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THE BOSE-NELSON SORTING FROBLEM

by Rotert W. Floyd and Donald E. Xnuth
Dedicated to R. C. Bose an his Seventieth birthday

A typical "sorting network" for four numbers is illustrated in Figure 1;
the network involves five "comparators”, shown as directed wires connecting
two lines. Four numbers are input at the left, and ax they move towards the
right each comparator causes an interchange of two numbers if necessary so
thet the larger number appears at the point «f the arrow. At the right of
the network the numbers have been sorted into nondecreassing order from top
to bottom; it is easy to verify that this will be the case no matter what
numbers are input, since the first four comparators select the smallest
and the largest elements and the final comparator ranks the middle two.

Sorting networks were originally constructed prior to 1957 by R. J. Nelson,
who developed special networks for eight or less elements. Nelson also
showed that n more comparators always suffices toc go from n elements

to n+rl (see O'Connor and Nelson [19621).
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Figure 1. A Sorting Network.
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In 1960-1961 he and R. C. Bose constructed n-element sorting networks
which were considerably more economical a8 n —» (see Bose and Nelson [1962]).

The Bose-Nelson sorting problem is the problem of determining S(n) , the

minimum number ofy comparators needed in an n-element sorting network.

Bose and Nelson gave an upper bound for S(n) , and conjectured that
their method actually gave S(n) exactly; but subsequent constructions have
shown that their upper bound can be improved for all n > 8 (see Floyd and
Knuth [ 19€7], Batcher [1968]). 1In this paper we develop a few aspects of
the theory, and prove that Bose and Nelson's conjecture was correct for
n<8.

Table 1 outlines some of the early work on the Bose-Nelson sorting
problem, and summarizes its current status; see Kmuth [1971] for further
details of recent constructions, due to M. W. Green, A. Waksman, and
G. Shapiro. The upper bounds listed for n <12 are probably exact.

In order to study the problem in detail, it is conveniernt to introduce
a few notational conventicns. Let x = (xl, ...,xn) and y = (yl, ...,yn)
be sequences of n real numbers; x is said to be sorted if
X, <X
exchange operation (1ij) and the comparator cperation [ij] , for

o <... < X, We define two operators on such sequences, the

l<i,j<n, ifj, as follows:

x(ij) =y iff Vi T Xy ¥y =Ky ¥ =X for it xt5; (1)

x[1j]) = x if xisxj s x[ij] = x(43) 1if x >xj . (2)

i

Thus x[ij] =y iff ¥y = min(xi,xj) » ¥y = ma::(xi,xj) ; and y, = X,

for i Ak 3. It is clear that, when 1i,J,k, ¢ are distinct, we Lave

(see Figure 2)
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(191433 = 1431, (13119 = (5] ; (3

(13){3k]

1]

Cik](13) , (1){k3] = (k1}(1]) , (33)(ke] = [kL](4i3), (1)

A comparator network a 1s a sequence of zero or more exchange and/or comparator

operations; a sorting network o 1is & comparator network such that xx is

sorted for all x . We write &3 for the network consisting of & followed

by B ; and we say that

Q
n

=p Iff WacUB, =8 if Ux =08, (5)

where U 1s the set of all sequences (xl,...,xn) . Figure 1 illustrates
the sorting network [12][3%][13]{24][23] . Clearly @< g implies that
oy < By + Furthermore, if B 1ise a sorting network and X C B we must

have a = 8 3 in fact, 2x = xB for all x 1in this case, since x¥ must

be sorted.

Figure 2

Sorting networks can also be interpreted in a more general way, if we
allow 1 numbers to be contained in each line for some fixel m >1 , If

XyseeesX, are multisets (i.e., sets with the possibility of repeated elements),

0

ontalring w elements each, we can redefine the comparator ([ij] to be the

operation of replacing x, and xj by the smallest and largest m elements,



respectively, of the original 2m elements in x, and xj . See Flgure 3,
which illustrates the case m = 2 . Our first result gives a basic property

of this general interpretation.
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Figure 3. Another interpretation of the
network in Figure 1.

Theorem 1. Let « be a comparator network for n elements, and let i
B e e ——— ——— —— e | ———

and j be indices such that (mot)iﬁ(mcz)‘j for some x and for some m > 1 ;

in other words, the m elements of the multiset (m)i are not all less

than or egual to the m elements of (JCCX)J . Then there is a sequence

¥y = (yl,...,yn) of zeroes and ones such that (y(:t)i =1 and (ya)‘:l =0 .

Froof: Let « =f,...f, where each f_ = is an exchange or a comparator.
Let u be the smallest element of (x) j 3 we shall use the name A +to
stand for any number <u , and B for any number >u . By hypothesis,
at least one element of (m:z)i isa B . We shall define a sequence y<s)

of zerces and ones, for 0 <s <t , such that

(8) _ s s

Vo = O implies that (Xfl"'fa)p contains an A, (6)
le) _ 1 implies that (xf £ ) contains & B 1
Yp = implies ( l"'Is)p ’ J



for 1 <p<n. First for s =t we define y§t) =1, ygt) =0, and
other elements yﬁt) are defined in any manner consistent with the above
conventions (£), (7).
. (8) (s-1)
Assuming that ¥y has been defined for s > 1 , we define y

as follows:

Case 1, f_ = (pa) . Then y(s'l) =Y(S)(P<1) .

Case 2, fs = [pa] end yl()s) = y((IS) . Then y(s_l) = y(s) . This
fulfills the above conditions, since yc(;S) = 0 implies that (xfl...fs)q

contains at least one A , hence (xf‘l...f )P contains all A's , hence

s
there are more than m A's 1in all; some A's must be present in both

(xfy...t snd  (Xfy...f . Similarly yl(,s) =1 implies that

s-l)q
and (Xfl"'fs—l)q both contain at least one B .

s-l)p

(xfl.. .fs_l)p

s s s-1 s-1

Case 3, f_ = (pa] and yl()) ;éyc(l) . Then (yl(’ ):3’((1 )) are
defined to be either (0,1) or (1,0) , in any manner consistent with the
above conventions; and yis-l) =y£s) for p#r #4q . This definition of

(S-l) . 4
¥ is justified because ‘Xfl"'fs-l)p and (Xfl"'fs-l)q are not
both all A's or both all B's . Note that yc(18) = 0 1is impossible, aince
it implies as in Case 2 that (xfl...fs)P is all A's , contradicting our
convention; thus y(s) =0, y(s) =1.
P
According to this definition, y(s'l)fs = y(s) » hence y(o)ot = y(t) 5

therefore y = y(o) satisfies the conditions of the theorem. '

When m = 1 , Theorem 1 implies that a network will necessarily sort
all possible inputs if we can prove that it sorts the ot sequences of

zeroes and ones:



Corollary 1. A comparator network is a sorting network if and only if

it sorts all sequences of zeroes and ones.

Corollary 2. Let M(m) be the minimum number of comparators needed to

merge two sets of m elements, i.e., to sort all sequences (xl,...,xan)

such that x; < ... <x and x . <...<x, . Then
8(mn) < nS(m) +M(m)S(n) , (8)
M(mn) < M(m)M(n) . (9

Proof: Replace each line in an n-element sorting network by m parallel
lines, and replace each comparator by M(m) comparators which merge the 2m
lines corresponding to the original 2 lines. Append n m-element sorting
networks at the left, in order to sort each of the groups; this yields &
sorting network for mn elements having M(m)S(n) +nS(m) comparators. 1f
we start with a sorting network that was constructed in this way for n =2,
the righthand part of the network has M(m) comparators; expanding each
line to m' lines makes the M(m)M{(m') comparators of the righthand part

capable of merging two ordered groups of mm' elements. '

An example of the construction in Corollary 2 appears in Figure k4.
Bose and Nelson proved Corollary 2 in the special case of binary merging,
n =2 ; this shows that M(2") < 3", and s(2") <3"-2" . ¥hen
S(n) 2Pon and M(n) ~ P , the inequalities in Corollary 2 do not allow
us to lower the exponent B ; end in fact these inequalities do not lead
to an especially efficient way to construct sorting networks, compared to
other known methods. Yet the special case m =7, n =3 sghows that 21

elements can be sorted with one less comparator than predicted by the



Bose-Nzlson conjecture, and this is what first showed us that the
conjecture was false in general (see Floyd [196L]). We went on to find
that the conjecture is false for all n > 8§ . (This is, perhaps, poetic
justice, since Bose made the conjecture shortly after he had helped to
disprove Fuler's famous latin-squares conjecture, for all n > 6 , after
having first disproved it for n = 50 ! And our own sorting networks

have by now been shown to be nonoptimal for all n > 9 .)
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Figure 4. An 8-element sorting network, comstructed

from Figure 1 and Corcllary 2 (m = 2) .

Let us now examine the properties of comparator networks a little more
closely. In the first place, we can use identities (3), (L) to transform
any comparator network so that all comparators precede all exchanges, and so
that all comparators [:j] have i < j . {(Working from left to right, we
replace [ji] by [1j](ij) when i < j , and we permute exchanges with
comparators. This process clearly converges in a finite number of steps.)
In this way & network a is transformed into a'2" where o' has only

"downward" comparstors and o' has only exchanges. If Qa 1is a sorting



netwerk, we can see by considering the effect of a@ on {(1,2,...,n)
that " must be the identity transformation, so o = ot

Let us say that a gorting network is in standard form if it consists
entirely of comparators [ij] with i < j , and no exchanges. We have

proved

Lemma 1. Every sorting network is equivalent to & network in standard

form, having the same number of comparators. .

When the network is in standard form and when X, exceeds XypreosXy 15
all corparators [in] are essentially inoperative; hence we can construct

a8 sorting network for n-1 elements by simply removing all such

comparators [in] from an n-element sorting network in standard form.

T. Eibbard [1963] observed that sorting networks having the same number of
comparators as those originally constructed by Bose end Nelson can be

obtained in this way by starting with & Bose-Nelson retwork for 2° >n

elements and deleting all comparators involving x SOTRREIE S
2

We can now obtain a lower bound for the merging problem:
Theorem 2. M(2n) > 2M(n) +n .

Proof: Consider & network with M(2n) comparators in standard form,

which sorts (xl,...,x]m) whenever X, <x; < ... <X and

1 3 kn-1
X, X S v SX - We separate the comparators [ij] into three types,

A: i<2n, j<an
B: i<2n, j>2n

C: i>2n, j>2n .

Since X, . .s-:-sX) mAY be very large, there must be at least M(n)



comparators of type A; similarly there must be at least M(n) of typeC.
And since we might have x, = 1l when 1 is odd, O when i 1is even,
there must be at least n comparators of type B in order to let n O's

rise to the top half of the diagram. .

A similar proof shows that M(2ntl) > M(n) +M(n+l) +n ; and the same
relations alsc hold with S in place of M . It follows that
M(n) Z% n log, n+n for all n; this is why sorting networks based recur-
sively on binary merging involve the order of n(log n)2 camperaters, at least.
The best sorting networks ¥nown for r > 8 do not use binary
merging, so Theorem 2 does not give us useful information about lower
bounds for S{(n) . When n is comparatively small, xsct lower bounds can
be found, as we shell now see. First we shall examine a general

commutativity condition:

Lemma 2. If o = [il.Jl][1232]...[1tJt]. where {11’12""’11:} n {31,32,...,jt}
=f, and if B is any rearrangement of the comparators of « , then

x=g .

Proof: We shall show that Ux is the set S(o) of all vectors (xl, ...,xn)

such that x, < xj for 1 <s <t . Al xe3(x) satisfy xx =x,
s 5
hence S(a) c Ua .

Conversely, suppose thet xx/f8(a) , i.e., (xon)i > (xa)J. for
8 s

i . Yoo i s . .
sone s . Clearly & must be less than t ; let « [1131]"'[1t,-l‘]t-l] .

By induction on t , we have (mz').1 < (xa')j , hence [itj ] has either

t
s s
increased the is compcnent or decreased the js component of xx* . This
meens that 1s = ‘jt or ‘js =1y, contradicting the hypothesis. .

10



Lemma 3. TLet «a be a sorting network for 3 or more elements. Then

there is a sorting network, with no more comparstors than « , in which

the first three cperations are either

Case 4, [12][13][23] ;
or Case B, |12]{1131l45] ;

or CaseC, [12][34][13]

we

or Case D, [12][34][14] .

Proof: Clearly & includes at least three comparators, or it couldn't
sort. Since (ij)a = o, we may use (3) and (L) to transform a into a
sorting network Q' in which the first operation is [12] . For example,
if o = [47)p , we may take ' = (14)(27)a = [12](1k)(27)B ; and if
a = [21]8 we may take ' = a = {12](12)p . Similarly we may assume that
the second operation is either [12] or [13] or [23] or [34] ; and since
[12][12] = [12] , we may rule out the case [12]{12] . ZIf the second
operation is ([24] , we mey observe that whenever @ = [il'jl]“'[it‘jt] is
a sorting network, so is the "dual" network «' = [Jlil]...[;jtit]-r where
T 1s the sequence of exchanges which transforms (xl,xe, ves ,xn) into
(xn, ...,xe,xl) . Hence when « = [12]{23]8 we may consider the sorting
network ' = [21][32]g't = [12][13](13)(12)B't . Therefore we may assume
that the first two operations are [12]{13] or [12](34] .

Proceeding in this wey we can analyze the possibilities for the

third comparator, as follows.



{12]{331{12] = [22]{23] .

[12]{13](23] = A .

[12](13][14] o [221[3k][13] .

(12]023](2%] - [153](22](3k](23) = [12]{13][3k}(23) .
[220073)03%] - [20}[2%302%] = [12j{5h]{.1h) .

f121{131{4s5]1 =B .
f121(343{131 =C .
[3127{341{14] =D .

(227034 }{23] ~ [3hi{a2][h3](1s)(2h) = [12]138]02k]1(2W) (13) (2H) .
[121(3%](24] ~ [21]{M33(k2]) = [12][3L][131(13) (3k)(12) .
(12]034]025] = [121115](3%]) - [12]{13][45](L5) .

[12)[ 241251

[121{251134] ~ [21][52](43] - [21][32)(451(35)

= [12](13]0451(13) (22)(35) .
[12}(3%1035] = (3125112} - [12]{13][45)(%5) (35)(28) (23) .
(1233 ]045] - [3h]{12][25)(2k)(13) = [12][34}[25](2k) (13) .

Here " -" denotes an appropriate left-multiplication by one or more
exchanges, "=" denotes an application of Lemma 2, and "~." denctes
dualization as above.

Finally, if the first three operations are [121[34]{56] , we may
consider the first comparator which has an index in common with & previous

one; this will reduce to a case already considered. .

The exhgustive method in this proof can be extended to show that there
are essentially eleven ways to choose the first four comparators, when n > L4 s

namely



AL [12][13](23]{2h) . C1. [12)(3k][13][2L4] .
A2, [12][{13]{23](k5] . ce. [12)(34](131(351 .
c3. [12](34][13](L5] .
ch. [12](34]1[131(55] .

Bl. [i2){13]{bs]{abk] .
B2, [12])(13][45][k6] .
B3, (1o3){233(bs30(50) . Dl. [a2)id}{ak)135) .

p2. [12](3k]{1k]([56] .

Details are omitted here, since we shall not need this fact.
Theorem 3. S(n) >8(n-1)+3, for n>5 .

Proof'; There 18 a sorting network with n comparators, in standerd form,
having one of the four forme stated in Lemma 3. If we suppress all
comparators [iJ] with i = 1 we have a sorting network for XppeeerX

so we must show that at least three comparators have i =1 . This is obvious,
since in each case we already know two of the comparators, and at least one

more is required to bring the smallest element to the required position. .

Theorem J probably possesses the unique property that it has exactily
two applications, no more and no lees! Once S(5) has been shown to
equal 9 , we can use Theorem 3 to show that S(6) = 12 ; and S(7) = 16
will imply that S(8) = 19 . Besides these results, the theorem appears to
be quite useless.

We always bave S(n) > log, n! by an elementary information-theoretic
argument, hence the velues of 85(1),5(2),S(3),S(4) are immediately established.
But information theory telis us only that S(5) > 7 , and Treorem 7 shows
that S(5) > 8 ; the following theorem shows how to strengtlen Theorem 3

when n =5 .



Theorem 4. 8(5) =g .

Proof: We need only show that S(5) > 9, in view of Bose and Nelson's
construction. Proceeding as in Theorem 3, if the sorting network begins
ag in Case D we may permute the lines so that the first three comparators
are [14][25][15] . Then we must have at least S(3) more comparators
[13] with i <3 <3, and ot 8{3) more with 3 <1 <], to complete
the sort. This makes 9 comparators.

For Cases A, B, and C we may permute the lines to obtain a sorting
network in standard form in which the first three compsrators are

respectively

{127(151{25] in Case A,
[13]{241[25] in Case B,

[14][25]112] 4in Cese C.

Applying these to all 32 combinatiocns (xl,xe,xB,xu,x:) of zeroes and ones
7/

(ef. Corollary 1), then replacing all zeroes at the left and all ones at the

right by asterisks, discarding all duplicates and all sequences which are

nothing but asterisks, we obtein the 5-tuples

*10
190
11
10
oo
10
10 *

(10)

X x Kk k x % *
o ok ok kK
* % % % © O

plus the "special" 5-tuples

1100* , 110%* , 1110%* inCage A,
10110 , 10 % *=* in Case B, (11)

110%* , ¥*1010 , ¥1110 1in CaseC.

1k



In order to sort (10), we nced at least S(3) comparators with
2<i<j«<hk and 8(3) with 3 <i<j<5; and there must also be
another with i =1 . The only way to do this with five more comparators

is to use the sequenca [34][23][L45]{34] or [34][L5][23][34] , with an
additional [13j] inserted scmewhere. But then it is not difficuli Lo verify

that the special 5-tuples in (11) cannot all be sorted. [ |

Theorem 5. S5(7) = 1€ .

Proof': This theorem was proved by exhaustive enumeration on a CDC G-21
computer at Carnegie Institute of Technology in 19¢6. The program was written
by Mr. Richard Grove, and its running time was approximately 20 hours. The

algorithm consisted of constructing a set S, of sequences such that, for

t
all <« of the form [1ljl]...[itjt] ; there exist permutations = and p

t
for t = 1,2,...,16 , taking care to keep each set rather small; for this

with wp > B for some aest . The sets S, were generated successively

purpose a 128-bit vector was maintained for esch element of St » characterizing
those T-tuples of zeroces and ones which are output by the network. Most of

the computation (about 13 hours) was spent in the cases t =8 and 9,

since S. had 729 elements. None of the six elements in S-.L was a

9 5
sorting network.

The methods of proof used to establish these lower bounds on S{n)
are of course quite unsatisfactory for larger values of n . We have no
idea how to prove that S(n) grows as cn(log n)2 » although the best

upper bounds known to date have this asymptotic behavior.

15
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