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Abstract: An elementary outline of the theorem-proving approach to
automatic program synthesis is given, without dwelling on technical
details. The method is illustrated by the automatic construction of
both recursive and iterative programs operating on natural numbers,
lists, and trees.

In order to construct a program satisfying certain specifications,
a theorem induced by those specifications is proved, and the desired
program is extracted from the proof. The same technique is applied
to transform recursively defined functions into iterative programs,
frequently with a major gain in efficiency.

It is emphasized that in order to construct a program with loops
or with recursion, the principle of mathematical induction must be
applied. The relation between the version of the induction rule used

and the form of the program constructed is explored in some detail.
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1. INTRODUCTION

It is often easier to describe what a computation does than it is to
define it explicitly. That is, we may be able to write down the relation
between the input and the output variables easily, even when it is difficult
to construct a program to satisfy that relation. A program synthesizer is a
system that takes such a relational description and tries to produce a
program that is guaranteed to satisfy the relationship, and therefore does
not require debugging or verification.

On a more limited scale we can envision an automatic debugging system
that corrects programs written by humans instead of merely verifying them.
We can further imagine clever compilers and optimizers that understand the
operation of the programs they manipulate and that can transform them
intelligently.

Some program synthesizers have already been written, including the
Heuristic Compiler (Simon [1963]), DEDUCOM (Slagle [1965]),QA3 (Green
[1969a], [1969b]), and PROW (Waldinger and Lee [1969] and Waldinger [1969]).
The last three of these systems use a theorem-proving approach: 1in order
to construct a program satisfying a certain input-output relation, the

system proves a theorem induced by this relation and extracts the program

directly from the proof. All three used the resolution principle of
Robinson [1965]. However, these systems have been fairly limited; for
example, they either have been completely unable to produce programs with
loops, or they introduced loops by underhanded methods.

When a theorem-proving approach is used in program synthesis, the
introduction of loops into the extracted program is closely related to the
use of the principle of mathematical induction in the corresponding proof.

The induction principle presented special problems to the earlier program-



synthesis systems, problems which limited their ability to produce

loop programs. These problems are discussed in this paper. We propose
to use a variety of different versions of the induction rule, each of
which applies to a particular data structure, and each of which induces
a different form in the extracted program. The data structures treated
are the natural numbers, lists, and trees.

We do not rely on any specific mechanical theorem-proving techniques
here, both because we do not wish to restrict our class of readers to
those familiar with, say, the resolution principle, and because we believe
the approach to be more general and not dependent on one particular
theorem-proving method. We give a large number of examples of programs,
with the corresponding theorems and proofs used in their synthesis. The
proofs we give are informal and in the style of a mathematics textbook.
Some of them have been achieved by such systems as PROW and QA3; others
we believe to be beyond the powers of existing automatic theorem provers,
but none are unreasonably difficult, and we hope that the designers of
theorem-proving systems will accept them as a challenge.

Section 2 gives the flavor of the approach illustrated by three
examples. In that section we do not prove the induced theorems, and we
present the constructed programs without describing the extraction process.
In Section 3 we demonstrate the extraction process with complete examples
of the synthesis of two programs without loops. We choose loop-free programs
for these examples so as to postpone discussion of the principle of
mathematical induction.

The heart of the paper is contained in Section 4, with the presentation

of the induction principles and their corresponding iterative or recursive



program forms. One of the examples in this section gives details of the

proof and program extraction process. gection 5 demonstrates a more
general rule, the complete induction principle. Section 6 suggests

applying program-synthesis techniques to translate recursive programs

into iterative programs, and presents two examples, in which a striking

gain in efficiency was achieved. Fpipnally, in Section 7 we suggest

further research in this field.
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2. GENERAL DISCUSSION

We define the problem of automatic program synthesis as follows:

given an input predicate @(X) and an output predicate ¥(X,z) ,

construct a program computing a partial function 2 = f(X) such that

if x is an_input vector satisfying @(x) , then f(x) is defined and

¥(x,£(X)) is true. In short, the predicates 9(X) and ¥(X,z) provide
the specifications for the program to be written.

In order to construct such a program, we prove the theorem

() [p(x) > (32)¥(%,2) 1.
The desired program is then implicit in the proof that the output
vector z exists. The theorem prover must be restricted to show the
existence of z constructively, so that the appropriate program can be
extracted from the proof automatically.

Frequently, @(x) is identically true; i.e., we are interested in
the performance of the program for every input X . Then the theorem to
be proved is simply

(vx) [T > (F2)¥(x,2)] ,
or equivalently,
(Vx) (Bz)¥(x,2) .
In such cases we shall neglect to mention the input predicate.

Let us first illustrate the flavor of this idea with three examples:

(1) The construction of an iterative program to compute the quotient
and the remainder of two natural numbers;
(i1) The translation of a LISP recursive program for reversing the
top-level elements of a list into an equivalent LISP iterative

program;



(1ii) The construction of a recursive program for finding the maximum

among the terminal nodes in a binary tree with integer terminals.

In each case we give the specifications for the program, the
induced theorem, and the automatically synthesized program, without
introducing the proofs of the theorems or the extraction of the
programs from the proofs. Such details will be given in the examples
of our later sections.

In our examples we express our input and output predicates in a
modified predicate calculus language. However, this is not essential

to the method; any language for describing relations may be used.

Example 1: Construction of an iterative division program.
We wish to construct an iterative program to compute the integer

quotient and the remainder of two natural numbers x, and x where

1 2!

Xy % 0. The program should set the output variable Zq to be the

1 divided by X5 4 and the output variable z, to be

quotient of x 5

the corresponding remainder.

and z = z

1% - Since we are not interested

Thus, X = X 5

1%

in the program's performance for X, = 0 , our input predicate is
¢(x) :x,£0,

The output predicate is
¥(x,2) . (xl . zl-x2+z2). (z2 . Xe)

The theorem induced is then

(W) (V) [y £ 0 0 (32) (F2,) L5y = 5y %5%2)) A (2 < x,) 1)

The program synthesizer proves the theorem, and a program such as that
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illustrated in Figure 1 is extracted from the proof.—/

(yl’y2) — (O:Xl)

I(Zl,ZE) « (yl’yE)

Fl
(yl) ye) &~ (Yl"'l’ ye —Xz)—

|

Figure 1: A division program

We have assumed that certain symbols, including the "minus" operator

and the "less than" predicate, for instance, exist in our programming language;

therefore, these operators are said to be primitive. However, if the use of
the "minus" operator or the "less than" predicate is not permitted in the
language (i.e., 1if they are non-primitive), the above program is illegal.

This suggests that the user must always specify a list of primitive
operators, predicates, and constants that the derived program may use. If,
for example, we allow our-system to use the constant "0" , the "successor"
and "predecessor" operators, and the "equality" predicate, but not the
"minus" operator or the "less than" operator, the program illustrated in
Figure 2 might be constructed.

Henceforth, we shall assume all commonly used symbols are primitive

unless we make explicit mention to the contrary.

*

x/ Statements in which n-tuples of terms are assigned to n-tuples of
variables represent simultaneous replacements. For example,
(yl:yz)é-(yifl,yQ-Xz) means that Y is replaced by yi+l and Vs

by Vo X, simultaneously.



Cemamr >

[(yl’YQ’yB) « (O)O,xl)

vy « if y2 = x2-1lthen yi+l else ¥y

y2 «if ¥, = x2-1then 0 else yé+l

Y3 « :v5-l

Figure 2: Another division program

Example 2: Translation of a recursive reverse program into an iterative
program.

We wish to translate a LISP recursive program for reversing the
top-level elements of a list into an equivalent LISP iterative program.
For example, if x is the list (a b (c d) e) , then its reverse is
(e (c d) b a)

Here, X =X », 2z =12 and since we want the program to work on
all lists, ¢(§) is T . The output predicate will be

V(x,2) : z = reverse(x) ,

where reverse is defined by the recursive program (see McCarthy [1962]):

(20:25) « (y57,)
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reverse(y) <= if Null(y) then NIL

else append(reverse(cdr(y)),list(car(y))) .

The function aEQend(yl,ye) concatenates the two lists yi and y2
For example, if y; is the list (a b (e d)) and ¥, is the list (e) ,
then append(y;,¥,) is the list (a b (c d) e)
Thus, the theorem to be proved is
(vx) (3z) [z = reverse(x)]
The above theorem has a trivial proof, taking z to be reverse(x)
itself. Therefore our program synthesizer might construct the following

unsatisfactory program

z « reverse(x)

This introduces the problem of primitivity again. The reverse
function should not be considered as a primitive in the programming
language in this specific task because we clearly do not want reverse to
occur in our iterative program. Henceforth, we shall assume that the
name of the program to be constructed is never primitive.

If we allow our system to use the constant NIL, the operators
car, cdr, and cons, and the predicate Null as primitives, the program

illustrated in Figure 3 might be constructed.



(Yl) YE) « (x,NIL)

(yl) y2) « (cdr(yl) »cons (car(yl) )ye) )

Figure 3: The reverse program

Note that the computation of the derived iterative program consumes
less time and space than the computation of the given recursive program.
This is not only because of the stacking mechanism necessary in general
to implement recursive calls, but also because the repeated use of the
append function during execution of the recursive program introduces

redundancy in the computation.

Example 3: Construction of a recursive maxtree program.
We wish to construct a recursive program for finding the maximum
among the terminal nodes in a binary tree with integer terminals. We
shall introduce a special language called TREE for manipulating binary trees.

The primitives allowed in our TREE language are the operators

(a) left(y) : the left subtree of the tree y ,
(b) right(y) : the right subtree of the tree y ,
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and the predicate

(¢) Atom(y) : 4is the tree y a single integer?

For example, if y is the binary tree , then

3 L

left (y) 1is /\h » right(y) is 2 , Atom(y) 1is F , and
3

Atom(right(y)) is T

Let X = x , zZ =2, cp(}-c) be T , and the output predicate be
V(x,z): T erminal(z,x) A (Vu)[ Terminal(u,x) > u < z] ,

where Terminal(yl,ye) means that the integer yl occurs as a terminal
in the tree v - The output predicate says that the integer z is a
terminal of the tree x not less than any other terminal node of x

Thus, the theorem to be proved is

(¥x) (9z) { Terminal(z,x) A (Vu)[Terminal(u,x) o u < z]} .

If we allow the max operator over the integers,
@(yl,ya) : the maximum of the integers y; and. Y2,

to be used as a primitive, the recursive program produced might be

z = maxtree(x) where
maxtree(y) <= if Atom(y) then y

else max(maxtree(left(y)),maxtree(right(y)))

If we do not allow the max operator to be used as a primitive but allow
the predicate "less than or equal to", the program produced might be

"z = maxtree(x) where

mextree(y) <= if Atom(y) then vy

else if maxtree(left(y)) <maxtree(right(y))

then maxtree(right(y))

" else maxtree(left(y)) .

10



Note that although the symbol maxtree, the name of the program, is
not primitive, it may be used as a dummy function name in the recursive

definitions. Any other function name could have been used instead.

We feel that at this point we should clarify the role of the input
predicate. Compare the following program writing tasks: in the first,
the input predicate is 9(X) and the output predicate is ¥(x%,z) ,
while in the second, the input predicate is @'(x) : T and the output
predicate is V' (X,z) : (x) D ¥(x,z) . In the first task we do not care
how the synthesized program behaves if the input x does not satisfy
®(x) . 1In the second case we insist that the program terminates even
if x does not satisfy @(x) , but we still do not care what the value
of the output is.

The theorems induced are:

(vx) [o(x) o (22)¥(x,2) 1
and

(vx) (32) [o(x) > ¥(x,2)]
respectively. Surprisingly enough these theorems are logically equivalent,
even though they represent distinct tasks. This suggests that the program
extractor must make use of the input predicate in the process of synthesizing
the program.

Suppose, for instance, that in constructing our iterative division
program (cf. Example 1) we had given the system the input predicate

vE T
and the output predicate

V' (x,2) : X, £ 0 :>(x1 = zl~x2+z2) A (z2 < XE)'



The theorem induced in this case would be

(Vxl) (VXE) (Hzl) (3z,) [x, £00> (x; = zl-x2+z2) A (z, < X2)] ,
which is logically equivalent to the theorem

(Vxl) (VXE) {x2 £ 0> (Hzl) (E[zg)[(x:L = zl-x2+z2) A (z2<x2)]} .

However, the program extracted from the first theorem (Figure 4) halts
for every natural number input, whereas the program extracted from the

second theorem (Figure 1) does not halt when X, is O

(Zl’ZE) « '(arbitrary values)

(7)< (0,x))
N

—— (2,,2,) « (y,7,)

g
(v1'v2) « (y7*1y,7%,)
!

Figure L4: Another division program

12
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3. CONSTRUCTION OF LOOP-FREE PROGRAMS

We would like first to illustrate with two examples the extraction
of a program from a proof. The programs we will construct are especially
simple since they have no loops. The program extraction process in this
case may be roughly described as follows: substitutions into the output
variables in the proof result in assignment statements in iterative programs
and operator composition in recursive programs. Case analysis arguments
in the proof result in conditional branching in both iterative and recursive

programs.

Example }t: Reversing a two-element list.

We wish to construct a LISP program that takes as input a list of
two elements, and produces as output the same list with the elements
reversed.

Thus, the output predicate 1is

¥(x,2) @ (Vu)) (Yu,)[x = Llist(uu,) D z = list (ugsuy) 1

and the theorem to be proved is

(Vx)(ﬂz){(Vul)(Vue)[x = ;gEE(ul,ug):D z = ;g§§ﬂu2,ul)]} )

We assume that any system used to prove this theorem has a large supply

of facts about the data structure and the progratmning language to be used,
stored in the form of axioms and rules of inference. We assume in
particular that the rules of inference stored within the system can handle
deductions of the first-order predicate calculus with equality such as

those we use in the proof below.

135



During the process of proving the above theorem, the system will
eventually choose the following axioms:

1. car(list(u,v)) = u ,

2. cdr(list(uw,v)) = list(v) , and

3. append(list(u),list(v)) = list(u,v)

Note that the operator list takes a variable number of arguments.
The proof will proceed as follows: Suppose x =_lis‘t(ul,u2) for

some arbitrary Uy and Uy o Then by Axioms 1 and 2, respectively,

4. car(x) = 4 , and

5. cdr(x) = 1ist(u2) .

From 4 we have

Then combining5 and 6 using Axiom 3, we obtain

7. append(cdr(x),list(car(x))) = @(ug,ul)

Letting z be append(cdr(x),list(car(x))) , we obtain

which is the desired conclusion.
Now, in order to extract the program, we keep track of the
substitutions made for z during the proof. In the above proof we have

replaced z by append(cdr(x),list(car(x))) ; therefore, the desired

program is simply

C START )

z «aappend(cdr(x), list(car(x)))

-




Example 5: The max of two numbers.

The program constructed in this example contains a conditional
branch but no loops. We wish to find the maximum of two given integers.
Thus, the output predicate is

\Ir(xl,xg,z) @z =X, Vz = XE) Az2>%X Az 2X

1 2’

and the corresponding theorem is

(Vxl)(Vxe)(Hz)[(z = lez=x2)/\z2x A Z>x

1 2]

The proof proceeds by case analysis; 1t may appear poorly motivated,
but it is well within the capacity of existing theorem-proving programs.

Translating the theorem into disjunctive normal form, we have
(v2) (V) (@2) [(2 = x) Az 2% Az 2X,)V (2=X, Az>% Az2%) |

If we assume (u =v) 3 (u > v) as an axiom, we can simplify the above formula to

(Vxl)(sz)(‘.Ez)[(z X AZEH)V( z2=%,A 7 Exl)] _

Now suppose Xy > X, ,»then if we let z be Xq the first disjunct

is satisfied. On the other hand, suppose X, <X, ; then if we let z be X

the second disjunct is satisfied.

Since the substitution we made for z depends on whether or not X

was greater than or equal to X% the program extracted from the proof

2 14

of the theorem is

C_Smarr >

z «if x; > x then x; else x,

2 I

C_HALT D

15



The reader who is unsatisfied with our seat-of-the-pants description
of the program extraction process may examine any of the more rigorous
accounts in the literature (e.g. Green [1969a] [ 1969b ], Waldinger and
Lee [1969], Waldinger [ 1969], and Luckham and Nilsson [1970]).

The above programs are clearly of limited interest since neither
contains a loop. In order to construct a program with loops, application
of some version of the principle of mathematical induction is necessary.
Therefore, in the next section we digress into a discussion of the

induction principle.

16
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L. THE INDUCTION PRINCIPLE

The induction principle is most commonly associated with proving
theorems about the natural numbers, but analogues of it apply to other
data structures, such as lists, trees,and strings. Furthermore, for each
data structure there are many equivalent forms of the principle.
Mathematicians use whichever version is most convenient. Similarly, the
theorem prover chooses an appropriate induction principle from a given
supply during the course of the proof. This choice directly determines
the form of the program to be constructed, since each induction rule has
an associated program form stored with it. Therefore, if we want to
restrict the form of the extracted program, we must limit the set of

available induction principles accordingly.

4.1 Natural numbers

We shall discuss four versions of the induction principle for the
-natural numbers; two will be appropriate for writing recursive programs
and two for writing iterative programs. In each class, one rule will be
called a "going-up" principle and the other a "going-down" principle.

We will illustrate each of these with a different version of the factorial
program. The output predicate is

V(x,2z) : z = factorial(x) ,
where

factorial (y) <= if y = 0_then 1 else y-factorial(y-1l) .

This example will illustrate clearly the difference between the programs

generated by using "going-up" induction and "going-down" induction: the

17



"going-up" programs compute x! in the order 1 , 1.2, 1-:2:3 ,, .
while the "going-down'* programs compute x , X(x-1) , x-(x-1)-(x-2) ,... .
The proofs required for the synthesis of the programs use two
axioms induced by the above definition:
factorial (0) = 1

and

u > 0 D [factorial (u) = u-factorial(u-1)] .

We will not include those proofs, but merely will give the programs
extracted, in order to illustrate the relationship between the form of

the induction principle used in the proof and the form of the constructed

program.

(a) Iterative going-up induction

The reader is probably familiar with the most common version of
the induction principle over the natural numbers,

do)
(Vyy) la(yy) = aly,+1) 1

(vx)a(x)

Intuitively, this means that if a property & holds for 0 and if

whenever it holds for MY it holds for yi+l , then it holds for every

natural number x . We call this version iterative going-up induction.

For our purpose we use a special form of the principle in which
d(yl) is (EYQ)B(yl,YE) » where [ still represents an unspecified

property. The induction principle now becomes

18



(%y,)B(0,7,)

(Vy1) [(Fy,)B(y157,) 2 (Fy,)B(y+1v,) 1

(¥x) (87, B(%,¥,,)

The program form associated with this rule is illustrated in Figure 5.
If the theorem to be proved happens to be of the form
(vx) (82)B(%,2) ,
and if going-up induction is applied, the program extractor then knows

that the program must be of the form illustrated in Figure 5.

(Vl) Ve) A (Yl;i)ﬁg(yly y2) )

k |

Figure 5: 1Iterative "going-up" program form

The constant a and the function g(yl,ye) are unspecified in
the above form. The task of the program constructor is now to write
subroutines to campute a and g in such a way that the program of

Figure 5 will satisfy the desired relation. This is done as follows.

19



The theorem to be proved is of the form (Vx)(¥z)B(x,z) . This
is precisely the form of the consequent of the induction principle.
Therefore, if we can prove the two antecedents, then we are done. This

suggests-that we attempt to prove the two lemmas:

@) (HVE)B(O)YQ) >
and
(B) (vy) [(@y)B(y157,) 2 (Fy)B(y*Lyy) 1,

or equivalently, translating into prenex normal form,

(8") (Yy) (¥y,) (3y5) [B(y»,) @ BI1y,) ]

The proof of Lemma A generates a subroutine with no variables
that yields a wvalue for Yo satisfying B(O,yz) . This is the
desired definition of the constant a ; hence
(1) B(0,a) is true.

The proof of Lemma B' generates another subroutine which yields
a value of yz in terms of Yy and Vo - This subroutine provides
a definition of g(yl,ye) satisfying
(2) B(yy>v,) 2 B(yl+l,g(yl,y2)) for all y, and y,

The proof of the lemmas concludes the proof of the theorem
(vx) (42)B(x,2) . We have now completely specified a program that

computes a function =z = f(x) satisfying B(x,f(x)) for all values of x

For the suspicious reader we are ready to verify the above assertion.

Consider the iterative "going-up" program form labeled as in Figure 6.

20



C_START

(y575) = (08)

(v ¥p) = (yy%1s &(yys ¥,) )
I

Figure 6: Labeled iterative 'going-up' program form

We will use Floyd's approach [1967] and show that whenever control passes
through arc @ , BQﬁf y2) is true for the current values of ¥y and Y, -
Furthermore, whenever control passes through arc B , B(x, Z) is true
for the initial value of x and the final value of z
Beginning at the START node, we set yi to 0 and.yé to a ,
and so when we pass through arc Q , B(yl,y2) (i.e., B(0,a) )
is true by (1).
Now suppose that at some point in the execution, control is passing through
arc @ and currently B(yl’yQ) is true and yl ;é X . Then, by (2)
(3) B(y +1, &(y5¥,)) is true.
Traveling around the loop we simultaneously set yl to yl+l and y2
to g(yl,yg) and reach arc Q@ again. That B(Yl,‘yz) is satisfied at
this time follows directly from (3) and our assignments to yi and Yy -
Clearly, wemust at some time reach arc o with yl = X , Since x
E - is a natural number. Then we set z to Y5 and pass to arc B . Since
B(yl,ye) was true at arc @ and ¥ = X , B(x, z) is true at arc B .

This concludes the proof that the program constructed has the desired

properties.

21



Example 6:Iterative "going-up" factorial program.
We wish to construct an iterative "going-up" program for computing
the factorial function. The theorem to be proved is
(vx) (Fz)[z = factorial (x)]
Applying the iterative going-up induction principle (with Bhﬁfyz)keing

vy = factorial(yl) ), we are presented with the two lemmas

(8) (8y,)ly, = factorial(0)]
and
(B") (vy,) (Vyg)(HyZ) {ly, = factorial(y,)] o [y; = factorial(y,+1)1} .

*
The lemmas are proven, and the wvalues for y2 and y2 (i.e., a and

g(yl,yg) ) found are 1 and.(yl+l)-y2 , respectively. The program

extracted is illustrated in Figure 7.

(o7 ~ (0,1)

‘Z*—ye

(yl,yé) = (y771 (v,*1) *7p)

Figure 7. Iterative "going-up" factorial program

Note that for simplicity we have assumed in the above discussion that the
program to be constructed has only one input variable x and one output
variable z . This restriction may be waived by a straightforward generalization

of the induction principle given above as illustrated in Examples 135 and 15.

22



(b) Recursive going-up induction
_ We present another going-up induction principle that leads to a
different program form. The principle
- a(o)
_ (Yyy) lyy £OA aly-1)2 a(yy) 1
(Vx)a(x)
o
is logically equivalent to the first version but leads to the construction
of a recursive program of the form
yz - f(x) where
- Lf(y) <= if y = 0 _then a elseg(y,f(y-1)) .
- We call this version recursive going-up induction. Note that the f is
a dummy function symbol that need not be declared primitive.
- We have omitted the details concerning the derivation of this
program but they are quite similar to those involved in Section (a) above.
(c) Iterative going-down induction
Another form of the induction principle is the iterative going-down
= form
_ (Fy;)aly,)
(Vv [yy £ 0 A alyy) > aly;-1)]
e alo) .
- The reader may verify that this rule is equivalent to the recursive
going-up induction, replacing ¢ by ~d@ 'and twice using the fact
” that p A g D r 1is logically equivalent to ~Tr A gD -p .
: In this case we use a special form of the principle in which
d(yl) is of the form (E{yg)B(X,yl,yg) , where x is a free variable.

; 25



The induction principle now becomes

(1y)ly; # 0 A (Fy,)B(x55755,) 2 (F,)B(%y,-1, v,) 1

(8y,)B(x,0,7,)
Suppose now that the theorem to be proved is of the form
(Vx) (32) B(x,0, 2)

The theorem may be deduced from the conclusion of the above induction
principle. If the iterative going-down induction principle is used, the

program to be extracted is automatically of the form illustrated in

Figure 8.
CSTART >
M
(¥1:7,) = (y7-L,8(6¥55,)) |

Figure 8: TIterative "going-down" program form

Thus, all that remains is to construct subroutines to compute the functions
hl(}?) ’ hg(x) > and g<x:yl:3’2)
The antecedents of the induction principle give us the two lemmas

to be proved

and
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(B) (fy) [yy # 0 A (&) B(%315¥,) 2 (Fy,)B(xy,-L3,) 1,
or equivalently,

(8") (V7)) (75,) @y vy # O A B6Y¥,) D BK v 1,7,) ]

The proof of Lemma A yields subroutines to canpute yl and Y5 in
terms of x, which define the desired functions hl(x) and he(x) ’
respectively. The proof of Lemma B' yields a single subroutine to
compute y: in terms of x, R and Yo s thus defining the desired
function g(x, ¥y y2) . The program is then completely specified, and its
correctness and termination can be demonstrated using Floyd's approach,

as was done before.

Note that iterative going-down induction is of value only if the
constant 0 occurs in the theorem to be proved. Otherwise, the theorem

prover must manipulate the theorem to introduce 0

Example 7: Iterative "going-down" factorial program.

We wish to construct an iterative "going-down" program for computing

the factorial function. The theorem to be proved is again
(vx) (8z) [z = factorial (x)]

The theorem contains no occurrence of the constant 0 . Thus, the

theorem prover tries to introduce- 0 , using the first part of the definition

of the factorial function (i.e., factorial(0) = 1) and its supply of
axioms (u:l = u , 1in particular), deriving as a subgoal

(dz) [factorial(0)+z = factorial(x)] ,

where x . 1s a free variable. This theorem is in the form of the consequent

of the iterative going-down induction, i.e., (Hyz)B(X,O,yé) ; hence, the
theorem prover chooses the induction hypothesis Bﬁhsﬁgyé) to be
factorial(yl)°y2 = factorial (x)
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The lemmas proposed are

(4) (Hyl)(ﬁyz)[fac‘torial(yl)'y2 = factorial(x)] ,
and
*
(B") (Vyl)(VyQ)(HyQ){yl £0nA [factorial(yl)‘y2 = factorial (x)]

) [factorial(yl-l)-yz = factorial(x)]} .

. * :
The values obtained for MER N and Y5 (i.e., hl(x) 5 hz(x), and

g(X:yl:ye)); respectively, are x , 1 , and y‘l-y2 The program

constructed is illustrated in Figure 9.

(le ye) - (X, l)

(v109,) = (y9-15;7,)

Figure 9: Iterative "going-down" factorial program

(d) Recursive -going-down induction

The recursive going-up induction was very similar to the iterative

In the same way, the recursive going-down induction,

going-up induction.

(Fyaly,)

(Yyy) [a(yy*1) = aly;) ]

ao)
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is very similar to the iterative going-down induction. The form we are most

interested in is

(Hyl) (E[YE)B(X: ¥y '.Ye)

(¥yy) [(Ey)B(x,71+1,7,) D (By,)B(x,3157,) ]

(HYQ)B(X: 0, y2) >

where x 1s a free variable.

If the rule is used in generating a program, the two appropriate
lemmas allow us to construct hl(x) , hz(x) and g(x,yl,yz) as Dbefore,
and the program extracted is

z = £(x) = £'(x,0) where

£1(x,y) <= if y = h;(x) then h,(x) else g(x,y,f' (x,y+1)) .

Example 8: Recursive "going-down" factorial program.
The program we wish to construct this time is a recursive "going-down"

program to compute the factorial function. Again the theorem

(vx) (8z)[z = factorial (x)]
is transformed into

(dz) [factorial(0)*z = factorial (x)]
We continue as before and the program generated is
= f(x) = £'(x,0) where

(..
lf'(x,y)_ <= if y = x then 1 else (y+1)-f'(x,y+1)
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4.2 Lists

Our treatmentsof lists and natural numbers are in some ways analogous,
since the constant NIL and the function cdr in LISP play the same role as
the constant 0 and the "predecessor" function, respectively, in number
theory. The induction principles of both data structures are closely
related, but since there is no exact analogue in LISP to the "successor"
function in number theory, there are no iterative going-up and recursive
going-down list induction principles. Hence, we shall only deal with two
induction rules in this section: recursive (going-up) and iterative
(going-down) list inductions. In the discussion in this section we shall

omit details since they are similar to the details in the previous section.

Weshallillustrate the use of both induction rules by constructing
two programs for sorting a given list of integers. The output
predicate 1is

V(x,2) : z = sort(x) ,

where
(Vy) (Vz){[z=sort (v)] = if Null(y) then Null(z)

else (Vu)[Member(u,y) >z =merge(u,sort(delete(u,y)))1}.
Here,

Member(u,y) means that the integer u is a member of the list y ,
delete(u,y) is the list obtained by deleting the integer u from the
list y , and
mgggg(u,v) , where v 1is a sorted list that does not contain the integer u ,
is the list obtained by placing u in its place on the list v ,

so that the ordering is preserved.
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The theorem to be proved is

(vx)(Hz)[z = sort (x)]

(a) Recursive list induction

The recursive (going-up) list induction principle is

@(NIL)

(vx)a(x) -
The program-synthesis form of the rule is

(Vyy) [~ Bull(y,) A (3y,)B(cdr(y;),¥,) o (8y,)B(y1,7,) 1

(vx) (Ty,) B(%,,)

The corresponding program form generated is
z = f(x) where

f(y) <= _if Null(y) then a else g(y,f(ggg(y))) .

Example 9:Recursive sort program.
The sort program obtained using the recursive list induction
principle is

z = sort (x) where

sort (y) <= if Null(y) then NIL else merge(car(y),sort(cdr(y))) .

(b) TIterative list induction

The reader can undoubtedly guess that the iterative (going-down)

list induction principle is
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(vy)) [~ Mull(y)) A a(y;) o @(ear(y,))]

d(NIL)

We are especially interested in the form

(8y,) (Fy,)B(%,¥,57,)

(Vy) [~ Null(y;) A (Fy,)B(%,5,57,) 2 (Fy,)B(xscdr(y,),v,) ]

(E{YE)B(X,NIL) y2) )

where x 1is a free variable.
The corresponding program form generated is illustrated in Figure 10;

it employs the construction known among LISP programmers as the "edr loop".

T

(yl’ y2) « (hl(x) ’ h2 (%))

(v9575) « (edr(y;)se(%y95¥,))

‘. I

Figure 10: Iterative list program form

30



- Example 10: Iterative sort program.
Using the iterative list induction, we can extract the sort program

of Figure 11.

= @

(y95¥,) < (%,NIL)

r
= (v5¥,) < (cdr(y,) merge(car(y;),v,))
. Figure 11: TIterative sort program
- 43 Trees
_ There is no simple induction rule for tree structures which gives
rise to an iterative program form, because such a program would have to
- use a camplex mechanism to keep track of its place in the tree. However,
there is a simple recursive tree-induction rule:
[ el
".
| (vy,) [Aton(y)) > aly,) ]
o (Vy,) [~ Atom(yy) A @(1left(y))) A @(right(yy)) > aly,)]
(Yx)a(x)
-
In the automatic program synthesizer we are chiefly interested in the
— following form
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(Vy,) [Atom(y;) > (y,)B(v,5¥,) 1

(vyy) [~ atom(y)) A (8y,)B(Left(yy),¥,) A(8y,)B(xight (v1),¥,) D (Fy,)B(vs5,) 1

(Vx) (8y,)B(%,y,)

If we want to prove a theorem of form (¥x)(Hz)B(x,z) using tree
induction, we must prove two lemmas
(8) (Vy) [Atom(y,) > (8y,)B(yy9,) 15
or equivalently,
(ah) (¥y)) (3y,) [Aton(y,) > Bly,v,) 1

and

(B)  (¥yy) [~ Atom(yy) A (8y,)B(Left (v;),,) A (Ty,) B(right (v;) »¥,) = (y,)B(y,7,) 1

or equivalently,

(B') (Vyy) (Vy,) (Vy) (Fyp) [~ Abom(y,) A B(LeTt(y,)5¥,) AB(zight(v,)syh) DBy -

From the proof of Lemma A' we define a subroutine h(yl) to compute Yo
in terms of y, . The proof of Lemma B' yields a subroutine g(yl,yg,yé)
*
1 1
to compute y2 in terms of yl, y2 and y2 .

The corresponding program form is

7z = f(x) where

£(y,) <= if Atom(y;) then h(y;) else g(vy,T(Lleft(y,)),f(right(y,))) -

Note that this program form employs two recursive calls.

Example 11: Recursive maxtree program (see Example 3).

We wish to give the synthesis of a TREE recursive program for finding the
maximum among the terminal nodes in a binary tree with integer terminals.
This will be the first detailed example of the construction of a program

containing loops.
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The theorem to be proved is
(vx) (4z)[z = maxtree(x)] ,
where
(1) [z = maxtree(x)] = [Terminal(z,x) A(Vu)[Terminal(u,x) > u < z]] ,
and

(2) Terminal(u,v) <= if Atom(v) then u = v

else Terminal(u,left(v)) v Terminal(u,right(v)) .

We assume that maxtree itself is not primitive.

The theorem is of the form (Vx)(Hz)B(x,z) ,where B(x,z) is
z = maxtree(x) . Taking z to be Vo s this is precisely the conclusion
of the tree induction principle. Therefore, we apply the induction with

B(yy¥y,) + vz  maxtree(y,).

Hence, it suffices to prove the following two lemmas:
(a")  (¥yp)(3y,) [Aton(y,) o y, = maxtree(y,)],
and

(B')  (¥yy) (V) (¥5) () [ ~ Atom(y,)

A Yy = maxtree(left(yl))

A yé = maxtree(right(yl))

*
Sy, = maxtree(yl) 1.

The proof of the lemmas will rely on the definition of maxtree (Axiom 1)

and the following two axioms induced by the recursive definition (2)

of the Terminal predicate:

(2a) Atom(v) O [Terminal(u,v) = (u = v)] ,

and

(2b)  ~ Atom(v) D [Terminal(u,v)= [Terminal(u,left(v)) V Terminal(u,right(v))]].
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First we prove Lemma A'. By Axiom lit follows that we want to prove
(Vyl) (Hyg) {A‘bom(yl) ) [Terrnlna.l(ye,yl) A (Yu) [Termlnal(u,yl)DuSyE] I,

or equivalently, using Axiom (2a) (with u being Yo and v being yl) ,
(Vy,) (8y,) {Atom(y) = [y, = vy A (Vu)lu =y, Du <y,]1}

It clearly suffices to take Y5 to be vy to complete the proof of
the lemma. Therefore, the subroutine for h(yl) that we derive from
the proof of this lemma is simply h(yl) =y -

The proof of Lemma B' is a bit more complicated. Let us assume
that ¥, is a tree such that ~§t_qg(yl—) and let y, = ma.x‘bree(}gﬁ(yl))

*
and yl = max'tree(right(yl)) . We want to find a y, (in terms of

*
¥y» v2 , and yé) for which y, = ma.xtree(yl) . This means, by Axiom 1,

*
that we want Yo such that
* *
Termina.l(yg,yl)A(Vu)[Termina.l(u,yl) > u < y2]

This implies, by Axiom (2b) and our assumption ~Atom(yl) , that we

*
have to find a Yo satisfying the following three conditions:

* %
(1) Terminal(ye, left (yl)) v Terminal(yg, right(yl)) ,

() (Vu)[Teminal(u,left(v,)) o u < ¥,)

and

(iid) (Vu)[Terminal(u,righ‘li(yl)) Dau < y;] .

It was assumed that y, = maxtree(left(yl)) and

vh = maxtreg_(rightLyl)) . Thus, using Axiom 1, condition (i) implies
* * *
te ¥p < ¥, V¥, < ¥, condition (ii) implies that y, <y, , and
* *
condition(iii) implies that yé < Vo - This suggests that we take Yo

to be max(y.,yl) , which indeed satisfies the three conditions. Therefore,
—v27v2
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the subroutine for g(yl,yg,yé) that we extract from the proof of this lemma
s 8(yps¥pr¥h) = max(yy,vh).

The complete program derived from the proof is

z = maxtree(x) where

ma.xtree(yl) <= if Atom(yl) then ¥y,

else max(maxtree(left(y;)),maxtree(right(v,))) .
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D COMPLETE INDUCTION

The so-called complete induction principle is of the form

vy ) { (W) [u<y,oa@w) 1oaly,)}

(vx)a(x) -

Intuitively, this means that if a property & holds for a natural number
vy whenever it holds for every natural number u less than Yy v then it
holds for every natural number x .

Although this rule is in fact logically equivalent to the earlier
number-theoretic induction rules (see, for example, Mendelson [196k4]),
we shall see that it leads to a more general program form than the previous
rules, and therefore it is more powerful for program-synthetic purposes.
However, it puts more of a burden on the theorem prover because less of
the program structure is fixed in advance and more is specified during

the proof process.

We are most interested in the version of this rule in which a(yl)

has the form (Hyg)/:?(yl,ye) s l.es,

(¥x) (8y,)B(x,y,) -
Thus, in order to prove a theorem -of the form
(vx) (32)B(x, z)
it suffices to prove a single lemma of the form
, * *
(AD) (Yyy) (20) (Vy,) (Fy,) {lu < y; 2 Bw, v,) 1 28(y;5¥,)}

From & proof of the lemma we extract one subroutine for computing the
value of u in terms of y; (called h(yl) ), and another for computing

*
the value of y, in terms of y; and y, (called g(‘yl,ye) ). These
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functions satisfy the relation

(1) [h(y;) <yp 2 B(h(yy)s¥p) 12 B(y,,8(yy5¥,))  for every y; and v,

The program form associated with the complete induction rule is
then the recursive program form:
z = £(x) where

(2)
£(y) <= gly,£(a(y)))

This form requires some justification.
Assume that the function f satisfies the output predicate

(3) B(u, £(u)) for all u < x
We will try to show

B(x, £(x))
First, suppose h(x) <x . Then by the hypothesis (3), B(h(x),f(h(x)))
Therefore, from (1) (taking ¥y to be x and Yo to be f(h(x)) ) we
obtain pB(x,g(x,f(h(x)))) , i.e., by (2),B(x,f(x)) .
Now, suppose h(x) > x . Then taking vy to be x , tThe antecedent

of (1) is true vacuously, and we conclude B(x,g(x,f(h(x)))) , i.e., by (2),
B(x, £(x)) .

Example 12: The recursive quotient program (see Example 1).

We want to construct a recursive program to find (the integer part
of) the quotient of two natural numbers X; and X, , given that Xzfi— '0 .
Our output predicate is therefore
\y(xl,xe,z) : (Hr)[xl = Z-X5trAr < x2] .

The theorem is then

(vx) (¥x,) {x, £ 0 o (Fz2)(qr)[x; = Z-XFTAT < x,]1} .

Assume now that x, is a fixed positive integer. Then we wish to prove
(Vxl) (dz) (dr) [xl = Z-XtTAT < xe]

The theorem is now in the same form as the conclusion of the complete
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induction rule, taking x to be X; , ¥, to be z , and '

Blyp¥p) + (@)lyy = yyxp+ va r <x,]

Therefore, the single lemma to be proved is

(AY) (’v‘yl)(ﬂu) (VYE)(EYZ) {lu < ¥y 2 (Ar) [u = Vo Kot TA T <x2]]

*
o (8r)lyy = ypxtrar <x,1},
or equivalently,

(Vyy) (Fw) (V) (Fyy) (V) () {[w < 3, O [u = yxprr A <x,]]

* * *
Oy, = yax+r AT <x.]} .
1 2°2 2

*
If vy <X2 we satisfy the conclusion of the lemma by taking v, to
*
be 0 (and r to be yl) . If, on the other hand, ¥; > X, , ¥ take
* *
u to be yl— x2 ’ Vs to be 'y2+1 (and r to be r); then the

conclusion follows using an appropriate set of axioms for arithmetic.

The program derived is then

z =w'liv(]xl,x%) r e

d1_§_r(yl,x2) <= if y; < %, then 0 else div(y, - x,,x,)+1

1

Although the program we constructed has two input variables, we were
able to use the single-variable induction principle in its synthesis by
treating the second input X, 8s.a free variable. Typically when constructing
programs with more than one input variable, we shall have to use a suitably

generalized induction rule.

The next example will use two input variables, and we will not be
able to treat either of them as a free variable. Therefore we take this
opportunity to demonstrate how to generalize the complete induction

principle to construct programs with two inputs.
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The form of complete induction was

(Fy )i u<y, 2a(w) 1 >aly)) 3

(vx)a(x)

For the two-input-variable case, we take dhﬁ) to be

(VYQ) (HyB)B(yl’yQ’yB) , obtaining the version

(Vy) LV [u<yy 2 (V) (T2)B(w, v, ¥ 2 (V5,) (Fy5) By 7o v3)}

: (Vxl) (VXE) (HYB)B(X],’XQ’ YB) .
Suppose we want to prove a theorem of the form

(Vxl) (Vxe) (HZ)B(X]—, X2) Z)
This is the same as the consequent of the complete induction rule. Thus,

it suffices to prove the antecedent as a lemma:

(a) Oy (V) [u <3y (Vy,) (Fy5)B(w, 3,5 ¥5) 12 (¥y,) (By5)B(y157,555) 3 5

or equivalently,
(ar) (¥,) (¥3,) (3w) (27)) (5, (E5) {[v <y, D B(w,35,75) 1 28(7357,75)]

From the proof of this lemma we extract three subroutines
hl(yl’yQ) ’ hz(yl,yg) , and g(yi,yé,yB) corresponding to u ,
* *
¥, » and ¥z , respectively. The program extracted from the proof
2 >
of the theorem will be of the form

z = f(xl,xg) where

2(ys¥p) <= 8(yys¥p £y (y15¥,) 50, (v, 7,)))
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Example 13: The greatest common divisor program.

The program to be constructed must find the greatest common
divisor (gcd) of two positive integers X and X5 . For simplicity,
we ignore the possibility of X, Or X, being 0 , and the theorem to
be proved is then

(Vx,) (¥x,) (32) [ 2 = ged(xy,x,)] -
where

[z = gcdhﬁjxg)]z {z|xl A z|x2 A Vu[u|xl A ulx, 2u<z]}.

2
Here, u|v means "u divides v evenly" . Recall that the function gcd
should not be considered to be primitive.
The theorem is in the same form as the conclusion of the complete
induction rule (for two input variables), taking y5 to be z , and
By ¥pr¥2): Y 3 =8cd(yyv,) .
Therefore, we must prove the following lemma:
* * *
(A1) (¥yq) (V) (8u) (By,) (¥y3) (Fyz) {lu<yy 2 v3 = ged(w,y,)]
> vy - (Y]
This is one of the proofs we consider to be a challenge for existing

theorem-proving systems. We suggest taking
u  to be rem(yz,yi)
% }
Yo to be ¥y
*
and ys tobe if @(ye,yl) = 0 then y else y,
where zgg(&é,yl) is the remainder when Vs is divided by v -

Therefore,

hl(yl, Y2) 1s r_?._n(yE) yl) J
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hy(yppy,)  is ¥y,
and g(yl’yQ’VB) is if rem(yz,yl) = 0 then vy _else y3
The complete gcd program extracted is therefore

z = ged(x where

l’XE)
ged(yyy,) <= if rem(yy,y;) = O then y,

melse _g_cg. (rem(yaiyl),yl) .
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6. TRANSLATION FROM RECURSION TO ITERATION

Iterative programs and recursive programs compute the same class
of functions (namely, the partial recursive functions). However,
recursive programs are camonly far more inefficient in time and space
than the corresponding iterative programs. Although it is straightforward
to transform an iterative program into an equivalent recursive program,
the reverse transformation presents difficulties. (See, for example,
McCarthy [1963a], Strong [1970], and Paterson and Hewitt [1970].)

LISP and AIGOL compilers, for example, translate recursive programs
into iterative programs that use stacks, without changing the essence of
the computation. Using program-synthetic techniques, it 1is sometimes
possible to perform the transformation in such a way that the resulting
iterative program performs the computation in a fundamentally better way
than the original recursive program. Although we have no mechanism to
ensure this improvement in general, we shall see how this occurs in the
two examples presented in this section, the first concerning the reverse

function and the second, the Fibonacci sequence.

Example 14: The reverse function (see Example 2).

We are given a recursive reverse program:

z = reverse(x) where

reverse(y) <= if Null(y) then NIL

else append(reverse(cdr(y)),list(car(y))) .

As we mentioned earlier, this definition is quite inefficient since it
involves repeated computation of the append function, which in itself

requires a relatively complex computation.

Lo



The theorem to be proved is
(V%) (3z) [z = reverse (x)]

Recall that the reverse function is not considered to be primitive .
For efficiency we also omit the append function from the list of
primitives.

Since we want to write an iterative program, we must use the

iterative list induction rule:

(y,) (y,)B(%, 375 7,)

(HYQ)B(X:NIL: y2)

Aside from this rule we have two axioms that result directly from the
given definition of the reverse function:

(1a) reverse (NIL) = NIL ,

(1b) -Null(y) D [reverse(y) = append(reverse(cdr(y)),list(car(y)))] .

Furthermore the system will use the following axioms chosen from its supply

during the course of the proof;

(2a) append (NIL,u) = u ,
(2b) append(u,NIL) = u ,
(3) append(u,append(v,w)) = append(append(u,v),w) , and
(%) append(list(u),v) = cons(u,v) .
The theorem to be proved, (vx) (3z)[z = reverse(x)] , is not in

the correct form to apply the iterative induction because NIL does not

occur in it. However, by Axiom 2a and the definition of reverse
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(Axiom la), our theorem prover will translate the theorem intc the

following satisfactory form:

(vx) (7z) [ap:een_d(E‘?Y.?_r.S_G(NIL),Z) = reverse (x)]

Therefore, we can apply the iterative list induction rule with

B(x,yl,yE) : append(reverse(yl):yg) = reverse(x)

and the two lemmas to be proved are:

(8) ((Hyl) (Hyg) [append(reverse(yl) ,y2) = reverse(x)] ,
and

(31 (vy,) (¥y,) (EIYZ) [~ Null(y,) A append(reverse(y,),¥,) = reverse(x)

*
D a,ppend(reverse(cdr(yl)),y2) = reverse (x)]

Using Axiom 2b, the system chooses yl to be x and y2 to be NIL ,

concluding the proof of Lemma A.
To prove Lemma B', the system assumes ~NuJ_l(yl) and

append(reverse(yl),yg) = reverse(x) . Using the definition of reverse

(Axiom 1lb), and the assumption that &Null(yl) y it derives

reverse(yl) = a.ppend(reverse(cdr(yl)),l.lﬁ(g_a_g(yl))) .

Substituting in the hypothesis, it deduces

append(a_ppend(reverse(cd;r'(yl)),lis‘t(car(yl))),y2) — reyverse (x)

Using the associative rule for_ append (Axiom3), it obtains

append(reverse(cdr(yl) ) ;append(list (car(yl) ) ,yz) ) = reverse (x)

Then, from Axiom 4, it derives
append (reverse(cdr(y,;)),cons(car(y,),¥,)) = reverse (x)
Comparing this formula with the desired conclusion, the system takes

*
Y5 to be cons(gfg(}tl),ye) , concluding the proof.
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Such a proof is well within the capabilities of existing theorem

provers. In fact, the above proof of Lemma B' has actually been found
(see Brice and Derksen [1970]) using the QA3 theorem-proving system
(Green and Raphael [1968]) with Morris's E-resolution [1969].

Since in the proof of Lemma A, ¥y and y, were replaced by x
and NIL, respectively, and in the proof of Lemma B!, Y; was replaced
by gggg(ggg(yl),yg) , the iterative program illustrated in Figure 12
will be constructed. Note that this program is far more efficient than

its recursive counterpart.

C START D

(Yl: .V2) < (x,NIL)

(y15¥,) < (cdr(y;),cons(car(y,),¥,)

k |

Figure 12: Iterative reverse program

Example 15: The Fibonacci sequence.
The advantage of iteration over recursion is particularly apparent
in the computation of the Fibonacci series

1, 1, 2, 3, 5 8, 13, 21, 34, 55, ...,

each of whose terms (after the second) is the sum of the preceding two.

Given a natural number X , the value of the x-th Fibonacci number
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is most simply defined by the recursive program.

z = fibonacci (x) where

fibonacci(y) <=_if (y = 0 Vy=1) then 1

else fibonacci(y-1)+ fibonacci (y-2)

In practice this program is grossly inefficient, involving many repetitions
of the same computation. We would like to use our approach to translate
this program into an efficient iterative program with no redundant
camputation.

The theorem to be proved is simply

(vx) (4z) [z = fibonacci (x) ]

The recursive definition of the fibonacci function implies the axioms:

(1a) (u

0 Vu = 1) D fibonacci(u) = 1,

(1p) (u > 2) D fibonacci(u) = fibonaceci(u-1) + fibonacci(u-2)

or equivalently,

fibonacci(u'+2) = fibonacci(u'+l) + fibonacci(u') .

Axiom la suggests to the theorem prover that the case (x=0vVzx=1)

be treated separately; in.this event, we take_z to be 1 , and the

output relation is satisfied.

It remains to prove
(¥x){x >2 o (¥z)[z =fibonacci(x)]} ,
or equivalently (using Axiom 1lb)

(¥x){x > 2 o (¥z)[z = fibonacci (x-1) +_fibonacci(x-2)]} .
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Thus, taking x' to be x-2 ,we have

(vx')(dz)[z = fibonacci(x'+1)+ fibonacci(x')] .

Since the "plus" operator is primitive, taking 2 to Dbe Zlfzg ’

it suffices to prove

(vx') (Hzl) (322) [Zl = fibonacci(x'+1) A Z, = fibonaceci(x') ]

Note that we now have two output variables zl and Zy rather than
one. However, the proof procedure is precisely analogous to the single-

variable case; the iterative going-up induction principle used is

(E[yQ) (HYB)B(O: Yo YB)
(¥y) [(8,) (B75)B(3 15 ¥5) 2 (Tp) (T5)B(y1+ 1,3 ¥5) |

(Vx) (HYE) (HyB)B(XJ MY YB) P
with

B(yyr¥pr¥3) ¥y = fibonacei(y;+1) A 3 = fibonacci(y,) .

Taking zl to be Yo and 22 to be y5 (i.e., z 1is y2+y5 )’

the conclusion of this induction rule is identical to the modified

theorem. Thus, the two lemmas to be proved are

(a) (Ty,) (Hy5)[y2 = fibonacci(1) Ay, = fibonacei(0) ]
and
(B)  (¥y)) (W,)(¥y5) yy) (8y) (ly, = Libonacei (y;+1) Ay; = fibonacei(y;) ] o

* *
[y, = fibonacci(yl+2) Az = fibona,cci(yl+l) 11 .

Lemma A is proved using Axiom la taking y, and y, both to be 1
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To prove Lemma B' we assume Iy = fibonacci(yl+l) and

*
y5 = fibonacci(yl) . Then taking Vo = y2+y5 , as suggested by Axiom lb,

¥
and. y3 = Y2 , as suggested by the hypothesis, we have completed the

proof of Lemma B'.

The program extractor combines all the replacements and substitutions
made in the proof to form the program of Figure 13, which exhibits none
of the crude inefficiencies of the original recursive program. The reader
may observe how closely the operations in the program mirror the steps

of the proof.

rrx' - x—24¥]

(Yl:yg: YB)J’_ (0,1,1) _

T

F

(y15909¥3) = (¥t 1:¥54Y35p)

|

N

< Figure 13: TIterative fibonacci program

48






T FUTURE RESEARCH

Clearly the results reported in this note represent but a step in
the direction of automatic program synthesis. Our chief goal was not
to present a completed work, but rather to stimulate other people to

examine these problems.

(a) Suggested theorem-proving research

The foundation of our approach, and its chief weakness, lie in the
theorem prover. We have mentioned that many of our proofs are probably
beyond the state of the art of mechanical theorem proving, although
none of them are terribly difficult. We therefore can use our experience
to pinpoint some weaknesses in the current methods and to suggest some
directions for theorem-proving research.

Any theorem-proving system stores its knowledge either in the form
of axioms (which are simply assertions) or rules of inference (which are
methods for transforming assertions). A system that relies mainly on
axioms 1is very general; new facts may be introduced without modifying
the system because new axioms may be added long after the system is
written. However, without restrictive strategies about how each axiom
is to be used, such systems tend to thrash and flounder. On the other
hand, systems such as King's[1969] (see also King and Floyd [1970]),
which rely on rules of inference applying to a specific semantic domain,
proceed with a great sense of direction but usually require reprogramming
when new facts are introduced.

We therefore would like to see a system that combines the virtues

of both approaches, using rules of inference when possible and axioms when
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necessary. We further hope that the user would be able to introduce
new rules of inference without being forced to reprogram the system.
Thus we would be able to give the system special knowledge about the
semantic domain (the integers or lists, for example) without affecting
its generality.

We are dissatisfied with the large number of equivalent induction
principles required by our system. One might prefer to have a single
general induction rule with-a more powerful program extraction mechanism
(see, for example, Burstall [1969], Park [1970], and Scott [ 1969]).

It is not yet clear what this mechanism would be, and we are not sure
that the machine implementation of such a rule in a theorem-proving
system would be feasible.

Finally, it occurred to us during the preparation of this paper
that partial function logic (see McCarthy [1963b]) would be a more
appropriate vehicle for program synthesis, because in this language we
may discuss partial functions, whereas in the usual predicate calculus
all operations and predicates are assumed to be total. We believe the
techniques we have already outlined above apply to partial function logic
as well. Some work has already been done by Hayes [1969] towards the
machine implementation of this logic. Taking this remark in conjunction
with a paper by Manna and McCarthy [ 1970] suggests that partial function

logic may be the most natural language for program analysis and synthesis.

(b) -Language and representation

In our discussion we have used a modified predicate calculus in
specifying the program to be constructed. This suggests that predicate

calculus could be used as a higher-level programming language, where the
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compiler would be a program synthesis system, extracting a program in
a lower-level language.

On the other hand, we are not bound to the use of predicate calculus
as our source language. Programmers might find such a language lacking
in readability and conciseness. However, any language that might be
developed for expressing input and output relations would be satisfactory
so long as the system could translate it into the language its theorem

prover understood.

Of course, there are cases in which it is as easy to write the program
itself as to write input and output relations describing it. However,
this is more likely to be the case with trivial examples than with

camplex realistic programs.

(c) Interactive program synthesis

We have not considered the possibility that the synthesizer might
interact with the user in constructing its programs. However, an
interactive approach might lead immediately to a more practical system.
For example, 1f the theorem prover were interactive the power of the
program synthesizer would be greatly increased. Alternatively, we
might interact by allowing the user to suggest program segments to the

synthesizer, allowing the system to incorporate them into the program.

(d) Program modification

We have not approached the problem of constructing efficient programs
in any systematic way. We have contented ourselves with the construction
of correct programs, and have seldom been very critical of the programming
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quality exhibited. Although in Section 6we illustrated that we can

write more efficient programs by avoiding recursion and declaring inefficient
subroutines non-primitive, more general work in this direction is clearly
needed.

Once we have developed a method for controlling the efficiency of the
extracted program, wenot only can produce better programs with the purely
synthetic approach, but also can use our techniques to write better
compilers and program optimizers, which transform programs written by
human beings. We take such a program (or a portion thereof) and transform
it into its representation in predicate calculus (see Ashcroft[1970],
Burstall [ 1970], Manna [1969], and Manna and Pnueli [1970]), which is
then taken as the specification of a new, more efficient reconstruction.

Another way program~synthetic techniques may be used in the
improvement of an already existing program is in the construction of
an automatic debugging system. Current program verification methods
give us a way to detect and locate errors in a program; we then can
use the program-synthetic approach to replace the incorrect segment

without affecting the remainder of the program.
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