STANFORD ARTIFICIAL INTELLIGENCE PROJECT
MEMO A IM-135

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-179

MLISP .

BY
DAVID CANFIELD SMITH

OCTOBER 1970

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERS ITY

e

STANFORD ARTIFICIAL INTELLIGENCE PROJECT October, 1970
MEMD AIM-135

COMPUTER SCIENCE DEPARTMENT
REPORT NO, CS179

ML1SP
by
David Canfjetd Smith

ABSTRACT1 MLISP Is o high T[evw] |Ist-processing and aymboel~-
manipulation Janguage based o n the programming language
LISP, MLISP progrems are translated Into LISP programs and
then executed or complled, MLISP ex|sts for two puPpOSesS:
(1) t o ftacl|itate the wrlting and understanding of LISP
programs} (2) to remedy certain |Important deflclenc]es In
the i ist=processing abl |1ty of LISP,

This research was supported by Grant PHS MH P66-45«09 and by the
AdvancedResearch Projects Agency ofthe Department of Defense under
aontraot SD=183, This report supersedes and replaces Al Memo 84,

Reproduced In the USA, Avallable from the Clearinghouse for Federal
Sclentific and Technlcal Information, Springfleid, Virginia 22151,
Prlcei Full slze copy $3,008i mlorgflchecopy 3 .63,

MLISP TABLE OF CONTENTS

SECTION 1 -- INTROOUCTION L R R R A R R R T BRSO S SR RN I SR PSR
SECTION 2 -- SYNTAX
2.1 8§ ynwm‘convont'onSa COMMENTS A RN SRR
2.2 Comp|0t0 M.I SP syntax DO I R R RN R R N N RN NN R S SRS
2.3 Reserved words and synbols, pre=defined symbgls tree
2.4 Pre=defined atons R R Y
2.5 Inflix operat or precedences N N R N N I N N I I I I A I A
SECTION 3 - - SEA@BWICS LI A A R B A O DO O O B O O O BN IR DN BN BN N BB RN PRI A |
3.1 <program> - R R R R R R I R R N R N I R A N N A B R SR A
3.2 <expression) T 0P 0 QP g0 o Qoo 000 P sty en ot oo grgrege
3.3 <|nflx,opor.tor> I B R B B R R B B N N B NN NN B RS SR S S)
SDSQA <r.GU'.f-'nf'X> LA B B DO B D O BB BN B B B BB B AN BB RS NI AN I]
3.,3,8B <V.°t0'_|ﬂf‘x> N R R R R N A N A N N A N N I I SN A I I
3.4 <prefix_operator> RN NN NN RN RN R RN
3,5 <bloeck> R NN R I BN RN N I RN SR SRR I N N TP
3,6 <funotion_definltion>, <LAMBDA_expression> EERREEEE
3 .7 <DEFINE .XDFQSS'°n> N IR I B R N N R B N S N N N T N N A
308 <]F_expressjon> R RN R R NN R R R R R R
3.9 <FOR_OXDPOUS|OH> I I I R I R R I R I B R I N B SN N N NN S S N A
3.10 <WH]LE_expression>, <UNTIL_.KDVOS!|OH> RN RN N NN
3,11 <588|9ﬂment_0x0resslon> EE R R RN R R R R
3.12 (functlﬂﬂ_e"'> NN N N NN NN NN ER R
3,13 <'nd.x_QXDrQSS'On) AR NN NN RN R AR
3.14 <|'St-OXDPOSS'On> L I R A R B R R B B I N B R BN B N SRS I A |
-3,15 <quoted_expressijon> R RN R R RN R)
3,16 <|dentifler> R N N R I N R N N R R R N A N B S R R SN I R R R R S S
3'17 <nunber > U R B I IR I B A R I I I R B R R I I R B I N N S S R N I]
3,18 <strinag> 10 00 1 8 0 090 00000 000800t grartesseteegqpgorye
SECTION 4 -- USER OPERATION OF ML]SP
4,1 How to transiate, run and conpile M.ISP programs v Lo
4,1,A Trans|ating MLISP program8 R R Y
4,1,8 Trans|lt|n9 undor program ¢ontro| EEERERE R
401 c L .d'ﬂg C m A‘d grams L R I N I R S R NS S A N R)
4,2 Rcconstruct]ng %hﬁ MLYSB Sy.tom RN
4,3 N[L:[SI)SOUPCO"lQS IR R R R T Y
SECTION 5 -- RUN=TIME FUNCTI ONS
5.2 Rautin®un-time'nrungtions’ Ines R R R

LI LI I B B O I I B R I BN LI R R IO |

PAGE

12
13
14

68
68

76
72
73
75

MLISP TABLE OF CONTENTS
SECTION 6 == SAMPLE MLISP PROGRAM

6,1 The program In M.ISP IR R R Y
6.,21¢8L1SP tfaﬂ,|.t'0ﬂ R N N R N N N N I N N I IO I R S T A A

SECTION 7 == THE MLISP SCANNER

7.8 Waat tho M.ISP scanner does TeY Pt et YT e ey grens
7.2 An equlvgient sgqnner, written In MLISP et aea et
7.3 I1t8 LISPtrIHSIltlaﬂ R R R R R Y
SECTION 8 *e BIBLIOGRAPHY LU R R R B B R I I A I I A N I A A I I I)

81
84

07
89
94

99

MLISP INTRODUCTION = SECTION 1 3

« INTRODUCT]ON = SECTION 1

Mst bprogramm|ng |anguages arc des|gned with the |dea that the syntax
® houlci be struetured to produce eofflolent code for the computer,
Fortranm and Ajgol are outstanding examp|es, VYet,Itla apparent that
HUMANS spend more time with any glven Program than the COMPUTER.
Therefore, |% has been our Intentlon to construct & language whleh Is
as transparent|y o¢|ear and understandable to a HUMAN BEING as
possible, Considerable effort has been spent to nmke the Ssyntax
eoncise and unejuttered, It redyees the nunmber of parentheges
required by LISP, Introdueces a nore mnemon|e¢ and natural notatlon,
clarifles thefjow of control and perml| ts comments, sone
"meta~axpress|ons” arc added to Improve the |Ist=processing power of
LISP, Strings and string manlpulation fcatures, particularly useful
for Input/output, are Included, In additlon, a substantial anount of
rsdundanoy has been bullt Into the language, permltting the
programmer to ©hoO0se® the nost naturalway of wrlting routines from a
varfety of possibflijt|es,

LISP Is a l|lst=processing and symbo|=-manipulation language created at
MIT by John MeCaprthy and his students (MeCarthy, 1965), The
outstanding feature8 of LISP aret (1) the s|impjest and most eclegant
ayntax of any language 1In ex|stenoce, (2 hi gh-level synbol
manipulation capablilties, (3) an efficlent set of |lst=processing
primitives, and (4) an sas||y-usabje power of recursion.
Furtherrore, LISP automatioally handles all Interna| storage
managenent, freelng the user to concentrate on problem solving, Thls
Is the single most Important Improvement over the other maj or
list=processing |language, I[PLeV, LISP has found applicatjons In many
Inportant artificlal Intej|lgence Investigations, Including symbolle
mathmaties, natural-language handling, theorem proving and jogle¢.

Unfortunate|y, there are several Important weaknesses in LISP.
Anyone who has attenpted to understand aLISP program wrltten by
another programmer tar even by himself a nonth ear||er) quickly
becores aware of several difficuities!

A, The flow of control Is very dlfflcult to follow, In fact, It
Is about @® difflcult to follow as maghline language or Fortran, Thls
makes understanding the purpose of routines(|,e, what do they do?)
difficult, Sinee coments arenot usually permitted, the programmer
Is unable to provide written assistancs,

By, An |nordinate amount of ¢tIme must be spent ba ancing
parentheses, whether In wrlting a LISP program or tryl ng to
understand one, It Is frequently dlfflcult to determine where one

expression ends and another beglns, Formatting uti||ty routines
("oretty=print”) hejo} but every LISP programmer knows the dublous
pleasure of laboriously matehing left and rlght parentheses In a
functlion,gwhen all he knowsisthat one Is mlssing sonewhere!:

c, The notation of LISP (prefix notatlon for functlions,
parentheses around all funetlions and argunents, ate.), while uniform

MLISP INTRODUCTION = SECTION 1 4

from g |oglclan’s point of view, |s far from the most natural or
mnemonic for a language, This olumsy notation also makesI t
difficult to understand LISP progr ams, Sinee M.ISP prograns are
translated Into LISP s-expressions, all of the elegance of LXSP Is
preserved at the translated levei} but the unpleasant &speots at the
surface level are eliminated,

Dy There are important omisslons |n the |lsteprogessing
capablljties of LISP, Those @&re® sonewhat remedlied by the M.ISP
"meta=expressions”, expressions which have no direct LI SP
correspondence but instead are transjated 1Into @sequences of LISP
Instructtons, The M.ISP meta=-expressions are the FOR expression,
WHILE expression, UNTIL expression, index expression, assignment
express|on, and vector operations, The carticular deflolency each of
these attenpts to overcome |s discussed In the subsectlion of SECTION
3 describing the metawmexpression In detall,

M.ISP was wrltten at Stanford Unlversity by Horace Enea for the IBM
360/67 (Enea, 1968), The present author has Inplemented MLISP on the
POP- 10 t|me=-shared computer, He has rewrlttan the translator,
expanded and Simpjlfled the syptaxy and Impreved the rup=time
roytines, All of the ohanges and add|/tlons are Intended elther to
make the language nore readable and understandable or to make |t more
powerful,

MLISP programs areflrst translated into LISP programs, and then
these are passed to the LISP interpreter or compller, As |ts nanme
Implles, M.ISP Ila a"meta=LISP" Janguage; MLISP programs may be
viewed as a superstructure over the underlylng LISP processor, Al
of the wunderlylng LISP functionsareavallabje to M.ISP programs, In
addltlon to several powerful M.ISP run=time routines, the purpose of
havimrg Sueh a superstructure Is to Inprove the readab! |l%y and
“writeabljltyo fLISP, long (In)famous for |ts obsourity, SinceLISP
I's one of the nost elegant and powerful symboje-manipulation languages
(but not one of the nost readable), |t seems appropriate to try to
facllltate the use oflt,

MLISP has been running for severa | years on the Stanford PDPe1p

time-shared conputer, It has been dIstributed to the DEC_ User
Services Group (DECUS), The MLISP translator and run-tine routines
are thensel ves comp|led LISP programs, The Stanford verslon runs

under the Stanford LISP 1,6 system (Quam, 1969), Some effort has
been nmmde to keep the translator as machine Independent as possibie;
Im theory M.ISP eould be Implemented on any machine with a working
LISP system by maklng only mnor changes, The 0one@ probable exception
to thisls the M.ISP scannerj) to enable Scanning (where nost of the
time |s spent) to be as eofficlont as possibie, the translator uses
machine language scanming routines, While these routine9 have
greatly |Inoreased trans|ation speed (MLISP now translates at a rate
of 3200-5000 |Ines per minute,), thelruse nean8 that soneone wishing

ML ISP INTRODUCTION - SECTION 1 5

to Impjement MLISP on a system without LISP 4,6 will have to USe an
® aulvgent scanner package, For th|s reasen, a who|e section of thls
manual (SECTION 7) |g devo¢ed to Ppegenting an egylvalent gcanne,,

While LISP was created wlth the goa| of belng machine Independent, It
has turned out that most LISP systems have uniaue features, The
slituation Is so diffjcult that Anthony Hearn has attempted to define
"a unliform subset of LISP 1,5 capable of assemb|y under awlde range
of ex|sting compijers and Interpreters," cajled STANDARD LISP (Hearn,
1969), MLISP helps to alleviate this situation by Intreducing
another leve| of machlne Independencel <o Implement M.ISP onaglven
LISR system, one changes the under|ying transiator rather than the
surface syntax, Oer, Hearn has also constructed an MLISP=|lke
language ca|led REDUCE (HEARN, 1970),

MLISP SYNTAX = SECTION 2.1 6
, SYNTAX = SECTJON 2,1

The completeMLISPayntax IS contajned 1In the following section.
Severa| sets of meta=symboisareused to SIimp|lify the prasentation of
the syntax:

(1) <> = ANGLED BRACKETS enclose noen=terminal synbols.

(2) () = BRACES encjose optiona] elements;: !,e. the eclenments |Inside
tray or may not be preseant,

(3) ()% = These spPecla| meta=symbo|s enclose optional elements which
ma¥ bo present O or mnore times (l|,e, the enciosed clenents need
not be present » but there I8 no IImit to the nunber of tines they
may oeccur),

(4) € = "HORSE SHOES" enclose al|termnative eclenents, which are
separated by ¢ommas, The user mmy select any one Of the enclosed
elenents to form a |egalsyntacticexpression,

(5) The BNF symbo|s t:= and |are used to def|ne syntax elenents,
The left-hand s!de of the $3% synbol Is the syntax elenent being
defined} the right-hand side Is ltsdefinition, The vertleal bar
(1’s used to indlcate alternative definitions,

(6) All other symbo|s stand for themseives,

There are several features of MLISP that amnot explleltiyInthe

syntax?

(a) IGNORED CHARACTERS = All spaces, carrlage returns, |Ine feeds,
form feeds, tabs, vertloal ¢%abs, and altmoedes are Ignored by the
scanner,

(b) COMMENIS = Any sequence of charaeters enclosed between ercent
signs (%) Is taken to be a ecomment, The scanner lgnores
comments, consjderling them to be completely non-exlIstent;
ABCX<anything>XDEF |s the sane as ABCDEF as far as the soannsr Is
concerned, NOTE: the comnent Symbo|{(%) may not be used In any
ot her capaclity t han to start or end a comment!! The
MLISPedef|Ined atom PERCENT (vajue is %) facll|tates dea|lng with
the percent sfgn In other capac|ties,

The user should mnote that there are no "statements" in MLISP;
everything returns a value, even FORe|oops, WHILE=-|ocops, etec.
Therefore, all major syntactic entities arc "expressjons",

MLISP SYNTAX = SECTION 2.1 7

‘DISCLAIMER: For reasons of simpllelty, thesyntax presented below |s
slightly different from the one the transiator aotually uses, The
only difference Is that Infix operators do not alhave the same

precedence, [nstead they are organized Into a precedence (hlerarchy)
system, Example!?

A+ B »« C « 0 CONS L
ls the same as

((A + (B « C)) « D) CONS L.,
From this It may be Seen that * take3 precedence over * and *» and
al I three take precedence over CONS, The compliete precedence system
is explalned In the sectlion on Infix operators (SECTION 3,3), Glving

Intfix operators different precedences heips to out down on the number
of parentheses needed,

L MLISP SYNTAX =' SECTION 2,2
SYNTAX = SECTION 2,2

{program> {1z <expressjion> ,

<expressiond> iz <s|mple_expression>
(<Infix_operator> <simple_expressjond)+

* €Infix_operator> tts <Cregular_inf x>
| <vector_Infix>

Cregular_|nf|x> $i= co, /), %, =, 2, 4, @) =, ¥, S, 20 €1 &) As |s V3
| <identi|fier>

<vector_infix> itz Cregular_Infix> e

<prefix_operator> its <dregular_prefix>
1 <veotor_prefix>

<regular_prefix> tt1a €+, =, =>
l <identifier>

<vector_pref|x> i <regular_prefix> o

(simple_expression> i1tz <Cblock>
l <function_definition>

l <LAMBDA _expression>

l CDEF INE _expression>

| <IF_expression>

| <FOR_expression>

l CWHILE _expression>

| CUNTIL _expression>

| <ass|gnment_expressjon>

| <funotion_call>

l <Index_expression>

I <l|st_expression)

| <auoted_expraession>

| <atom>

1 <prefix_operator> <simple_expresslon>
l (<expression>)

\ 4

<block> tis BEGIN
(<declarationd> })»
(<expression> j)e

MLISP SYNTAX = SECTION 2,2 9

{<expression>)
END

<declaration> 1t NEW <ldentifier_|ist>
| SPECIAL <identifler_|ist>

Cldentifler_|istd itz Cidentifloer> () <identiflerd)es
] <emptyd

<function_definlition> tts cEXPR, FEXPR, LEXPR, MACRO> (l{dentifler>
(<|amdbda_ldentifier_ilst>)} <expression

CLAMBDA _expression? 1 1a LAMBDA
(<|ambda_ldentifler_IlIist>)} <expression

Clambda_ldent|fler_|istd>stm (SPECIAL) <identifler>
(» (SPECIAL) <lidentifierd)s

| <empty>
CDEFINE_expression> tis DEFINE <DEFINE_clause> () <DEFINE_claused>)s
COEFINE_clause> 1is CDEFINE_symbo|> PREFIX

| COEFINE_symbo|> (PREFIX) <ajternate_name>
| <DEFINE_aymbo|> (PREFIX) {(<a|jternate_npame>)
<integer> <integer>

CDEFINE_symbo|> tis Cldent|fler>
1 <any character except X%X>

<alternate_name) tis <Cidentifler>
| <any oharacter except X, } or ,>

<IF_expression> tis] F <expression>
THEN <expression> (ALSO <expressiond)*
(ELSE <expression> (ALSO <expressiend)s)

<FOR_expression> t1s <FOR_cjause> (<FOR_oclause>)#
¢0p» CoLLECT, 3 <lidentifler>> Cexpressir
{(UNell <expressiond)

L S

MLISP

CFOR_clause>

<WHILE _expressiond>
CUNTIL_expression>

<assignment_expressjon>

Cregular_assignment)
Carray_assignment)
<index_assignment)>
<decomposition>

<function_oca||>
Cargument_||st>

<Index_express|ond
Clist_expression>
<{quoted_expression>

(s=gxpression>

SYNTAX =« SECTION 2.2 19

1tz FOR (NEW) <identifler> <IN, ON> <expression>
| FOR (NEW)} Cidentifier> . <expresslion>
TO <expression> (BY <expresslon>)

tte« WHILE <expression> <D0, COLLECT:, <expression?>

112 <cDO, COLLECT2> <expression> UNTIL <expression>

1= Croeguiar_assjignment>
| Carray_ass|gnment>
<Index_assignment>
<decomposition>

its <ldent|fler> « <expression>

ti= <ldent|flerd> (<Cargument_IlIist>) + Cexpression>
tte Cldentifler> [<argument_Iist>] « <expression?
tts Csimple_expression> «® <expressl/on>

ttz Cldentifier> (<argument_|Ist>)
1 <LAMBDA expressiogn> ;5 (<apgupent.llist>)

1is <expression> (, <{expraessiond)s
| <OMgt¥>

ti1s <simple_expression> [<argument_|Ist> 3
tts < <argument_|Ist>

{1’ Cs~expression>

i= <atom>
I 0
[
|

. (<s=expressjon> , <s-expression>)
(<s~expression> ({,) <s-expressiond}s

MLISP

{atom>

Cidentifiler>

Clatterd>

<|lterail|y_character>

<{number>

<Integer>

<dlgit>

<octa|_Integer>

{octal_dliglit>

<real>

<exponent>

<string>

SYNTAX = SECTION 2,2 11

l
l

{identifier>

<nunber >

<str ing>

<letter> (c<|etteor>, <dligltd>)

€A, By Cyp oo 2+ 80 Dy €0 vy 20 0 ¥, 12

<llteraily_character> <any character except

?

<integer>

OCTAL <octal_integer>

<rea|>

<dlgltd> (<diglit>)e

e0, 1, 2, 3, 4, 3, 6, 7, 8, 9»

<ogtal_dlglt> (<octa|_digitd)es
€d, 1, 2, 3, 4, 5, 6, 7>

<integer> <exponent>
<Integer> , <integer> {(<exponant>}

E (s+, =) <(|nteger>

" (<any character except " and X>)s "

Lv MLISP SYNTAX = SECTION 2,3 12

+ SYNTAX = SECTION 2,3

Reserved word8 for MLISP!

BEGIN FOR EXPR
NEW IN FEXPR
SPECI AL oN LEXPR
END TO MACRO
IF 8y DEF INE
THEN 00 LAMBDA
ALSO COLLECT OCTAL
ELSE UNTIL WHILE

Reserved symbols for MLISPI

-

-
-
4

Symbols preedef|ned in MLISP!
Synbol MLISP Trans|ation

TIMES

QUOTI ENT

PLUS

DI FFERENCE (MNUS If usedas a preflix;
PRELIST (see SECTION g.2)
SUFLIST (see SECTION 5,2)
ARPPEND

EQUAL

NEGUAL (see SECTION 5,2)
LEQUAL (see SECTION 5,2)
GEQUAL (see SECTION 9,2}
MEMBER

F C—>0 VIANM EPDeE ¢ 3 ¢\ 8

MLISP SYNTAX = SECTION 2,4 13

, SYNTAX = SECTION 2,4

Atons having MLISP=defined vajuest

Atom value Ascl| (octal)
TRUE T 124
FALSE NIL none
F N L none
CIRCLEX o 26
COLON ! 72
COMMA ' 34
DASH - 5%
DBQUOTE " 42
DOLLAR s 44
EQSJGN ~) 75
LARROW . 137
LaABR < (left ang|ed bracket) 74
LPAR ((leftparenthes|s) 50
LSBR C (jeft square bracket) 133
PERCENT X 43
PER]IQD ' 56
PLUSS + 5%
0 ! 47
RIBR > (rlght angled bracket) 74
RPAR) (right parenthesl!s) 31
RSBR] (plght square bpacket) 133
SEM COLON } 73
SLASH / 57
STAR * 52
UNDERBAR i} 30
TAB <tab> 11
LF <|ine feed> 12
VT Cysrdionl tabd 13
FF <form feed? 14
CR <carriage return> 15
BLANK <blank> 40

ALTMODE <altmode> 175

MLISP

SYNTAX = SECTION 2,5

SYNTAX « SECTION 2.5

Precedence of Inf|x operators In MLISP (from highest to
ls Included here Dpdurely
fully In SECTION 3,3,

fol lowlng table

explalined

table below wil|

Synbol

& .

TI MES
sTIMES

/

QUOTI ENT
*QUO

*

PLUS
sPLUS

DIFFERENCE
oDIF

<default>

]
APPEND
®APPEND
NCONC
CONS
XCONS
CAT

EQ
NEQ

=
EQual
¥

NEQUAL
LESSP
*LESS

s

LEQUAL
GREATERP
*GREAT

f or
Any function8 not

14

lowest), The

referance) If is

present In the

hrvr the defau|t precedence (precedencs |evel 3) and
default binding powers,

Function

TIMES
TIMES
*TIMES
QUOTI ENT
QUOTIENT
«QUo

PLUS

PLUS

ePLUS
DIFFERENCE
DI FFERENCE
eplF

APPEND
APPEND
*APPEND
NCONC
CONS
XCONS
CAT

EQ

NEQ
EQual
EQuUal
NEQUAL
NEQUAL
LESSP
#ESS
LEQUAL
LEQUAL
GREATERP
* GREAT

Precedence

s 34 e pa g

w2 VIOV VIR VY

> 5Ddobdan

(L. RO, N NV, R N RV, R NV W\]

Binding Power

Left

700
700
700
700
700
700

600
600
600
600
600
600

500

450
450
459
450
450
450
450

300
300
300
300
300
300
300
300
300
300
300
300

Right

75¢
750
750
750
750
750

650
650
650
650
650
650

550

400
4ap0
400
400
‘o0
400
400

350
350
350
35¢
350
350
350
350
350
350
35¢
350

MLISP

2
GEQUAL
[
MEMBER
MEMQ

AND

GEQUAL
GEQUAL
MEMBER
MEMBER
MEMQ

AND
AND
AND

OR
OR
OR

SYNTAX = SECTION 2,5

SN (R RYV R RV}

-

300

300
300

300
300

200
200
200

i00
100
i00

350
350
350
350
350

230
250
250

150
150
15¢

15

.

MLISP SEMANTTICS = SECTION 3 16

. SEMANTICS =SECT]JON 3

Thls section presents the meaning of .each of the elenents In the
syntax, Filrst the syntactlicparts about to be expialnedare |lated.
than thelr nranlng 1|s explalned In detall, Finally, a serles of
sxpamplies |||ustrates them, and In mmny cases their actual LISp
transiations e r]1) glven,

It |s assumed that the user has a working knowledge of LISP,!f not,
Weissman’s PRIMER (We|ssman, 1967) provides a good tutorial.
M Carthy's PROGRAMMER S MANUAL (McCarthy, 1965) 1a the standard
reference nunual, In addltion,the user should famiilarize himself
with the mmnual for his LISP system, since, as was polnted out, LISP
systemsmay vary from eomputer to computer,

In this section the symbo| "~" pneans "IS8 translated Into",

MLISP SEMANTICS= SECTION 3,1 17
, SEMANITCS = SECTION 3,1

<program> 1i& <gxpressiond> .

An MISP program |8 an expression followed bya period, Usually the
program |8 a serles of expressions enciosed In a BEGIN=END palrs |.e,
it Is black, ThIs permits nore than one M.ISP expression to b e
trans|atedat thes a m e time, The transiation of thr program gets
bound to the funetlon RESTART aftertransiationhas been completed.
Examp|et |[f the MISP program Is

BEGI N

NEW Xi

X o READ()}

PRINTSTR("] JUST READ " CAT X1t
END,

then RESTART would be defined to be

(DEFPROP RESTART
(LAMBDA NI L
(PROG (X)
(SETQ x (READ))
EXP (PRINTSTR (CAT (QUOTE "I JUST REAR ") X))))
XPR)

Basically the RESTART functlon serves to glve a name to thr maln body
of the program, so that the user oan execute his program at any time
by call Ing 1t, For example, typing (RESTART) to LISP Wuld cayse tho
above program to be executed,

"Any expressjon whose translation Is NIL (l,e, function definlitions
and DEFINE expressions) are not Inciuded In the RESTART funmctlon;
only exeocutable (non=NIL) expressjonsare Inciuded, Example! If the
M.ISP program ls

BEGI]IN
NEW X, Y}
EXPR MAX (X,Y)} If X2 Y THEN X ELSE VY3
EXPR TPRINT(X); TERPR] PRINT X}
TPRINT MAX(X o READ(), Y « READ())}
END ,

then RESTART would be deflned to be

(DEFPROP RESTART
(LAMBDA NI L
(PRGG (X Y) -
(TPRINT (MAX (SETQ X (READ)) (SETQ Y (READ))))))
EXPR)

MLISP

, SEMANTICS <« SECTION 3,2

Cexpression> iis <simpie_expression> (<|nfix_operator><simple_expression>)s

An expression|s ons or

operators!

<simple_sexpression>

SEMANTI CS

more simple expressjons

= SECTION 3,2

separated by

<simple_expression> <|nfix_operator> <simple_expressjon>
¢simple_expression> <|nfix_operator> <simple_expression>
<infix_operator> <simple_expression>

From th|sdescrintion,
same precedence,

one to

|t appears that all
However » several
been glven different precedences from the others,

eiiminateparentheses

18

Int Ix

Infix operators have the
often-used LISP functlons have
Thisoften enabjes.

that would be necessary to group the

terms In anexpressjon, The preocedences havec been chosen to be as

natural and usefu| to the LISP programmer as possibie, Examp|e!
A+B#C = D/E | Xa3Y & ZaW

s the sane as
((A ¢+ (BaC)) = D) | C(XmY) 8 (23W)),

but the forner |8 far more readablethan the latter, The precedence

system used|sexp|alnedIn detaliInt he followingseetion on Inflx

operators (SECTION 3.3),

Examples of expressions!

A - A

(A) - A

A - (NOT A)

‘A - (QUOTE A)

whAu - (QUOTE wAn)

<A> - (LIST A)

16 - 16

123,45€+10 - 1,2345€12

OCTAL 100 - 64 (decimal)

"THIS IS A STRING " - (QUOTE "THIS IS A STRING,")

"ANOTHER * CAT "STRING' = (CAT (QUOTE "ANOTHER ") (QUOTE "STRING'))

‘(A (d,C) D)
A, (B,C),'DD

(QUOTE (A (B,C) D))
(LIST

(QUOTE A) (QUOTE (B,C)) (QUOTE D))

MLISP SEMANTICS = SECTION 3,2 19

A& 10 - (PLUS A 10)
A+ 1 - (ADDL A)
A= 10 - (DIFFERENCE A 19)
A =1 - (SUBL A)
A /B= C - (DIFFERENCE (QUOTIENT A B) ©)
((A 7/ B) = @) - (DIFFERENCE (QUOTIENT A B) ©)
QUOTIENT(A,B) = C - (DIFFERENGCE (QUOTIENT A 8) ©)
DIFFERENCE(A /7 B,C) - (DIFFERENCE (QUOTIENT A B) C)
X ¢ L * (MEMBER X L)
X =2 Y - (EQUAL X Y)
L1 o L2) (APPEND LI L2)
L1 ¢ L2 o L3 - (APPEND L1 L2 L3)
A CONS B CONS N L - (CONS A (CONS B NIL))
(A CONS B) CONSNIL - (CONS (CONS A B) NIL)
A + B GREATERP 12 - (GREATERP (PLUS A B) i18)
A#B + C CONS LiglL2 - (CONS (PLUS (TIMES A B) €C) (APPEND LI L2:!
A CONS B s C | =Y - (OR (EQUAL (CONS A B) C) (NOT Y))
X==78&Ys AB - (AND (EQUAL X 7) (EQUAL Y (QUOTIENT A B)!
X EQ@'"A| XEQ 'S - (OR (EQ X (QUOTE A)) (EQ X (QUOTE B)))
AABAC vaA A =B - (OR (ANDA B C) (AND (NOT A (NOT B)))
A« B« C - (SETQ A (SETQ B €))
A B(l)eC - (SETQ A (STORE (B) C))
A #Beg(C - (Tl ESA(SETQ B C))
AeBes ¢ - (E'r A (TIMES B C))
A B e Ca»0D - (TIMES A (SETQ@ B (TIMES C D)))
A «B#Ce«0D - (SETQ A (TIMES B (SETQ C D)))
IF FOO(X,Y) THEN - (COND
BEGIN NEW N} ((FOO x Y)
N+« X MAX Y3 (PRQG (N)
X ®«Ye NIL; (SETQ@ N (MAX X Y))
PRINTSTR "HO HO"; (SETQ X (SETQ Y NIL))
-PRINT N (PRINTSTR (QUOTE "HO HOM"))
END (PRINT N W
ELSE PRINTSTR "HA HA" (TC(PRINTSTR (QUOTE "HAKA"))))

DEFINE FOO PREFIX, AND&, OR | 100 15@, SUFLIST & 490 4971;
EXPR MAX (X,Y)) IFX2YTHEN X ELSE Y

FOR NEWI IN L COLLECT <CAR I> UNTIL I ® ‘'(STOP)}

WHILE A NEQ@ 'STOP D00Ae READO

DO A « READ() UNTIL hEQ ‘STOP

MLISP
» SEMANTI CS

tis
|

C|Infix_ocperator>

R R
|

Creguiar_infix>

<vector_Inf x>

A n Infix operator

regular Infix I8 any of the synbols
functjon taking two arguments,

the name of a

SEMANTI CS

o SECTION 3,3 20

* SECTION 3,3

Cragular_infix>
<vector_infix>

€%y /) *) =y *y 4, @, =, Z, S, 2, €, &) Ay |, Vo

<lidentifler>
<reguiar_Iinfix> e
elther a regular Infix or a vegtor Infix, A

listed, or an ldentifler which Is
A veator Inflx Is a

regular Infix followed by the veotor Indicator (e),

MLISP SEMANTICS = SECTION 3,3 21
(A) Regulapr Infixes

The normal LISP way ofweiting fynction calls IS the "preflx
notation,” the funetlon name ooccuring first followed by Its
arguments!

PLUS(A,B),
MLISP permits funcgtlons called with two arguments to be written In
the "Infix notatlon,” tt h e functionnameoocuringbetween the
arguments!

A PLUS 8,
In additlon, certaln commonly-wad LI1SP and MLISP functlions have been
given abbreviations:

A * B
Below la a oomplete ||st of these abbreviations, The user can define
abbreviations for hls own funotions, or ohange the MLISP=defined
ones, by using the DEFINE expresslon(SECTION3,?),

Abbreviation Function
' TI MES
/ QUOTI ENT
. PLUS (May be used a@ a prefix.)
- DIFFERENCE (MINUS |f used a8 a preflix)
) PRELIST (see SECTION 5,2)
) SUFLIST (see SECTION 5,2)
@ APPEND
s EQUAL
2 NEQUAL (see SECTION 5,2)
S LEQUAL (see SECTION 5,2)
> GEQUAL (see SECTION 5,2)
¢ MEMBER
& AND
A AND
I OR
v OR
- NOT (This |s a prefix, not an Infix,)
Infix operators d o not al|l have the same precedence’} sonc take

priority over others when expressjions arc parsed, EXxample!

A+Bes(C-=~-D/E

s parsedt
A+ (B ®Cy)etD/ E),

A precedence System for Infix operators has been Setup(a)tohelp
eut down on the numper of parentheses needed’ and (b) because nost
programming languages have a precedence system and so hayling one |s
more natural to a Programmer than not having one,

. 4

MLISP SEMANTICS = SECTJON 3,3 22

Listed pelow Is (he completeprecedence system for Inflix operators iIn
MLISP, Any functlon which does not appear explleltly In the table
below Wll!l be qassigned the default borecedenc® and bindimgpowers
(unless the user assigns different ones with the DEFINE expression).
For reference, the table beiow |s a|so|iIsted in SECTION 2,5,

Binding Power

Synbol Functlen Precedence Left Right
. TIMES b 700 750
TIMES TIMES i 700 750
sTIMES sTIMES 1 700 750
/ QUOTI ENT 1 700 750
QUOTIENT QUOTI ENT 1 700 750
aQUO «QUO i 700 750
+ PLUS 2 600 650
PLUS PLUS 2 600 650
*PLUS sPLUS 2 600 650
- DIFFERENCE 2 600 650
DIFFERENCE DIFFERENCE 2 600 650
«DIF «DIF e 600 650
<default> 3 500 550
® APPEND 4 450 400
APPEND APPEND 4 450 age
#APPEND sAPPEND 4 450 400
NCGNC NCONC 4 450 400
CONS CONS 4 450 400
XCONS XCONS 4 450 400
CAT CAT 4 450 429
£Q EQ 5 300 350
NEQ NEQ 5 300 350
s EQUAL 5 300 330
EQUAL EQUAL 5 300 350
] NEQUAL 5 300 350
NEQUAL NEGUAL 5 300 350
LESSP LESSP 3 300 350
s ESS « ESS 5 300 350
< LEQUAL) 300 350
LEQUAL LEQUAL 5 300 350
GREATERP GREATERP 5 300 330
*GREAT «GREAT 5 300 330
2 GEQUAL 5 300 350
GEQUAL GEQUAL 5 300 350

MLISP SEMANTTICS = SECTION 3.3 23

¢ MEMBER 5 300 350
MEMBER MEMBER 5 300 350
MEMQ MEMQ 3 300 350
8 AND 6 200 230
A AND 6 200 250
AND AND 6 200 250
! R 7 100 150
v

OR R R 1 100 480 150450

The reader has probably notleed that the last two oolumr In thls
table are labled BInding Power = Left and Right, Baslecallysr the
"bInding powers" of an infix operator are the strengths with which It
"binds" or pulls on the elements to the left and right of 1%, The
concept of bindlng powersissufficlent t o ocompletely specl!fy any
precedence system For example, cons|der!

A+g8s (

Both + and ® are tryln9 to attroh B as the second argument for the Ir
functlons (PLUS and TIMES), But the |8ft blndlng power of # (788)Is
greater than the rlght binding power of + (650), so this expression
would be parsed!

A+ (B « C),

As another exanple, supposSe the user has defined a two-argunent
functlion MAX, Since MAX does not ocour explicltly In the precedence
system above, the default blndlng powers (580 and 550) are used.

Then
A MAX B MAX C

is parseds
(A MAX B) MAX C

since for default funetions the right blndlng power Is greater than
the left blndlng power, This Is also true for all other functlons
except those on precedence |eve| 4, t h ¢ s=-expression bullding
tfunctions (APPEND, CONS, et¢,),» For & LISP user, It (® not on|ly more
natural but nore efflelent to have the assoofatlon of these fumctlons
go to the right!

4 CONSBCONSCCONSNIL

|s parsed!

ML ISP SEMANTICS =« SECTION 3.3 24

A CONS (B CONS (C CONS NIL)),

The usepr should study the precedence 8system above, Parentheses my
be useda t any timetoalter the assoclations of the precedence
system, but hopeful|y It has been constructed carefully enough s o
that the user wll| sejdom have to do thls,

Ajjuser~def|nedinfixfunctions nermally gect assigned the default
binding powers, Note that thl® npans that user=-deflined functlions
normal |ytake precedence over sone LISP and MLISP functions (those on
precedence |evels 4 = 7), However; the user can assign different
binding powers to his functlons, or even to the funotlona above, by
means of the DEFINE expression (SeCTION 3,7), With the DEFINE
expressjion, he orn set up any Precedence system he choses,

MLISP

1

= SECTION 3,3 25

Filrst come the arithmetic functions,
whloh operate only on numbers and
whloh Yleld only numerica| valjyes,

SEMANTICS
The ratlonaje for the precedence system!
s, TIMES, #TIMES
/» QUOTIENT, #QUO
+, PLUS, =*PLUS

In addlition to Inflx operators, prefix operators

operator ajso been Imp|emented using binding powers,

=, DIFFERENCE, #DIF

«l I others

®, APPEND, *APPEND,
CONS, XCONS
CAT

NCONC

EQ

s EQuaL

£, NEQUAL

$» LEQUAL, LESSP, *LESS

2y» GEQUAL, GREATERP, ®GREAT
€, MEMBER, MEMQ

& A, AND

|» v, OR

(¢) have

As |s natura|, multip|lcation
division take pregedence
addition and subtraction,

and
over

Then come all user=deflned functions,
and all LISP and MLISP funotlons not
Iisted here explicitiy,

which
ncw

These arc followed by functions
operate on s-expressionstobulld
s=expressions,

of lower precedence are funotlons
whigh operate o n S=express|/ons, but
whloh ¥Yleld only boolean values,

Of lowest precedence arc functions
which operate only on boolean values,
and whlieh ylejd only boolean values,

A8 I|s natural, OR ha8 a lower
preceadence than AND} 1In fact OR has
the [oowest precedenges o f any
function,

and the ass] gnment

The

binding poweps forprefixes ape =1 and 1088} those for the agglgnment

operator
expresajon,
and

ape $001 and O,

These

They are |isted only for
ass|gnmentexpressions|s explajned better by the Syntax,

DEFI NE

ma be changed by the
prefixes

reference’) the use of

MLI SP SEMANTICS = SECTION 3,3 26

(B) Vector Infixes

Vector Infixes are a very powerfu| M.ISP conecept, They provide a
conclse necans of mapplng funotlons onto one ©Of two I1sts, a facl] Ity
not read||y avaljab|e In LISP, They developed from the observation
that |!sts may be regarded as any=-d|mensional vectors, The LISP
system then becomes an Infinite=dimensional vector space, Scalars In
this vector apace are atons, Veetor Infixes (and veotop prefixes)
arean attenpt to deflne sone primlitive operations over thisvector
space, Basically vector |[nfixesarefunctions whioh aremapped onto
thelr vector (€)18t) arguments toyleid a veoctor(iist) o f results,
mich |lkeatwo-argument MAPCAR,

Suppose V = (vl, v2, ,,, ym) and W ® (wWl,w2, .4, Wn) are two vectors
(1,8, lIsts), Addltlon of two vectors |s accomplished by}

V ¢+ W = (vi+wl, v2+w2, ..« VK*Wk), where K smin(myn).,

Miltlplloatlon by ascajart

10 *® vy = (1Z'V10 10'V2' TR 100vm)
v #e 10 = (Vi'lgg V2'100 'K vmei@d)

Multiplication of two Scajarss

10 #e 20 = 1B « 20 = 200

To Illustrate these vector primitives, we wWl|l use them to wrlte the
Eyclidean Inner Eroductz

V [W s E(V‘ + W|’
=1
Flpgt obgepve that If we CONS the fuynctglon PLUS onto a |lst of
numbers, we get an executable expressiont

"PLUS CONS ‘(1 2 3 4 3) 2 (PLUS 12345),

Then:
EXPR INNERPROD (V,W)3 EVAL ('PLUS CONS V +e W)

isthe desired Inner produet funotlion using vector operations, [t Is
worthwhlle noting that we could also wrltel

EXPR INNERPROD (V,W);
BEGIN NgW SuMj
SUM « 03 _
FOR NEW v IN V FOR NEW w IN W p0O SUM ¢ SUM + (yv+w)}
ENDRETURN SUM

MLISP SEMANTICS = SECTION 3,3 27

or equivajentiyt
EXPR INNERPROD(V,W)} FORNEW v IN V FOR NEW w IN Wj PLUS y+w

Vectoroperations, however, provide the most conclise means of writing
the 'Unctlonc

The next |oglealstep| n the devejopment o fveotor orerationsist o
permlt virtually any twe=argument LISP, MLISP or user~defimned
functlion to be used msavector operator:

vV %0 W 8 (vi ® wl),vd ®» w2,,,s vk * wk)
V CONS. W 8 (vl CONS wi,v2 CONS W2ise9vk CONS wk)
V FOOe W 8 (ylFOO wi,)v2FOO w2,.., vk FOO wk)

where In each case kamin(length V, length W),

Note!
(a) Theresulto fveoctor operations| o a veotor (l.e, |I8t), uniess

both argumentsaresoaiars (atoms),

(b) The jength of the result vector!s the shorter o f the |engths of
the two vootor arguments, or the jengthof thevector argument If
the other argument 18 a scajar,

Following anm Infix operator by the vaotor Indlcator (e)does not
change |ts precedence, 1In determinming the parsing of an expression,
the presence of absence of e |8 Ignored!

A +0 B e C CONS* |
Is parsed exact|y thesame a3
A+ B« C CONS L,

name |y
(A +o (B #0 C)) CONSe |,

In addltlon to two-argument vector [nflxes, one-argunent Vvector
pref Ixes are also permitted, These arcdliscussed In the fo|lowing
sectlon on prefix operators (SECTION 3,4), Example:

ATOMe '(A B (C) D) = (T T NIL T),

-

ML SP
Exampjes o fInfix operators!
A + 10 -
A+ 1 -
A 18 -
A-1 -
A /B =¢(C -
((A 7/ B) « C) -
QUOTIENT(A,B) » C -
DIFFERENCE(A / B,C) -
X e L -
X =Y -
LI eLe -
L1 e 12 L3 »
CA,B,C> @ FOO(X,Y) -
A CONS B CONS NIL ~ -
tA CONS B) CONS N L)
<A CONS B> -
A CONS L¢3 0 X -
A + B GREATERP 10 -
A#*B + C CONS L -
A CONS B 8 C | =Y -
X 2 7 &8 Y = A«B -
L]

X EQ ‘A | X EQ ’B

Infixess

(1 2 3) 40 ‘(4 5 6)
(L 2 3) @« '"(4 5 6 7)

Vector

2 s0 ‘(1 2 3)
2 w0 (1 2 3) 40 /(4 5 6)
240 (’(1 2 3) s ‘4 5 6))

(12 3) CONS@ ' (A B C D)

'(¢(1 2) (3 4)) @e ’((A B) (C D))s3

SEMANTICS = SECTION 3,3 28

(PLUS A 10)
(ADDI A)
(DIFFERENCE A 10)
(SUB1 A)

(DI FFERENCE (QUOTIENT A B) C)
(DI FFERENCE (QUOTIENT A B) C)
(DI FFERENCE (QUOTIENT A 8) C)
(DI FFERENCE (QUOTIENT A B) C)

(MEMBER X L)
(EQUAL X y)

(APPEND L% L2)

(APPEND L1 L2 L3)

CAPPEND (LIST A BC) (FOO X y))
(CONS A (CONS B NIL))

(CONS (CONS A B) NIL)

(LIST (CONS A B))

(CONS A (APPEND (SUFLIST [3) X))

(GREATERP (PLUS A B) 18)
(CONS (PLUS (TIMES A 6) O L)

(OR (EQUAL (CONS A B) €) (NOT V)

(AND (EQUAL X 7) (EQUAL Y (TIMES A B)))
(OR (EQ X (QUOTE A)) (EQ X (QUOTE B)))

L] (57 9)

1 (4 10 18)

= (2 4 6)

s (6 9 12)

=z (1014 18)

. (1 A)(2 , B) (3 . C))

(12 AB)(3 4 C D))

“((A 8 CY(D E F)(G H])) *els= (CA) (D) (G))
"((A B CIY(DEF)I(GCHIN so0 1= ((B C) (E F) (H 1))
'"("JOHN " "MARY ") CAT. '("DOE' "SMTH')

3 ("JOHN DOE" "MARY SM TH')
"JOHN, " CAT@ '("DOE' "SMTH') = ("JOHN-DOE " "JOHN_SMITH")
AT. ("JOHN," CAT. '("DOE" "SMTH'))

. (JOHN_DOE JOHN_SMITH)

MLISP SEMANTICS = SECTION 3,4 29
» SEMANTICS = SECTION 3,4

<preflix_operator> 11ts <regular_prefix>
| <vector_pref|x>

<roguliar_prefixd ‘a+ €4, =, ad
| <ldentifierd

<vector_prefix> t1s Crogular_prefixd> o

4 prefixoperatoris ® Ithot aregular prefix or a vector prefix, A
regular prefix Is any of the symbols ¢+, = o or =, o or an [demtifier
representing any one-argument functlonwhich theMLISP translator
know8 about, A vector prefix is a regular oprefix folliowsd by the
vector indlicator (@),

Regular pref|xes

The min purposes of prefixes are toclarify expresslonsandt o
® jinkat @ parentheses, NOT X |sbetterthan NOT(X), though both ware
legals and =X]|s evem better, The trensfator knows about all
one-aroument LISP andMLISP fynetions, | naddition, the ¢tranmsiator
notes aj| one-argument EXPR’s transiated, Latero nin theprogram
(1,0, aftear the functlon definition), that function mmy be used 1 ike
any otherprefix, Exampletl [f the function definition
EXPR FOO (X)J} TERPRI PRINT X |

Oggurrfed In o Program, then In the rest of the proorym foilowlng this
definition It would be legaltotreat FOO a8 a prefix.

This |8 one way that the translator ©&M be nnde aware Of user=def|ned

prefixes, Another way |8 to use the DEFINE expression (SECTION 3,7):
DEFINE FOO PREFIX

has the oeffect of statlng Co the translator that the function FOO,

regardiess of |ts deflnition (If any), will only have one argunent In

the rest of the Drogram and 80 shou|dbe treated asaprefix,

Vector pref|xes

Vector prefixes arc avery Interesting and very powerful extenslen of
prefix operators, The oconcept of vector operations was explalned in
the nreceed|ng section, T hebasic Ideais thatvector prefixes
operate on not just one, but on & whole |18t of arguments, and they
return a whole 118% of values, The prefix operator |8 mapped onto
the |lst; with the operator applled to each element [n it, This
enables mmny complexexpressionsio be written oconclise|ly, Vector
orefixes mmy al80 (Operate on atons (8cajars) [nstead of ||sts,

ML ISP SEMANTI CS

Examp |98 of prefix gperatgrs!

*X
X
«X
NOT X
NOT(X)

LK TR T N 3

ATOM FOO(X,Y,Z2 + 10)
NULL CDR L

TERPR] PRINT CAR L
LENGTH L + 12

-4 K wB A «(

NUMBERP X v «ATOM X

& & 3 3 3

&

NOT ATOM X « READ()
NOT ATOM X & READ()
NOT ATOM X CONS READ()

L 2R 2

Veotor prefixes!
Suppose L = (A B (C D) NIL E),

ATOMe [

NOTe ATOM. L
n® |,

LENGTHe L

+0’(1 2 3 &)
=0’(1 2 3 4)
NUMBERPO (1 2 3 4)
ADD1e (1 2 3 4)

-0 SUB1le ‘(1 2 3 4)

"LIST"

AT. L ("TI_II S" "IS" .'A"
ATe "STRINGS®

AT "STRINGS™

§TRe ' (MDRE STRINGS)

STR ' (MORE STRI NGS)

ATOMe [(
ATOM 19
NUMBERPe 319
NULLe® 10

CAR. ‘((A 1) (B 2) (C 3)) .

CDR. "((A 1) (B 2) (C 3))
CADRe '"((A 1) (6 2) (C 3N

n 0N

NUMBERPe CADRe /((A 1) (B 2) (C 3))

« SEcTION 3,4 30

X .
(MINUS X)
(NOT X)
(NOT X)
(NOT X?

(ATOM (FOO X Y (PLUS Z 18)))
(NULL (CDR L))

(TERPRI (PRINT (CAR L)))
(PLUS (LENGTH L) 1)
(AND (NOT A) (NOT 3)
(OR (NUMBERP X)

(NOT ©))
(NOT (ATOM X)))

(NOT (ATOM (SETQ X (READ))))

(AND (NOT (ATOM X)) (READ))
(CONS (NOT (ATOM X)) (READ))

(TT NNL T T

(NILNILT NIL NL)

(NIL NIL NIL T NIW)

(g 020 @)

(123 4)

(e] =2 =3 =4)

(TTTM

(2 3 4 5)

(B o1 =2 =3)

"OF" "STRINGS")

(THISIS4 LIST OF STRINGS)

STRI NGS

STRI NGS

("MDRE" "STRINGS")

"WORE STRINGS)"

'

T

T.

NI L
a (A BC)
= (¢1) (2) (3))
3 (12 3)
= (YT

MLISP SEMANTICS = SECTION 3.5 31

« SEMANTICS = SECTION 3,5

Each of the remalning subesectlons {n SECTION 3 explains anexample
of a simple expressjon,)

<block> t1is BEGIN
(<declaration> })*
(<expression> })«
{(<expression>)
END

<declaration> 112 NEWCldentifler_Ilist>
] SPECIAL <ldentifler_Ilstd

<identifler_1ist> 1= Cldentifler> (, <identiflerd>)s
| <ampty?

A block |s the reserved wor d BEGIN, followed by any number of
declarat|ons separated by semicolons (}), fol|owed by any number of
expressions separated by semlcolons, followed by the reserved word
END, The last expresslon need not have a aemloolon after lt. A
declaration [s elther of the reserved words NEW or SPECIAL. followed
by an ldentifler |18t, An Identifler [|8t Is any number of
Identiflers (possibjy nonec) separatedpy commas,

A block |s translated Inte a PROG, Any varlables (|dentiflers)
declared using the NEW declaration become the PROGvariables, Check
your LISP mmnual to see whether or not PROC varjables are
automatiocally Initiallzed to NIL In your versionof LISP, The scope
of NEW varlables |8 the scope of the PROG, |,e, yntil the matching
END, NEW varlables may also be declared SPECIAL., Each expression
tollowling the deciarations untl|the END becomes , statement {n the
PROG, There should be a semicojon atter eaoch expression, with the
® xocrptlon that the last semicolon |s optional, END closes off the
PROG,:

SPECI AL declarations are somewhat unigue 1In that they have no
transiation} Instead they have an effect on the transiator. A flag
for the LISP 1,6 compller 1Is put on the property |lst of eaoh
varlable deajared SPECI AL, thisflagenables the compller to oomplie
free varlab|es and global variab|es correctl|y,

SPECIAL declarat|ons have the effect of declaring the|r variables
SPECI AL throughout the entire program, regardiess of the physiocal
locatlon of thedecjaration In the program, Thls enables the WS®F to
mark variabjes SPECIAL wherever [t Is convenlent to do so, and
simultaneous|y prevents the compller (and user) from 9etting confused

MLISP SEMANTICS = SECTION 3.5 32

whenvarliables arec sometimesSPECIAL and sometimes not, ItIs a good
ldea to make SPECIAL varlable names distinct from other variable
names @s a way of keeplng track of them, For example, an exclamation
mark ¢(!) could be Included In eaech SPECIAL varlable nane; SPECIAL !A,
{1B, ICy, In general, the fewer varliab|es that have to be declared
SPECI AL, the better} the oode for SPECIAL varjables runs somewhat
slower than that for nomsSPEC]AL ones,

For the wuser’s reference, the foflowingsection Is reproduced from
Quam’s LISP 1,6 manual (Quam, 1969),

In compjjed functlons, any varlable which |s bound in a

LAMBDA or PROG and has a free ocourrence e|lsewhere nust

be decliared SPECI AL, CA varlable Is sald to have a free

occurrence If It not bound In any LAMBDA or PROG

contalning the oecurrence,] (Also,) varlables which are

used In a functlonal context must be deciared SPECIAL orp

else the compjler wilil mistake them for undefimed EXPR'’Ss,
Similar restriotions hold for many other LISP compliers, It |®s UP to
the user to mnke Sure he understands fully the conventlons fat
eomplliling In hls LISP system, For the MLISP user, there |8 one
further restrlietion: varlables In the left-hand slde of a
decompoesitlion assignment @xpression (SECTION 3,111 must be declared
SPECIAL If the expresslionls to work correctly,

AS wlth PROG’s, a value mmy be returned for a block by uslng the
RETURN function, Labelsmay be transferred to using the GO fumctlion:
labe |8 are declared by following the 1label Immediate|y with a
semlcojon (e,9, L}), not with a colon, However, the Ilteration
"meta~expressjons" descrl bed In following sectionsaeto be nuch
recommended over fabels and GO transfers,

MLISP SEMANTICS = SECTION 3.5 33
Exampieg of bjocks!

BEGIN - (PROG NIL)

END

BEGIN - (PROG N IL

Li X « READC)} L (SETQX (READ))

IF XEQ Y THEN RETURN TRUE
ELSE PRINT <X, Y>3
GO L}

END

BEGIN N E W X1,X2,X3} -
SPECIAL X3,Y,%}
2 = NILS
X1 +« READ())
X2 e 10%X1 + 13
IFFOO(X1,Y,2)&X32L THEN
PRINTSTR("ANSWER=" CATY)

ELSE XJ e X2 + X1
RETURN X3

END

BEGIN -

ExPR MAX (x,Y)}
IF X2Y THEN X ELSE Y}

EXPR MAX-LIST (L,M)i
IF NULL L THEN M ELSE
M A_X LIST(COR|,MAX(M,CAR L))}

PRINT MAX_LIST(READC(),D)}
END

(ConD CCEQ X Y) (RETURN TRUE))
(v (PRINT (LIsT X Y1)
(GO L))

(PRQG (X1 X 2 X3)

(SETQ 2 pIL)

(SETQ x | (READ))

(SETQ X 2 (ADD1 (TIMES 18 X1)))

(COND

(CAND (FOO x iv 2)(EQUAL x 31))
(PRINTSTR

(CAT (QUOTE "ANSWER=")Y)))
(T(SETQ X3 (PLUS X2X1))))
(RETURN Xx3))

(PROG NI L

(DEFPROP MAX

(LAMBDA (XY)

(COND ((GEQUAL X Y) X) (T Y)))
EXPR)

(DEFPROP MAX_LIST
(LAMBDA (L M) (COND
CCNULL L) M)
(T (MAX LIST (CDR L)
" (MAX M (CARL))))))
EXPR)

(PRINT(MAX_LIST(READ)2)))

M ISP SEMANTICS « SECTION 3.6 34
., SEMANTICS = SECTION 3,6

Cfunctlion_definition> ti1s eEXPR, FEXPR, LEXPR, MACRO:, <ldentifler>
(<iambda_|dentifler_IIst>); <expresslon>

<LAMBDA _express|on> ;1= |LAMBDA
(<iambda_ldent|fler_lIist>)i<exypression>

<|ambda_jidentifler_|ist> iz (SPECIAL) <ldentifler?
(s (SPECIAL) <lidentiflier>)s

| <enpt y>

A fynctlon deflnltlon I8 one of the function types: EXPR, FEXPR,
LEXPR, MACRO, followed by an identifler (the nane of the funetion),
followed by a LAMBDA wvariable |[Ist and LAMBDA body, A LAMBDA
expressjon Is essentially the same thing, being the reserved Word
LAMBDA followed by a LAMBDA varlable ||st and LAMBDA body, A LAMBDA
identifier |Ist Is any nunbar of |dentiflers (poss|b|y none)
separated by oommas, Each Identifler mmy be preceeded by the word
SPECIAL, Thls and the SPECIAL declaration In blogks are the two Ways
the user mmy declare varlables to be SPECIAL, (SECTION 3,% dlscusses
SPECI AL var|ables,)

Waen the MLISP translator encounters a function definitlion, the
fol lowlng three steps ogceur:
(1) The complete function deflnltlon |8 translated,

(2) The function Is then !mmediate|y defined (J,e, the deflnltlon Is
carrled out), without waltling for therest of the program to be
translated,

(33 NIL Is returned as the transjatloen for the expression,

Note thatsince step (2) |s carrled out In the mlddie of ths
transiation of the proaram, the user might accidentalliy redefine sone
LISP or MLISP function that wou|d cause the rest of his program to be
translated Incorrectly, To guard agalnsttnhis, each functlion name Is
first checked to see |f It already has a function definltion of any
type} If It does, a warning message Is printed, If thls happens,
ehange the nanme of the funetlon and recompl|e the program

Usually a program consists of a BEGIN-END palr enclosingaseriesof
function deflinitions and other expressions, Fynctlion definitions are
not exeecutable at run time} thelreffect occurs at trans|atlionm time,

In step (2) above, As step (3) states, NIL wll| be returned as the
transjatlion for function definitions, All exectuable expressions
wlitl have non-NIL trans|ations, |In trans|ating a program all NIL

transiatlions are thrown out and only non=NIL ones retalned,

ML ISP SEMANTICS = SECTION 3,6 35

Examp|es of fumctlon definltions!

EXPR NOTHING ()3 PRINTSTR" T H | SISN/T MUCH OF A FUNCTION")
EXPRREV (L)} IF NULLLTHEN NIL ELSEREV(CORL)®CCARLD}
FEXPR OPEN(X)} EVAL <’/ INPUT,’DSK1,CAR X>}

MACRO NOT_MEMBER(X)1 <'"NOT, <’MEMBER, X{2]/,XL31>>}

EXPRFOOBAZ(X, SPECIAL Y)}
BEGIN
NEw Al ~
IF X ®REy(x) THEN A &y
ELSE BEGIN
OPEN(F00))
NOTHING ()}
CLOSE(FO0);
END»
RETURN <A, REV(A)>l
END) .

EXPRINNER_PRODUCT (V, W)IEVAL ('PLUS CONS V +o W)}
% this takes the inner producto f t w ovectors(|iats), X

E X P RINNER_PRODUCT(V,W)} FOR NEWVIN V FOR NEW w INW3PLUS v+w}
% So does this, X

L MLISP SEMANTICS = SECTION 3,6 36

Examples of LAMBDA expressionst

Assume that "F00" represents a function whleh has bean deflned to be
the same as the LAMBDA expresslion In ecach of the following examp|es,

EXAMPLE 1,
m|ispt MAPCAR(FUNCTION(LAMBDA (X)3 X CONS NIL), ‘(A B C))
|1sp!t (MAPCAR (FUNCTION (LAMBDA (X) (CONS X NIL)Y)) (QUOTE (A B C)))

squivalent|ys MAPCAR(FUNCTION(FO0), ‘(A B O,

EXAMPLE 2,

mlIsp? LAMBDA (X,Y);
IF X EQ Y THEN PRINISTR "THEY ARE THE SAME" ELSE
IFNOT ATOM X THEN PRINTSTR "FIRST IS NOT AN ATOM"
ELSE PRINTSTR("X 3" CAT X)}
(READ(), READ())

I Ispt ((LAMBDA (X Y)
(COND
((EQ X y) (PRINTSTR (GUOTE "THEy ARE THE SAME")))
((NOT (ATOM X)) (PRINTSTR (QUOTE "FIRST IS NOT AN ATOM)))
(T (PRINTSTR (CAT (QUOTE "X =") X)))))
(READ)
(READ))

squivalentiyt FOO(READ(), READ())

EXAMPLE 3,

miispt LAMBDA (X,Y,SPECIAL Q)3
LAMBDA (2)}
IFFOO(X) THEN PRINT 2 ELSE PRINT Q
(<X, Y>)
(A)B+1, NIL)

|1sp? ((LAMBDA (X Y Q)
(CLAMBDA (2) (COND ((FOO X) (PRINT 2)) (T (PRINT Q)))) (LIST X Y))
A
(ADD1 B)

NIL)?
equlivalentiy! FOO(A, B+1, NIL)

ML1SP SEMANTICS =SECTION 3.7 37
+ SEMANTICS = SECTION 3,7
CDEFINE_expression> is DEFINE <OEFINE_clause> {, <DEFINE_claused)s

<DEFINE_o|ause> tis CDEFINE_symbo|> PREFIX
1 <DEF INE_symbo|> (PREF]X)}<alternate_name)
| CDEFINE_symbo|> (pREFIX) (<alternate_name>)
<{nteger> <integer>

CDEFINE_symbo|> [is <ldentifler>
| <apy oharaotsr except™ or %>

<a|ternate_name) 1ts <Cldentiflerd
1 <any character except ", X, } Or ,?

A OEFINE expressionis onr or more DEFINE c¢clauses separated b y
commas, A OEFINE o¢|ayseisan |dentifler or any character except "
or ¥ (theDEFINE synbol), followed by any or all oft (1) ths word
PREFI X, (2) an alternate name (abbreviation) for the DEFINE synbol,
and (3) two Integers representing left and right bindingpowers for
the DEFINE synbol, A n alternatename Is an ldentiflerorany
character except ", X, semjcolon (3) or oomm (),

The OEFINE @® xpreaslon provides a versat|le means of commun]lcating
with the M.ISP ¢transjator, As with functlon definitions, the
trans|ation of OEFINE expressions |8 NIL, Instead of atransiation,
the DEFINE expressionm has an effect on the translator. The effect |s
to assign certaln properties to the OEFINC synbol whieh the
transiator wil| make uss of In the rest of the program, The DEFI NE
expression wil| be explalned by exampjes,

Examples o f DEFINE expressions!
(1) DEFINE FOO PREFIX

This Inforns the translator that Hhereafter In the Programthe
functlion FOO Is to be treated |lke aprefix (SECTION 3,4), This
means ¢that FOO may be used wlthout parentheses around |ts argunent,
and It mny be used as a vsotor operator, Only ldentiflers whiech are
the nanmss of one-argunent functions should be defined to be prefixes,

(2) DEFINE UNION u

This Inforns the transiator that ths synbol VY I8 to bs oom[dorod as
an abbreviation for the function UN ON After thls DEFINE expression
has been translated, whemever the Scanner encounter® y, | fwill

MLISP SEMANTICS = SECTION 3,7 38

Immediate]ly convert It to UNION, The effect of writlng v will be
exactiy the same as if UNION had been wrltten, The alternate nane
my be an ldentifiaer!

DEFINE CAR a

would convert every subsequent occurrence of a |nte CAR, Also, the
DEFINE symbo| [tself may be a speclal character:

DEFINE 3 ,
would trans|atea|| commas |n the rest of the program Into

semicoions,
DEFINE 3 STOP

would translate every subsequent occurrence of the word STOP fnto a
semicolon, to || lustrate this, conslider the following examplet

BEGIN - (PROG NIL
DEFINE CAR &, CDR d, NULL ny
IF |f, THEN », FELSE else}
(DEFPROP rev

EXPR rev ()3 (LAMBDA ()
It n 1 =nly (COND(C(NULLIY NIL)
else re,(d |) @ <a |>} (T (APPEND (re, (CDR |)
END (L18T (CAR |
EXPR))

(3) DEFINE UNION 362 370

Thls specifles that the left and rlght binding powars for the
function UNION arfe to be 360 and 37¢ respectively, 8Inding powers
areexplalnedinthesection on Infix operators (SECTION 3,3), The
value3 abovewou|dg|/ve UNION a precedence of between 4 and % In the
precedence system for Infix operators (¢,f, SECTI ON 3,3), Only
Identiflers representing one~ and two-argument functions (prefixes
and Infixes) should be glven binding powers,

(4) DEFINE UNIONv 360370

Thi s def |nes Vv to be an abbreviation for UNION and s!muitameous|y
sets up left and rlght bindingpowersforUNION,

)
IDRRRE

MLI SP SEMANTICS e« SECTION 3,7 39
(5) DEFINE FOO PREFXa

Thls speclifies h a t thefunctionFOO0Ist obetreated s saprefix,
and that the synbol aisto beconsidered an abbreviationfor|t,

(6) OEFINE NOT PREFIX ==11000

Thisspeclfles that thefunetlonNOT Is tobetreateda 8a prefix,
that the symbol <« Is to be considered an abbreviation for |t, and
that Its8 1loft and right ©blndling Powers are to be «i and 1900
respectively, The eaulvajent of this expressionhas already been
executed for all one-argunent LISPand M.ISP functions,

(7) DEFINE UNION u 360 370, INTERSECTION # 380 390, RETURN PREFIX =1 0;

-~

After thls DEFINE iiuresslonhns been transiated,
RETURN A® Bu C@DnE®F

would bo transiated

(RETURN (UNION (APPEND A B) (INTERSECTION (APPEND C D)(APPENDEF)))),

exactl|y as Ifithad been written

RETURN ((A® B) u ((C @ D) n (E @ F))),

UNI ON I8glven lower blndlng powers than INTERSECTION, and both of
them have lower bindlngpowers than the 400 and 452 bindlng powers of
(®) APPEND (SECTION 2,5), Seting the rightbindingpowerof RETURN
to @ Insures that an entlre expression (In this case! A ®# BucnoDe

E) wlll b e transjatedas [t8argument, rather than Just asimple
expression a8 would normaliy be the case(eince RETURN 18a prefix).
This |s because . | binding powers | nMLISPare|arger than @}

therefores allinfix operatorswillb | n dup thelr arguments before
RETURN does, 1In faet, anythlng wWith a rlght binding Power of 0 will
gobble ¥R @ vowthbg unti| then e x texpression=stopper (reserved
word, ")"y, ™1™, eto,),

MLISP SEMANTICS = SECIION 3,8 40

, SEMANTICS =~ SECT]ON 3,8

C]F_expression> 1!z |[F <expression>
THEN <expression> (ALSO <expresgiond)*
(ELSE<expression> (ALSO <expressiond)e)

An IFCor conditlona|) expression Is the reserved word IF, followed
by any expression, followd by the reserved word THEN end another
® xores!Uon, optlona||y followed by any number of ALSO clayuses, This
Is optlonajly followed by the reserved woord ELSE and ®& third
expression, agaln optionaliy followed by any number of ALSO c¢|auses,
An ALSO clause |s the reserved word ALSO followed by any expresslion,

Conditional expressions get transjated |nte LISP GOND’s, 1In LISP 1.6
there may bHe more Eh'" one express|on after the predlocate;example:

(COND (P1 E1) (P2 E2 E3) (P3 E4 ES5E6))
s a legal LISP 1,6 conditional expression, Wiecre there |smorethan
oneexpression, the expresslons arc evajuated from left to rlghts the
value of the last one becomes thevalusofthe COND,
In the followlng, E1, E2, E3 .., represent any expressions,

IFEl THEN E2 - (COND (k1 E2) (T NIL))

IF El THEN E2 ELSE ES3 . (COND (El E2) (T E3))

s

IF El THEN E2 ALSO E3 (COND (E1 E2 E3) (T E4 ES E6))

ELSEE 4 ALSOE 5ALSOES

1

IF El THEN E2 ELSE (COND (E1 E2) (EJ E4) (T ES))

IF E3 THEN E4 ELSE ES5

Nesting of conditionals |s permitted (o any degree of complex|ty,
Each ELSEterm [s mmtched upwith the nearest preceeding THEN, un|ess
parentheses arc used to group the terns different|y,

IF El THEN - (COND (E1 (COND (E2 E3) (T Ed4)))
IF E2 THEN E3 ELSE E4 (T NIL))

IF El THEN - (COND (E14 (COND (E2 E3) (T NIL)))
(IFE2 THEN E3) (T E4))

ELSE E4

IF El THEN - (COND (El (COND (E2 E3) (T E4)))
IFE2 THEN E3 ELSE E4 (T E5))

ELSEES

MLISP

Examples of IF expressions!

IFx= 12 THEN PRINTY .

IF X #148 THEN PRINT y o
ELSE PRINTZ

IFAEB&8CED - THEN »
IF XeL THEN PRINT < MATCH
ELSE PRINT ‘NO_MATCH

ELSEIFFQO0(A,B)&8«C THEN
|FE<X>¢L THENPRINTT
ELSE PRINT NIL

ELSE PRINT ‘OH WELL

IF X § 100 THEN -
Y & 22X ALSO CO L
ELSE Ye«X+1 ALSO RETURN <X, Y>

SEMANTICS = SECTION 3,8 41

(COND(CEQUAL X 18) (PRINTYN(T NIL))

(CONO ({NEQUAL X 18) (PRINT Y))
(T (PRINT 2)))

(COND
(AND A BCD)
(COND ((MEMBER XL) (PRINT (QUOTE MATCH))
(TC(PRINT (QUOTE NO_MATCH)))))
(CAND(FOO A B) (NOTC))
(COND ((MEMBER (L ISTX)L)(PRINTT))
(T (PRINTNIL))))
(T(PRINT(QUOTE OH_NWELL))))

(COND
((LEQUALX19@) (SETQ Y (TIMES 2X)) (GO L
(TC(SETO Y (ADDL1X)) (RETURN (LIST XY)))

MLISP SEMANTICS = SECTION 3.9 42

., SEMANTICS = SECTION 3,9

<FOR_expressfon> it <(FOR_clause> ({FOR_o|ayse)#
eD0, COLLECT, ; <lidentlifler>> <expresslion>
(UNTIL <expression>)

C¢FOR_clause> tt® FOR (NEW) <ldentifler> <IN, ON> <expression>
[FOR (NEW <lidentifier> . <expression>
To <expression> (BY <expression))

A FOR express|on |8 any nunber of FOR o1 auses, followed by the
reserved word 00, the reserved word COLLECT, or a semicojon (})
together with an ldentifler which 18 a two-argunent fungtlon nane.
This I8 followed by an ® [XI@QJN ++@[JM (the "body" of the FOR=|oop), Which
Is optlonally followed by the reserved word UNTIL and another
expression, A FOR oclause Is the reserved word FOR, optlonally
tollowed by the reserved word NEW fol (owed by an Identlfler (the
oontrol varlable)y and followed by elthert (a) the reserved word IN
or the reserved word ON, and an expression whichevalutes to a |Ist
(possibly NIL)) or (b)aleft arrow (*)y followed by an expression
which evajuates to a number (the Jower I Imit), followed by the
reserved word TO and another expression which evaluates to a nunber
(the upper |Imit), Thls 1a optlonally followed by the reserved Word
BY and a third expression whieh evaluate8 to a nunber (the
increment),

The FOR expreassjon (FOR-1loop) I8 the nost powerful meta-expression In
MLISP, TIt|s designed to facllltate dealing with {Individyal elements
In |Ists, The MLISP FOR expresslion carrles the developnent of LISP’s
MAPLIST and MAPCAR functlons to thelr loglcal conclusion, Extensive
worck has gome |nto the design and Implementation of FOR expresslions.
Used t hought fully, they can greatly Simplify manipulating |ists, The
FOR expression |8 not Just omne, but many expressions; there Is an
unboundod number of poss|bje expressions that may be bul|t up frer
its syntax,

FOR expressions provide the abl|lity %to!
(A) Step through allst, dealing with ecaoh element In It Individually
(use IN),

(B) Step through a |lst, dealling with the whoje |Ist, the CDR of it,
the CDDR of It, the CDODOR of 1t, etc, (use ON),

(C) Step through a nunerlcal range (®.9+ from I to 18) uslng any
numer|ca| Increnent (use «), There are no restrictions on the
numbers Involved (lowsr |Im|t, yoper IImit, Increnent),

(D) Step through any nunber of |I8ts and/or numerica| ranges In
paral|e] (use npre than one FOR ¢lause),

MLISP SEMANTTCS = SECTION 3.9 43

(E) Mike the controjvariables local to the body of the FOR-lobp (use
NEWor to preservethelrvalueswhen theFOR=joopexits,
Control wvarlablrs should bespeciflied to be NEW whenever
possible, becayse the LISP ¢ode for NEW varlables |s nore
effielent, Unless you @re Interested In the value of a oontrol
variable after the FOR-loop eoxl|ts, declare [t NEW,

(F) Control the value returned by the FORexpresslion, The value
usingDOIsthe value of the FOR=fjoop body the last %Ime through
the Joopj the value wlth COLLECT |8 a |Ist formed by APPEND’Iing
together the values of the FOR=|00p body eaeh time through the
loop, Alternatively, any two-argunent funetion mmy be ysed to
goenerate a FOR=exppression value! the first time through the
loops» the vaue of theFQR*l00oPbodybecomesthe valueofthe
loops eaech succeeding time through, the two-argument funetlon|s
appllled to the previous value of the loop and %0 the eurrent
value of the FOR=joop body toyleld a new value for the 100D,

(G)Terminate . xeo&lon of the loop at any %ime (use UNTIL),

Examp|e}
FOR NEWI IN X@Y FOR N«i1 TO 12 BY 2 DO PRINT ¢<N,I> UNTIL ! EQ ' STOP

In this example, "FOR NEW I IN X®Y" rnd "FOR Ne«i TO 4@ BY 2" ape "FOR
elayses”,] and N are "econtro | yarlables”, 1Iis "loca|"” (o the body
of the FOR-loop by virtue of 1ts belng deolared NEWiNIs not 1local.
The expression "XeYn (APPEND X Y) should evaluate to allsts 1 will
step through that |]|st, belng set to the CARof It, the CADR Of It,
the CADDR of I t, ete, The control variable N steps through 2a
numerloal range (1=12) In Increments of 2, The ® «xprosirlon "PRINT
CI'N>" | 8 the “body” of the FOR-106ps The UNTIL conditlonis"lEQ
‘STOP”, Since DO |s used, the values of the FOR-loop Is the value of
"PRINT <I,N>" the last timeitwas exeouted,

The executlion of FOR expressions proceeds as follows!

(1) The 118t or numerlcal range for each FORclause s echecked, If
any (I8t ja NIL, or If any numerlca| range I|aexhausted, then the
FOR-1oop exlts returnlng Its current value (inlt]lajly NIL).
Before @ «xIttnQ eaoh e¢lause |s examined, Ifany olause ha8a
oontrol varlable whfoh wWas deolared NEW, that oontrol variable|a
reset to the value It had when the loop Wwas entered, I fany
olause has acontro|varliablewhloh wa8 not deolared NEW, and If
the |18t or range for that olause |Is exhausted, then that eqontrol
varjable |[ssetto NI L, Otherwise, the control variablels |eft
set to the value 1t ha-d the last ¥Ime through the foops thismay
be usefu| for determining whloh |I8ts or ranges were exhausted,
and how many times the loop was executed.

MLISP SEMANTICS = SECTION 3,9 44

A numerlical rangelssaldt ob e "exhausted"|f (a) the Inerement
Is positive and the Ilower IImit> tha upprer IImit:, or (B) the
Inarement |snegative and the |ower|imit< the wupper [Imlt., An
Increment of O s, of ocourse, Illegal,

(2) Next, eaoh oontrol varlablels assigneda value, Thls value is:
(a) the CAR of Its |Ist If IN I8 wused, (b) the entirejlst If On
Is used,or (¢) t he Ilower |[Imitlf anumerical range s used.

(3) Then the body of the FOR=joop S executed, and a vajue s
computedior theloon asexplalined I n(F)above,

(4) Finally, the UNTIL expression (I|f any) |3 evaluated. If Its
value |$ truer the FORejoop exlts Immediately, No oontro |
variables are reset except thec ones decjared NEW, whichare set
to the valuer, they had when the 1loop was entered, Thus all
non- NEW controjvariableswliiiremalin set to the vajues they had
when the UNTIL condltion became true. This |s sometimes wuseful
for testing how many tImes the |oop was exeputed,endf o r
determining the cause of termination, Exampjle: In

FOR | IN L DO PRINT I UNTIL ! EQ *STOP,
when theleopexits I wi|) be set to NL If It got &Il +tho way
through the |1st L without encountering the atom STOP} otherwise
It wij| be set to STOP,

(5) If the UNIIL express|on was false (or non-existent), the | Ists
and numerlcal ranges arec advanced as follows: (a) cach |istIs
set to the CDR of Itse|fs (b) In each numerical range, t he
Increment Is added to the lower |Imlt to yieid a new |ower |Imit,

t6) Then step(1)isexecuted again,

Contlnulng the example above, suppose X = '(A 8 C) and Y ®» (D)} then
e ecuting!

FOR NEW T IN X@8Y FOR Ne1 TO 12 BY 2 DO PRINT <N,I> UNTIL | EQ 'STOP

woul d

(a) print (1 A)
(3 B)
(5 C)
(7 D)

(b) return a valueof(? D), and

(c) leave N sot (o0 7,

MLISP SEMANTICS = SECTION 3,9 45

The FOR express|on
FOR NEW IINX@YFORNe1 7O 10 BY 2 DO PRINT <N,I> UNTIL ! EQ ’'STOP

Is equilvalentt o the following block?

BEGIN NEW VoLi, L2,
L1 ~ X @ V’
Le « 1;

LOOP} I FN UL LLLIIL2GREATERP 1 0 THENGOEXIT?
I » CAR L1}
N *L2}
Y * PRINT <N, >}
F IEQ'STOP THEN RETURN V}
LI«CDRLL}
L2 « L2+ 21
GO LOOP}

EXITHIIF NULLL2 THEN N« NIL3
RETURN V;
END3

MLISP SEMANTICS = SECTION 3.9 46

Examples of FOR expressions! Suppose 1. = ‘(A (B,C) D),

FOR NEWI IN L DO PRINT I ‘ would print A
(B,C)
D

and return D

FOR lINL DO PRINTI would print A
éB.C)

set 1 to NI
and return D

FOR NEW I ON L DO PRINTI! would print (A (B,C) D)
(¢8,C) D)
(D)

and return (D)

FORNEWI | NLCOLLECTYPRINTKI> would print (A)
(¢(g,C))

(D)
and return (A (B8,C) D)

FOR! IN L COLLECT PRINT <<I>> would print (CA))
(¢¢(B,C))
(¢<D))

setl to NL

and return (C(A) ((B.C)) (D))

FOR NW I ON L COLLECT PRINT 1! would print (A (B,C) D)
(¢8,C) O
(D)
and return (A (B,C) D (B,C) 0 D)

FOR NEW I ON L j APPEND PRINT I woul d have exactly the sanme effect
as the preceeding FOR expression.

ML1SP SEMANTICS = SECTION 3,9 47

FOR IIN L DO PRINT I UNTIL NOT ATOM I would print /‘%)
B,C
setl to (B,C)
and return (B,C)

FOR IONLDO PRINT I UNTIL NOT ATOM CAR I
would print (A (B,C) D)
(¢g,C) D)
setl to ((B,C) D)
and return ((B,C) D)

POR NEW IIN L COLLECT PRINT <I>UNTIL NOT ATOM /
would print (A)
-~ “BQC)’
and return (A ¢(B,C))

FOR I ON L COLLECT PRINT ! UNTIL NOT ATOM CAR !
would print (A (B,C) D)
t¢(8,C) D)
set lto ((B,C) D)
and return (A ¢(8,C) D (B,C) D)

FOR NEW 134 T04DO PRINT 1 would print by
3
3
4
and return 4
FOR NEW lei TO 100 BY 30 DO PRINT I would print |
31
61
91
and return 9]
FOR NEW lel1@ TO =10 BY <5 DO PRINT 1 would print 10
5
0
-5
-10

and return =10

-

MLISP SEMANTICS = SECTION 3,9

FOR 1+3,14 TO 8,69 BY 0,002 DO PRINT | UNTIL I 2 3,2
would print

set I to 8,2
and return 3.2

FOR NEW J*l TO 18 COLLECT PRINT (I,J>
would print

FOR NEW 1 IN I.

and return

-

FORNEWIINL FOR J¢i TO 10 COLLECT PRINT <<I,Jd»>

would print

set J to 3
and return ((A

FOR J*1 TO 18 COLLECT would print
FOR I IN L COLLECT PRINT <l:J>
UNTIL NOT ATOM !
UNTIL J=3
set I (o (B.C)
set J to 3
andreturn (A 1 (B,C) 1 A 2 (B,
DECK «

FOR NEW gylt IN /(gPADE HEART DI AMDND CLyB) COLLECT
FOR NEW N«1 TO 13 COLLECT
<CSUIT,N>> 3

would ret DECK =
((SPADE 1) (SPADE 2) 4.

(SPADE 13) (HEART 1) (HEART 2)

48

[R RZ R
- ® =» =
Lol ¢ 0 N

N Eaps pa

(A 1)
(¢(8,C) 2)
(0 3)

(A1 <¢8,C)2 D3

(A 1))
(¢(B.C) 2))
((0 3N

1) ¢B,C) 2) (D 3N

C)2 A3 (B.C) 3)

vee)

ML ISP SEMANTICS = SECTION 3,9 49

As was stated In (D) above, more than onel|st or numerica| range my
b cstepped through Inparallel, Below are som examples of parallel
FOR' s (#)1

EXPR PAIR-UP (VECTOR1, VECTOR2)}
FOR NEW X1 IN VECTORY FOR NEW X2 IN VECTOR2 COLLECT <X1 CONS X2>}

‘(A BC) PAIR_UP '(1 35 7 9, 8 ((A.1) (B,3) (€,5))
"("JOHN' COR) PAIRUP '("SMTH' (X)) . (("JOHN® nSMITH") (CDR X))

Vector operations &|so providea ninterestingwayt o accomp|lsh this:

'"(ABC) CONS® ‘(1 3 57 9) 2 (¢CA.1) (B,3) (C,5))
¢ (wJOUN® COR) CONS* ‘("SMITH" (X)) z (("JOHNM ,nSMITH") (CDR X))

EXPR STRIP (ITEMs, VECTOR))
BEGIN NEW Vi
FOR V ON VECTOR FOR NEW I IN ITEMS 00 NIL UNIIL I NEQ CAR Vi

RETURN V
ENDY
‘(a b x) STRIP '(a b ¢ d o) . (¢ d e)
‘¢x b ¢) STRIP ’‘(a bc d e) = (a b cde)
(a b edef) STRIP ‘(abcde) 2 NIL

EXPR ‘WHERE_IN (X, VECTOR)}
BEGIN NEW V,Nj
FOR V IN VECTOR FOR Nei TO 120@ 00 NIL UNTIL V = Xj

RETURN IF NULL V THEN @ ELSE N

END3
'a WHERE_IN (b ¢ a d) s 3
'z WHERE_IN (b o a d) s 0

(«) I am [ndebted to Larry Tesler for suggesting these examples,

~—w

ML ISP SEMANTICS « SECTION 3,10 50
« SEMANTICS « SECTION 3,19

<WHILE expression> :tz WHILE <expression> <DO, COLLECT> <(expression>
CUNTIL_expression> :is €DO, COLLECT> <expression> UNIIL <expression>

A WHILE expression is the reserved word WHILE, followed by any
® <xpresslon, followed by elther of the reserved words DO or COLLECT
and another expression (the "body" of the WHILE=|eoP), An UNTIL
expression Is elther of the reserved words 00 op COLLECT, follewed by
any expression (the "body" of the UNTIL=loop)sy followed by the
reserved vword UNIIL and another expression,

WHILE and UNTI]L expressions are t wo more of t he MLISP
"meta-expressions", They have no dlrect counterparts In LISP, They
are translated Inte LISP PROG’S, Thelr executioninvolves iteration;
it does mnot |nvoive recursion, Therefore, these loops mmy be
executed any nunmber of times with no danger of overflowlng the
pushdown |Ist,

The execution of WHILE expressions |s carrled out as fo||ows.

(1) The expression after the WHILE Is evaluated, If 1ts value s
NIL, then the loop ex|ts returning its current value (Inltlajlly
NIL)Y,

(2) Then the body of the WHILE=leop Is evaluated and anew value for
the Joop s computed, As w|th FOR expressions, DO and COLLECT
control how the value of the WHILE=joop Is bulltup, Wth DO,
each time the body ofthe |oop |9 executed, the value thet
results becones the value of the WHILE-1loop; Wlth COLLECT these
vajyes are APPEND’ed together, Then step (@) Is carried out
agajn,

UNTIL expressjonsare very simljar to WHILE expressions, The only
difference Is that I n WHJLE=|oops the test for the termnating
cond!tlon Is made first and then the body Is eaexeeuted} wherecas In
UNTIL=~loops It IS nnde sesond, after the body has been executed,
This neans that In UNTIL-1oops, the body of the 1oop s syre to get
executed atlcast oncej but In WHILE=|oops It mmy not be executed at
all, Toget adeseription of UNTlL=loops, just Interchange steps (1)
and (2) above In the deseription of WHILE-1oo0ps,

As an example of thepower of wusing COLLECT wlith WHILE~{oops and
UNTIL=loopS, suppose an Input fl|e contains a sequence of |Ists In
the forms

(DEFPROP <tunetion_name> <jambda_body> <functlon_type>),

MLISP SEMANTICS = SECTION 3,190 51

whieh Is a standard form for LISP 1.6 function definitions,Suppose
It Is desired (o assemb|e all the funotlon names |In the flle Into a
[Isty printing out each function name as It |s read, Eaeh of the
followlng two expreasions does this, - Conclise statements of compliex
expressions such as this Is one of the primary purposes of MLISP,

L« WHILE NOT ATOM X«READ() COLLECT <PRINT XC23>;
X « READ()) L « COLLECT <PRINT XC21> UNTIL ATOM X+«READ()}

Examples o f WHILE expressions:
VHILE AsB DO A«F00(A,B)

WHILE ATOM X«READ(3 00 PRINT X
VWHILE X#1@8 COLLECT PROG2(X « X+1,<F00(X,Y)>)
WHILE =(X € L) DO X«READ()

VWHILE =STOP 00
BEGI N

NEyw IXsY) SPECIAL !x}

IX « READ()}

Y .« FOO(!X,READ(),READ())}

IF IX EQ ' STOP THEN STOP«T ELSE PRINT Y
END

Examples of UNTILexpressions!

DO A«FOO(A,B) UNTIL A#B

00 PRINT X UNTIL NOT ATOM X«READ()

COLLECT PROG2(X « X+1,<FO0(X,Y)>) UNTIL X=1@
D0 X~READ() UNTIL X e L

D0 BEGIN

NEW X, Y} SPECI AL X3

1X « READ¢)y}

Y - FOO(!X,READ(é,READ()%}

[F IX EQ "STOP THEN STOP«T ELSE PRINT Y
END -
UNTIL STOP

ML1SP SEMANTIcS = SgcTION 3,11 52
. SEMANTICS - SECTION 3,11

<ass|gnment_expression> 11z <regular_assignment)>
1 <array_ass|gnment>
| <Index_assignment>
|

{deoomposition>

<regular_ass|gnment)> 1t Cidentifier> = <expressiond
<arf?y_naslonmont> tiz Cldentifler> (<argument_Iilst>) « <expression>
<|ndex_ass ! gnment> 1is Cldent|flier> [<argument_I18t>) « (expression>
<decompos|tion> tiz Csimple_expression> «e¢ Cexpression>

The asslgnment cxpression I8 one of the nost powerful expressions In
MLISP, With 1t, one can change the value of avarlabje, store into
an array, change a slngle clenent In a |Ist leaving the other
elements untouohed, or decompose allst accordingto a "template",
In all cases, the value of an ass|gnment expression Is the vallof of
the expression on the right=hand side,

Making an assignment expression a <simple_expressiond> has an
Interesting propertyt It rempves the assignnent operator (e) from the
normal realm of Infixoperators, In particular, when

ATOM X & READ()
|s encountered, 1t |s reducedas follows:

ATOM X . READ()
. ¢
<prefix_operator> <|dentifler> « <expression>

¢
<prefix_operator> <assignment_expression>
[

<prefix_operator> <simp|e_expressjon>

+

<simp|e_expression>
‘

Cexpression>

and so the prefix wl||] modlify the entire assignment expression.
However, for Infix operators, when

ATOM X & READ()

MLISP SEMANTICS = SECTION 3,11 53
is encountered, It is redyced as!

ATOM X & READ()
¢
<prefix_operator> <identiflerd> <Infix_operator> <expresaslond

¢]

<prefix_operator> <simpje_expression> <Inflix_operator> <expression®
¢

<simple_expression> <Infix_operator> <expression>

A &
<expression>

and.so the prefix wil| modify only the identifiler, The asslgnment
operator acts Hjke It has an extremely high I1oft blndlng power
(binding powers are d{scussed In SECTION 3,3), and an extremely [ow
right binding power, which It doest the |eft binding dower |s 1001
and the rlght |s 0, In other word84s the |eft bindlng POwWer of ¢ Is
stronger than any ~Inflxorprefix, while the right binding power of «
|s weaker than any Intlx or prefix, Therefore,

ATOM X & READ() - (ATOM(SETAX(READ)))
whereas

ATOM X & READ() - (AND (ATOM X) (READ))

ATOM X CONS READC) - (CONS (ATOM X)(READ))

"

MLISP SEMANTICS = SECTION 3,11 54
Regular assignment

The regular ass|ignment |s theal-molestoftheoptions, It Just
transiates [nto SETQ., The|eft=hand side must be an Ildentifler; the
right=hands|de muy be any expression., Examp|et

X « Y +1 b (SETQ X (ADD1 Y))

Array assjignment

The array ® aslgnnent |8 the neans for 8toring values Jntoarray
cells, LISP 1,6 permit8 1=5 dimemsionral arrays a8 a data structure,
The assignment operator IS here translated Into STORE, The left-hand

side must be a call on an array} the right-hand 8ide my be any
expression, Example!}
ACL) & Y + 1 - (STORE (A 1 J) (ADDL Y))

Index assjgnment

The Index assignmentprovidesamoans for changingasingie ejlement
Ina llst, |leaving the other elenents untouohed, This faclillty I s
not read]ly available In LISP, The left-hand slde must be an
Identifler whose vajue [sallist, followed by an Index |fst as In
Index expressions (SECTION 3,131; the rlght=hand slide may be any
express|on, The Index |Ist Is used to reference the logation In the
I1st whleh Is to be changed, Into thls location I8 placed the value
of the rlght=hand side, xample! |f

L= (A B(CDIEF),

t hen
- L3yl & g

would ohange the value of L to
Ls(AB(1LD)EF),

l1t!s permissible to placevalues Into ¢e|ls which did not exlst In

t he orlginal [Ist) In this case, NILIsplaced 1Into &my looatlons
that hadto be created, Exampile!
LL3,5] = 1

would ohange the value of L to

L= (AB(D NL NL 1) E&F),

ML ISP SEMANTICS = SECTION 3,11 53

Decomposition assignment

The decomposition ass|gnment I8 the most powerful In MLISP, It
provides & nrcans of decomposing & |[|st according to a "template".
Theleft=hand side js a simple expression whlioh 9hould evaluate® to an
seexpressjon (the tempiate)! the right=hand slde may bg any
expression, The temp|ate Is an S=expression composed of varlables,
each of which |Is to be 8ot ithe element In the corresponding
location of the right=hand side,hereafter cajled the "RHS",

One ward of cautiont If the decompos|tion assignment expression I
used In a compljed program, all the varjables in the tempjate must be
dec |ared SPECI AL, Otherwise, the varliables wlll npot bs aet
oorrectl|y,

Exanple:
(X Y 2) e '"(A B(CDYEPF)

would set

Xto A
Yto B
2 to (C D),

Regular ass|gnment expressions are a s8sybset of decomposition
agglonment exppegsiong, Any pegula, agglgnment, guch ag!

X &Y + 1
my be wrltten as a trivial decomposition ass|gnmentt

' o0 Y + §

provided X [s decjared SPECIAL,

The deoonpogltlon assignment expression ralggg the Interesting
possiblilty that some yarfables may fall to get set because the
tenplate structure |M whloh they o¢eur dogs notcorrespond to the
structure of the right=hand side (RHS), Any suoh Vvariable which
cannot be set to an RHS value 19 set to NIL, A template varliable
will always be set to an RHS vajue |f thg template position In whloh
It oocurg Is "ecompatlible" with the corresponding RHS posltlom, The
only "Incompatible® case I8 when the tenplate position Is a

MLISP SEMANTICS = SECTION 3,11 56

non“8tomlc s=expresslonr a n d the corresponding RHS peslition | s an
atgom, I n thigcas®e, a 1 1 vaplableg ocoupylng the |ncompatible

template position wli||be sot to NIL .. Eyamplet

(X Y)) «® ‘(A B(CD)EF)

would se¢t

X,Y to NI L Because the first template position Is a
Itat, (X Y), whereas the fIirstRHS pesition
Is an a&atom, A, Thus the flerst tempiate
position Is "incompatible"” with the f1pStRHS
position, and the varlables 1[n it are set
to NIL, |

Z to B Because the seocond template posjtion Is

"compatible" wlth the second RHS positlion,

The COR of the RHS may be obtalned by a dotted palr In the template:
(X Y , 2) «® '"(A 8 (CD)EF)

would set

Xto A
Yto B
2 to ((C D) EF),

Suppose L = (A B (C D) E F), The |IstLItself could be used &8 the
templatel

L »o’(12(3 4 5 67)¢829))

would set

A to 1 In thiscase Ay By C»D,E and F nust al b e
Bto 2 deciared SPECIAL,

C to 3

Dto 4

E to (8 9)

Fto NIL,

ML ISP SEMANTICS = SECTION 3,11 37

Finally, a "matoh anyth|ng" symbol la avallable for wuse In the

tempiate! an underbar (_), This symbol wilimateh any anpunt of |ist
structure necessary (o make the tenplate mmtch the RHS, Examp|e!

r(_ X) »¢ ‘(A B(CD)EF)

would set

Xto F Because the tenplate spoclifies that the value
for t¢the varlable X should oceur as the last
® JamBnt In the RHS, The underbar matches
(A B(CD)E) In this case,

Usimg the underbar symbol In a temp|ate causes the evaluation of the
decorposition assignment express|on to proceed different|y:
previousiy, any variable would be set |t It was In a template
position ocompatible wlith ¢the corresponding RHS position, Using
underbars, however, nuny reaulire that the tenplate Structure match
EXACTLY the RHS stryucture, Conslider the ecxanple above Inwhiech X and
Y faljed to get set, We could now wr|te:

(. (X Y) 2 _) «o (A B (CD)EF)

whleh would set

X to C
Yto D
Z to Eo

Note! nelther ‘(. (X Y) 2) nor ‘((X Y) 2 _) would work, because |n
the firstcasethe RHS would have to be In theform(.,.(#%)s),
which 1t |snt) and In the second case [t would have to be In the
form ((s ») &)y whilchIt also Isn’t,

Theuser should exper|ment with the decomposition assignment to mmnke
sure -ho understands [ts operation,

MLISP

SEMANTI CS

e SECTION 3,11 50

Examples of assignment expressions!

Regular ass|gnments:

12
2 e NL
B « 18
Be«C+0D
NOT ATOM X « READ()
NOT ATOM X & READ()
NULL A & B . FOO(X)
NULL A | B | FOO(X)
NULLCA | B | FOO(X))
A « BEGIN
NEy TEMPj
TEMP . READ()}
PRINT (START;
RETURN TEMP
END

< XK

(I
» p <>
£+t &

-

Array assjgnments:

X(1) » A + 10

A(I,J) « FOO(X)

imro o A(Ll) « NIL
X(1) ® A + B(0) .« 18
ACI,FOO(J))K+1) « T

A(1,2,3,4,5) « 'FIVE_D
NOT ATOM X{(1) - READ()
NOT ATOM X(1) 8 READ()
NULL A(L) « B « FQO(X)
NULL A€1) I B | FOO(X)
NULLCACL) T B | FOO(X))

Index assjignments;

Suppose [3 (A 8 (C D) E F),

LC1J = | woul d
LC2] « 1 woul d
LC3) . 1 woul d
LLE3,1] 1 woul d
LL8) +«1 woul d
L(2,3:2]) ¢ | woul d

¢ 4 3 4 8 4 4 8

3

3 & e 3 3 8 3 3 83

sot
set
set
set
sot
set

(SETQ X (PLUS A 18))

(SETQ X (SETO Y (SETQ Z NIL)))

(SETQ X (PLUS A (SETQ B 1@)))

(SETQ@ X (TIMES A (SETQ B (PLUS C D))))
(NOT (ATOM (SETQ@ X (READ))))

(AND (NOT (ATOM X)) (READ))

(NULL (SETQ A (SETQ B (F0O x))))

(OR (NULL A) B (FOO X))

(NULL (OR A B (FO0 X)))

(SETQ A (PROG(TEMP)
(SETQ TEMP (READ))
(PRINT (QUOTE START),
(RETURN TEMP)))

(STORE (X 1) (PLUS A 18))

(STORE (A1 J) (FOO X))

(STORE (A @) (STORE (A 1) NIL))

(STORE (X 1) (PLUS A (STORE (B @) 12)))
(STORE (A I (FOD J) (ADDL K)) T)
(STORE (A 12345) (QUOTE FIVE_D))
(NOT (ATOM (STORE (X 1) (READ))))
(AND (NOT (ATOM (X 1))) (READ))

(NULL (STORE (A1) (SETQ B (FOO X))))
(OR (NULL (A 1)) B (FOO X))

(NULL (OR (A 1) B (FOO X)))

= (4L B(CD)EF)
s (A1 (CD)EF)

= (AB1EF)

*AB (1 D) E F)

3 (ABI(CD)EF NL NL3)

® (A (NIL NIL (NIL 1)) (C D) E F)

unl onllenil Sl enll o

MLISP SEMANTICS = SECTION 3,11 59

Decomposition assfgnments:

Suppose L = (A B (C D) E F),

would set
L e (1 2 3 A s 1
B »n 2
ouonmnﬂazur
L e (1 2 (3) 4) A =1
B s 2
C = 3
E = 4
DaF = NI
L ~0 (1 2 (3 4) 5-6) A s 1l
B = 2
C =3
D = 4
E =5
F s 6
v Y B) . ‘(A B (CD)EF) X = A
s, Y B) e A B (CD)EF) Y = B
o XY & Q) e ‘(A B (CD)EF) g2 = (C D)
{_ XY 8) 0 (A B (C D) EF) X = (C D)
Y = E
. 2 s F
(. (= _) Y Z) o (A B (C D) EF) X = C
Y = E
2 s F
(-) o ‘(A B (CD)EF) X = F
(L X)) e ‘(A B (CD)EF) X = D
(X .Y e ‘(AB (CD) EF) X = A
Y 3 F

Agaln, 1 wish to emphasize that |f a decomposition assignment
expression |s used [n a complied prooram, all the varlables In the
template (the |eft-hand side) must be declared SPECIAL,

MLISP SEMANTICS = SECTION 3,12 60
SEMANTICS = SECTION 3,12

Ed

Cfunctlion_cali> 1tttz <ldentifler> (<argument_|lgt>)
| <LAMBDA_expression> 1 (<argument_|Istd>)

Cargument_||9t> ti1a <expression> {, <expression>)«
| <empty>

A functioncall Is an |dent|fler <(a function name) or a LAMBDA
expression (a function body) followed by an argument Iist enc|osed In
parentheses, An argument |Ist Is any nunber of expressions, possibiy
none, separated by commas,

Little need be saldabout this, Essentialiytheonl y difference
between this and the LISP way of writing function calis |s that the
function name has been brought outside the parentheses, Also the
arguments arc Sebarated by oommas, The arguments may be any
arb|trary expressions,

Exampies of fungtion ca|ls!

FOO(X) . (FOO X)
FOO(X,Y,2) - (FOO X Y 2)

FOO() - (F00)

FOO(A+B, C) - (FOO (PLUS A B) C)
FOO(IF A THEN B ELSE €) . (FOO (COND (A B) (T C)))

The same function cal|s, writtenas L[LAMBDA expressions:

LAMBDA(L)) FOQOO(L); (X) ((LAMBDA (L) (FOO L)) X)

LAMBDA- (A,B,C)i

FOO(A,B,C)} " ((_AMBDA (A B C)(FO0O A B C)) X Y &)
(X, Y, 2)
LAMBDAC() FOO(O)1 () o ((LAMBOA NIL (F00)))
LAMBDA (X,Y,2))

FOO(XeY, 2); - (CLAMBDA (X Y 2) (FOO (PLUS X ¥) 2)) A B
(A,B,C)
LAMBDA (L)} FOO(L); « CCLAMBDA (L) (FOO L)) (COND (A B) (T C)))

(IFA THEN B ELSE C)

MLISP SEMANTICS = SECTION 3,13 61
, SEMANTICS = SECTION 3.13
<|ndex_expression> 1= <simple_expression> [<argument_|lst>]

<argument_|st> 115 Cexpression> (, <expression>)#
| <enpty>

An Index expression |s a simp|e expression, followed by an argunent
Ilst enclosed In sauare brackets (), An argunent |Ist |® any nunber
of expressions (possibly none) 9Separated by commas,

The MLISP Index expressionfllis g oriticaldeficiency | n LISPI there
Is no easy way to referenceanarbitrary cell In a list, CAR will
obtain the flrest elenent, CADR the 9econd, CADDADDDDR the third
element In the f]fth oloement of the |Ist, ete, But CADDADDODR I|s

nelther (1) very understandable, not (2) variable, The latter |Is
Inportant ®lnee It oecaslonally happen8 that %the user does not know
untl| runetime which element of allst ho will WISh to mccess,

The M.ISP 1Index expression e|iminates these obJeoctions, L(5,3] Is
the sane as CADDADDDDR, but It 1s a good deal more readable,
Furthernore, the Index arguments may contalnvariables,In fact
expressions! LCN], LCI,JiK]» LC2%N], etc, The 1Index expression,
then, ISagenerajjzed version of CAR (A goneraljzed versjon of CDR
also @xlsts (SUFLIST) and |sexplalipnediy SECIION 5.2 ,)

When Index ® xpresslons are complled, they are expandedby macros into
highly pg/m'zed codel

LC5,3] (CADDAR (CDDDOR L))
T,I,}s jnsures that the* executjon of Index oxpressjonsv]|| be very
efflcle,t In complled prodrams: 1In |pterpreted programs, |t Is Mmgre
efficlent to Iss e a call on a ryn=time f ,nction,

Exanples of Index expressiens!

Suppose [L = (A B (C (D E) F) G H).,

LiLd = A - (CAR L)
LC23 s B - (CADR L)

LL32 = (C (D E) F) = (CADDR L)

Lc3,1)] s C 4 (CAADDR L)

LE3,2,1] = D . (CAAR (CDADDR L))

"(A B CIL3] s c . (CADDR (QUOTE (A B C)))

GET(X,VALUE)[2) — (CADR (GET X (QUOTE VALUE)))
(L1 & L2)[1,2) - (CADAR (APPEND L1 L2))
(FOR NEW I IN L COLLECT <CAR I>)C2#N, M/3 + 1]

MLISP SEMANTICS « SECTION 3,14 62

» SEMANTICS = SECTION 3,14

C|lst_oxpression> iz < <argument_|lst> >

Cargument_||st> 113 <dexpression> (, <expression>)e

I <empty)
A Ilstexpressionlis a |eft angled bracket (<), followed by an
argunent |Ist, fo|jowedbya rlght angled bracket (»), An argunent
|I1st Is any number o f expressions, possibly none, separated by
commas,

This I8 the MLISP equjvalent of the LISP LIST functiont <A,B,C> Is
translated Into (LIST A BC),<A,B,<C,D>,E,F> Into (LIST A B (LIST C
D) E F), eto, Angled bracketsare used to mnke Ilstsconclse and to
cut down further' on the number of parentheses needed, As wlith
function calls, the arguments Inside the |iIst brackets may be any
arbltrary expressions,

Examples 0 flist expressions!

< (LIST)

B4 (LIST A)

<A,B,C> (LISTA B O)
<A,,C> (LIST A (LIST B) C)

<'A)B CONS C CONS D>
<X+18, <<Y>>, NIL>
<IF A THEN ELSE ©C>

(LIST (QUQTE A) (CONS B (CONS C D))
(LIST (PLUS X 1@) (LIST (LIST Y)) NIL)
(LIST (COND (A (LIST B)) (T C)))

$ s ¢ 4 8 3 o

MLISP SEMANTICS =« SECTION 3,15 63

SEMANTICS =« SECTION 3,15

Cquoted_expression> 1tz ¢ <Cseexpressiond

()
(<s=expression> , <s=sxpression>)

{s=expreasion> i <atom>
l
l
1 (<s=sxpression> ({,) <s=expresslion>}+)

A aquoted expression Is the quote mrk (') followed by an
s~expression, An M.ISP s=expression [S Just the same as a LISP
s~expression, except that each Identifler In [t myst be 5 |ega| M.ISP
Tdentifier, I nparticular, any speciaj characters (characters whloh
are not M.ISP |etters or digit8) nust have t he |lterally character
(?) In front of them,

-~

Note that there Is one fewer lcvel of parentheses needed wWltht h e
M.ISP quoted @ xprarsion than with the LISP QUOTE functlon, This Is
part O0f the effort to cut down on the numbep of paprentheges requlired.

Exanples of quotedexpressions!

’A - (QUOTE A)

"N L - (QUOTE NIL)

"0 - (QUOTE NIL)

A B ©€) - (QUOTE (A B C))

*(A,B,C) - (QUOTE (A B C))

"(a b e) * (QUOTE (a b ¢))

*(A,B) - (QUOTE (A,B))

‘(A B 7«C3# O E) - (QUOTE (A B #Cs D E))
‘(A 16,92, (E,F), 0) - (QUOTE (A 16.0 (E.F) B))
‘(A (8,C)?s D0, E) - (QUOTE (A (B,C) « D | E))

MLISP SEMANTICS = SECTION 3,16 64

¢« SEMANTICS = SECTION 3,16
<ldentifiler> 118 Cletter) (s<|eatter>, <diglitda)

<letter> 18 eA, By Croo0 25) Dy Croen Zy _2 b ¥
I <lltera|ly_character> <any_character except %>

<|ltera||y_character> i3 2

An ldentifler Is an MLISP |etter followed by any numberof MLISP
letters or diglits, An MLISP letter IS any of the upper or |ower gaSe
letters of the alphabet, or an underbar (_), colon (%) or exciamation
polnt €!), or amy character except % preceeded by the |lterally
character, The |lterally character Is a aquestion mark (?), The
comrent character (¥) may not be Inejuded because LISP 1.6 won't
allow It to beusedasanythlng except the start or end of a comment,

Underbar, cojon and exclamat|on point are considered to be letters 8o
that the wuser can eas|ly create unusual nanes for varlables, The
Ilterally character Is a flag to the translator to take the next
character {iterally and consider It to be a |etter, even |f the next
ocharacter would ordinarily have a different meaning to MLISP, This
enables the wuser to Inelude virtuajly any character excepot X In
var|able nanes, However, the user must be surethat hls LISP system
won't obJjeett o any o f the characters|n hi|s identifiers, Notei!a| |
of the funetions and variabjenames used by the MLISP +trans|ator
begin with an ampersand (&), solt s unwise to use such nanes,

Exampies of |dentifjers:

X - X

X1 . X1

AVERYLONGSTRINGOFLETTERS - AVERYLONGSTRINGOFLETTERS
A_VERY_LONG_STRING_OF_LETTERS = A_VERY_LONG_STRING_OF _LETTERS

X - X

x1 - Xl

averylongstringof|etters - avery|ongstrincofietters
a_very_long_string_of_letters - a_very_j|ong_string_of_jettars
UPPER _and_lower_case_JOENTIFIER = UPPER_and_jower_case_[DENTIFIER
DSK¢ - OSK |

TTY! - TTYS

1SYSTEM_VARIABLE_357a Z ISYSTEM_VARIAgLE_357a

33 ?

7) J)

71 - 1 (an ldentifler, not a nunber)
AB?+C?«DE - AB=C#DE

%8 _282028222(2)202)2<D - “11_ROS2()LICO

MLISP SEMANTICS « SECTION 3,17 65

» SEMANTICS =« SECTION 3,17

<number> tts < | nteger>
OCTAL <octal_Iintager>
] <rea|>
<Integer> t1s <digltd (<digltd)e
<digle> tt= e@,1,2,3,4, 3, 6, 7, 8, 93

Coctaj_linteger> 1tz <octa|_diglt> (<octa|_digit>)s
Coctal_dliglt> itz <0,1,2, 3, 4, 3, 6, 73

<real? 1z <|integer> <exponent>
| <integer> , <|nteger> (<exponent?)

Cexponent> $tz E (c¢, «3) <{Integer>

Three types of nunbers are permltted In MLISP: Integers (base 12),
Integers oreceeded by the reserved word OCTAL (base 8), and real
nunbers (base 10 agaln), An Integer It anySequence of dlglits, A
teal number IS eJther an Integer followed by &n exponent or two
Integers scparated by a decimal point, optionally followed by an
exponent, An exponent |8 the letter Ey optionally followed by 4pPlus
or minus slgn, followed by an Integer, There should nevepbe Spaces
between any ©f the parts of 4number, except after the word OCTAL,

All nunber8 are taken to be deelImal nunbers unless preceeded by the
word OCTAL, Octa| numbersaelIncluded because they are used In mmny
computer applications, Exponents provide 4 conpact way of
rapresenting very large or Vvery smajl rea| numbers, Only Integer
exponents are allowed, but they may be elther pos|tive or negatlive,

Plus.(*)and minus (=) signsare not pa&rt of tho 9yntax (ar qpunbers
(except In the cxponent), Plus and m|nus signs are de|imlters, and
they are treated as @fther prefix or Inflx operators by the
translator,

MLISP SEMANTTCS = SECTION 3.17 66

Examples of numbers:

1 - 1

i0 - 10

145968 D 145968

987, 005 - 9.87005L2

13E+4 - 1,3E5

2,1 - 1.0E=3
,002123E-5 - 1,23E=9

OCTAL 10 - 8 (decima|)
OCTAL 144 - 100 (decimal)
OCTAL 777777 - 262143 (decimal)
145,12 - (MNUS 1.,4512E2)
X=145,12 - (DIFFERENCE X 1,4512E2)
«98765,43210 - 9,87654321E4

x+98765, 43210 (PLUS X 9,87654321E4)

Note! ol Is not allowediuse 2,1 Instead,

MLISP SEMANTTCS = SECTION 3. 18 67
» SEMANTICS = SECTION 3,18

<string> 1tz "(<any_character excqpt " opr XD} "

A strimg Is a string quote ("), followed by any seguenceof
characters except the string quote or %, followed by 4 second string
auote,

Strings are o speola| MLISP data structure Introduced primarlly to
facllltate Input/output, Several string manjpulation features ar e
Inctuded In MISP to mmke strinmg handling easy, Thesec are described
in SECTION %-1% However, M.ISP Is not a stringemanipylation
language} Itis a ||st=processing and sSymbo|emanipuletion languages.
Mst of the string-handiing routines a r efalrly time consuming,
requiring an exeocutlon time oproportional to the length of the

string(s) Involved ; Therefore, If possible Iimit string manipyiation
to Input/output operations, or &t lecast to operations which are not
performed often, It It 1Is necessary (o do a 1ot of string

manipulating, the user should consider using some other, nore
sultable, language, slnce M.ISP processes strings inefficlentliy,

String are stored by LISP 1,6 as uneINTERNED (i,e, not ontheOBLIST)
atoms having a4 print nanc consisting of the c¢characters In the string,
and Ineluding both strlng auotes,

Examp|es of strings:

" - (QUOTE "")
"THISIS A STRING' - (QUOTE "THIS IS A STRING"™)
"This Isalsoa String,"=* (QUOTE "This 1a alsoastring,”)
"123, 18> () 25" . (QUOTE "123,:3¢>()2;")
" ”"

" - (QUOTE ")

MLISP USER OPERATION OF MLISP = SECTION 4,1 68
+ USER OPERATION OF MLISP ~ SECTION 4,1

This segctionte||s the user howtoget a n MLISP programrunning,

(A) Translating M.ISP Prograns

There are two verslons ofMLISP, both reslding on the System area of
the dlak?

MLISP = 5 core Imnge contaling LISP and MLISP,

MLISPC = 3 core [mage containing LISP, MLISP, PPRINT (the
"oretty=print” funetions), 'and the LISP compller,

Thesecore Images nny be loaded by typing!

R MLISP or R MLISP <core_slze>
and

R MLISPC or R MLISPC <core_size>
The core size of M.ISP |s 25K, and Of MLISPC 35K, These should be
suff iclent to handje 511 but the largest prograns, If not, a larger
core slze wl|l have to be specifled,

The MLISP core |Image should be® used If the user wants te translate
hlg MLISP program &nd then execute It. The MLISPC verslion ghould be
used only If the user want8 to translate hls M.ISP program and then
compl|e It or pretty=print out Its LISP transfation, For large
(debugged) oprograms, the nost ® fflclent use of core Is achleved by
compl|ing the MLI SP oprogram with MLISPC, and then reading the
complled code Into a "fresh"LISP system (I1,e, contalnlng nothing
else but LISP), Complilng the program has the following advantages:

(1) The program runs about 10 times faster complled than Imterpreted.

(2) MLISPC |ncorporates some claborate macros whlch expand FOR=|00OpS,
WHILE«=|oops, UNTIL=|loops and |ndex expressions [nto highly
optim|zed code, Thls further speeds up theirexegution, M.ISP
Is very compljer orflentedt by far the nost efflclient exeocution of
M.ISP meta~expresslions Is by conpiled code,

(3) Compl |ed code requires less space than the c¢orresponding
|Ist=structure Interpreted code,

(4) Functlon definltions don’t have to be marked by the @arbage
col lector every time a garbage cojlection occurs (a sign]ficant
time savings for large programs),

MLISP USER OPERATION OF M.ISP = SECTION 4,1 69

To avoldeonfusion, two facts should be kept 1In mind when USing

MLISP1

(a) In WRITING your program, you wilibe ocommunicating with MLISP.
All expression® in the prodrem must be |egal M.ISP expressions,

(b) In RUNNING your program you WI|| be communicating wlith LISP.
All expresslions to be exeouted, read or bPrinted must be legal
LISP @ xpre88lons,

After the user ha8 loaded acorelmage by typingoneof t he t wo
oomrands above, he may begintransiating his MLISP program by eallling
the top Ileve| function named,vouguessed It, "MLISP", "MLISP" Is an
FEXPR whiech takes from 1 to 4 arguments, These arguments wll| be
explalned by examp|es, The full command 8}

(MLISP (<dev[ce>) <fije_name> (eT, NIL, NIL NIL2}))

where () and € nean "optlienma|" and "alternatives" respectively, A
<device> |s e|[ther a physicaldevice |lke g diskor de¢c tape (e,9.
DSKt or DTALt)oraprojJect=programmer palr representing a disk area
(e,g, (1,0AV) represents (1,DAV])),

MLISP USER OPERATION OF MLISP =SECTION4,1 70

Examples of the too level function "MLISP":

-y

R MLISP
e (MLISP F0O)

+R MLISP
«(MLISP DSK: FQO)

R MISP
«(MUISP (1,0AV) FOO)

R MLISPC
s (MLISP FOO T)

+R MLISPC
s (MLISP FOONIL)

«R MLISPC
«(MLISP FOO NIL NIL)

,R M.ISPC
s(MLISP DSK: FOO NIL NIL)

R M.ISP
«(MLISP (F0Q,BAz))

R MLISP
O T 000’0 DTALI(FOD,BAR))

+R MLISPC
s(MLISP MTAQ: (FOO,BAZ) T)

would translate and execute a program
on the disk flle FOO

would do exactiy the same thing

would transjate and execute a program
on DSK!FOO[1,DAV)

would translate a program on DSKIFOO
and compile [t ontoDSKIFOO,LAP

would trans|ate a program on DSKiFOQO
and pretty=print the LISP transiation
onto DSK:iFOO,LSP

would do the same thing, except that
the expans| on ofalllLISP and MLISP
macro8 |8 Suppressed, Ordinarliy,
al| macros (FOR~|oopmacros, PLUS,
otc,)are expanded before printing,
which enables tha user to see axact|y
what coda wll| be executed,

would do ®xactly the sane thing

would trans|ate and exegute aprogram

would translate and execute a program
on DTAL1F00,BAZ

would transiate] program on
MTAQIFOO,BAZ and ec¢ompl|je It onte
DSK1FOO,LAP

MLI SP USER OPERATION OF MLISP = SECTION 4,1 71
(B) Translating Under Program Control

It |s somet|mes desireable to oall the MISP trans|ator under program

control, This |s made possible “ by ¢the speciai MLISP funoction

“MIRANS”, a funectlion of no arguments, Calling MRANS ha8t he

followlng effeots:

(1) An M.ISP <expression> Is road fromthe ourrently se|ected Input
deviee, The first character rcad should be theflrst character
I n the expression, An M.ISP <expression> differsfrom an MLISP
<programd® only In that the |ast character need not bea perled:
It may be any sultable expressionestopping character, usuaily 2
semjooion (})),

(2) The LISP transliation |®s returned asthe value of MIRANS,

The funotlon "MLISP" ghoul|d not be® ocal |8d f r o m within a program,
since |t hasseveral glde @ ffeotr, whloh are generally undesireable In
a programj} for example, the funotlon RESTART I8 redefined, MIRANS
has no side effeots,

Note! It MRANS Is calfed, the entire MISP translator mystb a
® vellabla, This means that programs using MRANS should only b® run
Interpreted,

-

MLISP USER OPERATION OF M.ISP = SECTION 4,1 72
(C) Loading Conpiled Programs

There s a flle called UIILS on the system area of the dlsk
contalning run-time functions, Thisfile mustbeloaded|f ¢ he wuser
has efther oomplled hls MLISP program onto a +LAP flie or
pretty=printed It onto a LSP flie, UTILS Isalready loaded|nto
both the M.ISP and M.ISPC core Images, so that |f the user Simply
wants to transiate and run hISMLISP program, the run-tine funotlbns
will be avallablse,

To readInan M.ISP program after If has been complied by MLISPC,set
up- a LISP system wlth suffligclentB|nary Program Spacee to holdt he
oonplled code, and then type}

(INC (INPUT DSKi (<fl|e_name>,LAP) SYS:UTILS))

The flle UTILS shou|d always be read In last sinoe one of the things
It does I8 set IBASE and BASE (thelnputandoutputradliclesfor

numbers) t010 (l,e, decimal), Thereafter, al | numbers read or
written wl|l be Interpreted asdeg¢lima| nunbers, The user should be
careful to set IBASE to 8 (l,e,00tal) |f he wants to read |Im nore
LAP code, since LAP expects |t8 nunbers to beinootal form, and t hen
reset IBASE to 10 afterwards,

the followlng sequence would translate and compjilean M_ISPprogram
on the dlsk flle FOO, and then read In the complled code!

+R M.ISPC

s(MLISP FOO T)

ves SMLISP and compjler typeoutd +..
#euENDeQF «.RUN® & &

seC .

+R LISP <cores|ze>

ALLOC? ve . <allocat|on>)

s (INC (INPUT DSK! (FOO,LAP)Y SYS!I UTILS))

see <LAP typeout> ,,.

[]

MLI SP USER OPERATION OF MLISP = SECTION 4,2

9

This sectlion iso n | yfor those hardy souls attempting to
MLISP on aLISPil,6system,
necessSary to reassembie

To Reconstruct MLISP!

R LISP 24

ALLOC? Y

FULL WDS=20@9
BIN,PROG,SP28000
SPEC.POLs

REG, PDLs_
HASHS

AUXILIARY FILES?Y
SMILE?.

ALVINE?_

TRACE?,

LAP?Y

DECIMAL?_

#(INC (INPUT DSK!
(MLISP,LAP)
(RUNFN1,LAP)
(RUNFN2,LAP)

MINIT
_ SETOGS))

v Ctype outd,,,

& (SCANNERLIINIT)
«sSCANS

LOADER 1K CORE

o (SCANNERQINIT)
N L

oeC

,SAVE QSK MLISP

USER OPERATION OF MLISP = SECTION 4,2

Below IS the sequence of

To Reconstruct MLISPC:

+RLISP 34

ALLOC? Y

FULL W0S=30p9
BIN,PROG,SP=23008
SPEC,POLs=

REG, POL=_

HASH® _

AUXILIARY FILES?Y
SMILE?,

ALVINE?_

TRACE?,

LAP?Y

DECIMAL?.

*(INC (INPUT DSK1
(MLISP,LAP)
(MACROS,LSP)
(MACROL,LAP)
(RUNFN2,LAP)
(PPRINT,LAP)
(COMPLR,LAP)
MINIT
SETQS))

ves€tyDe OUt>o-y

(SCANNERLINIT)
seSCANS

LOADER 1K CORE

¢ (SCANNERRQINIT)
NIL

a*C

+SAVE OSK MLISPC

recomstryct
commands
both theMLISP and the MLISPC core Images.
In SECTION 4,3|s||sted the contents of the varlous
’l'...

ML 1SP USER QPERATJON OF ML{SP - SECTION 4,2 74

The correct oore Imageg w!ll now be gaved ynder "MLISP" and "MLISPC".
A 1ittie explanation about thess tw sequences Is necessary, The
underbar (_) In the flerst few |Ines repregsents a spacel this merely
Instructs 1ISP to use the standard allocatlon, The |ine reading!

(INC (INPUT DSK: (MLISP,LAP) ,,,)

assumes that all of the LAP fijes ||sted have been compl|ed by the
LISP comp| ler, The flje COVWPLR should be the LISP compiier Itseif,

The I|ine **SCAN% (% stands for ALTMODE) loads the MLISP scanper
package, whioh must have been compiled by MACRO and be Im REL
format,

If the machine language scanner IS not to be used, then the LISP
scanner |[sted In SECTION 7,3 should be compijed by the LISP complier
and read In with the other LAP flles, Notet all LAP flles myst be
read before the f| |e SETQS, because SETQS changes IBASE, the Input
radix gor numbers, from 8 (oetal) to 10 (decimal), LAP expects IBASE
to be 8,

I[f the LISP scanner |s ysed, the following |lnes should be omltted:

« (SCANNERLINIT)
s2SCANS

LOADER 1K CORE

 (SCANNERINIT)
NIL

MLI SP USER OPERATION OF MLISP = SECTION 4,3 75
, USER OPERATION OF MLISP = SECTION 4.3

This Is areference f|le of the MLISP source fljes,

FI T8 Contents

MLI SP TheMLISP translator funetliens -- In LISP

M} NI Inltiallzatlon for tho M.UISP translator (reserved
words, abbreviations, nrecedences, etc,) -- In LISP

SETQS Inltlallzation of the MLISP 9lobally=defined atons --
In LISP

RUNFN] &FOR, 4D0, &WHILE, 8INDEX -- |n LISP

RUNFN2 PRELI ST, SUFLIST, STR, STRP, STRLEN, AT, CAT, SEQ,
SUBSTR, PRINTSTR, NEQ, NEQUAL, LEQUAL, GEQUAL -- In
LI SP

MACRQS &FOR, 800, SWHILE, &INDEX, NEQ NEQUAL, LEQUAL,

GEQUAL == all macros:, In M.ISP

MACRO1 Macro=axpanding functions for the flile 'MACROS! -- In
MLI SP

PPRINT Functlons for pretty=printinglLISP expresslions == |n
MLI SP

MEXPR LI1SP=to=MLISP convertor -- |n MISP

UTILS RUNFN2,LAP, SETQS -- This my be assembled by
compliing the fl|e RUNFN2 and adding the flle SETQS
to ‘to

SCAN,MAC The machine language scanner for MLISP == [n DEC

MACRO

¥ 7

ML ISP RUN=TIMg FUNCTIONS = SECTION 5.1 76

+ RUN"TIME FUNCTIONS « SECTION 5,1

This section describes the string=handling functions of MLISP, Other
run=time functlons avall|able to the user are described In the next
section, Stringsapcdescrlibed In SECTION 3,183 they ® xIst primarliy
to faecllltate Input/outputs To make strlng handiingeasy,MLISP
Includes the following set of primlitives,

STR (sexp) = "STRINGIFY"
This takes one arguyment, whlch my be any S=express|on, and
returns a string containing the charactors In that s=expression
{Including spaces and parentheses)’

STRP (sexp) = "STRING PREDI CATE"

This takes one argument, whleh nry be any s=expression, Returns
TRUE |f the s-éxpression Is a string, NIL otherwlise,

STRLEN (string) « "STRING LENGTH"
Thls takes one ® rqumentc @& strlng, and returns an |nteger equal
to the nunber of characters [n the strlnqg (not ecounting the
strlng quotes),

AT (string)= "“ATOMIZE"
This takes one argument, a Strin@, and returns an atom having a
printname made yo of the character8 In the strlnqg (not Ineluding
the string aquotes),

CAT (stringl, string2) = "CONCATENATE"
This takes two arguments and returns astring made up of thelr

conoatenatlon, The arguments need not bestrings, If elther
argument Is not a strinmg, It ISfirst converted to one, and then
the concatenation |s carrled out, CAT, belng a function of two

arguments, my be used as an Inflix!
strlngl CAT string2,

SEQ (stringl, string2) = "STRING EQUAL"
This takes two argunents, both $trlngs, and returns T If they are
ldentica|, NIL otherw|se, The LISP funct|on EQ@ cannot be used
because Strimgs are® atons whleghare not on the OBLIST, Aswith
CAT, SEQ mmy be used as an |nflx!
stringl SEQ string2,

SUBSTR (string, start, |ength) = "SUBSTRING"
This takes three arguments, the flirst beingastring and the
other two belng Integers, It returns a 9Substring of the flrst

ML ISP RUN- TI ME FUNCTIONS = SECTION 5,1 77
argumgnt beglnning with <the haracter (n pos|tjon "start"
(counting from 1) and continuing for "jength" characters,
"length" neednotbeanumbepdiflit Is NOts» then the rest of the

stringilstaken,

PRINTSTR (string) = "PRINT STRING"
This takes
out put

return, Thevaluye of PRINISTR Is

same@8 With PRINT),

Examrpies of

STR ' STRING s
§TR "STRING' -~ .
STR ' (A (B,C) D) .
STRP "THIS IS A STRING " .
STRP ‘(THISISNOT ONE) s
STRP "™ .
STRLEN "THIS IS A STRING, " .
STRLEN STR ' STRI NG

STRLEN " .
AT "STRING" .
AT "THIS 1S A STRING " 2
AT"" 3

STR AT "THIS IS A STRING,"
AT STR 'THIS? 18? A? STRING?,

one argument, a string, and prints It on the current
device without the string quotes, fa||owed by a

carrlage

the vajyeof Its argument(the

the strling=handling funotions:

"STRING®
"STRING®
"(A (B , C) D)"

STRING
THIS/Z1S/A/ STRING ,
I'T legal

"THIS IS A STRING,”
THIS/Z 1S/ A/ STRING/.

"THIS IS A" CAT "STRING " L] "THIS IS A STRING "

"THIS IS A " CAT *STRING?, 3 "THIS IS A STRING, "

"A PERIOD " CAT "(,)" L) "A PERIOD ¢,)"

"A PERIOD "CAT’(?,) 3 "A PERIOD (.)"

“A PERIOD " CAT <PERIOD> & "A PERIOD (.)"

"STRING" SEQ "STRING" ¢ T

"STRING' SEQ STR *STRING e T

"STRING' SEQ@ "STRING " ® NIL

SUBSTRV THIS ISA STRING,",6,4) = "IS A"

SUBSTRVTHIS IS A STRING,",100,5) 3 "

SUBSTR("THIS IS A STRING,",5,180) = " IS A STRING,"
SUBSTR("THIS IS A STRING,",5, 'REST) 3 " IS A STRING "
PRINTSTR "A STRING " prints A STRING va lue 8 "A STRING,”
PRINT "A STRING " pr Ints "A STRING " value = "A STRING,"

.

MLI SP RUN- TIME FUNCTIONS = SECTION 5,2 70

« RUN-TIME FUNCITONS = SECTION 5,2

This section desoripes somc genera|=purpose routines that have been
Judged sufficlent|y usefyl t o be Included In the set of ryn=time
functions avallabje to the MLISP user, All of these functlons are
short and have been compl|ed, so that they requlrevery little blnary
program space and almost no free storagse, The functions NEQ, NEQUAL,
LEQUAL and GEQUAL are eoxpanded by macros when the M.ISP program In
which they occur Is complled, ThIS makes Using these functions In a
complied program very efflcloent,

PRELIST (|ist, Integep) = "PREFIX OF LIST"
Thils takes t,0 argunents, & |Is¢t and an Integer, PRELI ST returns
a |lst of the first "|nteger" clenents of Its flrst apgument, If:
there are fewer than "Integer" elements In It, PRELIST returns as
manyas |t can(l,8, the whole |I!st),

PRELIST may be abbrevliated ®(uparrow): PRELIST(L,6) =& L*6

SUFLIST ({ist, Integer) = "SUFFIX OF LIST"
This takes the same two argumentsas PRELIST! a |1st and an
Integer, SUFLIST returns allst formed by taking "Integer" COR’s
of Its flrst argunent, If It exhausts Its flr®ot argument before
It runs out of CDR’s, It stops at NIL(l.e. It Wwll| return NIL),

SUFLIST Is the "eompiiment™ of PRELIST In the sense that!
PRELIST(L,N) o SUFLIST(L,N) = L

tor al 1 lists L and fora)l Integers N, SUFLIST Is a
generallizatlon of CDR!

COR L g SUFLIST(L, 1)

COOR L 3 SUFLIST(L,2)

CODR CDDDDR L & SUFLIST(L,6)

SUFLIST Is nore powerful than CDR because the seoond argunent nmy
be a varlable(|ffaect, any expression), therebypermlitting the
user to defer untl| run-t/me his decislion on how many CDR’S to
take,

SUFLIST my be abbreviated + (down arrow); SUFLIST(L,6) = L6

MLISP RUN- TIME FUNCITONS = SECTION 5,2 79

NEQ (sexpl, sgxp2) = "NOT EQ"
This takes two arguments, which mmy be rny 8-expressions, and
returns TRUE |ftheyare not EQ to each other, NL otherw|se,
The LISP transiagtion Of X NEQ YI
(NEQ X V)
Is expanded by macros to!
(NOT (EQ X Y))
It 1t |s complled,

NEQUAL (sexpl, sexn2) - "NOT EQUAL"
-This takes two argumepts, which mmy be any seexpressigns: apd
returns TRUE It they are not EQUAL to eagh other, NIL otherwise.
The LISP transiationof X NEQUAL Y!
(NEQUAL X V)
I8 expanded by macros to:
(NOT (EQUAL X Y))
If 1t Isgompllied, NEQUAL may pe 8ppreviated # (not=equai sign).

LEQUAL (numberi, number2) = "LESS THAN OR EQUAL"
This takes two arguments, which should be numbers, and returns
TRUE If thr f#lest argunent Is loss than Orequal to the %econd
one, NIL otherwise, The LISP trrnslrtlon of X LEQUAL Y?
(LEQUAL X Y)
Is exyidera py mgg ros to!
(NST (GREATERE X Y1)
It 't is compl|ed, LEQUAL may be abbrev lated <
(less-than-or-+auel 9lgn),

GEQUAL (numberl, number2) <= "GREATER THAN OR EQUAL"

This |s the converse of LEQUAL, It takes two arguments, whloh
shou Id be numpers, and returns TRUE |f thefirstargument |s
greater than ofequalto the second one, NIL otherwise, The LISP
trrnslrtlon of X GEQUAL Y!

(GEQUAL X V)
Is e¥gNded pymggros to!

(NOT (LESSP X Y))
If It Is comol| | ed, GEQUAL may be abbreviated 2
(greater=than-or=equal sign),

-

MLI

SP

RUN- TI ME FUNCTI ONS

Examplies of theSe run=~timg functions!

6(A
‘(A
"(A
I(A

" (A
l(A
l(‘
v(A

(A
'(A
v(A

D E) +

@O o
anaa

D E) ¢

m® o
2 Xs Ro ki

oW
Q0

3

D E) ¢ 10

‘A B C D E)«p
'{A B C D E)sl
‘A B € D E)s2
‘A B C D E)3
‘(A B C D E)id
‘A B C D E)uS

‘A
"A
‘A

NEQ ' 8
NEQ ' (A
NEQ “A

*(A"(B,C)) NEQUAL

"A

I(A

10
10
10
10

i0
io
10
10

£

LEQUAL 20
$ 20

< 10

<0

GEQUAL 20
2 20
2 10
20

D E) PRELIST 3

‘(A (B O)
"(A (B,C)) # '"(A (B C))

(A
(B,C)) # (A (B,C))

‘(A BCDE)

COR ‘(A B c D E)
CDDR '(A B CDE)
CODDR ‘(A B C D E)
CODDOR '(A 8 C D E)

CDR CDDDOR *(ABC D E)

= n

« SECTION 5.2

(A B C)

(A B C)

(A 8 CODE)
NIL

(0 &)

(0 E)

N L
(ABCDR)

= (A B C DE)
= (ABCDE
= (ABCO B)

= (ABCDZE)
s(BC D E)

= (CDE)

(D E)

(E)

NIL

MLI SP SAVPLE M.ISP PROGRAM = SECTION 6.1 81

« SAMPLE MLISP PROGRAM = SECTION 6,1

BEGI N

%X Thils program |8 Included to provide an example of the M.ISP
language, It examines severa| ways of writimg the funetfon REVERSE
In MLISP, REVERSE was chosen because It |sfaml|jar to nost people;
It reverses the top level of a |Istt REVERSE ‘(A B C)=(C B A,

The function REVERSE may be writtem In many ways In MLISP, Some of
the . ways shown here are not too efflieclent, but they do serve to
lilustrate different M.ISP expressions, The nmethod used Ineach
function Is explained In a comment Included with the funectlon, %

XRBRRRBBURARRBBRERTBUNURRBBURURRARBRRRRRBERURBURBHUARRRRURBLBENREB AR RN
XKHRERRRY DEFINE ALL THE REVERSE [UNCTI ONS HERRREURX
XULERREBBBRRBRARRUBRURBRBUERERBBEARBBBRBRNHRBRRRRURBRB BB RERGURBRERRHURN

X REVERSEl Just calls REVERSELl2a with the |18t to be reversed and NI L.
The NIL Inltlallzes REVERSEja’s second argunent, ¥

EXPR REVERSEI (L)} REVERSELa(L,NIL)}

% REVERSEla doe8 al| the work for REVERSE1, It uses an IF expression
and a recurs|ve cajjon |tse;f, The reverse of L la buljt up In the
gecond a,gument RL, X

EXPR REVERSELla (L,RL)}
IF NULL L THEN RL ELSE REVERSE1a(COR L,CAR L CONS RL);

% REVERSE2 also uses an IF expression and a recursive cal| on Itse|f,
In this elever but Inefflclent verslon, the reverse of the rest of
the |Ist L Is APPEND’ed (®) to a |Ist contalning the first elenent, X%

EXPR REVERSE2 (L)}
IF NULL L THEN NIL ELSE REVERSE2(CDR L) @ <CAR L)

X REVERSE3 |8 an FEXPR} the arguments to [t are wunevaluated, It uses
a FOR expression as fol|lows! I Is set to each nenber of the |18t L
and then Is CONS’ed onto the reversed ||st RL, REVERSEJ doe® not use
recursion, X

MLI SP SAMPLE MLISP PROGRAM . SECTION 6,4 82

FEXPR REVERSE3 (L)}
BEGIN NEW RL} X PROG varigbles gre initiailzeg to NIL.X
RETURN FOR NEW] IN L DO RL « I CONS RL}
END;

X REVERSE4 |8 an example of & FOR expressjon using a numerieal
Inorement, In the operation of the lo00p, 118 Ineremented frem 1 t o
the length of L, For each value, thel’th element of L |s obtalned
by the Ilindex expressfion LL!J) and thenis CONS’ed onto the reversed
Ilet RL, X% .

EXPR REVERSE4 (L)}
BEGIN NEW RL}
ENDRETURN FOR NEW 1*1 TO LENGTH L DO RL « L[]J CONS RL:
; -

X PROGY Is |Ike PROG2, except that PROG1‘’s value |8 the value of its
tirst (rather than |ts second) argument, Thisls not a reverse
function, but |9 used by reverse functions whieh follow, X%

EXPR PROGYL (A,B); A;

X REVERSE5 |8 another FEXPR, It vsesa WHILE expresslion as follows:
whil® there 18 8%tl!| something |eft in L, the next ejement Is taken
off and CONS’ed onto the reversed |jst RL, This doe8 not use
recursion, %

FEXPR REVERSES (L)}

BEGIN NEW RL}
. RETURN WHILE L 0O PROGL(RL « CAR L CONS RL,L « COR L)}
ENDJ

X REVERSE6 wuses an UNIIL expresslion (PO-UNTIL), The operatlon of
this UNTIL=|o op I8 roughly the sanme a8 that of the WHILE-loop In
REYERSES, The one difference 18 that Since the body of the |loep gets
executed before testino If there Is anything In Ly an Inltlial test
must be Included to take carecthe trivialcase where REVERSE6 1 s
called with NIL as {ts argument, Thls does not use recursion, X

-

ML ISP SAMPLE MLISP PROGRAM = SECITON 6,1 83

EXPR REVERSE6 (L)
1F NULL L THEN NIL ELSE
BEGIN NEW RL3
ENDRETURN D0 PROGL(RL = CAR L CONS RL,L « COR L) UNTIL NULL L}
}

X REVERSE7 wuses a standard LISP function, MAPCAR,together with a
LAMBDA expresslion, The operation of thIs Is verysimilar to that of
REYERSE3, X%

FEXPR REVERSE7 (L)}
BEGIN NEW RL}
MAPCAR(FUNCTION(LAMBDA(I)} RL « I CONS RL), L)
RETURN RL}
END3

-

¥ Of all the nethods presented, REVERSES Is the nost unlgueto MLISP,
]t uses a numerjcal FOR-loop, as does REVERSE4; In additlon |t uses
Index expressions on both the left and right sides of the asslignment
operator (®), The Index expressjon on the left slde retrieves the
I’th position In the reversed |lst RLy, Into which Isplaced t he
LEN=N+1’st clenent of L, LEN Is the length ofL, The first Index
expressjon |s used to obtaln a "cel|" or POSITION In RL, whl|le the
second Index expresslomilsused to obtalnm the ELEMENT whlch occuples
a positionIinlbl, %

EXPR REVERSES (L)}
BEGIN NEWRL,LENI
LEN « LENGTH L}
FOR NEW Ne1 TO LEN pO RLIN]) = LLLEN=N+1];
RETURN RL}
ENDJ

X The LISP transjation of this program Is IIsted In the folloewing
sectlion, It has been printed using a program called PPRINT, an
svexpression formatting (pretty=printing) Program ThIls program Is
wrltten In MLISP and Is Included with the MISP system, (A|| of the
files In the M.ISP system arec |Isted In SECIION 4,3,) Note that
FOR-100ops, WHILE-1oops and UNTIL~=|oops have been expanded by macros
into In=l|ne code, X

END,

MLISP SAMPLE MLISP PROGRAM = SECTION 6,2 84
SAMPLE MLISP PROGRAM = SECTION 6,2

9

(DEFPROP REVERSE3
T
*FEXPR)

(DEFPROP REVERSES
T
*FEXPR)

(DEFPROP REVERSE?
T

(DEFPROP REVERSEI
(LAMBDA (L) (REVERSEla L NIL))
EXPR)

(DEFPROP REVERSEla
(LAMBDA (L RL)
(COND((NULL L) RL) (T (REVERSEla (COR L) (CONS (CAR L) RL)))))
EXPR)

(DEFPROP REVERSE2
(LAVBDA (L)
(COND ((NULL L) NIL) (T (APPEND (REyERSE2(COR L)) (LIST (CAR L))
EXPR)

(DEFPROP REVERSE3
(LAMBDA (L)
(PROG (RL)
(RETURN
(PROG (&vV &LST1 D)
(SETQ &LSTL L)
LOOP (COND ((NOT &LST4) (RETURN &V)) (T NIL))
(SETQ ! (CAR &LST1))
(SETQ&V(SETQRL (CONS | RL)))
(SETQ 8LSTL (CDR &LST1))
(GO LOOP)))))

-

FExPR)

(DEFPROP REVERSE4
(LAMBDA (L)
(PROG (RL)
(RETURN
(PROG (8v &LST1 &UPPER1 I)
(SETQ &LSTL 1,)
(SETQ8UPPERL (LENGIH L))
LOOP(COND ((@GGREAT &LST1 &UPPERL) (RETURN &V)) (T NIL))
(SETQ | &LST1)
(SETQ &V (SETQ@ RL (CONS (CAR (SUFLIST L (SuB1 I),) RL)))
(SETQ &LSTL1 (ADDL &LST1))

3

MLISP SAVPLE MLISP PROGRAM = SECTION 6,2 85

(GO LOOP)))))
ExPR)

(DEFPROP PRQG1
(LAMBDA (A B) A)
EXPR)

(DEFPROP REVERSES
(LAMBDA (L)
(PROG (RL)
(RETURN
(PROG (&V)
LOOP (COND (L (SETQ &Y
(PROGY (SETQ RL (CONS (CAR L) RL))

(SETQ L (COR L)))))
(T (RETURN &V)))
(GO LOOP)Y))))
FEXPR) h

(DEFPROP REVERSE®
(LAMBDA (L)
(COND ((NULL L) NIL)
(T (PROG (RL)
(RETURN
(PROG (&V)
LOOP (SETQ &y
(PROGy (SETQ RL (CONS (CAR L) RL))
(SETQ L (CLR 1.))))
(COND ((NULL L) (RETURN &V))

(T (GO LOOP)))))))))
EXPR)

(DEFPROP REVERSE7
(LAMBDA (L)
(FROG (RL)

(MAPCAR (FUNCTION (LAMBDA (I) (SET@ RL (CONS I RL)))) L)
(RETURN RL)))

FEXPR)

(DEFPROP REVERSES
(LAMBDA (L)
(PROG (RL LEN)
(SETO LEN (LENGTH L))
(PROG (8V &LST{ GUPPERL N)
(SETQ 8LSTL 1,)
(SETQ 8UPPERY LEN)

LOOP (COND ((#GREAT &8LST1 &UPPERL) (RETURN 8V)) (T NIL))
(SETQ N &LST1)

(SETQ &V
(PROG2 (SETQ RL
(8REPLACE RL
(LIST N)

MLISP

EXPR)

SAMPLE MLISPPROGRAM = SECTIONS,2 86
(SETQ &MPA1

(CAR

(SUFLIST
L
(#DIF LEN N))))))

&MPB1))
(SEyQ &LSti (ADD1 &LSy1))

(GO LOOP))
(RETURN RL)))

ML ISP THE: ML1SP SCANNER = SECTION 7.1 87
, THE MLISP SCANNER =~SECTION7,1

The set of routlnes that returns the next "token"™ (ldentifler,
number, specla|l ocharacter, string) In the Input stream |s generally
called the "scanner" for a language, It Is true of aimost every
language that the majorlty of compllation time Is spent In the
scanner, since every character In a program has to be read In
Indlvidually and some sequence of tests made on It, Thls Is the
pllghtofMLISP, and the best that can be done Is to makethe scanner
as fast and efflclent a3 possible, Lynn Quam @atStanford has
developed a super fast, tabje~dplven READ funotlon for LISP 1,6 . To
thls he has addedaset of machine language functions whiech my be
used Yo specify the preclse syntax for a token returned by READ
These routimes actually mod|fy READ‘s Interna| character tables, thus
giving the user a oompletely general tablie=-driven Scanner, The
scanner for MULISP was obtained [In this way, It has Iinoreased
translatlon speed by a faotor of three (translation 8Speed 'IS now
30004000 tlmes/miniite), It has decreased <thes|ze of the translator
aswell, since using READ does not require any add Itlomal LISP
functions,

Since there Is no formal witeup ONQAUAM’S READ«modifying funetlons,
the fojilowing 1Is a reproduction of (parts of) Quam’s [mformal
description,

LISP now us®s a table driven scanner, whose tabje may L3
mod|ifled by the user for the oDurpose of implementing
scanngrs for other languages, For simplliclty, ¢the
functions for constructing the scanmear tabje Inltlally
glve an ALGOL type scanmeri that IS+ the ALGOL
deflinitions for ldentifieprs, strings and numbers, The
ALGOL table may be deviated from by using addltlonal
functions t o Imelude additlional gharagters In
Identiflers, and to speclfy delim|ters for Strings,

(SCANINIT ocomment_start comment-end 8trinmg_start string_end [lterally)
SCANINIT sets up the LISP scanner to be an ALGOL-type
scanner wWlth the, speclal dellmiters +tot comments and
strings, MLISP oalls (SCANINIT X % " " 27,

(LETTER x)
LETTER specifles t o the scanner that X Is an
extra=letter, and thus allows x to be in an Ildentifler,
MLISP call3 (LETTER)» (LETTER 1), (LETTER }),

(IGNORE x) ’
IGNORE spec|fijes to the Scannerthat x I3 not to be
returned as a dejlimiter from SCAN but Instead wl || be

MLISP

(SCAN)

THE MLISP SCANNER = SECTION 7.1

lgnored, Hgwever, x will stlll fupnctlon as a separator
betyeen ldentiflers and nymbers, MLISP calls (]GNORE
BLANK), (IGNORE CR), (IGNORE LF)» (IGNORE FF)» (IGNORE
VT), (IGNORE TAB), (IGNORE ALTMODE),

SCAN reads an atom or delimlter and sets the value of the
olobal varlapie SCNVA_ to the value read, and returns a
2unber corresponding t o the syntactic type read, a 8
ollowss

Syntactic Type Vajlye of SCAN Value of SCNVAL

<identifler> 2 the uninterned Identifier
<string> i the string
<number> 2 the value
<de|Im|ter> 3 the ASCI] numeriocalvalue
- of the de|imiter
(SCANSET)

SCANSET mod|fjes the LISP scanner In READ according te
the user specifcations.,

(SCANRESET)

SCANRESET unmod|fles the LISP scanner to | t8 norml
state, and myst be® called before REAP wl|| work proper|y
onoe SCANSET |s used,

88

MLISP THE MLISP SCANNER =« SECTION 7,2 89
, THE MLISP SCANNER =« SECTION 7,2
BEGIN

X fhls program presents a set of functlons whieh Is equlvalent to the
MLISP scanner, It]s for the reference of users wanting to [(mplement
MLISP on a LISP system wl thout Quam’s READemod!fylng funct f|ons, In
ardor to uUSe these funetlons, the funotlon &SCAN |Im the MLISP
translator should be replaced by the 8SCAN funetion below, and the
other funmctlons added where oconvenlent, The functions bejow are
wrltten In MISP, so thelr LISP transjations would sctual|y be used,

The scanner below Places only two restrietions on the LISP system
(1) There must be a READCH functlon, which reads the next c¢haracter
In the Input stream and returns that character as [ts value,

(2) There must be a READLIST funetlon, whleh takes as Its argument a
}18t of single characters and concatenates them to foprm an atom

These two fumctions are taken to be primltives, and they are used
below w thout further explanation, 8SCAN sets the 9lobal variables
4SCANTYPE and &SCANVAL as fol lows;

Syntactic Type Value of &SCANTYPE Value of &SCANVAL
<ldentifler> 0 the ldenti|fler
{string> 1 the str Ing
<number> 2 the nunber

3

<dellimiter> the delimjter

INEXT_CHAR s ajways set to the next character In thr Input stream
after the ocurrent token has been obtained,

%
SPECI AL "$NEXT_CHAR, ?28SCANTYPE, 28SCANVAL, ?8X7&}

EXPR 7&SCAN ()}
IF NUMBERP !NEXT_CHAR THEN SCAN_NUMBER() ELSE
IF LETTERP(INEXT_CHAR) THEN SCAN_IDENTIFIER(NIL, !NEXT_CHAR) ELSE
IF INEXT_CHAR EQ DBQUOTE THEN SCAN_STRING(CDBQUOTE>,READCH()) ELSE
IF IGNOREP(!NEXT_CHAR) THEN
PROG2(DO NIL UNTIL «IGNOREP(!NEXT_CHAR « READCH()), 7&8SCAN()) ELSE
IF INEXT_CHAR EQ PERCENT THEN
PROG2(DO NIL UNTIL READCH() EQ PERCENT & !NEXT_CHAR«READCH(),?&SCAN())
EL S E SCAN_DELIMITER()} ~

MLISP THE MLISP SCANNER = SECTION 7,2 90

EXPR SCAN_IDENTIFIER (L,NEXT)}
IF NUMBERP NEXT | GET(NEXT, LETTER) THEN
SCAN_IDENTIFIER(NEXT CONS L, READCH()) ELSE

IF NEXT EQ *?? THEN X The MLISP llterglly ohgrgcter (7) X
SCAN_IDENTIFIER(READCH() CONS SLASH CONS Ly READCH())

ELSE BEGIN
28SCANTYPE « 2} X ldentifler type, X%

78SCANVAL « REAOLIST REVERSE L}

IF 78X78 & GET(?74SCANVAL,’7&8TRANS) THEN

BEGIN X This sympol "gy oyt SEFINE g a8 something else. X%
78SCANTYPE » GET(?&SCA“VAL:'?&TRANSTYPE)!
78SCANVAL « GET(?2&8SCANVAL,’78TRANS);

END3

INEXT_CHAR « NExT) X Advanor !NEXT_CHAR, %

ENDJ

EXPR SCAN-STRING (L ,NEXT)}
IF NEXT NEQ DBQUOTE THEN SCAN_STRING(NEXT CONS L, READCH())
ELSE BEGI N
28SCANTYPE 1) % String type, %
28SCANVAL « READLIST REVERSE(DBQUOTE CONS L)}
INEXT CHAR « READCH()S % Advance INEXT CHAR, %
ENDJ

EXPR SCAN_DELIMITER ()}
BEGI N
28SCANTYPE « 33 XDelImiter typo. X
?8SCANVAL ¢ INEXT CHAR) X% Set 7&SCANVAL to the deofImlter. X
IF 78X78 8 GET(?28SCANVAL,’7&8TRANS) THEN
BEGI N % This sympo| hgs been DEFINE’ed a8 somethling eise, X
78SCANTYPE « GET‘?&SCANVAL.'7&TRANSTYPE)1
78SCANVAL « GET(?&SCANVAL,’'78TRANS)
END}
INExT_CHAR « READCH()} %X Advance !NExT_CHAR, %
ENDI

EXPR LETTERP (CHAR)} GET(CHAR, 'LETTER) | CHAR EQ ’?7}
EXPR IGNOREP (CHAR); GET(CHAR, ‘' IGNORE)}
EXPR SREAD ()3 PROG2(7&SCAN(),SREAD1())}

EXPR SREAD1()}
I F 78SCANVAL EQ LPAR & ?8SCANTYPE 3 3 THEN X ¢ %
PROG2(?&SCAN(),SREAD2())
ELSE 78SCANVAL}

L MLISP THE MLISP SCANNER = SECTION 7.2 9.1

EXPR SREAD2 0;
[F 28SCANVAL EQ RPAR 8§ ?78SCANTYPE = 3 THEN NIL)X
ELSE BEGIN NEW X}
X « SREAD1()}

78SCAN()}
RETURN(X CONS SREAD3I())

END}

EXPR SREAD3 ()3

IF 7&SCANVAL EQ PERIOD & ?4SCANTYPE s 3 THEN X 0%

BEGIN NEW X} X We have adotted palr (A,B) X
X « SREADL()} X Get the "B" pgrt, X
. P8SCANC()} X Get rid of the) %
RETURN X

END

ELSE SREAD2()}

ML ISP THE MLISP SCANNER « SECTION 7,2 92
%¥ Scanning nymbers, X
EXPR SCAN- NUMBER ()}

BEGIN NEW !IVALUE,!ILENGTH,N,X)} SPECIAL !IVALUE,!ILENGTH}
SCAN_INTEGER(INEXT_CHAR, 0, @)} X Stan an Integer, X

N « 1 IVALUE; XSave It, X%
IF INEXT_CHAR EQ PERIOD THEN % We have a decimal number, ¥
BEGI N

SCAN_INTEGER(READCH()) O, B8)3 X Soan the decima| part, X
N « N + ! IVALUE/ZEXP(12,0, ! ILENGTH))

END3
IFINEXT_CHAREQ 'E THEN X There |s an exponent, ¥
BEGIN

INExT_CHAR « READCH()} XSee |f there I8 a + or =.%

IF INEXT CHAR EQ PLUSS THEN X ¢ %
PROG2TXe10,2, !NEXT_CHAR®READCH()) ELSE
IF I{NEXT_CHAR EQ DASH THEN % = %X
PROG2(XeB,18, INEXT_CHAR~READCH())
ELSE X*10,0)
SCAN_INTEGER(INEXT_CHAR,@,0)3 X Now gect the exponent, X
N « N & EXP(Xy 1 IVALUE)}

END;
% Now we’ve got the whole number, X
78SCANTYPE « 2} XNumbertype, %
7&8SCANVAL « NI % Value of the number, X
X INEXT_CHAR Is ajready Set, X%
END}
EXPR SCAN-INTEGER (NEXT,N,LEN)} X Scan an Integer, %
IF NUMBERP NEXT THEN SCAN_INTEGER(READCH(), Ne«]BASE+NEXT, LEN+1)
ELSE BEGI N
{IVALUE « N} XValueofthelnteger,X%
VILENGTH « LEN} X # digits In the Integer, X
!NEXT_CHAR e NEXT} X Advanoe !NEXT_CHAR. X
END)

EXPR EXP (X,N)3} X
IF N= 0 THEN 1,8 ELSE %
[F N = 2#(N/2) THEN EXP(X#*X, N/2) %
ELSE X # EXP(X#X, (N=1)/2)} %

An exponent funotion, ¥
The exponentis O, X
Itls an even number, %
EISQ edd, %

L MLISP THE MLISP SCANNER = SECTION 7,2 93

% Calling t he followlng funogtion wili Set TP the propertyllsts
neaded by the funotion mabove, %

EXPR SCANINIT ()3

'CtABCDEFGH] JKLMNOPQRSTUVHWHIXY?Z
abgdefgh| JkiIimnopagrstuvwxyzz_ 1t 1)D0
PUTPROP(CHAR, T,'LETTER)}
FOR NEW CHAR IN <BLANK,CR,LF,FF,VT,TAB,ALTMODE> DO
PUTPROP(CHAR, T, ' IGNQRE);
INEXT_CHAR « BLANK} % Start the Scanner out wWlth a blank, X%
END;
EXPR SCANSETY ()3 NILS % Dumny definitlions. X
EXPR SCANRESET ()3 NIL:
X The LISP translation of thls program Is |lsted 1in the foljowing
sectlon, It has been printed using a Program called PPRINT, an
s~expression formtting (pretty=printing) program. Thisprogram [s
’ wrl tten In MLISP and |s included with the MLISP system (A1} of the

fites In the MLISP gsystem are |lsted Imn SECTION 4,3 ,) Not. that
FOR=|oops, WHILE~loops andUNTIL-loopPs have been expanded by macros
Into In~line code, %

END,

MLISP THE MLISP SCANNER =~ SECTION 7,3 94

« THE MLISP SCANNER - SECTION 7,3

(DEFPROP tNEXT_CHAR
T
SPECIAL)

(DEFPROP &SCANTYPE
T
SPECIAL)

(DEFPROP &SCANVAL

T
SPECI AL)

(DEFPROP &X&

T
SPECI AL)

(DEFPROP }I1VALUE
T
SPECI AL)

(DEFPROP JILENGTH
T
SPECI AL)

(DEFPROP 8SCAN
(LAMBDA NIL
(COND ((NUMBERP !NExT_CHAR) (SCAN_NUMBER))
((LETTERP !NEXT CHAR) (SCAN IDENTIFIER NIL INEXT CHAR))
((EQ INEXT_CHAR™DBQUOTE) (STAN_STRING (LIST DBQUBTE) (READCH)))
((IGNOREP INEXT_CHAR)
(PROG2 (PROG (&V)
LOOP (COND
((NOT (1GNOREP (SETQ !NEXT_CHAR (READCH))))
(RETURN &V))
(T (GO LOOP))))
(8SCAN)))
((EQ INEXT_CHAR PERCENT)
(PROGp (PROG (&V)
LOOP (COND
(CAND (EQC(READCH) PERCENT)
(SETQ INEXT_CHAR (READCH)))
(RETURN &V))
(T (GO LOOP))))
(&SCAN)))
(T (SCAN_DELIMITER))))
EXPR)

(DEFPROP SCAN_IDENTIFIER
(LAMBDA (L NEXT)
(COND

MLISP THEMLISP SCANNER =« SECTION 7.3 95

((OR (NUMBERP NEXT) (GET NEXT (QUOTE LETTER)))
(SCAN_IDENTIFIER (CONS NEXT L) (READCH)))
((EQ NEXT (QUOTE 7))
(SCAN_IDENTIFIER (CONS (READCH) (CONS SLAsH L))(READCH)))
(T (PROG NIL
(SETQ &SCANTYPE 0,)
(SETQ &SCANVAL (READLIST (REVERSE L)))
(COND
((AND 8x& (GET &SCANVAL (QUOTE &TRANS)))
(PROG NIL
(SETQ &SCANTYPE (GET &SCANVAL (QUOTE &TRANSTYPE)))
(SETQ &SCANVAL (GET &SCANVAL (QUOTE &TRANS)))))
(T NIL))
(SETQ !NEXT_CHAR NEXT)))))
EXPR)

(DEFPROP SCAN- STRI NG
(LAMBDA (L NEXT) -~
(COND
((NOT (EQ NEXT DBQUOTE)) (SCAN_STRING (CONS NEXT L) (READCH)))
(T (PROG NIL
(SETQ &SCANTYPE 1,)
(SETQ 8SCANVAL (READLIST (REVERSE (CONS DBQUOTE L))))
(SETQ INEXT_CHAR (READCH))))))
EXPR)

(DEFPROP SCAN_DELIM]TER
(LAMBDA NIL
(PROG NIL
(SETQ 8SCANTYPE 3,)
(SETQ &SCANVAL INEXT CHAR)
(COND -
(CAND &x& (GET &SCANVAL (QUOTE &TRANS)))
(PROG NIL
(SETQ 8SCANTYPE (GET &SCANVAL (QUOTE &TRANSTYPE)))
. IL)(sera 8SCANVAL (GET S8SCANVAL (QUOTE &TRANS)))))
(T NIL))
(SETQ INEXT CHAR (READCH))))
EXPR)

(DEFPROP LETTERP
(LAMBDA (CHAR) (OR (GET CHAR (QUOTE LETTER)) (EQ CHAR (QUOTE ?))))
EXPR)

(DEFPROP [GNOREP
(LAMBDA (CHAR) (GET CHAR (QUOTE IGNORE)))
EXPR)

(DEFPROP SREAD
(LAMBDA NIL (PROG2 (&SCAN) (SREAD1)))

EXPR)

ML1SP THE MLISP SCANNER = SECTION 7,3 96

(DEFPROP SREAD1
(LAVBDA NIL
(COND
((AND (EQ &SCANVAL LPAR) (EQUAL &SCANTYPE 3,))
(PROG2 (&SCAN) (SREAD2)))
(T 8SCANVAL)))
EXPR)

(DEFPROP SRE&AD2
(LAMBDA NI L
(COND
((AND (EQ &SCANVAL RPAR) (EQUAL 8SCANTYPE 3,)) NIL)
T (PROG (X)
(SETQ X (SREAD1))
(&SCAN)
(RETURN (CONS X (SREAD3)))))))
EXPR)

(OEFPROP SREAD3
(LAMBDA NIL
(COND
((AND (EQ &SCANVAL PERIOD) (EQUAL &SCANTYPE 3,))
(PROG (X) (SETQ X (SREAD1)) (&8SCAN) (RETURN X)))
(T (SREAD2))))
EXPR)

(DEFPROP SCAN- NUMBER
(LAMBDA NI L
(PROG (31 yALyE !ILENGTH N Xx)
(SCAN_INTEGER INEXT_CHAR 0, @,)
(SETG N !IVALUE)
(COND ((EQ INEXT CHAR PERIOD)

(PROG NIL-
(SCAN-INTEGER (READCH) 2, @,)
(SETQ N

(*PLUS N
(*QUO $IVALUE
(EXP 18,8 'ILENGTH))))))
(T NIL))
(CONO ((EQ {NEXT_CHAR (QUOTE E))
(PROG NIL

(SETQ INEXT_CHAR (READCH))
(COND

((EQ INExT_CHAR PLUSS)
(PROG2 (SETQ X 12.0) ,
(SETQ INEXT_CHAR (READCH))))
(CEQ INEXT_CHAR DASH)
(PROG2 (SETG X 2,18000000)
(SETQ INEXT_CHAR (READCH))))
(T (SETQ X 10,2)))
(SCAN INTEGER }NEXT CHAR 0, 8,)
(SETQ™N (#TIMES N (EXP X tIVALUE)))))

A\

MLI SP THE MLISP SCANNER = SECTION 7,3

(T NL))
(SETQ &SCANTYPE 2,)
(SETQ &SCANVAL N)))
EXPR)

(DEFPROP SCAN_INTEGER
(LAMBDA (NEXT N LEN?
(COND ((NUMBERP NEXT)
(SCAN INTEGER (READCH)
(*PLUS (*TIMES N IBASE) NEXT)
(AJD1 LEN)))
(T (PROG NIL
(SETQ 1IVALUE N)
(SETQ!ILENGTH LEN)
(SETQ !NEXT_CHAR NEXT)))))
EXPR)

(DEFPROP EXP
(LAMBDA (X N)
(COND ((EQUAL N 2,) 1,0)
((EQUAL N (#TIMES 2, (*QUO N 2,)))
(EXP (#TIMES X X) (#QUO N 2,)))
(T (*TIMES X (EXP (*TIMES X (*QUO (SUBL N 2,))))))
EXPR)

(DEFPROP SCANI NI T
(LAMBDA NI L
(PROG NJL
(PROG (&Y &LST1 CHAR)
(SETQ &LST1
(QUOTE

(ABCODEFGHI JKLMNOPORSTUVWXY?2
defgh! JklImnoparstuvwxysz

ab ¢
_v
LOOP (COND ((NOT &LST1) (RETURN &V)) (T NIL))
(SETQ CHAR (CAR &LST1))
(SETQ 8V (PUTPROP CHAR T (QUOTE LETTER)))
(SETQ &LST1 (CDR &LSTL))
(GO LOOP))
(PROG (8V &LST1 CHAR)
(SETQ 8LST1 (LIST BLANK CR LF FF VI TAB ALTMODE))
LOOP (COND ((NOT &LST1) (RETURN &V)) (T NL))
(SETQ CHAR (CAR &LST1))
(SETQ 8y (PUTPRQP CHAR T (QUOTE IGNORE)))
(SETQ &LST1 (CDR &LSTL))
(GO LOoOP))
(SETQ INEyT_CHAR BLANK)))
EXPR)

(DEFPROP SCANSET

(LAMBDA NIL NI L)
ExPR)

97

ML1SP THEMLISP SCANNER «SECTION 7.3 90

(DEFPROP SCANRESET
(LAMBDA NIL NIL)
EXPR)

MLISP BIBLIOGRAPHY « SECTION 3 99

BI BLI OGRAPHY = SECTION 8

Enea, Horace, MLISP, Technlical| Redort No, CS=92, Computer Sclence
Department, Stanford Unlversity, 1968,

Hearn, Anthony C,, STANDARD LISP, Stanford Artificia| Inte||lgence
Laboratory Memo No, Al=90, Stanford Unlivers|ty, 1969,

Hearn, Ant hony C,, REDUCE), A PROGRAM FOR SYMBOL!C ALGEBRAIC
COMPUTATION, Pre¢, SHARE XXXIV, 1970,

McCarthy, J,» Abrahams, P,, Edwards, D,» Hart, T., Levin, M,,» LISP
1,5 PROGRAMVER' S MANVUAL, The Computation Center apd Research
Laboratory of E|ectronles, Mssachusetts Jnstitute of Technology,
MIT Praegs, 1965,

Quam. Lynn, STANFORD LISP 1,6 MANUAL, Stanford Artlificial
Intel|lgence Laboratory Operatinmng Note No. 28,3, Stanford
Univarsity, 1969,

Welssman, Clark, LISP 1,5 PRIMER, DOfckenson Publishing Company, Inc.,
_Beypont, Cajltornla, 1967.

