
simultaneous|y prevents the compiler (and user) from getting confused

| MLISP SEMANTICS «= SECTION 3.5 32

whenvarliab|es are sometimesSPECIAL and sometimes not, Its a good
Idea to make SPECIAL variable names distinct from other variable

names @s a way of keeping track of them, For example, an exc|amation
mark (!) could be Included In each SPECIAL variable nane; SPECIAL !A,
18, IC, In general, the fewer variables that have to be declared
SPECI AL, the better} the oode for SPECIAL variables runs somewhat
slower than that for nonsSPECIAL ones,

For the user’s reference) the fojlowingsection Is reproduced from
Quam’s LISP 1,6 manual (Quam, 1969),

In ecompjjed functions, any variable which |8 bound in a
LAMBDA or PROG and has a free oecourrence eisewhere nust

be degcliared SPECI AL, CA varlable Is sald to have a free
occurrence If It not bound In any LAMBDA or PROG
contaln|ng the occurrence, (Also,]) variables which are
used In a functlonal context must be degiared SPECIAL or

else the compiler will mistake them for undefimed EXPR’Ss,

Sim|lar restrietions hold for many other LISP compliers, [It I|® UP to
the user t0 make Sure he understands fully the <conventlons fat
eompliing In hls LISP system, For the MLISP user, there |8 one
further restriction: variables In the left-hand slide ofa

decomposition assignment expression (SECTION 3,111 must be declared
L SPECIAL If the expresslion!s to work correctly,

AS wlth PROG’s, a value mmy be returned for a block by using the
RETURN function, Labels may be transferred to using the GO function:
labels are deciared by following the label Immed|igtejy with a
semicolon (e,9, L}), not with a colon, However, the Iteration
"meta=expressjons" descr bed In following sectionsareto be much

recommended over |(abe|s and GO transfers,

ML ISP SEMANTICS = SECTION 3,5 33

Examples of blocks!

BEGIN - (PROG NIL)
END

BEGIN - (PROG NIL

Li X * READ) L (SETOX (READ))
IF X EQ Y THEN RETURN TRUE (ConND (CEQ X Y) (RETURN TRUE)) :
ELSE PRINT <X,Y>}; (7 (PRINT (LIST XY)))
GO L} (GO L))

END

BEGIN NE W X1,X2,X3}) » (PROG (X11 X 2X3)
SPECIAL X3,Y,2} (SETQ 2 NIL)
2 + NILS (SE1Qx | (READ))
X1 « READ()} (SETQ X 2 (ADDL (TIMES 12 X1)))
x2 + 10%X1 + 1; (COND
IFFOO(X1,Y,2)&X33L T HEN (CAND (FOO x iv 2)Y(EQUAL Xx 31))

PRINTSTR("ANSWERS" CATY? (PRINTSTR
ELSE XJ eX2 + X13} (CAT (QUOTE "ANSKER=®")Y)))
RETURN X3 (T(SETQ X3 (PLUS X2X1))))

END (RETURN X31)

BEGIN (PROG NIL

ExPR MAY (x,Y)} (DEFPROP MAX
IF X2Y THEN X ELSE Y} (LAMBDA (XY)

(COND ((GEQUAL X VY) X) (T Y)))
EXPR)

EXPR MAX-LIST (L,M)i (DEFPROP MAX_LIST
IF NULL L THEN M ELSE (LAMBDA (L M) (COND
MA XLIST(CORL,MAX(M,CAR L))} ((NULL LY) M)

- (T (MAX LIST (CDR L)

" (MAX M (CAR L))))))
EXPR)

PRINT MAX_LIST(READC¢),2)} (PRINT ((MAX_LIST (READ) ®)))
END

| ML ISP SEMANTICS = SECTION 3,6 34
, SEMANTICS = SECTION 3,6

(functlon_definition> tis eEXPR, FEXPR, LEXPR, MACRO:, <identifler>
(<|ambda_(dentifler_IlIst>); <expresslion>

<LAMBDA expression ts LAMBDA
(<|lambda_|dentifler_|Iistd>)i<eypression>

Cjambda_jJdentifler_|ist> tiz (SPECIAL) <ldentifler?
{, (SPECIAL) <lidentiflerd>)e

<enpty>

A fuynectlon deflnltlon Is one of the function types: EXPR, FEXPR,

LEXPR, MACRO, followed by an identifier (the name of the funetion),
followed by a LAMBDA variable {Ist and LAMBDA body, A LAMBDA
expression Is essentially the sane thing, being the reserved Wrd
LAMBDA followed by a LAMBDA varlab|e ||st and LAMBDA body, A LAMBDA
Identifier Ist Is any nunbar of Identifiers (possibly none)
separated by eommas, Each l|dentif|ler nmmy be preceeded by the word
SPECIAL, This and the SPECIAL declaration In biocks are the two Ways
the user may declare varlables to be SPECIAL, (SECTION 3,% discusses

! SPECIALL variables,
Wien the MLISP translator encounters a function definition, the

fol lowing three steps occur:
(1) The complete function deflnltlon 18% translated,

(2) The function Is then !mmediate|y defined (l,e, the deflnltlon Is

carried out), without walting for therest of the program to be
translated,

(3) NIL Is returned as the transjatjon for the expression,

Note thats|nce step (2) |s carried out In the m|ldd|e of the
translation of the program, the user might accidentally redefine sone
LISP or MLISP function that wou|d cause the rest of his program to be
translated |ncorrectiy, To guard agalnstthis, each function nance Is
first checked to see|f It already has a function definition of any
type} If It does, a warning message [s printed. If thls happens,
change the nane of the function and recompl|e the program

Usually a program consists of a BEGIN-END pair enclosing aseriesof
function definitionsand other expressions, Function definitions are

b not executable at run time} thelreffect occurs at transjatlion time,

- In step (2) above, As step (3) states, NIL wlll be returned as the
trans|atiom for function definitions, All exectuable expressions

wlll have non-NIL trans|ations, In transjiating a program all NILtranslations are thrown out and only non=NIL ones retained,

ML ISP SEMANTICS= SECTION 3,6 35

Examp jos of tunotion definitions!

EXPR NOTHING()3 PRINTSTR" T HI SISN'T MUCH OF A FUNCTION")

EXPR REV (L)} IF NULLL THEN NIL ELSEREV(CODRL)®CCARLDY}

FEXPR OPEN(X)} EVAL <’INPUT,’DSK1,CAR X>}

MACRO NOT_MEMBER(X)| <"NOT, MEMBER, XL2],X[31>>}

EXPR FOOBAZ(X, SPECIAL Y)}
BEGIN

NEw Al -

IF X ®sREy(yx) THEN A ey
ELSE BEGIN

OPEN(FO0)!
NOTHING()

CLOSE(FO00);
END)

RETURN <A, REy(A)>}
END} .

EXPRINNER_PRODUCT(V,W)I EVAL ("PLUS CONS V +oW)}
% this takes the inner producto f t w ovectors(liats),X

EXP RINNER_PRODUCT(V,W)} FOR NEWVIN V FOR NEW w INW3PLUS v*w}
“%X So does this, X%

L ML ISP SEMANTICS = SECTION 3,6 36

Examples of LAMBDA expressions!

Assume that "P00" represents a function whieh has bean defined to be
the same as thc LAMBDA expression In cach of the following examples,

EXAMPLE 1, |

 m| spt MAPCAR(FUNCTION(LAMBDA (X)3 X CONS NIL), ‘(A B C))

| Isp? (MAPCAR (FUNCTION (LAMBDA (X) (CONS X NIL))) (QUOTE (A B C)))

equivalent iy? MAPCAR(FUNCTION(FOQO0), ‘(A B O),

EXAMPLE 2, -

ml Isp? LAMBDA (X,Y);
IF X EQ Y THEN PRINISTR "THEY ARE THE SAME" ELSE

IFNOT ATOM X THEN PRINTSTR "FIRST IS NOT AN ATOM"
ELSE PRINTSTR("X 3" CAT X)}

i (READ(), READ())

I isp! ((LAMBDA (X Y)
(COND

((EQ Xy) (PRINTSTR (QUOTE "THEy ARE THE SAME")))
((NOT (ATOM X?)) (PRINTSTR (QUOTE "FIRST IS NOT AN ATOM)))
(T (PRINTSTR (CAT (QUOTE "X =") X)))))

(READ)
(READ))

equivalentlyt FOO(READ(), READ())

EXAMPLE 3,

miispt LAMBDA (X,Y,SPECIAL Q)}
LAMBDA (2)}

IFFOO(X) THEN PRINT 2 ELSE PRINT Q
(<X, YD)

(A)B+1, NIL)

| Isp! ((LAMBDA (XY Q)

((LAMBDA (2) (COND ((FOO X) (PRINT 2)) (T (PRINT Q)))) (LIST X Y)))
A

| (ADD1 B)
% .

NIL)

equlivalentiy: FOO(A, B+1, NL)

ML ISP SEMANTICS =SECTION 3.7 37

« SEMANTICS = SECTION 3,7

¢DEFINE_expression> is DEFINE <OEFINE_clause?> {, <DEFINE_claused)s

<DEFINE_o|ause> tis CDEFINE_symbo|> PREFIX
| COEF INE _symbo|> (PREFIX) <alternate_name)
| COEFINE_symbo|> (pREFIX) (<alternmate_name>)

<{nteger> <integer>

: CDEFINE_symbo|> [ts <|doentifler>
| apy oharaotsrexcept" or %¥2

<a|ternate_name) jis <Cldentiflerd
| <any character except ", X,} O ,?

A OEFINE expressionis onr or more DEFINE ¢lauses separated bh y
commas, A OEFINE o|ayseisan Identifier or any oharacter except "
orX (the DEFINE symbol), followed by any or all oft (1) ths word
PREFI X, (2) an alternate name (abbreviation) for the DEFINE synbol,
and (3) two Integers representing left and right bindingpowers for
the OEFINE synbol, A n alteprnatename Is an |dentiflerorany
character except ", X, semicolon (}) or oomm (i),

The OEFINE @® <xpreaslon provides , versat|le means of commun]cating
with the M.ISP ¢transjator, As with function definitions, the
transiation of OEFINE expressions|s NIL, Instead of atransjation,
the DEFINE expression ha® an effect on the translator. The effect |s

to assign certaln properties to the OEFINC symbol whieh the
transiator wil| make uss of In the rest of the program, The DEFINE

expression will be expialned by examp|es,

Examples 0 f DEFINE expressions!

(1) DEFINE FOO PREFIX

This Informs the translator that hereafter In the Programthe
function FOO Is to be treated |lkea prefix (SECTION 3,4), This
means that FOO may be used without parentheses around Its argunent,
and It may be used as a vsotor operator, Only Identifiers which are
the nanss of one-argunent functions should be defined to be prefixes,

(2) DEFINE UNION u

This Informs the transjator that ths symbol VY I8 to bs considered as
an abbreviation for the function UNION, After thls DEFINE expression
has been translated, whenever the Scanner encounters yy, | fwill

. ML ISP SEMANTICS = SECTION 3,7 38

Immediately convert lt to UNION, The effect of writingVv wlll be
exactly the same as if UNION had been written, The =ajternate name

my be an identifier! .

DEFINE CAR a

would €Onvert cvery subsequent occurrence of a Inte CAR, Also, the
DEFINE symbol itself muy be a special character:

3 DEFINE ; ,

would¢trans|atea|| commas |n the rest of the program Into
semicolons,

DEFINE 3 STOP

would translate every subsequent occurrence of the word STOP fnto a
semicolon, to || lustrate this, consider the following example!

BEGIN » (PROG NIL

DEFINE CAR a, CDR d, NULL n,

IF |f, THEN =», ELSE ese;

L (DEFPROP rev
EXPR rev (1) (LAMBDA (})

If n I =» nl} (COND ((NULLI? NIL)
oise re, (d |) @ <a |>} (T (APPEND (rey (CDR 1))

END (LIST (CAR 11)))))
EXPR))

(3) DEFINE UNION 36g 370

This specifles that the left and rlght binding powers for the
function UNION are to be 360 and 37¢ respectively, Blinding powers
areexplalnedintheseoction on Infix operators (SECTION 3,3), The
value3 abovewouldg|ve UNIONa precedence of between 4 and % In the

precedence system for [(nfix operators (e,f, SECTION 3,3), Only
Identifiers representing one and two-argument functions (prefixes
and Infixes) should be given binding powers,

(4) DEFINEUNIONv 362370

This defimes v to be an abbreviation for UNION and s!mujtameously

, sets up left and rlght bindingpowersfor UNION,

MLI SP SEMANTICS « SECTION 3,7 39

(5) DEFINE FOO PREF IXa

This specifies tt h a t thefunctionFOOIist obetreateda saprefix,

and that the symbol ais to beconsidered an abbreviationfor |,

(6) OEFINE NOT PREFIX ==11000

Thisspeoclfles that the funotionNOT Is tobetreateda8a prefix,
that the symbol« Is to be considered an abbreviation for |t, and
t hat Its loft and right ©blndlng oOowers are to be «1 and 1000
respectively, The eaulvajent of this expressionhas already been
executed for all one-argunent LISP and M.ISP functions,

(7) DEFINE UNION u 360 370, INTERSECTION # 380 390, RETURN PREFIX =1 0;

After thls DEFINE expressionnhas been transiated,

RETURN A®@ Bu C@®@DnE@®F

would bo transiated

(RETURN (UNION (APPEND A 8) (INTERSECTION (APPEND C D)CAPPENDEF)))),

exactly as Iflthad been written

RETURN (A® B) u ((C e D) n (ELE @® F))),

UNI ON 18¢glven Jlower blinding powers than INIERSECITON, and both of
them have lower bindingpowers than the 400 and 452 binding powers of
(®) APPEND (SECTION 2,5), Seting the rightbindingpowerof RETURN
to 2 Insures that an entire expression (In this case! A ®¢ BuvcCcn oD e
E) wlll b e trans|atedas li8argument, rather than Just a8imple
expression a8 would normallybe the case(8|nce RETURN 8a prefix),
This. Is because , | binding powers | nMLISPare| arger than@3
thereforesall infix operators willb | n dup thelr arguments before
RETURN does, In faot, anythlng WIth a rlght binding Power of O Willi
gobble +R @ vowthbg umtl| then e x texpression-stopper (reserved
word, "J", "i", etc,),

. ML ISP SEMANTICS = SECTION 3,8 40)

, SEMANTICS « SECTION 3,8

CIF _express|on> 11= IF <expresslon>

THEN <oxpression> (ALSO <expressiond)*
(ELSE<expression> (ALSO <Cexpressiond>)#)

An [Flor conditliona|) expression Is the reserved word IF, followed
by any expression, followed by the reserved word THEN end another
® xores!Uon, optionally followed by any number of ALSO clauses, This
Is optionally followed by the reserved word ELSE and 8 third
expression, agaln optionally followed by any number of ALSO clauses,
An ALSO c|ause |s the reserved word ALSO followed by any expression,

Conditional expressions get transjated |nte LISP COND‘’s, In LISP 1.6
there may be more than one expression after the predloatejexample:

(COND (P1 Ei) (P2 E2 E3) (P3 E4 ESE6))

ls a legal LISP 1,6 conditional expression, VWiere there |Smorethan
oneexpression, the expressions arc evaluated from left to right} the

‘ value of the Jast one becomes thevalueofthe COND,
In the following, E1, E2, ES ,,, represent any expressions,

IFEl THEN E2 - (COND (EL E20) (T NIL))

IF El THEN E2 ELSE ES3 . (COND (EI E22) (T E3))

IF El THEN £2 ALSO ES3 - (COND (E1 E2 E3) (T E4 ES £6))

ELSEE 4 ALSOE 5 ALSOES

IF El THEN E2 ELSE - (COND (E1 E22) (E3 E4)(T ES))
IF E3 THEN £4 ELSE ES5

Nesting of conditionals |s permitted to any degree of complexity.
Each tLSEterm [5s matched upwith the nearest preceeding THEN, unless
parentheses arc used to group the terns differently,

IF El THEN - (COND (El (COND (E2 E3) (T E4)))
[IF £2 THEN E3 ELSE E4 (T NIL)

I# El THEN » (COND (EY (COND (E2 E33) (T NIL)))
(IFE2 THEN E3) (T E4))

ELSE £4

y IF El THEN = © (COND (El (COND (E2 E3) (T E4)))
IFE2 THEN E3 ELSE E4 (T £5))

ELSE ES

ML ISP SEMANTICS = SECTION3,8 41

Examples of IF expressions! a

{Fxs® 10 THEN PRINT Y (COND (CEQUAL X 18) (PRINTYN(T NIL))

IFX #40 THEN PRINT vy (CONDO ((NEQUAL X 10) (PRINT Y))
ELSE PRINTZ (T (PRINT 2)))

- (COND
IFA&ZB&CED “THEN - (AND A BCD)

IF XelL THEN PRINT ‘MATCH (COND (MEMBER XL? (PRINT (QUOTE MATCH))
ELSE PRINT *NO_MATCH (TCPRINT (QUOTE NO_MATCH)))))

ELSEIFFO0(A,B)&8«C THEN (CAND (FOO AB) (NOTEC))
| F <X>¢L THE NPRINTT (COND ((MEMBER (LISTX)L)(PRINTT)
ELSE PRINT NIL (T(PRINTNIL))))

ELSE PRINT ‘OH WELL (T (PRINT (QUOTE OH_WELL))))

IF X § 100 THEN “+ (COND
Y« 2X ALSO CO L ((LEQUALX19@) (SETQ Y (TIMES 2X)) (GO L

ELSE YeX+1 ALSO RETURN <X,;Y> (T(SETO Y (ADDL X)) (RETURN (LIST XY))))

L MLISP SEMANTICS = SECTION 3,9 47?

, SEMANTICS « SECTION 3,9

<FOR_expression> : it <(FOR_clause> ({FOR_ocl|ayuse}®
eD0, COLLECT, ; <ldenti|fler>> <{expression>
(UNTIL <expression>)

¢FOR_clause> 112 FOR (NEW) <|dentifler> IN, ON> <Cexpression>
| FOR (NEW <tidentifier> . expression

To <expression> (BY <expressiond)

A FOR expression [38 any nunber of FOR oo] auses, followed by the
reserved word 00, the reserved word COLLECT, or a semlcojon (})
together with an Identifier which 18 a two-argunent fungtlon nane.
This |8 followed by an @ [XI@QI| ++@[IW (the "body" of the FOR=|oop), which
Is optionally followed by the reserved word UNTIL and another
expression, A FOR clause [|S the reserved word FOR, optionally
followed by the reserved word NEW fol (owed by an Ident|fler (the
oont rol variable), and followed by elthert! (a) the reserved word IN
or the reserved word ON, and an expression whichevalutes to a |Ist
(possibly NIL)» or (b) a jleft arrow («)y followed by an expression
which evajuates to a number (the [ower I Imit), followed by the
reserved word TO and another expression which evaluates to a nunber

L (the upper |Imit), This 1a optionally followed by the reserved Word
BY and a third expression whieh evaluate8 to a nunber (the
increment),

The FOR expression (FOR-loop) I8 the nost powerful meta-expression In
MLUISP, 1Itls designed to facilitate dealing with Individual elements

In }1sts, The MLISP FOR expression carries the developnent of LISP’s
MAPLIST and MAPCAR functions to thelr logical conclusion, Extensive
work has gome [nto the design and Implementation of FOR expressions,
Used thought fully, they can greatly Simplify manipulating |Ists, The
FOR expression |8 not Just ome, but many expressions; there IS an
unboundod number of possible expressions that may be bul]jt up fren
1ts syntax,

FOR expressions provide the abl|lty to!

(A) Step through allst, dea|lng with eaoh element In It Individually
(use IN),

(B) Step through a (lst, dealing with the who|e |Ist, the CDR of it,
the CDDR of It, the CDDDR of 1t, ete, (use ON),

(C) Step through a nunerlcal range (®.9¢ from1 to 10) using any
| numerical Increment (use «), There are no restrictions on the
. numbers Involved (lower |Imijt, yoper [Imit, Increnent),

(D) Step through any nunber of |l8%ts and/or numerical ranges In
paralle] (use nore than one FOR clause),

ML ISP SEMANTICS = SECTION 3.9 43

(E) Mke the controjvariab|es local to the body of the FOR-lobp (use |
NE Wor to preserve thelrvalueswhen theFOR=|oopexits,
Control varlablrs should bespecifled to be NEW whenever

nossible, because the LISP ¢ode for NEW variables |S more
efficient, Unless you are Interested In the value of a oontrol
variable after the FOR-loop oxlts, declare It NEW,

(F) Control the value returned by the FORexpresslon, The value
uslngDOIsthe value of the FOR=j00p body the last time through
the Joopj the value wlth COLLECT Is a list formed by APPEND’ Ing
together the values of the FOR=|ooP body each time through the
loop, Alternatively, any two-argunent function mmy be Used to
generate a FOR=exppression value! the first time (hrough the
loop, the value of theFQR=l00Pbody becomesihe valueofthe
loop} each succeeding time through, the two-argument functions
app|lled to the previous value of the loop and %0 the eurrent
value of the FOR=|oop body to ylelda new value for the 10o0P.

(G)Terminate ® xeo&lon of the loop at any %Ime (use UNTIL),

Example!

FOR NEWI IN X®Y FOR N«i TO 18 BY 2 DO PRINT <N,I> UNTIL ! EQ ' STOP

In thls example, "FOR NEW I IN X®Y" rnd "FOR Nei TO 10 BY 2" ape "FOR

clauses”, J] and N are "oontro | yarlables”, [is "local" to the body
of the FOR-loop by virtue of Its belne deolared NEW}NIs not local.
The expression "XeY® {APPEND X Y) should evaluate to allsts 1 will
step through t hat 1st, belng set to the CARof it, the CADR Of It,
the CADODR of I t, ete, The control variable N steps through 2a
numerloal range (1-12) In Inorements of 2, The ® xprosirlon "PRINT
C<IN>" | 8 the “body” of the FOR-100py The UNTIL conditlonis"lEQ
‘STOP’, Since DO |s used, the value of the FOR-loop Is the value of
"PRINT <I,N>" the last timeiltwas executed,

The execution of FOR expressions proceeds as follows!

(1) The 118t or numerlcal range for each FORclause Is checked, If
any [Ist ja NIL, orIf any numerical range Ilaexhausted, then the
FOR-1oop exlts returning Its current value (inlt|ajly NIL).
Before ® xlttnQ eaoh e¢laysels examined, Ifany olause ha8a
oontrol variable whfoh Was deolared NEW, t hat oontrol variable la

reset to the value |t had when the loop was entered, I f any
olause has acontro|varlablewhloh wa8 not deolared NEW, and If
the 118% or range for that olause Is exhausted, then that e¢ontrol
variable|[s set to NI L Otherwise, the control variableis left
set to the value 1t ha-d the last t¥Ime through the loops thismay
be useful for determining whioh |Ists or ranges vere exhausted,

and how many times the loop was executed.

L ML ISP SEMANTICS = SECTION 3,9 44

A numerical rangelssaldt ob e "exhausted"|!f (a) the Inerement
Is positive and the lower |imit> tha upper 1Imits, or (B) the
Iinarement |snegat|/veand the |ower|imit< the upper |Imlt. An
Increment of O |s, of oourse, Illegal,

(2) Next, eaoh oontrol varjabiels assigneda value, This value is:
(a) the CAR of Its (Ist If IN Is used, (b) the entire|lst if On
Is used,or (¢) t he lower |Imitif anumerical range [3 used.

(3) Then the body of the FOR=joop [8S executed, and a value |s
computedfor theloon asexplalined|I n(F)>above,

(4) Finally, the UNTIL expression (If any) |8 evaluated. If Its

value I$ truer the FORejoop exits [mmediately, No oontro |
varjables are reset except thc ones deciared NEW, whichare set
to the valuer, they had when the Joop was entered, Thus all
non- NEW controjvariableswlijremaln set to the values they had
when the UNTIL condition became (ruc. This |s sometimes useful
for testing how many times the [oop was exeguted,endfor
determining the cause of termination, Example: In

FOR |] INL DO PRINT I UNTIL ! EQ "STOP,
when theloopexitsI wii) be set to NL If It got all tho way
through the |lst L without encountering the atom STOP} otherwise

t It wij}be set to STOP,

(5) If the UNTIL expression was false (or non-existent), the | [sts
and numerical ranges are advanced as follows: (a) cach |1st Is
set to the CDR of Itse|fs (b) In each numerice| range, the
Increment Is added to the lower limit to yield a new lower limit,

(6) Then step (1)Isexecuted again,

Contlnulng the examp|e above, suppose X = '(A 8 C) and Y ® '(D)} then
eqyecutings

FOR NEW I IN X®@Y FOR Nei TO 12 BY 2 DO PRINT ¢N,I> UNTIL | EG *STOP

would

(a) print (1 A)
(3 B)

(5 C)

(7? D)

(b) return a valueof(? DD)» and

(c) lcave N set to 7,

ML ISP SEMANTICS= SECTION 3,9 45

The FOR expression

FOR NEW IINX@YFORNe1 TO 10 BY 2 DO PRINT <N,I> UNTIL ! EQ ’'STOP

Is squivajentt othe following block?

BEGIN NEW voLi,L2, 13

Li « X ©® Yi
L2 « 4;

LOOP}IT FN ULLLLIILZGREATERP1 0 THENGO EXIT
I CAR Li}

N «L2}
« PRINTSN, I>}

IF |EQ 'STOP THEN RETURN VI
LI* CDRLLS

L2 « L2-+ 2}
GO LOOP}

EXIT)IF NULLL2 THEN Ne«NIL3
RETURN V;

END}

s MLISP SEMANTICS = SECTION 3,9 46
Examples of FOR expressions! Suppose 1. = ‘(A (B,C) D),

FOR NEWI IN L DO PRINTI | would print A
(B,C)
D

and return D

FOR INL DO PRINT] would print A
(8,C)
D

set I to NIL
and return D

FOR NEW I ON L DO PRINT! would print (A (B,C) D)

(¢8,C) OD)
(D)

and return (D)

FORNEWI | NL COLLECT PRINTKI> would print (A)
(¢(8,C))
(D)

and return (A (B,C) 0)

FOR! IN L COLLECT PRINT <<I>> would print (CA))
(¢(B,C))

(¢D))
setl to NL

and return (CA) ((B.C)) (DI)

FOR NWI ON LL COLLECT PRINT 1] would print (A (B,C) D)

(¢8,C) BO)
(D} |

and return (A (B,C) D (B,C) 0D Oy

| FOR NEW1 ON L j APPEND PRINT I would have exactly the same effect

- as the preceeding FOR expression,

MLISP SEMANTICS « SECTION 3,9 47

FOR IN L DO PRINT 1 UNTIL NOT ATOMI would print A B,C)
setl to (B,C)

FOR IONLDOO PRINT I UNTIL NOT ATOM CAR1

would print (A (B,C) D)
(¢(B,C) D)

setl to ((B,C) D)
and return ((B.C) 0)

POR NEW IIN L COLLECT PRINT <I>UNTIL NOT ATOM|
would print (A)

- (¢(8,C))
and return (A (B,C))

FOR I ON L COLLECT PRINT | UNTIL NOT ATOM CAR !
would print (A (B,C) D)

((8,C) D)
set lto ((B,C) D)

and return (A ¢(8,C)D (8,C) D)

FOR NEW [e¢1T04DO PRINT 1 would print |
e

3

4

and return 4

FOR NEW lei TO 100 BY 30 DO PRINT I would print 1
31
61

91

and return 91

FOR NEW lel@ TO «18 BY «5 DO PRINT 1 would print 10
®

0

] «5

-10

and return =10

g MLISP SEMANTICS = SECTION &,9 48
FOR 13,14 TO 8,69 BY 0,002 DO PRINT I UNIIL I 2 3,2

would print 3,14
) 3,16

3,18
3,2

set I to 3,2
and return 3.2

FOR NEWI IN I. FORNEW Jel TO 12 COLLECT PRINT <(l,J>
would print (A 1)

(¢(B,C) 2)
(D 3)

and return (A 1 (B,C) 2 D 3)

FORNEWIINLFOR J*! TO 10 COLLECT PRINT <<1,Jd>>
would print (CA 1))

(((B.CY 2))

((D 3))
set J to 3

and return ((A &) (B,C) 2) (D 3))

FOR J*1 TO 18 COLLECT would print (A 1)
FOR I IN L COLLECT PRINT <I: ((8,C) 1)
UNTIL NOT ATOM1 (A 2)

UNTIL J=3 (¢(8,C) 2)
(A 3)

(¢8,C) 3)

set J to 3

and return (A 31 (B,C) 1 A 2 (B,C)2 A 3 (B.C) 3)

DECK «

FOR NEW gylt IN ‘(gPADE HEART DIAMOND CLyB) COLLECT
FOR NEW N«1 TO 13 COLLECT

CCSUITIND>D>}

f would ret DECK =
4 ((SPADE 1) (SPADE 2) +44. (SPADE 13) (HEART 1) (HEART 2) ,.,)

ML ISP SEMANTICS = SECTION 3,9 49

As was stated In (D) above, more than onelist or numerical range my
b estepped through Inparajlel, Below are sone examples of parajle]

FORs (®)1)

EXPR PAIR-UP (VECTOR1i, VECTOR2)}

FOR NEW Xi IN VECTORYL FOR NEW X2 IN VECTORZ2 COLLECT <X1 CONS X2>}

‘(A BC) PAIR_UP '(1 35 7 9, 5 ((A.1) (B,3) (C,5))
'("JOHN"' COR) PAIRUP '("SMTH' (X)) . (C*JOHN® nSMITH") (CDR X))

Vector operations also providea ninterestingwayto accomp|!sh this:

"(A BC) CONS® (1 3 5 7 9) 2 ((A.1) (B,3) (C,5))
¢ (WJOUN® CDR) CONS* ‘("SMITH" (X)) 5 (("JOHN® SMITH") (COR X))

EXPR STRIP (ITEMS, VECTOR))
BEGIN NEW Vi}

FOR V ON VECTOR FOR NEWI IN ITEMS 00 NIL UNTIL I NEQ@ CAR Vi
RETURNV

END}

(ab x) STRIP ‘(ab ¢ do) = (¢d e)
‘(x b ¢) STRIP ‘fa bc de) = (a b cde)
‘(abed ef) STRIP ‘(ab cde) a NIL

EXPR -WHERE_IN (X, VECTOR)
BEGIN NEW VN;

FOR V IN VECTOR FOR Nei TO 120@ 00 NIL UNTIL V = Xj
RETURN IF NULL V THEN @ ELSE N

END

‘a WHERE _IN ’(b c a d) z 3
rz WHERE_IN ’(b 0 a d) = 0

(#) I am |ndebted to Larry Tesl|er for suggesting these examples,

— -— Pr

. ML ISP SEMANTICS « SECTION 3,10 50 oo
, SEMANTICS = SECTION 3,10

(WHILE_ expressiond t= WHILE <expression> <DO, COLLECT2 (expression?

CUNTIL_expression> i= eDO, COLLECTS <oxpression> UNIIL <expression>

AWHILE expression is the reserved word WHILE, followed by any
® xpresslon, followed by elther of the reserved words DO or COLLECT
and another expression (the "body" of the WHILE=|ooP), An UNTIL
expression Is e|ther of the reserved words 00 op COLLECT, fol|ewed by

any express|on (the "body" of the UNTIL=loop)s» followed by the
reserved word UNTIL and another expression,

WHILE and UNTIL expressions are two more of t he MLISP

"meta-expressjons", They have no dlree¢t counterparts In LISP, They
are translated Inte LISP PROG’S, Thelr executioninvolves iteration:
1t does not |[nvojve recursion, Therefore, these loops mmy be
executed any number of times with no danger of overflowing the
pushdown |Ist,

. The execution of WHILE expressions |s carried out as follows,
(1) The expression after the WHILE Is evaluated, If J¢ts value Is

NIL, then the loop @x|ts returning its current value (Initially
NIL),

(2) Then the body of the WHILE=|oo0op Is evaluated and anew value for
the Joop Is computed, As wlth FOR expressions, DO and COLLECT
control how the value of the WHILE={oop Is bulltup, Wth DO,

each time the body ofthe |oop |9 executed, the value thet
. results becones the value of the WHILE-loop; wlth COLLECT these

values are APPEND’ed together, Then step (@) Is carried out
again,

UNTIL expressjonsare very Simljar to WHILE expressions, The only
difference Is that I n WH]LE=|oops the test for the term nating
condltlon Is mande first and then the body Is exeeuted} whereas In
UNTIL=loops It |S mmde sesond, after the body has been executed,
This neans that In UNIIL-loops, the body of the |oop [8 syre to get
executed atleast once; but In WHILE=|oops It may not be executed at
all, Togetadescription of UNT]L=loODPS, just Interchange steps (1)
and (2) above In the deseription of WHI LE-1oops,

b As an example of thepower of using COLLECT wlth WHILE=|oops and
. UNTIL=loopS, suppose an Input fl|e contains a sequence of |Ists In

the form!

(DEFPROP <tunction_name> <lambda_body> <functlon_type>),

ML ISP SEMANTICS = SECTION 3,14 51

whieh Is a standard form for LISP 4.6 function definitions, Suppose
It Is desired to assemble all the funotlon names In the file Into a
[Isty printing out each function name as |t Is read, Each of the
following two expressions does this, Concl!se statements of complex
expressions such as this |s one of the primary purposes of MLISP,

L « WHILE NOT ATOM X«READ() COLLECT <PRINT XC23>3

X « READ() L « COLLECT <PRINT XC2J> UNIIL ATOM X«READ()}

Examples o f WHILE expressions!

WHILE AsB DO A«FO0Q(A,B)

WHILE ATOM X«READ(3) 00 PRINT X

VH LE X#12 COLLECT PROG2(X « X+1,<FO00(X,Y)>»)

WH IE =(X € LL) DO X«READ()

WHILE =STOP 00

BEGIN

NEw IX,YI SPECIAL Ix
IX « READC()}

Y « FOO(!X,READ(),READ())}
IF IX EQ ' STOP THEN STOPeT ELSE PRINT Y

END

Examples of UNTIL expressions!

DO A=«FOC0(A,B) UNIIL A#B

00 PRINT X UNTIL NOT ATOM X«READC)

COLLECT PROG2(X « X+1,<FO0(X,Y)>) UNTIL X=i@

DO X«READ() UNTIL X e L

DO BEGIN

NEW {X,Y} SPECIALL ! X}
IX « READ)
Y « FOO(!X,READ(),READ())}[F {1X EQ ' STOP THEN STOR. + ELSE PRINT Y

END -
UNTIL STOP

s MLISP SEMANTIcS » SgcTION 3,11 52
« SEMANTICS - SECTION 3,14

<ass|gnment_expression> itz <regular_assignment)
| Carray_ass|gnment>

<Index_assignment>
| Cdeoomposition>

{regular_ass|gnment) its Clidentifijer> + <expressiond

Carray_assignmentd ttz Clgentifler> (<argument_IiIist>) « <expression’

<Index_ass | gnment> tis Cldentifier> [Cargument_IIst>] « <(expression’

<decompos|tion> - tiz Csimpje_expression> «eo <Cexpression>

The eassignment cxpression |S one of the nost powerful expressions In
MLISP, With It, one can change the value of avarlabje, store into

‘ an array, change a single element In a |JIst leaving the other
el enent s unt ouohed, or decompose alist accordingto a "template",
In all cases, the value of an ass|gnment expression Is the vallof of
the expression on the right=hand side,

Making an ass|{gnment expression a <Ksimple_expression> has an
Interesting property!It removes the assignnent operator(«) from the
normal realm of Infixoperators, In particular, when

; ATOM X « READ¢)

Ils encountered, It Is reducedas follows:

ATOM X > READ ()
. é

Cprefix_operator> <identlifler> « <expression>
:

<prefix_operator> <{assignment_expression>
d

pref ix_operator> <simp|e_expression>
:

K<simp|e_sexpressjon>
’

<expression>

y and so the prefix wl]| modify the entire assignment expression.
However, for Inflix operators, when

ATOM X & READ)

ML ISP SEMANTICS = SECTION 3,11 53

is encountered, It |s reduced as!

ATOM X & READ()
é n

Cprefix_operator> <|dentiflerd> <Infix_operator> <expresslond
¢)

<prefix_operator> <simple_expression> <|nfix_operator> <expressiond
é

(simple_expression> <Infix_operator> <expression>
:

Cexpression>

and.so the prefix wil| modify only the identifier, The asslgnment
operator @cts Hike It has an extremely high loft blinding power
(binding powers are discussed In SECTION 3,3), and an extremely [ow
right binding power, which It does}the |eft binding dower Js 1801
and the right Is 0, In other word8, the left blinding POwer of ¢ Is
stronger than any ~inflxorprefix, while the right binding power of «
Is weaker than any Intlx or prefix, Therefore,

ATOMX « READ() » (ATOM (SETQX(READ)))
whereas

ATOMX & READ() - (AND (ATOM X) (READ))
ATOMX CONS READ) - (CONS (ATOM X)(READ))

"4

ML ISP SEMANTICS = SECITON 3,11 54

Regular assignment

The regular ass|grment Is the al-molestoirtheoptions, It Just
transiates Into SETQ. The|eft=hand side must be an Ildentifler; the
rightehands|de my be any expression. Exampjet

X « YY +] - (SETQ X (ADDL Y))

Array assignment

The array ® aslgnnent |8 the neans for 8toring values Jntoarray
cells, LISP 1,6 permt8 1=5 dimensional arrays a8 a data structure,
The assignment Operator [8 here translated Into STORE, The left-hand

side must be a call on an array) the right-hand 8lde may be any
expression, Example!

ACL,J) » Y + 1 - (STORE (A I J) (ADD1 YY)

b

Index assignment

The Index assignmentprovidesamoans for changingasingie element

In a |Ist, leaving the other elenents untouohed, This facility I s
not readlly available In LISP, The left-hand slide must be an
Identifier whose vajyue Isallst, followed by an Index ||fst as In
Index expressions (SECTION 3,131; the rlght=hand slide may be any
expression, The Index |IsSt Is used to reference the logation In the
Ist whieh Is to be changed, Into thIS location Is placed the value
of the right-hand side, Example! If

L = (A B(CDYEF),
t hen

- LL3y1) +»

would ohange the value of L to

L = (AB (1 DD) E F),

tis permissible to placevajues Into ¢e|ls which did not exist In
t he original |Ists In this case, NILIs placed Into amy 1ooatlons
that hadto be created, Example!

LL3,5] = 1

would ohange the value of L to

Ls (AB(C DNL NL 1) EF),

ML ISP SEMANTICS = SECTION 3,11 53

Decomposition assignment

The decomposition ass|gnment Is the most powerful In MLISP,It
provides a neans of decomposing a||st according to a "template",
Theleft=hand side js a simple expression whloh Should evaluate to an
seexpressjon (the template)! the right-hand slde® muy bg any
expression, The tempjate Is an s=expression composed of variables,
each of which Is to be set ithe element In the corresponding
location of the right=hand side, hereafter cajled the "RHS",

One ward of cautfoniIf the decompos|tion assignment expression Is

usedIn a complied program, all the variablesin the temp|ate must be
dec |ared SPECI AL, Otherwise, the variables wlll not bs aet
oorrectiy,

Exanple:

'¢(X Y 2) «@¢ '(A B (CD) EF)

would set

Xto A

Yto B

2 to (CD),

Regular assignment expressions are a subset of decomposition

agglonment expressions, Any regula, agslgnment, such ag!

‘ X « ¥Y + 4

my be written as a trivial decomposition ass|gnment!

oY ea Y + 4

provided X [s declared SPECIAL,

The deoonpogltlon assignment expression ralggg the Interesting
possibl|lty that some yarlablesmay fall to get set becaul® the
template structure Im whloh they eceur dogs not correspond to the
structure of the right-hand side (RHS), Any suoh variable which
cannot be set (0 an RHS value 19 set to NIL, A template variable
will always be set to an RHS value|f the template position In whloh
It oocurg Is "compatible" with the corresponding RHS poslit]lom, The
only "incompatible" case [8 when the tenplate position Is a

MLISP SEMANTICS = SECTION 3,11 56

non=8tomlc s=expresslons a n d the corresponding RWS pesltion | s an
atom, I n thigcage, a 1 1 vaplableg occupying the |ncompatible
template position wl|| be sot to NL ,.. Example?

r((X Y) 2) «@ ‘(A B(CD)E PF)

would set

X,Yto NI L Because the first template position Is a

| tat, (X Y), whereas the firstRHS pesition
Is an atom, A, Thus the flprat template
position Is "incompatible" with the f1pStRHS
position, and the varlables In it are set

to NIL, |
2 to B Because the second template position Is

"compatible" with the second RMS position,

The CDR of the RHS may be obtained by a dotted pair In the template!

'(X Y , 2) «@ '(A 8 (CD) EF)

would Set

Xto A

Yto B

2 to (¢(C D) E F,

Suppose L sas (A B (C DYE PF), The JIstLItself could be used as the
¢emp late!

CL ee ?t(1 2(3 4 5 6 7)(8 9))

would get

A to 1 In thiscase A)» B, ChDyE and F must all be
Bto 2 declared SPECIAL,
C to 3

D to 4

E to (8 9)

F to NL,

ML ISP SEMANTICS = SECTION 3,11 37

Finally, a "match anything" synbol la avallable for use In the
template! an underbar (_), This symbol wilimateh any anpunt of |ist
structure necessary to make the tenplate match the RHS, Example!

'r(_ X) =o ‘(A B(CD)EF)

would set

Xto F Because the tenplate specifies that the value
for the variable X should occur as the last

® Jlan8nt In the RHS, The underbar matches
(AB (C DYE) In this case,

using the underbar symbolIn a template causes the evaluation of the
decomposition assignment expression to proceed dlifferentiy:
previously, any variable would be set It It was In a template
position compatible wlth the corresponding RHS position, Using
underbars, however; nny reaulre that the template Structure mutch
EXACTLY the RHS structure, Consider the exanple above Inwhieh X and
Y faljed to get set, We ould now wr|te!

'(_ (XY) 2 _) «0 (A B (CD) E F)

whieh would set

X to C

Y to D

Z to Ek,

Note! nejther (_. (X Y) £8) nor ‘€((X Y) 2 _) would work, because In
the flirstcasethe RHS would have to be In theform(.,.(#e)s),
which It |sn¥; and In the second case It would have to be In the

form ((» ») & 9) whieh|t also Isn't,

The user should exper ment with the decomposition asaignment to mmke
sure -ho understands [ts operation,

ML ISP SEMANTICS « SECITON 3,11 50

Examples of assignment expressions!

Regular ass|gnments: y

X « A ¢ 10 - (SETQ X (PLUS A 18))
x «YY «2 « NL » (SETQ@ X (SETQ Y (SETQ 2 NIL)Y))
X . A+ B «1 - (SETQ X (PLUS A (SETQ B 12)))
X « A#B«Ce0D - (SETQX (TIMES A (SETQB (PLUS C D))))
NOT ATOMX « READ() “ (NOT (ATOM (SETQ X (READ))))
NOT ATOMX & READ() (AND (NOT (ATOM X)) (READ))
NULL Ae B. FOO(X) od (NULL (SETQ A (SETQ B (FOOQ x))))
NULL A | B | FOO(X) - (OR (NULL A) B (FOO X))
NULLCA | B | FOO(X)) * (NULL (OR A B (FOO X)))
A « BEGN

NEy TEMP; » (SETQ A (PROG (TEMP)
TEMP , READ()} ~ (SETQ TEMP (READ))
PRINT *START} (PRINT (QUOTE START),
RETURN TEMP (RETURN TEMP)))

END

‘ Array assignments!
X(1) « A + 10 -» (STORE (X 1) (PLUS A 1@8))
A(l,J) « FOO(X)) (STORE (A1 J) (FOO X))

immo eo A(Y) « NL - (STORE (A 2) (STORE (A 1) NIL))
X(1) « A + B(0) «10 - (STORE (X 1) (PLUS A (STORE (B 2) 12)))
ACI,)FOO(J) K*+1) « 7 “ (STORE (A I (FOOD J) (ADDL XK)) T)
A(1,2,3,4,5) « 'FIVE_D = (STORE (A 12345) (QUOTE FIVE_D))
NOT ATOM X{(1) =» READ() = (NOT (ATOM (STORE (X 1) (READ))))
NOT ATOM X(41) 8 READ() . (AND (NOT (ATOM(X 1))) (READ))
NULL A(L) « B » FQO(X) = (NULL (STORE (A 1) (SETQ B (FOO X))))

NULL A€1) I B | FOO(X) « (OR (NULL (A 1)) B (FOO X))
NULLCACL)Y TIT B | FOO(X)) = (NULL (OR (A 1) B (FOO X)))

Index assignments:

Suppose I. 3 (A 8 (CD) E F),

LC1] « | would sot L = (1 8 (CD)E F)

L(2] « 1 would set L (A 1 (CD) E F)

LE3] « 1 would set L = (AB1 EF)

LE3,1) «1 would set L =(AB (1 D0) EE F)

{ LLB) «1% would sot LL 8 (A BC(CD)EF NL NIL 3)
L{2,3,2) + 1 would set L = (A (NIL NIL (NIL 8) (CD) E PF

+e > ~ ~ - - ~ ~ ~~ — — w oO =x

@ X — = ~~ ~~ . -~~ - a - @ rT
30 PW p 4 1 = 1 . I- | | X X J * * O © Ld
OT 9 = ® ® @® Lo oO wn
— gg 3 [| ~~ = a » xX ££ (e | = 0
po u-~- t ad X ~ - ™ @ Lo)

DD — had > 4 ~~ ond at ow
© ve - ~~ LU) 1%) | -—

~~ -o ~ nN N nN 4
® ’ -< 8 n —

eo W% — ~N 4 ol -r on J
[7 ad dd >»

-_— a J 5H »
on L 4 ! 4 4 L 2 ER ~~ N 7 8) «»
“- 9» J @® @® LJ L 0 [DI hd «*

QO ct wn ~~
| | O - - - -» - - wm = ! QO) 0

» 3 > >= >» > > » > > ~ OO 3
3 ® -~r @® w
ame 3 ao (99) ve (¥ 4 (24 OU © Oo 3 mM

O m «¥r Br 4
|! O0OF ” o— — PS PL fu om «= >»
-—0Q ». @ QQ L @ | ©) 2 «QO Tn =e pa
a3 nm Ad -f
0 — oO Oo | @ J Oo oO (wR wh w) - >a
“mm NS -r -r -r -r -r - ar a <)
— wl

3 m m™ m m™m ™ mmm
CQ 8

a «®t Bhd Bd) Id id | Bd | ad Bt Bd |
tO J -r “er . -~r ~~ wt nS 4n

~~. m
TO QQ

® oO —4
- og

as — x oO

® 3 = oO =
OQ = ~€ XX > > << XX MM << XX "<< XxX MTMOO >» OM >» Qo>» C
— : — A

pe S 8 Nn 8 " ff nn Nn uN an " ¥ 4 WU 4 uu Un 0H 0% a a oN Bn 8 OO -

D - > oO | MEME 9! NTM ~~ ~~ > OND OLGINM MH GN Ono -—e >
QQ a QQ)) ®

«+ ® : | 9 <¥

Ve oO —r ~ = mm
m 3 —

 @ | Lo | ”
mL O
8 0 ad|
=—

» —

oo oO =
-—3 a
a |

np

LJ

LC

tf eel

JQ
3

: 3

+ 9

FS Rn

D ct 0

ML ISP SEMANTICS = SECTJON 3,12 60

, SEMANTICS = SECIION 3,12

Cfunctlon_call> tts <jdentifler> (<argument_||st>)
| <LAMBDA _expression> 1 (<argument_|ist>)

Cargument_|std iz <expression> {(, <expression>)s
<empty>

A functlioncall Is an |dentifler (a function name) or a LAMBDA

expression (a function body) followed bY an argument |ist enciosed In
parentheses, An argument [ist Is any nunber of expressions, possibly
none, separated by commas,

Little need be saldabout this, tssentialiytheonl y difference
between this and the LISP way of writing function calls |s that the
function name has deen brought outside the parentheses, Alse the
arguments arc Separated by oommas, The arguments may be any
arbitrary expressions,

Examples of function cals!

FOO(X) - (FOO X)

FOO(X,Y,2) - (FOO X Y2)
FOO() . (FOO)

FOO(A+B, C) (FOO (PLUS A B) C)
FOO(IFA THEN B ELSE C) (FOO (COND (A B) (T C)))

The same function calls, writtenas [LAMBDA expressions:

LAMBDA(L)) FOO(L)Y; (X) = ((LAMBDA (L) (FOO L)) X)

LAMBDA- (A,B,C)}

FOO(A,B,C)} » (C_AMBDA (A B C)(FO0 A B C)) X Y 2)
(X,Y,2)

LAMBDAC()}3 FQO()}3 () ((LAMBOA NIL (FO0O0)))

LAMBDA (X,Y,2))

FOO(XeY, 2); “ (CLAMBDA (X Y2) (FOO (PLUS X ¥) 2)) A B dd
(A,B,C)

| LAMBDA (L)} FOO(L); = (CLAMBDA (L) (FOO L)) (COND (A B) (T C)))
(IFA THEN B ELSE C)

ML 1SP SEMANTICS = SECTION 3.13 61

, SEMANTICS = SECITON 3.13

Cindex_expression> 1i= Csimpie_expression> [<argument_|]|st>]

argument _| Ist 11s {expression> (, <expression>}#
<enpty>

An Index expression ls a simple expression, followed by an argunent
Ist enclosed In sauare brackets (J), An argument |Ist 8 any nunber
of expressions (possibly none) Separated by commas,

The MLISP Index expressjonflilis a critical deficiency | n LISP there

Is no easy way to referanceanarbitrary cell In a list, CAR will
obtain the flre8t elenent, CADR the second, CADDADDODDR the third
element In the flfth element of the |Ist, ete, But CADDADDDDR|s

nelther (1) very understandable, not (2) variable, The latter Is
Inportant 8inece It occasionally happen8 that the user does not know
until| runetime which element of alist ho wlll wish to access,

The M.ISP Index expression eliminates these obJections, LI3,3] Is
the same as CADDADDDDR, but It Is a good deal more readable,
Furthernore, the Index arguments may contalnvariables,In fact
expressions! LCN], LCl,JoKJ» LC2®N], etc, The Index expression,
then, ISageneraljzed version of CAR, (A goneraljzed versjon of CDR
also ©x|sts (SUFLIST) and |sexplalpediny SECTION 5.2 ,)

When Index ® xpresslons are complled, they are expandedby macros Into
highly pgim'zed codel

LF5,33 (CADDAR (CDDDDR L))
This |n8ures that the* exeout|on of Index rene laa be veryefflcle,t In compiled prod9rams: In lpterpreted programs, |¢ Is More
efficient to Iss,,e a call on a ryn=time f nection,

Exanples of Index expressions!

Suppose[L = (A B (C (D E) F) 6G HW),

LC1l = A - (CAR KL)
LL2] = B - (CADR L)
LL3) = (C (D E) F) = (CADDR L)
LC3,1) EC 4 (CAADDR L)
LE3,2.1) zs 0 . (CAAR (CDADDR L))
‘(A BCLS) 3c - (CADDR (QUOTE (A B €)))
GET(X,'VALUE)(2] n (CADR (GET X (QUOTE VALLUE)))
(L1 & L2)C1,2) * (CADAR (APPEND L1 L2))

(FOR NEW I IN L COLLECT <CAR I>)C2®N, M/3 + 1]

MLISP SEMANTICS « SECTION 3,14 62

» SEMANTICS =» SECTION 3,14

C|Ist_oxpressjon> iz < <argument_|Ist> >

Cargument_|ist> 113 <Cexpression> (, <expressiond>)e
| <empty)

A Ilstexpressionls a (eft angled bracket (<), followed by an
argument 11st, fo|jowedpbya right angled bracket (>), An argunent
Ist Is any number go f expressions, possib|y none, separated by
commas,

This |8 the MLISP equivalent of the LISP LIST function! <A,B,C> Is
translated Into (LIST A BC),<A,B,<C,D>,E,F> Into (LIST A B (LIST C

DY) E F), ete, Angled bracketsare used to mmke |Istsconcise and to
cut down further’ on the number of parentheses needed, As With
function calls, the arguments Inside the |Ist brackets may be any
arbitrary expressions,

Examples 0 f list expressions!

<> . (LIST)

BY @ nd (LIST A)

<A,8,0C> » (LISTA B C)
<A,,C> * (LIST A (LIST B) C)
<'A,B CONS C CONS D> . (LIST (QUOTE A) (CONS B (CONS C D)))
(X+18, <<KY>>, NIL> - (LIST (PLUS X 42) (LIST (LIST Y)) NIL)
C<]F A THEN ELSE CC) « (LIST (COND (A (LIST B)) (T C)))

ML ISP SEMANTICS = SECTION 3,15 63

. SEMANTICS «= SECTION 3,15 >

Cquoted_expression> 11tz ¢ dg=expression>

{s=expression> tis atom

| ()

| ({<s=expression> , <s=expression>)
| (<s=expression> ({(,) <s=expression>}+)

A quoted expression |s the quote mark (') followed by an
s~exnressjon, An MLISP s=-expression [IS Just the same as a LISP

s~expressjion, except that each |dentifler In [¢ myst be a2 |ega| MISP
Identifier, | n particular, any special characters (characters whloh
are not MISP |etters or digits) nust have t he |lterally character
(?) In front of them,

Note that there Is one fewer level of parentheses needed WItht he
M.ISP quoted @ xprarsion than wlth the LISP QUOTE function, This Is
part Of the effort to cut down on the numbep of parentheses required.

Exanples of quotedexpressions!

' A - (QUOTE A)

'NL (QUOTE NIL)
"0 - (QUOTE NIL)

«a B ©) - (QUOTE (A B C))
(A,B,C) - (QUOTE (A B C))

"(a b ©) * (QUOTE (a b ¢))
*{A,B) - (QUOTE (A,B))

‘(A B 7#C3# OE) - (QUOTE (AB #Ce D E))
‘(A) 16,0, (E,F), 0) - (QUOTE (A 16.0 (E.F) B))
‘(A (8,C) 2s 0D, E) - (QUOTE (A (B,C) «= D | E))

ML ISP SEMANTICS « SECTION 3,16 64

e SEMANTICS = SECTION 3,16

C|dentifler> tis (letter) (<<|ettar>, <digltda)»

Clettoar) HER eA, B, Corvin 2) Aa, Py Cryo 2s PERE |
<lltera|ly_character> <any_character except %»

{|{ltera||y_character> $i3 2

An ldentifier Is an MLISP |etter followed by any numberof MLISP
letters or digits, An MLISP letter|S any of the UPPer or |OwWer ¢aSe
letters of the alphabet, or an underbar (_) colon (¢) or ex¢|iamation
polnt (1), or amy character except X% preceeded by the |[lterally
character, The |iterally character Is a question mark (?), The
comrent character (¥) may not be Inejuded because LISP 1.6 won't
allow It to beusedasanythlng except the start or end of a comment,

Underbar, c0ion and exclamation point are considered to be letters So

that the user can easily create unusual names for varlables, The

i |fterally characterIls a flag to the translator to take the nextcharacter (literally and consider It to be a |etter, even |¢ the next

oharacter would ordinarily have a different meaning to MLISP, This
enables the user to Inolude virtually any character except X In
var|lable nanes, However, the user must be surethat his LISP system
won' t objectt oanyo f the characters|n his identifiers, Notela] |
of the functions and varjablenames used by the MLISP ¢transiator

begin with an ampersand (4), solt |s unwise to use such nancs,

Examples of |dentifjers:

X - X

X1 . X31

AVERYLONGSTRINGOFLETTERS - AVERYLONGSTRINGOFLETTERS
A_VERY_LONG_STRING_OF_LETTERS - A_VERY_LONG_STRING_OF _LETTERS
X * X

x1 * Xl

averylongstringof|etters - averyj|ongstringofjetters
a_very_long_string_of_Jletters + a_very_Jlong_string_of_J|etters
UPPER _and_lower_case_JDENTIFJER = UPPER _and_lower_case_ IDENTIFIER

DSK » DSK|

TTY! - TTY!

: !1SYSTEM_VARIAGLE_357a : ISYSTEM_VARIAGLE_357a‘ 33 ?

7)] .)
71 - | (an |dentifler, not a nunber)
AB?#C?24DE - AB#C#DE
8 _HI@?ITX2(DIIL2ICDD - $11 _ROSZC(ILICO

ML ISP SEMANTICS « SECTION 3,17 65

» SEMANTICS « SECTION 3,17

{nymber> tts < | nteger>
OCTAL <octal_tinteger>

| <reai>

<|nteger> fia <diglit> (<dligitd>)es

<diglt> ti= eP,31,2,3,4, 3, 6, 7, 8, 9°

Coctaj_Iinteger> 112 <Cocta|_diglt> (<octa| _dlglit>)+

Coctal_dliglt> siz 0,302, 3, 4, 3, 6, 73

<real> 1s <|nteger> <exponent>

| <integer> , <integer> (<Cexponentd)

Cexponent) itz E (c+, «2) {Integer

Three types of nunbers are perm|ltted In MLISP{ Integers (base 12),
Integers oreceeded by the reserved word OCTAL (base 8), and real
nunbers (base 10 agaln), An Integer It anySeauence of digits, A
rea] number IS efjther an Integer followed by an exponent or two
Integers scparated by a decimal point, optionally followed by an
exponent, An exponent {8 the letter E, optionally followed by 4plus
or minus sign, followed by an Integer, There should nevepbe Spaces
bet ween any ©f the parts of 4number, except after the word OCTAL,

All nunber8 are taken to be deeclImal nunbers unless preceeded bY the

word OCTAL, Octa| numbersorc Included because they are used In mmny
computer applications, Exponents provide 4 conpact way of
representing very large or very small rea] numbers, Onijy Integer
exponents are allowed, but they mmy be either pos|{tive or negative,

Plus. (+) and minus (=) signsare not part of tho 9yntax (ar nunbers
(except In the ecxponent), Plus and minus signs are dejimlters, and
they are treated as @|lther prefix or inflx operators by the
translator,

ML1SP SEMANTICS = SECITON 3.17 66

Examples of numbers:

1 - i)
10 - 10
145968 - 145968

987, 005 - 9.870025L2
13 +4 - 1,35

g,1 - 1.80E=%
?,002123E=5 “ 1,23E«9

OCTAL 12 “ 8 (decimal)

OCTAL 144 - 100 (decimal)

OCTAL 777777 -» 262143 (decimal)

~145,12 - (MNUS 1,4512E2)

+98765,43210 - 9,876%4321E4
x+98765, 43210 » (PLUS X 9,87654321E4)

: Note! od Ils not allowediuse 2,1 Instead,

MLISP SEMANTICS = SECTION 3.18 67

» SEMANTICS = SECTION 3,18

<string> tix "{(<any_character except "or XD)e "

A string Is a string quote ("), followed by any sequenceof
characters except the string quote or %X» followed by 4 second string
auote,

Strings are a speola]| M.ISP data structure Introduced primarlliy to
facl|itate Input/output, Several string manipulation features ar ec

Inctuded In MISP to make String handling easy, These are described
in SECTION %-1% However, M.ISP Is not a stringemanipuylation
languace} Itls a |]st=processing and sSymbo|=-manipulation languages.
Myst of the string-handliing routines a r efalrly time consuming,

requiring an execution time proportional to the length of the
string(s) Involved; Therefore, If possible |Imit string manipulation
to Input/output operations, or at least to operations which are not
performed often, It It Is necessary to do a lot of string
manipulating, the user should consider using sont other; nore

sultable, language, since MLISP processes Strings Inefficlentiy,

String are stored by LISP 1,6 as uneINTERNED (1,e, not omntheOBLIST)
atoms having a2 print nance consisting of the charactersIn the string,

and Including both string auotes,

Examples of strings:

"ee - (QUOTE "")
"THISIS A STRING - (QUOTE "THIS IS A STRING")
"This Is alsoa String,"* (QUOTE "This 1a alsoastring,”)
"123,18¢>() =" . (QUOTE "123,:a3¢>()2;")
" " * (QUOTE " ")

ML ISP USER QPERATION OF MLISP = SECIION 4,1 68

« USER OPERATION OF MLISP ~ SECTION 4,1

This sectionte||s the user howto get a n MLISP programrunning,

(A) Trans|ating MISP Prograns

There are two versions ofMLISP, both reslding on the System area of
the dlak?

MLISP = 3 core Innge containg LISP and MLISP,

MLISPC= 3 core Image containing LISP, MLISP, PPRINT (the
oretty=print” funetions), 'and the LISP compiler,

Thesecore Images nny be loaded by typing!

R MLISP or R MLISP <core_slze>
and

R MLISPC or R MLISPC <core_size>

b The core size of M.ISP Is 25K, and Of MLISPC 35K, These should be -
suff iclent to handje 31] but the largest prograns, If not,a larger
core size wl|| have to be specified,

The MLISP core Image should be used If the user wants to translate

hig MLISP program and then execute lt, The MLISPC version ghoyld be
used only If the user want8 to translate hls M.ISP program and then
compl|e® It or pretty=-print out Its LISP translation, For large
(debugged) programs, the nost ® fflclent use of core Is aghleved by
compl|ing the MLI SP program with MLISPC, and then reading the

complled code Into a "fresh"LISP system (1,8, contalning nothing
else but LISP), Ceoemplllng the programhas the following advantages:
(1) The program runs about 10 times faster complied than Interpreted.

(2) MLISPC |ncorporates some elaborate macros whi¢h expand FOR=|oops,

WHILE~|oops, UNTIL=|00ps and |ndex expressions (nto highly

optim|zed code, Thls further speeds up theirexecution, M.ISP
Is very compiler orlentedt by far the nost efficient execution of
M.ISP meta=-expressions Is by conpiled code,

(3) Compl |ed code requires Jess space than the corresponding
|Ist-structure Interpreted code,

b (4) Functlon definitions don’t have to be marked by the garbage
col lector every time a garbage collection occurs (a significant
time savings for large programs),

MLISP USER OPERATION OF M.LISP = SECTION 4,1 69

To avoldeoconfusion, two facts should be kept In mind when USIng
MLISP!

(a) In WRITING your program, you wi|libe communicating with MLISP.
All expressions in the progrem must be legal MISP expressions,

(b) In RUNNING your program you Wl|l be communicating with LISP.
All expressions to be executed, read or Printed must be legal
LISP ® xpre88lons,

After the user ha8 loaded acorelmage by typingoneof t he t Wo
commands above, he may begintransiating his MLISP program by ealling
the top Ileve| function named, vouguessed |t, "MLISP", "MLISP" Is an
FEXPR which takes from 1 to 4 arguments, These arguments wlll be

explained by examples, The full command i8}

(MLISP (<dev[ce>) <filje_name> (eT, NIL, NIL NIL2})

where () and €» nean "optlena|" and "alternatives" respectively, A
<device> |s e|ther a physicaldevice |lkego disk or dec tape (e,9.
DSK: or DTALt)oraproJect=programmer palr representing a disk area
(e,8, (1,0AV) represents (1,DAV]),

MLISP USER OPERATION OF MLISP=-SECTIONSG,1 70

Examples of the too Jevel function "MLISP"!

oR MLISP would translate and exegute a program
e(MLISP FQO) on the disk fille FOO

+R MLISP would do exactly the same thing
«(MLISP DSK: FOO)

oR M.ISP would transjate and execute a program

«(MLISP (1,0AV) F0O) on DSK:FOO[1,0AV]

«R MLISPC Would translate a program on DSKIFOO
s(MLISP FOO T) and complije It onto DSKIFOOQ,LAP

+R MI SPC would trans|ate 2 program On DSK:FOO
»(MLISP FOO NIL) and pretty=print the LISP transiation

onto DSK:IFOO,LSP

b

.R MI SPC would do the same thing, except that
«(MLISP FOO NIL NIL) the expans| on ofalllLISP and M.UISP

macros is Suppressed, Ordinarliy,

8)/| macros (FOR=|oop macros, PLUS,
etc,) are expanded before printing,
which enables tha user to see exactly

what coda wl || be executed,

, R MLI SPC would do ®xactly the sane thing
»(MLISP DSK: FOO NIL NIL)

oR MLISP would trans|ate and execute aprogram
«(MLISP (FO0Q,BAz)) on DSKIFOO,BA;

oR MLiSP would translate and execute ma program
0 Be 0040 DTAL1I(FO0,B4R)) on DTALIFO0,BAZ

+R M.I SPC would trans|ate a program on

s(MLISP MTAQ: (FOO,BAZ) T) MTAQ!FOO,BAZ and compl|e It onto

: DSKIFOQOO,LAP

MLI SP USER OPERATION OF M.ISP = SECTION 4,1 71

(8) Translating Under Program Control

it Is sometimes desireable to oall the MISP transjator under program
control, This |s made possibie “by the special MLISP funotion
“MI'RANS”, a function of no arguments, Calling MRANS ha8t he
following effects!
(1) An MLISP <expression> Is road fromthe ourrent|y sejected input

device, The first character rcad should be theflrst character
I n the expression, An M.ISP <expression> d|ffersfrom an MLISP

’ <programd only In that the |ast character need not bea period;
It may be any sultable expression=stopping character, usually ga
semicoion (}),

(2) The LISP translations returned asthe value of MIRANS,

The funotlon "MLISP" should not b® oal |8d ff r om within a program,
since It hasseveral slide @® ffeotr, whloh are generally undesjreable In
a program} for exampje, the funotlon RESTART Is redefined, MI'RANS
has no side effects,

Note!It MIRANS Is called, the entire MISP translator mystb a
® vellabla, This means that programs using MRANS should only bP® run
Interpreted,

MLISP USER OPERATION OF MLISP = SECTION 4,1 72

(C) Loading Conpiled Programs

There Is a flle called UIILS on the system area of the dlsk
containing run-time functions, Thisfile must beloaded|f t he user
has either complied his MLISP program onto a LAP fle or
pretty-printedIt ontoa LSP flie, UTILS Isalready |oaded|Into
both the MISP and MISPC core Images, so that If the user Simply

wants to translate and run hISMLISP program, the run-tine funotlbns

| will be avaliable,

To peadlnan M.ISP program after If has been complied by MLISPC,set
up: a LISP system with sufficlentBlinary Program Space to holdt he
oonplled code, and then type!

(INC (INPUT DSK$ (<flle_named>,LAP)SYS: UTILS)

The file UTILS should always be read Im last sinoe one of the things
jt does 18 set [BASE and BASE (the lnput and outputradliclestor
nunbers) t010 (l,e, decimal), Thereafter, al| numbers read or

: written wl|| be Interpreted asdeecimal nunbers, The user should be
L careful to set IBASE te 8 (l,e,0ctal) If he wants to read |m nore

LAP code, since LAP expects |t8 numbers to bein ootal form, and t hen
reset [BASE to 10 atterwards,

the following sequence would translate and compjlean MLISPprogram
on the dlsk fille FOO, and then read In the comp}lied code!

+R MI SPC
«{MLISP FOO T)

vee SMLISP and compjier typeout> +...

we eENDeQF «RUN#&»

aC

+R LISP <cores|ze>

ALLOC? XI Cal|location> NN

«(INC (INPUT DSK?! (FOO,LAP)Y SYS! UTILS))

. veo <LAP typeout> ,,,
&

MLI SP USER OPERATION OF MLISP = SECTION 4,2 73

, USER OPERATION OF MLISP =» SECTION 4,2

This section ison | yfor those hardy souls attempting to reconstruct
MLISP on aLISP1l,6system, Bejow IS the sequence of commands
necessary to reassembie both theMLISP and the MLISPC core Images.
In SECTION 4,3 sisted the contents of the various M.ISP source
files,

To Reconstruct MLISP! To Reconstruct MLISPC

+R LISP 24 +RLISP 34

ALLOC? Y ALLOC? Y
FULL WDS=200@ FULL WDS=30009

BIN,PROG,SP280200 BIN,PROG,SP=230200
SPEC,.POLs_ SPEC ,POL=_
REG, POLs_ REG, POL=_
HASHS HASH®_

AUXILIARY FILES?Y AUXILIARY FILES?Y
SMILE? SMILE?
ALVINE? ALVINE?_
TRACE? TRACE?
LAP?Y LAP?Y

DECIMAL? DECIMAL?

«(INC (INPUT DSK! «(INC (INPUT DSK?
(MLISP,LAP) (MLISP,LAP)

(RUNFN1,LAP) (MACROS ,LSP)
(RUNFN2,LAPR) (MACRO1,LAP)
MINIT (RUNFN2,LAP)

_ SETGS)) (PPRINT,LAP)
(COMPLR,LAP)
MINIT

SETQS))

ee Styne outd,,, oo Stype OuUt>,.,

oe (SCANNERLIINIT) * (SCANNERLINIT)
«aSCANS saSCAND

LOADER 1K CORE LOADER 1K CORE

oe {SCANNERZINIT) ¢(SCANNERZINIT)
NI L NIL

eC ®+(C

SAVE QSK ML.I SP SAVE OSKMLI SPC

L ML SP USER OQPERATJON OF ML_SP = SECTION 4,2 74
The correct oore Imageg wlll now be gaved ynder "MLISP" and "MLISPC".
A Iittie explanation about theses two Sequences Is necessary, The
underbar (_) In the first few [Ines represents a space’ this merely
Instructs LISP to Use the standard allocation, The |ine reading!

(INC (INPUT DSK: (MLISP,LAP) ,,,)

assumes that all of the LAP files ||sted have been compljed by the
LISP comp| ler, The f]lle COWLR should be the LISP compiler Itself,

The Ilne **SCAN% (% stands for ALTMODE) loads the MLISP scanner
package, whioh must have been compiled by MCRO and be Im REL
format,

If the machine |anguage scanner IS not to be used, then the LISP
scanner | (sted In SECTION 7,3 should be compiled by the LISP compi|ier
and read In wlth the other LAP f||es, Note! all LAP files must be
read before the f| |e SETQS, because SETQAS changes IBASE, the Input
radix for numbers, from 8 (octal) to 10 (decimal), LAP expects IBASE
to be 8,

b
If the LISP scanner |s ysed, the following (Ines should be omitted:

« (SCANNERIINIT)
sa SCANS

LOADER 1K CORE

« (SCANNERQINIT)
NIL

MLI SP USER OPERATION OF MLISP = SECTION 4,3 75]

, USER OPERATION OF MLISP = SECIION 4.3

This Is areference f||le of the MLISP source files,

FI 18 Contents

MLI SP The MLISP translator funetions -- In LISP

MINH Inltlallzatlon for tho M.ISP translator (reserved
words, abbreviations, nrecedences, etc,) -- In LISP

SETQS Infttallzation of the MLISP globally~defined atons --
In LISP

RUNFNY &FOR, &D00, &WHILE, INDEX -- Im LISP

RUNFNZ2 PRELI ST, SUFLIST, STR, STRP, STRLEN, AT, CAT, SEG,
SUBSTR, PRINTSTR, NEG, NEQUAL, LEQUAL, GEQUAL -- In
LISP

MACROS §FOR, 800, SWHILE, &INDEX, NEQ NEQUAL, LEQUAL,
GEQUAL == all macros, In MISP

MACRO1 Macro=axpanding functions for the file MACROS! -_- In
M_I SP

PPRINT Functions for pretty=printinglLISP expressions == |n
MI SP

MEXPR LISPeto«MLISP convertor -- In MISP

UTILS RUNFN2,LAP, SETQS -- This my be assembled by
compl|ing the fl|e RUNFN2 and adding the tlle SETQS
to It,

SCAN.MAC The machine language scanner for MLISP == [In DEC
MACRO

8 ML ISP RUN=TIMg FUNCTIONS = SECTION 5.1 76

s RUNTIME FUNCTIONS « SECTION 5,1

This section describes the sString=handling functions of MLISP, Other
run=time functions avallable to the user are described |n the next
section, Stringsapcdescribed In SECTION 3.183 they ® xlst primarily
to facll|tate Inpyut/output, To make string handiingeasy,MLISP
Includes the following set of primitives,

STR (sexp) = "STRINGIFY"

This takes one argyment, whlch my be any S=express|ion, and
returns a tring containing the charactors In that seexpression
(Including space® and parentheses)’

STRP (sexp) = "STRING PREDI CATE"

This takes onc argument, whieh nry be any s=expression, Ret urns
TRUE |f the s=éxpression Is a string, NIL otherwise,

STRLEN (string) « "STRING LENGTH"

Thls takes one ® rqunentc @& string, and returns an Integer equal

4 to the number of characters In the strlnq (not counting the4 string quotes),

AT (string)= "ATOMIZE"

This takes one argument, a Strin@, and returns an atom having a
printname made up of the character8 In the strlng (not Ineluding
the string quotes),

CAT (stringd, string2) = "CONCATENATE"
This takes two arguments and returns astring made up of thelr
conoatenatlon, The arguments need not bestrings, If elther
argument Is not a string, It Isflirst converted to one, and then
the concatenation Is carried out, CAT, being a function of two
arguments, my be used as an Inflx!
strlngl CAT string2,

SEQ (stringl, string?) = "STRING EQUAL"
This takes two arguments, both $terln@s, and returns T It they are
identical, NIL otherwise, The LISP funet|lon EQ cannot be used
because strimgs are atons whighare not on the OBLIST, Aswith

CAT, SEQ mmy be used as an Inflx!
stringl SEQ string2,

:
SUBSTR (string, start, |ength) = "SUBSTRING"

This takes three arguments, the first beingastring and the
other two being Integers, It returns a Substring of the flrst

_—

ML 1SP RUN- TI ME FUNCTIONS * SECTION 5,1 77

argumgnt beginning with the nharacter (n posjtjon "start"
(counting from 1) and continuing for "jength" characters,
"length" neednot beanumbep)flit Is NOtsr then the rest of the
stringlstaken,

PRINTSTR (string) = "PRINT STRING"

This takes one argument, a string, and prints It on the current
out put device w|thout the string quotes, fo|lowedbya carriage
return, Thevaluye of PRINISTR Is the vajuyeof Its argument(the
same@8 With PRINT),

Examples of the string=handling funotions:

STR ' STRING 8 "STRING"
STR "STRI NG" ~. = "STRING"

STR '(A (B,C) D) u "(A (B , C) D)"

STRP "THIS IS A STRING " = T
STRP *(THISIS NOT ONE) s NIL
STRP "" : T

STRLEN "THIS IS A STRING " = 17

STRLEN STR ' STRI NG o 6
STRLEN "* |] 0

AT "STRING" » STRING
AT "THIS IS A STRING " 8 THIS/Z1S/A/ STRING,
ATM 3 |'T legal

STR AT "THIS [S A STRING," = "THIS IS A STRING,"
AT STR *THIS? 1S? A? STRING?, s THIS/ 1S/ A/ STRING/,

"THIS IS A" CAT "STRING " 2 "THIS IS A STRING "

"THIS IS A " CAT *STRING?,] "THL S IS A STRING "
"A PERIOD " CAT "(¢(,)" = "A PERIOD ¢,)"
"A PERIOD "CAT’(?,)? = "A PERIOD (.,)"
“A PERIOD " CAT <PERI OD> B "A PERIOD (.)"

"STRING" SEQ "STRING" ® T
"STRING" SEQ STR ¢STRING = T
"STRING" SEQ "STRING " ® NIL

SUBSTRV THIS ISA STRING,",6,4) = "TS A"

SUBSTRVTHIS IS A STRING,",100,5) 2 "a

SUBSTR("THIS IS A STRING,",5,100) " ITS A STRING,"

PRINTSTR "A STRING," prints A STRING, value 3 "A STRING,"
PRINT "A STRING " pr Ints "A STRING, " val ue ® "A STRING,"

BN —

b- MLI SP RUN- TIME FUNCTIONS = SECTION 5,2 70

« RUN-TIME FUNCTIONS = SECTION 5,2

This section describes son: generals=purpose routines that have been
Judged sufficlent|y usefyl (to be Included In the set of ryn=time
functions avaliable to the MLISP user, All of these functions are
short and have been oeompl|ed, so that they requlrevery little binary
program space and alnost no free storage, The functions NEQ, NEQUAL,

LEQUAL and GEQUAL are expanded by macros when the M.ISP program In
which they occur Is complied, ThIS makes Using these functions In a
complied program very efflclent,

PRELIST (|ist, Integer) = "PREFIX OF LIST"

This takes two argunents, a |i8t and an Integer, PRELIST returns
a list of the first "|nteger” clenents of Its first argument.If:
there are fewer than "Integer" elements In It, PRELIST returns as
manyaslt can(l,8, the whole |1s8t),

PRELIST may be abbreviated *@uparrow)? PRELIST(L,6) = L*6

SUFLIST (|ist, Integer) = "SUFFIX OF LIST"
This takes the same two argumentsas PRELIST! a ||st and an

Integer, SUFLIST returns all|st formed by taklnq "Integer" COR’s
of Its flrst argunent, If It exhausts Its fIr®t argunent before
It runs out of CDR’s, It stops at NIL (l.e. It wll} return NIL),

SUFLIST Is the "compliment" of PRELIST In the sense that!

PRELIST(L,N) ® SUFLIST(L,N}) = L

for al I | ists L and forall Integers N, SUFLIST Is a
generalizatlon of CDR!

COR L E SUFLIST(L,1)

COOR L = SUFLIST(L,2)
CODR CDDDDR L & SUFLIST(L,6)

SUFLIST Is nore powerful than CDR because the seoond argunent nmy
be a varlable([f fact, any expression), therebypermltting the

, user to defer unt!ll| run-t/ne his decision on how many CDR’S to
- take, J

SUFLIST may be abbreviated+ (down arrow); SUFLIST(L,6) 2 L+6

ML ISP RUN- TIME FUNCTIONS = SECTION 5,2 79

NEQ (Sexpl, sgxp2) = "NOI EQ"
This takes two arguments, which my be rny s-expressions, and
returns TRUE |ftheyare not EQ to each other, NL otherwl|se,
The LISP transigtion Of X NEQ Yi

(NEQ X Y)

Is expanded by macros to!
(NOT (EQ X Y))

If It |s complled,

NEQUAL (sexpl, sexp2) = "NOI EQUAL"
-This takes twy arguments, which my be apy s=expressiogns: apd
returns TRUE It they are not EQUAL to eagh other, NIL otherwse.
The LISP ¢transiationofX NEQUAL Y!

(NEQUALX Y)

I expanded by macros to:
(NOT (EQUAL X Y))

If It Iscomplleds NEQUAL may pe 8ppreviateg # (not=gguai sign).

LEQUAL (number, number2) = "LESS THAN OR EQUAL"
This takes two arguments, which should be numbers, and returns

TRUE If thr flrat argunent Is loss than OF equal to the 8Seceond
one, NIL otherw|se, The LISP trrnslrtlonof X LEQUAL Y!

(LEQUAL X Y)
Is ex idea py mage fos tol

(NST (GREATER 'X ¥))
If It Is compl |ed, LEQUAL my be abbrev lated =<
(less-than-or-+auel 9l@gn),

GEQUAL (mnumberl, number?) <= "GREATER THAN OR EQUAL"
This |s the converse of LEQUAL, It takes two arguments, whloh

shouId be numbers, and returns TRUE |f thefirstargument |s
greater than oreqgualto the second one, NIL otherwise, The LISP
trrnslrtlon of X GEQUAL Y?

(GEQUALX YY)

Is nee nde bymggros to!(NOT (LESSP X Y))
If It Is compl led, GEQUAL may be abbreviated 2
(greater~than-or=-equal sign),

. MLISP RUN- TIME FUNCTIONS = SECTION 5.2 80

Examples of theSe rfun=timg functions!

‘(AB CDE) PRELIST 3 5 ~~ (AB QO)
‘(A BCDE) ¢*3 5 (AB C)
(AB CDE) + 10 = (A 8 CODE)
"(A 6 CDE) + 2 z NIL

‘(ABC DE) SUFLIST 3 = (0D &)
‘(AB CDE) +3 = (0D &)

‘(ABC DE). 102 ® NIL
"(A BC DE) +0 5 (ABCDE)

‘(A BCDE) +» 3 @ (AB cc DE) s+ 3 = (ABC DE)
'(ABCDE)+198 "(ABCDE + 12 = (ABC DE)
'(AB CDE)» 0 e'¢(ABCDE) + = (ABCOKE)

‘A B C D E)«@ = ‘(AB CDE) = (AB CDE)
‘(AB C D E)«l = COR '(AB ¢ DE) s(BCD E)

‘ABC D E)s2 = CDDR '(A B CDE) = (CDE)
- ‘AB C D E)s3 £ CDDDR'(AB C D E) = (D E)

‘(A B C DE)sa = CDDDDR '(A 8 C DE) x (E)
‘AB C D E)i5 = CDR CDDDOR ‘(ABCD E) = NIL

“A NEQ '8 s T

"A NEQ ' (A » T
“A NEQ A d NIL

"(A (B,C)) NEQUAL ‘(A (B OQ) x T
"(A (B,C)# '(A (B C)) z T
'A 2 (A = T

"(A (B,C)) # '(A (B,C)) z NIL

10 LEQUAL 20 = T
10 § 20 R T

10 ¢£ 10 = T

i180 £0 = NIL

12 GEQUAL 20 = NIL

10 2 20 * NIL
10 2 10 2 T

. 10 2 0 | 3 T

ipr LS
RRA SI
ARTEL

. MLI SP SAMPLE ML.I SP PROGRAM = SECTION 6.1 81

+ SAMPLE MLISP PROGRAM = SECTION 6,1

BEGIN

X This program |$ Included to provide an example of the MISP

language, It examines several ways of writing the fupetiomr REVERSE
Im MLISP, REVERSE was chosen because It |sfaml|jar to nost people;
It reverses the top level of a |Istt REVERSE ‘(A BC) =(C B A,

The function REVERSE may be writtem In many ways In MLI SP, Sone of
the . way8 shown here are not too efficient, but they do serve to
Illustrate different M.ISP expressions, The method used Ineach
function Is explained In a comment Included with the funetlon, X

XKRBRERBBUBRBUUBRBUBRNURABBURRRELB RURRRBREBRRBURBUUBRBUBRBHE BURR RBA

NUBHBBAY DEFINE ALL THE REVERSE [UNCIT ONS HEWBRRRURX
KEBABRULBRUBRRRABBUUBRRBRBBBHBRBBURBBERBBUBB RRBRUURRRBR RR BERD URBBRBRRRX

X REVERSE! Just calls REVERSEla wlth the I18t to be reversed and NL.

‘ The NIL Initializes REVERSEla’s second argunent, X
EXPR REVERSE1 (0) REVERSEL1a(L,NIL)}

% REVERSEla doe8 al) the work for REVERSE1l, It uses an IF expression

and a recursive ca;jon Itse;f, The reverse of L la buljt up In the
second argument RL, X

EXPR REVERSEla (L,RL)}
IF NULL L THEN RL ELSE REVERSE1a (CDR L,CAR L CONS RL),

% REVERSE2 also uses an IF expression and a recursive cal| on Jtself,
In this elever but Inefflclent version,the reverse of the rest of
the (Ist L Is APPEND’ed (®) to a |Ist oontaln|ng the first clement, %

EXPR REVERSE2 (L)}

IF NULL L THEN NIL ELSE REVERSE2(CDR L) @ <CAR (),

- X REVERSE3 |®& an FEXPR} the arguments to It are unevaluated, lt uses
a FOR expresslon as follows! I Is set to each nmenber of the |I8t L
and then Is CONS’ed onto the reversed |}st RL, REVERSEY does not use
recursion, X

ML_I SP SAMPLE MLISP PROGRAM . SECTION 6,14 8 2

FEXPR REVERSE3 (L)}

BEGIN NEW RL} X PROG varigbles gre initiglilzeg to NIL.X
RETURN FOR NEW|] INL DO RL « I CONS RL}

END;

X REVERSE4 |s an example of a FOR expression using a numerijieaj
inorement, In the operation of the loop. 118 Inoremented frem 1 t o
the length of Ls For each value, thel’'th element of L |g obtained
by the Iindex expression LL!J and thenis CONS’ed onto the reverged

let RL, X :

EXPR REVERSE4 (L)}

BEGIN NEW RL}

RETURN FOR NEW I+«1 TO LENGTH L DO RL « L[]1J CONS RL;
END} ~

X PROG) Is |Ike PROG2, except that PROG1l‘’s value I® the value of its

first (rather than |ts second) argument, Thisls not a reverse
function, but |9 used by reverse functions whieh follow, ¥

EXPR PROG1 (A,B); A;

X REVERSES Is another FEXPR, It usesa WHILE expression as follows:
while there I8 8ti|| something Jeft in L, the next element Is taken
off and CONS’ed onto the reversed [jst RL, This doe8 not u8e
recursion, X

FEXPR REVERSES (L)}

BEGIN NEW RL}
. RETURN WHILE L DO PROGL(RL « CAR L CONS RL,L « COR L)}

ENDJ

X REVERSE6 uses an UNIIL expression (PO UNTIL), The operatlon of
this UNTIL=|o op Is roughly the sane a8 that of the WHILE-loop In
REVERSES, The one difference 18 that Since the body of the loep gets
executed before testing If there Is anything In Ly an Initial test
mist be Included to take carecsthe triviajcase where REVERSE6 1s
called with NIL as {ts argument, This does not use recursion, X

[ML ISP SAMPLE MLISP PROGRAM =~ SECTION 6,1 83

EXPR REVERSE6 (L);

IF NULL L THEN N!L ELSE
BEGIN NEW RL;

nn URN DO PROGL(RL « CAR L CONS RL,L « COR L) UNTIL NULL L}J

X REVERSE7 uses a standard LISP function, MAPCAR,together with a
LAMBDA expression, The operation of this Is verysimilar to that of
REYERSE3, X

FEXPR REVERSE7 (L)}

BEGIN NEW RL}

MAPCAR(FUNCTIONCLAMBDA(I)} RL « I CONS RL), LD

RETURN RL#]
END} i

| X Of all the nethods presented, REVERSES Is the nost unigqueto MLISP,
b Jt uses a numerical FOR-loop, as does REVERSE4} In addlit]lon It uses

Index expressions on both the left and right sides of the assignment
operator (e), The Index expressjon on the left slide retrieves the
1th position In the reversed llst RL, Into which Isplaced t he

LEN=N+1’st element of L, LEN Is the length of L, The first Index
expression (8s used to obtaln a "ce||" or POSITION In RL, while the
second Index expresslomisused to obtaln the ELEMENT whlch occupies
a positioninl, X

EXPR REVERSES (L)3

BEGIN NEWRL,LENS
LEN « LENGTH LJ
FOR NEW Neil TO LEN pO RLIN] « LLLEN=N+1];
RETURN RL}

END)

X The LISP transjation of thIS programIs Iisted In the following
section, It has been printed using a program called PPRINT, an
s*expression formatting (pretty=printing) Program Thls program Is
written In MLISP and Is Included with the M.ISP system, f(A]| of the
files In the MISP system are ||stedIn SECIION 4,3,) Note that

, FOR-10o0ops, WHILE-1oops and UNTIL~|0o0ps have been expanded by macros
> into Ine{lne code, X |

END,

we TT TTT TT TTT TTT TTT TT TTT TT Te TT TIT Te TT re TT TT —— TT TT —— Se ro

MLISP SAMPLE MLISP PROGRAM = SECTION 6,2 84

, SAMPLE M.ISP PROGRAM «= SECTION 6,2

(DEFPROP REVERSES3
T a

oFEXPR)

(DEFPROP REVERSES
T

oFEXPR)

(DEFPROP REVERSE?
r

“FEXPR) No

(DEFPROP REVERSE]

(LAMBDA (L) (REVERSEla L NL))
EXPR)

(DEFPROP REVERSEla
(LAMBDA(L RL)
(COND(C(NULL L) RL) (T (REVERSEla (COR L) (CONS (CAR L) RLY)

EXPR)

(DEFPROP REVERSE?

(LAMBDA (L)

(COND ((NULL L) NIL) (CT (APPEND (REyERSE2(CDOR L)) (LIST (CARLY)
EXPR)

(DEFPROP REVERSE3

(LAMBDA (L)

(PROG (RL)

(RETURN
(PROG (&vV &LST1 I)

) (SETQ &LST1 L)

LOOP (COND ((NOT &LST1) (RETURN &V)) (T NL))
(SETQ ! (CAR &LST1))
(SETQAV(SETQRL (CONS | RL)))
(SETQ &4LST1 (CDR &LST1))
(GO LOOP)))))

FExPR)

(DEFPROP REVERSE4
(LAMBDA (L)

(PROG (RL)
(RETURN
(PROG (&8v 8LST1 &UPPERY I)

(SETQ &LSTY 1,)

(SETQ&UPPERY (LENGTH L))
LOOP(COND ((GGREAT &LST1 &UPPERY) (RETURN &V)) (T NIL)

(SETQ | &LSTL)

(SETQ &8V (SETQ@ RL (CONS (CAR (SUFLISTL (SuUB1 I),) RLY)
(SETQ &LSTL (ADDL &LST1))

L ML ISP SAMPLE MLISP PROGRAM= SECTION 6,2 85
(GO LOOP)))))

ExPR)

(DEFPROP PROG1
(LAMBDA (A B) A)

EXPR)

(DEFPROP REVERSES5

(LAMBDA (L)
(PROG (RL)

(RETURN
(PROG (&vV)

” LOOP (COND (lL (SETQ &vy
(PROGY (SETQ RL (CONS (CAR L) RL)?

(SETQ L (COR L)))))
(T (RETURN &V)))

(GO LOOP)))))

FEXPR) ~

(DEFPROP REVERSES

(LAMBDA (L)

(COND ((NULL L) NIL)
(T (PROG (RL)

L (RETURN
(PROG (&V)

LOOP (SETQ &vy

(PROGy (SETQ RL (CONS (CAR L) RL))
(SETQ L (CUR 1.))))

(COND ((NULL L) (RETURN &V))
(T (GO LOOP)))))))))

EXPR)

(DEFPROP REVERSE?
(LAMBDA (L)

(FROG (RL)
(MAPCAR (FUNCTION (LAMBDA (I) (SETQ RL (CONS I RL)))) L)
(RETURNRL)))

FEXPR)

(DEFPROP REVERSES

(LAMBDA (L)
(PROG (RL LEN)

(SETO LEN (LENGTH L))
(PROG (&8V &L ST! &UPPER1 N)

(SETQ &LST1 1.)
(SETQ &UPPERY LEN)

LOOP (COND ((#GREAT &LSTL &UPPER1) (RETURN 8V)) (T NIL)
(SETA N&LST1)

(SETQ &v
(PROG2 (SETQ RL

(REPLACE RL

(LIST N)

MLISP SAMPLE MLISPPROGRAM = SECTIONS, 2 36

(SETQ MEAL

(CAR
(SUFLIST

: L

(#DIF LEN N))))))
$M21))

(SEyQ &LSyi (ADDL &LST1))
(GO LOOP))

(RETURN RL)))
EXPR)

L ML ISP THE: ML]SP SCANNER= SECTION 7.1 87

, THE MLISP SCANNER =SECTION?7,1

The set of routines that returns the next "token" (Identifier,
number, speclal character, string) In the Input stream |s generally
called the "scanner" for a language, It Is true of ajmost every
language that the majority of compllation time Is spent In the
scanner, since every character In a program has to be read In
Individually and sone sequence of tests made on It, This Is the
pllghtofMLISP, and the best that can be done Is to make the scanner

; as fast and effleclent a3 possible, Lynn Quam @atStanferd has
developed a super fast, tabjle~dplven READ funotlon for LISP 1,6 . To
thls he has &ddedaset of machine language functions whieh mny be
used to specify the prec!se syntax for a token returned by READ
These routines actually mod|fy READ‘s Interna| character tables, thus
glving the user a oompletely general tablie~driven Scanner, The
scanner for MLISP was obtained In this way, It has Inereased
transiation speed by a faotor of three (translation Speed 'IS now
30004000 times/minte), It has decreased theslize of the translator

aswell, since using READ does not require any add Itlonal LISP
functions,

Since there Is no formal writeup ONQuUam’s READ=modifying funetlons,

8 the following Is a reproduction of (parts of) Quam’s (mformal
description,

LISP now uses a table driven scanner, whose tabie may ba

modi fled by the user for the ourpose of implementing
Scanners for other languages, For simplicity, <%he
functions for constructing the scanner $abje Initially
give an ALGOL type scanmeri that ISs the ALGO.
definitions for ldentifieprs, strings and numbers, The

ALGOL table may be deviated from by using addltlonal
~~ functions t o Imglude add!tlional characters Im

ldentiflers, and to specify delim|ters for Strings,

(SCANINIT oomment_start comment-end 8tring_start string_end |1terally)
SCANINIT sets up the LISP scanner to be an ALGOL-type
scanner wlth (he, special delimiters tot comments and
strings, MLISP oealls (SCANINIT %¥ X " " 23,

(LETTER x)

LETTER specifles tt o the scanner that XX Is an

extra~!etter, and thus allows x to be In an Ildenti|fler,
MLISP call3 (LETTER _)» (LETTER $8), (LETTER !),

> (IGNORE :x)

IGNORE specifljes to the SecannePthatx I3 not to be

returned as a delimiter from SCAN, but Instead w||| be

ML ISP THE ML]SP SCANNER = SECTION 7.1 88

Ignored, However, x will still function as a separator
between |dentiflers and numbers, MLISP calls (IGNORE
BLANK), (IGNORE CR), (IGNORE LF)» (IGNORE FF), (IGNORE
VT), (IGNORE TAB), (IGNORE ALTMODE),

(SCAN)
SCAN reads an atom or delimiter and sets the value of the

oloba| varfabje SCNVAL to the value read, and returns a
nunber corresponding t o the syntactic type read,a 8
follows?

_ Syntactic Type Value of SCAN Value of SCNVAL u
<identiflerd a the uninterned Identifier
<string> | the string
<number> 2 the value

{delim|tepr> 3 the ASCII! numerleal value
~ of the delimiter

(SCANSET)

SCANSET modifies the LISP scanner In READ according te
the user specifications.

(SCANRESET) |
SCANRESET unmod]|fles the LISP scanner to | t8 norml
state, and myst be called before REAP wl|| work proper|y
onoe SCANSET |s used,

L MLISP THE MLISP SCANNER = SECTION 7.2 39

, THE MLISP SCANNER= SECTION 7,2

BEGIN

X fhls program presents a set of funetlons whieh Is equivalentto the
MLISP scanner, Its for the reference of users wanting to |(mplement
MLISP on a LISP system wl thout Quam’s READemod!ifying funct (ons, In
ardor to US® these funotlons, the funotlon &SCAN im the MLISP

translator should be replaced by the &SCAN funetion below, and the
E other functions added where convenient, The functions below are

written In MLISP, so thelr LISP transjations would sctual|y be used,

The scanner below Places only two restrictions on the LISP system
(1) There nust be a READCH function, which reads the next character

In the Input stream and returns that character as |ts value,

(2) There must be a READLIST funetlion, whieh takes as Its argument a
| 1st of single characters and concatenates them to fepm an atom

These two fumctions are taken to be primitives, and they are used
below without further explanation, 8SCAN sets the global variables

| &SCANTYPE and &SCANVAL as fol lows:
Syntactic Type Value of &SCANTYPE Value of &SCANVAL

Cldentiflerd 0 the ldent|fler

<string> I the str Ing
{number 2 t he nunber

Cdalimiter> 3 the delimiter

INEXT_CHAR Is a|ways set to the next character In thr Imput stream
after the ourrent token has been obtained,

%

SPECIAL $NEXT_CHAR, ?8SCANTYPE, 78SCANVAL, 78X78}

EXPR ?2&SCAN ())

[F NUMBERP !NEXT CHAR THEN SCAN_NUMHYER()ELSE
IF LETTERP(INEXT CHAR) THEN SCAN_IDENTIFIER(NIL, INEXT_CHAR) ELSE
[F INEXT_CHAR EQ DBQUOTE THEN SCAN_STRING(SDBQUOTE>,READCH()) ELSE
IF IGNOREP(!NEXT_CHAR) THEN

PROG2¢(DO NIL UNTIL =~IGNOREP(!NEXT_CHAR « READCH()), 78SCAN()) ELSE
IF INEXT_CHAR EQ PERCENT THEN

’ PROG2(D0O NIL UNTIL READCH() EQ PERCENT & !NEXT_CHAR«READCH(),?28SCAN())
ELSE SCAN_DELIMITER()}

MLISP THE MLISP SCANNER = SECTION 7,2 90

EXPR SCAN_IDENTIFIER (L,NEXT)}
[F NUMBERP NEXT | GET(NEXT, LETTER) THEN

SCAN_IDENTIFIER(NEXT CONS L, READCH()) ELSE
IF NEXT EQ ‘?? THEN X The MLISP I|terglly ohgracter (7) X

SCAN_IDENTIFIER(READCH() CONS SLASH CONS Lj, READCH())
ELSE BEGIN

78SCANTYPE « 23 % ldent|fler type, X%
78SCANVAL + READLIST REVERSE Lj}

IF 78X78 & GET(?2&8SCANVAL,’7&8TRANS) THEN |
BEGIN X This sympol "gd pewh QEFINE'3g 48 something else. X

28SCANTYPE = GET(?8SCANVAL,'78 TRANSTYPE) |
78SCANVAL «+ GET(28SCANVAL,’28TRANS)

- END}

INEXT_CHAR « NEXT} X Advanor I!INEXT_CHAR, %
ENDJ

EXPR SCAN- STRING(i ,NEXT)}

IF NEXT NEQ DBQUOTE THEN SCAN_STRING(NEXT CONS Ls, READCH())
ELSE BEGIN

28SCANTYPE + 1} X String type, %
78SCANVAL « READLIST REVERSE (0BQUOTE CONS LL)
INEXT CHAR « READCH()} X Advance !NEXT CHAR, X

END} -

EXPR SCAN_DELIMITER ()}
BEGIN

78SCANTYPE « 3) XDel|Imiter typo. X |
78SCANVAL «+INEXT CHAR) X Set ?&SCANVAL to the delimiter. X
IF 78X78 8 GET(?2&8SCANVAL,’7&8 TRANS) THEN
BEGI N X This sympol hes been DEFINE‘’ed ps something else, X%

78SCANTYPE « GET(?&SCANVAL,’'7&4 TRANSTYPE)}
| 78SCANVAL « GET(?8SCANVAL,’78TRANS)

END}

INExT_CHAR « READCH()} X Advance !NExT_ CHAR, %
END}

EXPR LETTERP (CHAR); GET(CHAR, LETTER) | CHAR EQ ’?7}

EXPR IGNOREP (CHAR); GET(CHAR,' IGNORE) }

EXPR SREAD (); PROG2(784SCAN(),SREADL())}

EXPR SREAD1()3}

I F 78SCANVAL EQ LPAR & ?78SCANTYPE a 3 THEN x (X
PROG2(?&SCAN(),SREAD2())

ELSE 78SCANVAL}

y ML ISP THE ML]SP SCANNER = SECTION 7.2 9.1
EXPR SREAD2 0;

IF 28SCANVAL EQ RPAR 8 7&8SCANTYPE = 3 THEN NL no) Xx

ELSE BEGIN NEW X3} |
X « SREADL()}
78SCANC)}
RETURN(X CONS SREADJI())

END}

EXPR SREADS3 ()3

IF 78SCANVAL EQ PERIOD & ?84SCANTYPE = 3 THEN JE

BEGIN NEW X} X We have adotted paler (A,B) X
X « SREADI()} X Get the "B" part, %

. 7&8SCAN()} X Get rid of the) X
RETURN X

END

ELSE SREADZ2()}

ML ISP THE MLISP SCANNER «= SECTION 7,2 92

X Scanning numbers, X%

EXPR SCAN- NUMBER ()}

BEGIN NEW !IVALUE, $ILENGTH,N,X3 SPECIAL !IVALUE,!ILENGTH}
SCAN_INTEGER(INEXT_CHAR, 0, ©)} X Stan an Integer, X
N« 1 JVALUE; XSave [t, X

IF {NEXT_CHAR EQ PERIOD THEN % We have a decimal nunber, ¥
BEGIN

SCAN_INTEGER(READCH(), O, 2)3 X Scan the decimal part, X
N « N + !IVALUE/ZEXP(12,0, !ILENGTH)}

END}

IF INEXT_CHAREQ 'E THEN X There !$ an exponent, X%
BEGIN

INExT_CHAR « READCH()} XSee|f there Is a + or =.%
IF INEXT CHAR EQ PLUSS THEN X + %

PROG2TX«10,0, !NEXT_CHAR®READCH()) ELSE
[F INEXT_CHAR EQ DASH THEN % = %

PROG2(XeD,18, INEXT_CHAR+«READCH())
ELSE Xe10,0}

SCAN_INTEGER(!NEXT_CHAR,2,2)3 X Now gct the exponent, X
N N® EXP(X,1IVALUE)}

END;

X Now we've got the whole number, X
78SCANTYPE « 2} XNumbertype,%
T8SCANVAL « Ni X Value of the number, X%

A INEXT_CHAR Is ajrendy set, X
END}

EXPR SCAN-INTEGER (NEXT,N,LEN)} ¥X Scan an Integer, ¥%

~ IF NUMBERP NEXT THEN SCAN_INTEGER(READCH(), Ne]BASE+NEXT, LEN+1)
ELSE BEGN

! VALUE « NJ XValueofthelnteger,X
LILENGTH « LEN} X # digits In the Integer, X

'NEXT_CHAR « NEXT) X Advance !NEXT_CHAR, X
END | -

EXPR EXP (X,N)} An exponent function, %

IF N33 0 THEN 1,8 ELSE * The eoxponentis oO, X
IF N = 2#(N/2) THEN EXP(X®X, N/2) It1s an even number, %

ELSE X # EXP(X#X, (Ne1)/2)} * Else odd, %

» MLISP THE MLISP SCANNER =~ SECTION 7,2 93
% Calling t he following fumgtion will Set UP the propertyllists
needed by the funmotion above, X%

EXPR SCANINIT ()3 :

BEGIN
FOR NEW CHAR IN

‘(A BCDEFGHI]I JKLMNOPQRQRSTUVHYXYZ

abegdeftghl|l Jk I mnopagrstuvwxyz, 11) D0
PUTPROP(CHAR,T, LETTER)

FOR NEW CHAR IN <BLANK,CR,LF,FF,VT,TAB,ALTMODE> DO
| PUTPROP(CHAR,T, IGNORE);

‘NEXT _CHAR « BLANK} # Start the scanner out wW|th a blank, %
END;

EXPR SCANSET ()3 NIL; %“ Dummy definitions. X

EXPR SCANRESET ()3 NTL

X The LISP translation of thls program Is |lstead in the following |
section, It has been printed using a Program called PPRINT, an
s~expression formtting (prettyeprinting) program. Thisprogram 1 s

y wrl tten In MLISP and Is included with the MLISP system (All| of the
tfiies In the MLISP system are Ilsted Im SECTION 4,3 ,) Not. that
FOR~{oops, WHILE-loops andUNTIL~loops have been expanded by macros
Into In~line code, ¥%

END.

b

ML ISP THE ML]SP SCANNER = SECTION 7,3 04

+ THE MLISP SCANNER . SECTION 7,3

(DEFPROP !NEXT_CHAR
: }

SPECIAL)

(DEFPROP &SCANTYPE
T

SPECIAL)

(DEFPROP &SCANVAL

T

SPECI AL)

(DEFPROP &X&

T

SPECI AL)

(DEFPROP J IVALUE
T

SPECI AL)

(DEFPROP JILENGTH
T

SPECI AL)

(DEFPROP {SCAN

(LAMBDA NIL

(COND ((NUMBERP !NExT_CHAR) (SCAN_NUMBER))
((LETTERP INEXT CHAR) (SCANIDENTIFIERNIL INEXT CHAR))
((EQ INEXT_CHAR DBQUOTE) (SCAN_STRING (LIST DBQUATE) (READCH)))
(¢IGNOREP INEXT_CHAR)

| (PROG2 (PROG (&V)
LOOP (COND

((NOT (!GNOREP (SETQ !NEXT_CHAR (READCH))))
(RETURN &V))

(T (GO LOOP))))

| (8SCAN)))
((EQ !NEXT_CHAR PERCENT)
(PROGo (PROG (&V)

LOOP (COND

(CAND (EQ(READCH) PERCENT)
(SETQ@ INEXT_CHAR (READCH)))

(RETURN &V))
(T (GO LOOP))))

(&SCAN)))

(T (SCAN_DELIMITER))))
EXPR)

(DEFPROP SCAN_IDENTIFIER
(LAMBDA (L NEXT)

(COND

[

L- ML] SP THE MLISP SCANNER = SECTION 7.3 95
((OR (NUMBERP NEXT) (GET NEXT (QUOTE LETTER)))
(SCAN_IDENTIFIER (CONS NEXT L) (READCH)))

((EQ NEXT (QUOTE 7))
(SCAN_IDENTIFIER (CONS (READCH) (CONS SLASH L))(READCH)))

(T (PROG NIL

(SETQ &SCANTYPE 0.)
(SETQ &SCANVAL (READLIST (REVERSE L)))
(COND

((AND 8y& (GET &SCANVAL (QUOTE &TRANS)))
(PROG NIL

(SETQ &SCANTYPE (GET &SCANVAL (QUOTE &TRANSTYPE)))
(SETQ &SCANVAL (GET &SCANVAL (QUOTE &TRANS)))))

(T NIL))

(SETQ !NEXT CHAR NEXT)))))
EXPR)

(DEFPROPSCAN- STRI NG
(LAMBDA (L NEXT) ~
(COND

((NOT (EQ NEXT DBQUOTE)) (SCAN_STRING (CONS NEXT L) (READCH)))
(T (PROG NIL

(SETQ &SCANTYPE 1,)
) (SETQ &8SCANVAL (READLIST (REVERSE (CONS DBQUOTE L))))

i (SETQ INEXT CHAR (READCH))))))EXPR) -

(DEFPROP SCAN_DELIM] TER
(LAMBDA NIL

(PROG NIL

(SETQ 8SCANTYPE 3,)
(SETQ &SCANVAL INEXT_CHAR)
(COND

(CAND &y8 (GET &SCANVAL (QUOTE &TRANS)))
| (PROG NIL

(SETQ 8SCANTYPE (GET &SCANVAL (QUOTE &TRANSTYPE)))

i 1, SET 8SCANVAL (GET S8SCANVAL (QUOTE &TRANS)))))(T NIL))

. (SETQ INEXT CHAR (READCH))))
EXPR)

(DEFPROP LETTERP

(LAMBDA (CHAR) (OR (GET CHAR (QUOTE LETTER)) (EQ CHAR(QUOTE 2))))
EXPR)

(DEFPROP]GNOREP

(LAMBDA (CHAR) (GET CHAR (QUOTE IGNORE)))
EXPR)

" (DEFPROP SREAD

. (LAMBDANIL (PROG2 (&SCAN) (SREAD1)))
EXPR)

ML 1SP THE MLISP SCANNER = SECTION 7,3 96

(DEFPROP SREAD1
(LAMBDA NIL
(COND

((AND (EQ &SCANVAL LPAR) (EQUAL &SCANTyPE 3,))
(PROG2 (&8SCAN) (SREAD2)))

(T 8SCANVAL)))
EXPR)

(DEFPROP SREAD2
(LAMBDA NIL
(COND

((AND (EQ &SCANVAL RPAR) (EQUAL &SCANTYPE 3,)) NIL)
LT (PROG (X)

(SETQ X(SREAD1))
(8SCAN)

(RETURN (CONS X (SREAD3)))))))
EXPR)

(OEFPROP SREAD3J
(LAMBDA NIL
(COND

((AND (EQ &SCANVAL PERIOD) (EQUAL &SCANTYyPE 3,))
(PROG (X) (SETQ X(SREAD1)) (&SCAN) (RETURN X)))

(T (SREAD2))))
EXPR)

(DEFPROP SCAN- NUMBER
(LAMBDA NIL
(PROG (31 yAL yk !ILENGTH Nx)

(sciN_ INTEGER INEXT_CHAR 0, 0,)
(SETQ N !IVALUE)

(COND ((EQ {NEXT CHAR PERI OD)
(PROG NIL-

| (SCAN- INTEGER (READCH) 2, 0,)
(SETQN

(*PLUS N
(*QUO $IVALUE

| (EXP 102,08 'ILENGTH))))))
(T NIL))

(CONO ((EQ {NEXT_CHAR (QUOTE E))
(PROG NIL

(SETQ INEXT_CHAR (READCH))
(COND
(CEQ INExT_CHAR PLUSS)
(PROG2 (SETQ X12,0),

(SETQ INEXT_CHAR (READCH))))
((EQ INEXT_CHAR DASH)
(PROG2 (SETQ X 2,10000000)

(SETQ INEXT_CHAR (READCH))))
(T (SETQ X 10,8)))
(SCAN INTEGER INEXT CHAR 0, @,)
(SETQ™N (*TIMES N(EXP X tIVALUE)))))

8 MLI SP THE MLISP SCANNER = SECTION 7,3 97
(T NIL))

(SETQ &8SCANTYPE 2.)
(SETQ &SCANvVAL N))) |

EXPR)

(DEFPROP SCAN_INTEGER
(LAMBDA (NEXT N LEN?
(COND ((NUMBERP NEXT)

(SCAN INTEGER (READCH)
(*PLUS (*TIMES N IBASE) NEXT)
(AJDL LEN)))

(T (PROG NIL
(SETQ !IVALUE N)

(SETQ!ILENGTH LEN)
(SETQ !NEXT_CHAR NEXT)))))

EXPR)

(DEFPROP EXP
(LAMBDA(X N)
(COND ((EQUAL N 0,) 1,0)

((EQUAL N(#TIMES 2, (*QUON 2,)))
(EXP («TIMESX X) (QUO N 2,)))

(T (*TIMES X (EXP (*TIMES X X) (*QUO (SUBL N) 2,))))))

 EXPR)
(DEFPROP SCANI NI T

(LAMBDA NIL
(PROG NIL

(PROG (&YV &_.ST1 CHAR)
(SETQ &LSTL

(QUOTE
(ABCDEFGHI] JKLMNOPORSTUV WXYZ

abeogcgefaohl!l Jkimnoparstuyvwxy:2
nn

LOOP (COND ((NOT &LST1) (RETURN &V)) (T NIL))
(SETQ CHAR (CAR &LST1))
(SETQ &y (PUTPROP CHAR T (QUOTE LETTER)))
(SETQ &LSTL (COR &LST1))

(GO LOOP))
(PROG(8V &LST1 CHAR)

(SETQ 4LST1 (LIST BLANK CR LF FF VI TAB ALTMODE))
LOOP (COND ((NOT &LST1) (RETURN &V)) (T NL))

(SETQ CHAR (CAR &LST1))
(SETQ 8y (PYTPROP CHAR T (QUOTE IGNORE)))
(SETQ &LSTL1 (CDR &LST1))
(GO LOOP))

(SETQ INEyT_CHAR BLANK)))
EXPR)

” (DEFPROP SCANSET
(LAMBDA NIL NIL)

ExPR)

ML1SP THEMLISP SCANNER «SECTION 7.3 90

(DEFPROP SCANRESET

(LAMBDA NIL NIL)
EXPR)

’ ML ISP BIBLIOGRAPHY « SECTION 8 99
. BI BLI OGRAPHY = SECTION 8

Enea, Horace, MLISP, Technical] Report No, CS=92, Computer Sclence
Department, Stanford University, 1968,

Hearn, Anthony C,, STANDARD LISP, Stanford Artificia]| Intel|lgence
Laboratory Memo No, Al=90, Stanford University, 1969,

Hearn, Ant hony CC,, REDUCE, A PROGRAM FOR SYMBOL!C ALGEBRAIC
COMPUTATION, Proe¢, SHARE XXXIV, 1970,

McCarthy, J,» Abrahams, P,, Edwards, DOD,» Hart, T., Levin, M,» LISP
1,5 PROGRAMMERS MANUAL, The Computation Center and Research
Laboratory of Electronics, Mssachusetts Institute of Technology,
MIT Pregs, 1965,

Quam. Lynn, STANFORD LISP 1,6 MANUAL, Stanford Artiticial
Intelligence Laboratory Operating Note No. 28,3, Stanford
University, 1969,

Weissman, Clark, LISP 1,5 PRIMER, Dickenson Publishing Company, Inc.,

u

——

