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THE BOSE-NELSON SORTING PROBLEM

by RotertW. Floyd and Donald E. Xnuth

Dedicated to R. C. Bose an his Seventieth blrthday

A typical "sorting network" for four numbers is illustrated in Figure 1;

the network involves five "comparators", shown as directed wires connecting

two lines. Four numbers are input at the left, and au they move towards the

right each comparator causes an interchange of two numbers if necessary so

thet the larger number appears at the point of the arrow. At the right of

the network the numbers have been sorted into nondecreasing order from top

to bottom; it is easy to verify that this will be the case no matter what

numbers are input, since the first four comparators select the smallest

and the largest elements and the final comparator ranks the middle two.

Sorting networks were originally constructed prior to 1957 by R. J. Nelson,

who developed special networks for eight or less elements. Nelson also

showed that n more comparators always suffices tc go fram n elements

to n+l (see O'Connor and Nelson [1962}]).
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Figure 1. A Sorting Network.
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In 1960-1961 he and R. C. Bose constructed n-element sorting networks

which were considerably more economical a8 n —« (see Bose and Nelson [1962]).

The Bose-Nelson sorting problem is the problem of determining S(n) , the

minimum number of comparators needed in an n-element sorting network.

Bose and Nelson gave an upper bound for S(n) , and conjectured that

their method actually gave S(n) exactly; but subseguent constructions have

shown that their upper bound can be improved for all n > 8 (see Floyd and

Knuth [ 19€7], Batcher (19G8]). In this paper we develop a few aspects of

the theory, and prove that Bose and Nelson's conjecture was correct for

n<8.

Table 1 outlines some of the early work on the Bose-Nelson sorting

problem, and summarizes its current status; see Kmuth [1971] for further

details of recent constructions, due to M. W. Green, A. Waksman, and

G. Shapiro. The upper bounds listed for n < 12 are probably exact.

In order to study the problem in detail, it is convenient to introduce

a few notational conventions. Let x = (x5 reer X) and y = (yy veer) |

be sequences of n real numbers; x is said to be sorted if

Xy <x, < oon < x, We define two operators on such sequences, the

exchange operation (ij) and the comparator operation [ij] , for

1<i,j<n, i#j, as follows:

x(ij)= y iff Vi T X50 Ys =X ¥y Tx for if kt J; (1)

x[ij) = x if x < xy , x[ij] = x(i3) if Xs > x . (2)

Thus x[ij] = y iff yy = min(x;,x,) » Vs = mas (x,,%,) , andy, = Xy
for 1 Ak fj. It is clear that, when 1,J,%X,f are distinct, we Lave

(see Figure 2)
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(13)[43) = (45) , [131(13) = [31] ; (3)

(13) (dk] = [ik](1d) , (L)0x3] = [kil(1§) , (id) {ke} = [ke](i3), (b)

A comparator network a is a sequence of zero or more exchange and/or comparator |

operations; a sorting network « 1s & comparator network such that xx is

sorted for all x . We write a3 for the network consisting of a followed

by B ; and we say that

azp iff UacUB, a=pg if Ux =U, (5)

where U 1s the set of all sequences (xy “ee 2») » Figure 1 illustrates

the sorting network [12][34]{13][24][23] . Clearly ac pg implies that

Xy < BY + Furthermore, if PB 1s a sorting network and XC B we must

have a = 8 3 in fact, xx = x8 for ell x in this case, since x must

be sorted.

i i

k k

Figure 2

Sorting networks can also be interpreted in a more general way, if we

allow nn numbers to be contained in each line for some fixed m >1 , If

Xq3+ee3X ~~ 8re multisets (i.e., sete with the possibility of repeated elements),

contairing mw elements each, we can redefine the comparator [ij] to be the

operation of replacing x, end x3 by the smallest and largest m elements,
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respectively, of the original 2m elements in x, and xj See Flgure 3,
which illustrates the case m = 2 . Our first result gives a basic property

of this general Interpretation.

——— 390 asa 559 T99 ee— 7,9 8,9 ————m8,9 me

Figure 3. Ancther interpretation of the

network in Figure 1.

| Theorem 1. Let «@ be a couparator network for n elements, and let i

and Jj be indices such that (x), £ (20) 4 for some x and for some m > 1 ;
| in other words, the m elements of the multiset (xx), are not all less

than or equal to the m elements of (2x) 4 . Then there is a sequence

y = {¥y>+++5¥,) Of zeroes and ones such that (yo) =1 and (yor) 4 =0 .

Froof: Let « = £yeeeTy where each £o is an exchange or a comparator.

Let uu be the smallest element of (xx) 3 ; we shall use the name A to
stand for any number <u, and B for any number > u . By hypothesis,

| at least one element of (xx) 4 isa B . We shall define a sequence y(5)
of zerces and ones, for 0 <s <t , such that

y (8) = 0 implies that (xf,...f )_ conteins an A, (6)
Pp 1 “sp

fe) 1 implies that (xT f ) contains & B (‘7
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for 1 <p<n. First for 5 =t we define y(*) =1, y{® =0, and
other elements yi* are defined in any manner consistent with the above
conventions (£), (7).

; (8) (5-1)
Assuming that vy has been defined for s > 1 , we define y

as follows:

Case 1, f = (pa) . Then (8-1) = +8) (pq) .

Case 2, fy = [pg] and y$®) = 7S) . Then RC = (8) . This
fulfills the above conditions, since ye?) = 0 implies that (xf. £)4
contains at least one A , hence (xf. Tg) contains all A's , hence
there are more than m A's in all; some A's must be present in both

. CL (s) _ te
(xy. eee 1) and. (xEyeefo ag . Similarly yp | = 1 implies that |
(xfy eee 1) and (xf eT 1g both contain at least one B .

n (s) ; (5) (s-1) _(s-1) |
Case 3, f_ = [pq] and Vp £ Vg | Then (v4 »¥q ) are

defined to be either (0,1) or (1,0) , in any manner consistent with the

above conventions; and y{s=b) -y (8 for p£r #q . This definition of
y is justified because (xf eeefyg)s and (xf ef 1) are not
both all A's or both 211 B's . Note that y = 0 is impossible, since

it implies as in Case 2 that (xf)... £0) is all A's , contradicting our
convention; thus (8) = 0 , y (8) = 1 .

p q

According to this definition, y(8-De_ = 4 (8) » hence (0g = y(t) 3
therefore y = (0) satigfles the conditions of the theorem. 8

When m = 1 , Theorem 1 implies that a network will necessarily sort

all possible inputs if we can prove that it sorts the oft sequences of

zeroes and ones:
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Corollary 1. A comparator network is a sorting network if and only if

it sorts all sequences of zeroes and ones.

Corollary 2. Let M(m) be the minimum number of comparators needed to

merge two sets of m elements, 1.e., to sort all sequences (XypoeesXy )

such that Xy ver SX and Xa Soo SX Then

S(mn) < nS(m) + M(m)S(n) , (8)

M(mn) < M{m)M(n) . (9)

Proof: Replace each line in an n-element sorting network by m parallel

lines, and replace each comparator by M(m) comparators which merge the 2m

lines corresponding to the original 2 lines. Append n m-element sorting

networks at the left, in order to sort each of the groups; this ylelds a

sorting network for mn elements having M(m)S(n) + nS{m) comparators. 1f

we start with a sorting network that was constructed in this way for n =2 ,

the righthand part of the network has M(m) comparators; expanding each

line to m' lines makes the M(m)M(m') comparators of the righthand part

capable of merging two ordered groups of mm' elements. |

An example of the construction in Corollary 2 appears in Figure kL.

Bose and Nelson proved Corollary 2 in the special case of binary merging,

n = 2 ; this shows that M(2") <3", and (2%) < 37-2" . when

S(n) a nP-n and M(n) a nf , the inequalities in Corollary 2 do not allow

| us to lower the exponent B ; and in fact these inequalities do not lead

to an especially efficient way to construct sorting networks, compared to

other known methods. Yet the special case m =7 , n =3 shows that 21

| elements can be sorted with one less comparator than predicted by the
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Bose-Ne2lson conjecture, and this is what first showed us that the

conjecture was false in general (see Floyd [190L]). We went on to find

that the conjecture is false for all a > 8 . (This is, perhaps, poetic

justice, since Bose made the conjecture shortly after he had helped to

disprove Euler's famous Latin-squares conjecture, for all n > 6, after

having first disproved it for n = 50 | And our own sorting networks

have by now been shown to be nonoptimal for all n > 9 .)

RIA

TOIT
— 1
— x

Figure 4. An 8-element sorting network, constructed

from Figure 1 and Corollary 2 (m = 2) .

Let us now examine the properties of comparator networks a little more

closely. In the first place, we can use identities (3), (1) to transform

any comparator network so that all comparators precede all exchanges, and so

that all comparators [:j] have i <j . (Working from left to right, we

replace [ji] by [13J]{(ij) when i <j , and we permute exchanges with

comparators. This process clearly converges in a finite number of steps.)

In this way a network a is transformed into a'x" where &' has only

"downward" comparators and «&” has only exchanges. If a is a sorting
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network, we can see by considering the effect of a on {(1,2,...,n)

that a" must be the identity transformation, so a = at .

Let us say that a sorting network is in standerd form if it consists

entirely of comparators [ij] with i <j , and no exchanges. We have

proved

Lemma 1. Every sorting network is equivalent to a network in standard

form, having the seme number of comparators. |

When the network is in standard form and when x exceeds X,, ETE SE

all comparators [in] are essentially inoperative; hence we can construct

a sorting network for n-l1 elements by simply removing all such

comparators [in] from an n-element sorting network in standard form.

T. Eibbard [1963] observed that sorting networks having the same number of

comparators as those originally constructed by Bose and Nelson can be

obtained in this way by starting with & Bose-Nelson retwork for ok >n

elements and deleting all comparators involving x1?
2

We can now obtain & lower bound for the merging problem:

Theorem2. M(2n) > 2M(n) +n .

Proof: Consider a network with M(2n) comparators in standard form,

which sorts (X,y...,X),) Whenever X; <%3 < eee <x and

x, < x), < ore X)0 We separate the comparators [ij] into three types,

A: 1<2n, j<an

B: i<Zn, J >2n

C: i>2n, j>2n .

Since X, 15---5X,, may be very large, there must be at least M(n)

| 9



comparators of type A; similarly there must be at least M(n) of type C.

And since we might have x, = l when 1 is ocdd, CO when 1 is even,

there must be at least n comparators of type B in order to let n Ofs

rise to the top half of the diagram. _

A similar proof shows that M(2n+l1l) > M(n) + M{(n+l) +n ; and the same

relations alsc hold with S§ in place of M . It follows that

M(n) >3 n log, n+ n for all n ; this is why sorting networks based recur-
sively on binary merging involve the order of n(log n)° comparators, at least.

The best sorting networks known for r > 8 do not use binary

merging, so Theorem 2 does not give us useful information about lower

bounds for S(n) . When n is comparatively small, 3xact lower bounds can

be found, as we shell now see. First we shall examine a general

commutativity condition: |

Lemma, 2. If oO = [iy Wiggle. liga L where CEFR SERRIE Nn GITRPYRRRIS My
=¢$, and if PB is any rearrangement of the comparators of « , then

x=.

Proof: We shall show that Ux is the set S(a) of all vectors (xy er X)

such that %3_ < 3. for 1 <s<t. All xe3(a) satisfy xx =x,
hence S(a) c Ua .

Conversely, suppose thet xx fS(a) , i.e., (xt); > (ax) | for :
sone s . Clearly 8 must be less than t ; let Q' = (4,3, Jenel1 yd, 1] . |
By induction on t , we have Gert) < bert) , hence (1,3, ] has either
increased the ig compenent or decreased the Jg component of xx' . This

means that ig = J ¢ OF Jg = i, ; contradicting the hypothesis. |
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Lemma 3. Let Qa be a sorting network for 3 or more elements. Then

there is a sorting network, with no more comparators than «a , in which

the first three operations sre either

| Case A, [12][13][23] ;

| or Case Bb, [12]{13!lu45] ;

or Case C, [12][34][13] ;

or Case D, [12][3k]}[1%] .

Proof: Clearly «& includes at least three comparators, or it couldn't

sort. Since (ij)a = a , we may use (3) and (4) to transform «a into a
sorting network Q' in which the first operation is [12] . For example,

if a = [47] , we may take a' = (14)(27)x = [12](14)(27)f ; and if

a = [21]3 we may take &' = a = {12](12)p . Similarly we may assume that

the second operation is either [12] or [13] or [23] or [34] ; and since

[12][12] = [12] , we may rule out the case [12]{12] . If the second

operation is [24] , we may observe that whenever a = [i,3,1...[4.4,] is

a sorting network, so is the "dual" network a' = [3,45]... 03,4, Jt where

7 1s the sequence of exchanges which transforms (Xy5%,, .o DX) into

(x RTE NEST. . Hence when «a = [12]{23]8 we may consider the sorting
| network a' = [21][32]pg'r = [12][13]1/13)(12)B't . Therefore we may assume

that the first two operations are [121{13] or [2121{34] .

Proceeding in this way we can analyze the possibilities for the

third comparator, as follows.
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(12]{13]012] = [121023] .

[12]{131[23] = A .

[12][23][14] o [22}(34][13] .

(127013){24] = [13][12](3k1(23) = [12]1{13](3k](23) .

[22]073103%] — [22][2k]{24] = [127{5h]l1s)

[12)[131[45]1 = B .

[121(34]{13] = C .

[12){34}{1k} =D .

[123(3u}{23] - [3hifa2]lki]j(is)(2h) = [12][3h][3h](2W)(23) (2h)

[121034124] ~[21]{u3]{h2] = [12][3L]1131(13)(34) (12) .

[1210241025] = [12][15]13%) — [12)[13][u5](k5)

[12][3%10251 = [121[25]1134] ~[21](52](43] -[21][32][L5](35)

= [12][131[1451(13)(22)(35) »

[12]{3%1[351 = [3L1[25}[12) —[12}{1311B5](15) (35)(25) (23)

[123{3k1[u5] - [34][12][25)(2k)(13) = [12](2k]{25](2h)(13) .

Here "~~" denotes an appropriate left-multiplication by one or more

exchanges, "=" denotes an application of Lemmas 2, and "A." denotes

dualization as above.

Finally, if the first three operations are [12]1{34][56] , we may

consider the first comparator which has an index in common with & previous

one; this will reduce to a case already considered. .

The exhaustive method in this proof can be extended to show that there

are essentially eleven ways to choose the first four comparators, when n > Lo,

namely

12



Al. [12][13][e3][2h] . cl. [12)[3k][23][24] .

A2. [12][13][23](&5] . ca. [12](341(131(35] .

c3. [12][3%][13](b5] .
Bl. [i2]{13){bksi{1b]

ch. [121(3k1[13](55] .
B2. [12][13][%5][L6] .

23. [10}{23}{45)(50] - D1. [x2)idu)(2k)135) .

p2. [12](34][1k](56] .

Details are omitted here, since we shall not need this fact.

Theorem >. Sn) >8(n-1)+3, for n>5 .

Proof’: There 1s a sorting network with n comparators, in standerd form,

| having cone of the four forme stated in Lemma 3. If we suppress all

comparators [iJ] with i = 1 we have a sorting network for Xs eeosX

| 8c We must show that at least three comparators have 1 = 1 . This is obvious,

gince in each case we already know two of the comparators, and at least one

more is required to bring the smallest element to the required position. g

Theorem probably possesses the unique property that it has exactly

two applicetions, no more and no less! Once S(5) has been shown to

equal 9 , we can use Theorem 3 to show that S(6) = 12 ; and S(T) = 16

| will imply that S(8) = 19 . Besides these results, the theorem appears to

be quite useless.

| We always have S(n) > log, n! by an elementary information-theoretic

argument, hence the values of 85(1),5(2),S8(3),5(4) are immediately established.

But information theory telis us only that S(5) > 7 , and Theorem > shows

that S(5) > 8 ; the following theorem shows how to strengtl.en Theorem 3

| when n=5.
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Theorem 4. S(5) =§ .

Proof: We need only show that S(5)> 9, in view of Bose and Nelson's

construction. Proceeding as in Theorem 3, if the sorting network begins

ag in Case D we may permute the lines so that the first three comparators

are [14][25][15]) . Then we must have at least S(3) more comparators

[ij] with 1 <3 <3, amd at 8(2} more with 5 <i <j, to complete

the sort. This makes 9 comparators.

For Cases A, B, and C we may permute the lines to obtain a sorting

network in standard form in which the first three comparators are

respectively

{121[151{25] in Case A,

[131(2141[{25] in Case B,

[14]{25][12] in Case C.

Applying these to all 32 combinations (X13 X55 X25 X) 5X) of zeroes and ones |
(ef. Corollary 1), then replacing all zeroes at the left and all ones at the

right by asterisks, discarding all duplicates and all sequences which are

nothing but asterisks, we obtain the 5-tuples

* * % 10

¥ ¥ 1 00

*% 110

% % 10 % (10)

* 100 ¥

*¥110* |

* 30 * * :

plus the "special" S-tuples

l1100* , 110** , 1110 * in Case A,

10110, 10%x in Case B, (11)

110%» , 1010 , 1110 in Case C.

1k



In order to sort (10), we nced at least S(3) comparators with

2<i<j«h and S{(3) with 3 <i <j <5; and there must also be

another with 1 = 1 . The only way to do this with five more comparators

is to use the sequence [34][23][45](34] or [34][L5]1[23][34] , with an

additional [1j] ins=rted scmewhere. But then it is not difficull Lo verify

that the special 5-tuples in (11) cannot all be sorted. [|

Theorem 5. s(7) = 1€ .

Proof: This theorem was proved by exhaustive enumeration on a CDC G-21

computer at Carnegie Institute of Technology in 1966. The program was written

by Mr. Richard Grove, and its running time was approximately 20 hours. The

algorithm consisted of constructing a set Sy of sequences such that, for

all @ of the form [1,341.-.14.5,] » there exist permutations =x and p

with ap OB for same BeS, . The sets Se were generated successively

for t = 1,2,...,16 , taking care to keep each set rather small; for this

purpose a 128-bit vector was maintained for each element of S, » characterizing

those T-tuples of zerces and ones which are output by the network. Most of

the computation (about 13 hours) was spent in the cases t =8 and 9,

since S9 had 729 elements. None of the six elements in Sic was a
sorting network. a

The methods of proof used to establish these lower bounds on S{n)

are of course quite unsatisfactory for larger values of n . We have uo

idea how to prove that S(n) grows as cn(log n)® » although the best

upper bounds known to date have this asymptotic behavior.
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