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- Abstract: An elementary outline of the theorem-proving approach to

automatic program synthesis is given, without dwelling on technical

1 details. The method 1s 1llustrated by the automatic construction of

both recursive and iterative programs operating on natural numbers,

lists, and trees.

" In order to construct a program satisfying certain specifications,

a theorem induced by those specifications 1s proved, and the desired

-~ program is extracted from the proof. The same technique is applied

to transform recursively defined functions into iterative programs,

frequently with a major gain 1n efficiency.

- It 1s emphasized that in order to construct a program with loops

or with recursion, the principle of mathematical induction must be

-— applied. The relation between the version of the induction rule used

and the form of the program constructed 1s explored in some detail.

—
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L 1. INTRODUCTION

[ It 1s often easier to describe what a computation does than it 1s to
define it explicitly. That 1s, we may be able to write down the relation

[ between the input and the output variables easily, even when it 1s difficult
to construct a program to satisfy that relation. A program synthesizer 1s a

L system that takes such a relational description and tries to produce a
L program that 1s guaranteed to satisfy the relationship, and therefore does

not require debugging or verification.

L On a more limited scale we can envision an automatic debugging system
that corrects programs written by humans instead of merely verifying them.

L We can further imagine clever compilers and optimizers that understand the

| operation of the programs they manipulate and that can transform them
| intelligently.

L Some program synthesizers have already been written, including the
Heuristic Compiler (Simon [1963]), DEDUCOM (Slagle [1965]),QA3 (Green

L [1969a], [1969b]), and PROW (Waldinger and Lee [1969] and Waldinger [1969]).

L The last three of these systems use a theorem-proving approach: 1n order
to construct a program satisfying a certain input-output relation, the

[ system proves a theorem induced by this relation and extracts the program
directly from the proof. All three used the resolution principle of

L Robinson [1965]. However, these systems have been fairly limited; for

L example, they either have been completely unable to produce programs with
loops, or they introduced loops by underhanded methods.

| When a theorem-proving approach 1s used in program synthesis, the
| introduction of loops into the extracted program 1s closely related to the

L use of the principle of mathematical induction in the corresponding proof.

i } The induction principle presented special problems to the earlier program-
1



synthesis systems, problems which limited their ability to produce

loop programs. These problems are discussed in this paper. We propose

to use a variety of different versions of the induction rule, each of

which applies to a particular data structure, and each of which induces

a different form in the extracted program. The data structures treated

are the natural numbers, lists, and trees.

We do not rely on any specific mechanical theorem-proving techniques

here, both because we do not wish to restrict our class of readers to

those familiar with, say, the resolution principle, and because we believe

the approach to be more general and not dependent on one particular

theorem-proving method. We give a large number of examples of programs,

with the corresponding theorems and proofs used in their synthesis. The

proofs we give are informal and in the style of a mathematics textbook.

Some of them have been achieved by such systems as PROW and QAj5; others

we believe to be beyond the powers of existing automatic theorem provers,

but none are unreasonably difficult, and we hope that the designers of

theorem-proving systems will accept them as a challenge.

Section 2 gives the flavor of the approach illustrated by three

examples. In that section we do not prove the induced theorems, and we

present the constructed programs without describing the extraction process.

In Section 5 we demonstrate the extraction process with complete examples

of the synthesis of two programs without loops. We choose loop-free programs

for these examples so as to postpone discussion of the principle of

mathematical induction.

The heart of the paper is contained in Section4, with the presentation

of the induction principles and their corresponding iterative or recursive



LL program forms. One of the examples in this section gives details of the

proof and program extraction process. gaction 5 demonstrates a more

| general rule, the complete induction principle. Section 6 suggests

1 applying program-synthesis techniques to translate recursive programs

into 1teratlve programs, and presents two examples, in which a striking

further research in this field.
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= 2. GENERAL DISCUSSION

I. We define the problem of automatic program synthesis as follows:

given an input predicate (x) and an output predicate ¥(x,z),

~~ construct a program computing a partial function 2 = f(x) such that

if x is an input vector satisfying @(x) , then f(x) is defined and

. ¥(x,f(X)) is true. In short, the predicates @(x) and V¥(x,z) provide

. the specifications for the program to be written.

In order to construct such a program, we prove the theorem

~ (vx) [p(x) © (Fz)¥(x,2) 1.

The desired program is then implicit in the proof that the output

. vector z exists. The theorem prover must be restricted to show the

L existence ofz constructively, so that the appropriate program can be

extracted from the proof automatically.

— Frequently, (x) is identically true; i.e., we are interested in

the performance of the program for every input Xx . Then the theorem to

” be proved 1s simply

_ (V5) [1 > (32) ¥(E,2)] ,
or equivalently,

“ (v%)(32) ¥(%,2) .

In such cases we shall neglect to mention the input predicate.

- Let us first illustrate the flavor of this 1dea with three examples:

| (1) The construction of an iterative program to compute the quotient

and the remainder of two natural numbers;

L (11) The translation of a LISP recursive program for reversing the

{ top-level elements of a list into an equivalent LISP iterative
| program;



(111) The construction of a recursive program for finding the maximum

among the terminal nodes in a binary tree with integer terminals.

In each case we give the specifications for the program, the

induced theorem, and the automatically synthesized program, without

introducing the proofs of the theorems or the extraction of the

programs from the proofs. Such details will be given in the examples

of our later sections.

In our examples we express our input and output predicates in a

modified predicate calculus language. However, this 1s not essential

to the method; any language for describing relations may be used.

Example 1: Construction of an iterative division program.

We wish to construct an iterative program to compute the integer

quotient and the remainder of two natural numbers Xq and Xy where

xX, # 0. The program should set the output variable Zq to be the

quotient of xq divided by Xp and the output variable Zp to be

the corresponding remainder.

Thus, x = Xq 5%, and z = 21025 - Since we are not interested

in the program's performance for Xy = 0 , our input predicate 1s

P(x) :x, £0.

The output predicate 1s

- - 4 |V(x,2) SC Zp Xy Z5) (2, . X,) :

The theorem induced 1s then

_ eX +(vx) (¥x,) {x, £0 > (Fz) (Fz) [ (24 = ZX, Z,) A (2, < x5) 1}

The program synthesizer proves the theorem, and a program such as that

5



| *
illustrated in Figure 1 is extracted from the proof.

I.

—

(
}
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|
|

‘

“
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L

. Figure 1: A division program
4 We have assumed that certain symbols, including the "minus" operator
‘

and the "less than" predicate, for instance, €Xxist 1n our programming language;

therefore, these operators are said to be primitive. However, 1f the use of
|—-—

the "minus" operator or the "less than" predicate 1s not permitted in the

. language (i.e., 1f they are non-primitive), the above program 1s illegal.

This suggests that the user must always specify a list of primitive

- operators, predicates, and constants that the derived program may use. If,

for example, we allow our-system to use the constant "0" , the "successor"
\

and "predecessor" operators, and the "equality" predicate, but not the

LL "minus" operator or the "less than" operator, the program illustrated in

{ Figure 2 might be constructed.

L Henceforth, we shall assume all commonly used symbols are primitive

L unless we make explicit mention to the contrary.
*

*/ statements in which n-tuples of terms are assigned to n-tuples of
f variables represent simultaneous replacements. For example,
! + - :. (¥1595) «— (v4 1,35 X,) means that y, 1s replaced by ytd and Yo

by Yo=Xo simultaneously.
{
\ 6
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[((vp57,575) « (0,0,%,) |

- CHALT>

F

: ~ ~ = 11olanv
Vy «if y2 = x2 -1lthen Yi 1l else Yi

y2 « if Yo» = x2 —lthen 0 else yotl

Figure 2: Another division program

Example 2: Translation of a recursive reverse program 1nto an iterative

program.

We wish to translate a LISP recursive program for reversing the

top-level elements of a list into an equivalent LISP iterative program.

For example, 1f x 1s the list (a b (c d) e) , then its reverse 1s

(e (c d) ba) .

Here, X =X, 2 = 2 and since we want the program to work on

all lists, @(x) is T . The output predicate will be

¥(x,z) : z = reverse(x)

where reverse is defined by the recursive program (see McCarthy [1962]):

| —

If
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L

reverse(y) <= 1f Null (y) then NIL

- else append(reverse(cdr(y)),List(car(y)))

L The function append (y,,y,) concatenates the two lists Yq and Y,
For example, if Vy is the list (a b (ec d)) and Yo is the list (e) ,

L then append (y;,¥,) is the list (a b (¢c d) e) .
! Thus, the theorem to be proved is
-

(vx) (3z)[z = reverse(x)] .

L The above theorem has a trivial proof, taking z to be reverse(x)
itself. Therefore our program synthesizer might construct the following

L unsatisfactory program

L

i |

L
C_HALT>

L-

- This introduces the problem of primitivity again. The reverse

L function should not be considered as a primitive in the programming
language in this specific task because we clearly do not want reverse to

| occur in our iterative program. Henceforth, we shall assume that the

| name of the program to be constructed 1s never primitive.
If we allow our system to use the constant NIL, the operators

L car, cdr, and cons, and the predicate Null as primitives, the program
illustrated in Figure 3 might be constructed.

(
- 8



(45 V5) « (x,NIL)

- CHAT>

F

Figure 3: The reverse program

Note that the computation of the derived iterative program consumes

less time and space than the computation of the given recursive program.

This 1s not only because of the stacking mechanism necessary in general

to implement recursive calls, but also because the repeated use of the

append function during execution of the recursive program introduces

redundancy in the computation.

Example 5: Construction of a recursive maxtree program.

We wish to construct a recursive program for finding the maximum

among the terminal nodes in a binary tree with integer terminals. We

shall introduce a special language called TREE for manipulating binary trees.

The primitives allowed in our TREE language are the operators

(a) left (y) : the left subtree of the tree vy ,

(b) right (y) : the right subtree of the tree vy ,

9



L and the predicate
(c) Atom(y) : 1s the tree y a single integer?

AFor example, if y is the binary tree a , then
/\

L I

| left (y) 1s /\ » right(y) is 2 , Atom(y) 1s F , and3 I

Atom(right(y)) is T .

- Let Xx =x, z=2, ©(x) be T , and the output predicate be

o V(x,z): Terminal(z,x) A (Vu)[Terminal(u,x) > u < z] ,

where Terminal(y,,y,) means that the integer y, occurs as a terminal

= in the tree Vy - The output predicate says that the integer z 1s a
| terminal of the tree x not less than any other terminal node of x .

Thus, the theorem to be proved is

L (vx) (42) { Terminal(z,x) A (Vu)[Terminal(u,x) o u < z]} .

L If we allow the max operator over the integers,
| max (y,,,) : the maximum of the integers y; and. Y2 »

L to be used as a primitive, the recursive program produced might be

{ | z = maxtree(x) where
.

maxtree(y) <= if Atom(y) then y

L else max (maxtree(left(y)),maxtree(right(y))) .

| If we do not allow the max operator to be used as a primitive but allow
| the predicate "less than or equal to", the program produced might be

| "z = maxtree(x) where
| maxtree(y) <= if Atom(y) then y

L else if maxtree(left(y)) <maxtree (right (y))
: then maxtree(right(y))

- else maxtree(left(y)) .
10
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Note that although the symbol maxtree, the name of the program, is

not primitive, 1t may be used as a dummy function name in the recursive

definitions. Any other function name could have been used instead.

We feel that at this point we should clarify the role of the input

predicate. Compare the following program writing tasks: 1n the first,

the input predicate is (x) and the output predicate is V¥(x,z),

while in the second, the input predicate is @'(x) : T and the output

predicate is V¥' (%x,2): ®(x)D V(X,z) . In the first task we do not care

how the synthesized program behaves 1f the input x does not satisfy

P(x) . In the second case we 1nsist that the program terminates even

if x does not satisfy @(x) , but we still do not care what the value

of the output 1is.

The theorems induced are:

(vx) [o(x) © (Ez)¥(x,2)1

and

(vx) (Fz) (p(x) > ¥(x,2)] ,

respectively. Surprisingly enough these theorems are logically equivalent,

even though they represent distinct tasks. This suggests that the program

extractor must make use of the input predicate in the process of synthesizing

the program.

Suppose, for instance, that 1n constructing our iterative division

program (cf. Example 1) we had given the system the input predicate

(x): T

and the output predicate

V'(x,2) : X, £00> (x, = ZX, +2,) A(z, < X5)

11



3 = The theorem induced in this case would be

| = ZX, F
(vx) (Vx) (z,) (3z,) [x £00> (x, = ZX, Z,) A (2, < x) ] ,

: which is logically equivalent to the theorem

| (1x) (Vx) {x, # 02 (Fzp) (Fz) [(x] = z;°x,t2,) A (2,<x,)]1}.
— However, the program extracted from the first theorem (Figure 4) halts

| for every natural number input, whereas the program extracted from the

§ second theorem (Figure 1) does not halt when X, is 0 .

GS (2525) « "(arbitrary values) C_HALT
| F

| (¥1595) «— (0,%,)
|
[

bo
[

| i (2,,2,) « (37,7,)
| » 17%) © Warp

F

Figure 4: Another division program

lL — 12
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L 5. CONSTRUCTION OF LOOP-FREE PROGRAMS

t We would like first to illustrate with two examples the extraction
of a program from a proof. The programs we will construct are especially

| simple since they have no loops. The program extraction process in this
case may be roughly described as follows: substitutions into the output

L variables 1n the proof result in assignment statements in 1terative programs
[ and operator composition in recursive programs. Case analysis arguments

in the proof result in conditional branching in both iterative and recursive

L programs.

L Example 4: Reversing a two-element list.

{ We wish to construct a LISP program that takes as input a list of
two elements, and produces as output the same list with the elements

[ reversed.
| Thus, the output predicate 1s

L Vi5,2) © (Yay) (Vu)lx = List (uu) > 2 = List (upouy) 1,
1 and the theorem to be proved 1is

(vx) (Fz) {(Yu,) (Vu,) [x = List (uj,u,) 2 7 = List (u,suq) 1}

L We assume that any system used to prove this theorem has a large supply

| of facts about the data structure and the progratmning language to be used,
stored in the form of axioms and rules of inference. We assume in

L particular that the rules of inference stored within the system can handle
deductions of the first-order predicate calculus with equality such as

L those we use in the proof below.

L

L
15
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During the process of proving the above theorem, the system will

eventually choose the following axioms:

1. car(list(u,v)) = u ,

2. edr(list(u,v)) = list(v) , and

3. append(list(u),list(v)) = list(u,v) .

Note that the operator list takes a variable number of arguments.

The proof will proceed as follows: Suppose x =_list(u ,u,) for

some arbitrary uy and Us, Then by Axioms 1 and 2, respectively,

4. car(x) = uy and

5. cdr(x) = list (u,) :

From 4 we have

6. list(car(x)) - List(w) .

Then combining5 and 6 using Axiom 5, we obtain

7. append (cdr (x),list(car(x))) = list (u,,u,) :

Letting z be append(cdr(x),list(car(x))) , we obtain

which 1s the desired conclusion.

Now, 1n order to extract the program, we keep track of the

substitutions made for z during the proof. In the above proof we have

replaced z by append(cdr(x),list(car(x))) ; therefore, the desired

program 1s simply

7 «—aappend(cdr(x),list (car(x)))

14



— Example 5: The max of two numbers.

| The program constructed in this example contains a conditional

| = branch but no loops. We wish to find the maximum of two given integers.

Thus, the output predicate 1s

| U(x 5X52) 1 (2 = x) Vz =%)Az2>2% Az2X,,
~ and the corresponding theorem is

FE (vx) (¥x,) (Fz) [ (2 - x, Vz =X) Az >x Az 2>x,].

| The proof proceeds by case analysis; 1t may appear poorly motivated,

FE but 1t 1s well within the capacity of existing theorem-proving programs.

Translating the theorem into disjunctive normal form, we have

u (v2,) (Vx) (@2) [ (2 = xy Az 2% Az 2x) V (2=%, Az2x Az2%) |

= If we assume (u =v) 3 (u > v) as an axiom, we can simplify the above formula to

— (vx) (Vx,) (Fz) [(z2 = x, A 22x) Vv ( z=x,AZ >x)]

Now suppose xX 2 X, then 1f we let z be xq , the first disjunct

1s satisfied. On the other hand, suppose X, <X, ; then 1f we let z be Xn 1

o the second disjunct is satisfied.

| Since the substitution we made for z depends on whether or not xq

= was greater than or equal to Xo the program extracted from the proof

| of the theorem 1s

| z «if x) 2X, then Xq else x, |
-

_ 15



The reader who 1s unsatisfied with our seat-of-the-pants description

of the program extraction process may examine any of the more rigorous

accounts in the literature (e.g. Green [1969a] [ 1969b ], Waldinger and

Lee [1969], Waldinger [ 1969], and Luckham and Nilsson [1970]).

The above programs are clearly of limited interest since neither

contains a loop. In order to construct a program with loops, application

of some version of the principle of mathematical induction 1s necessary.

Therefore, 1n the next section we digress into a discussion of the

induction principle.

16



L 4. THE INDUCTION PRINCIPLE

The induction principle is most commonly associated with proving
—

theorems about the natural numbers, but analogues of it apply to other

g data structures, such as lists, trees, and strings. Furthermore, for each
data structure there are many equivalent forms of the principle.

i

br Mathematicians use whichever version 1s most convenient. Similarly, the

theorem prover chooses an appropriate induction principle from a given

supply during the course of the proof. This choice directly determines
4

u the form of the program to be constructed, since each induction rule has

an associated program form stored with it. Therefore, if we want to
{

— restrict the form of the extracted program, we must limit the set of

| available induction principles accordingly.

3 4.1 Natural numbers
We shall discuss four versions of the induction principle for the

—
-natural numbers; two will be appropriate for writing recursive programs

L and two for writing iterative programs. In each class, one rule will be
called a "going-up" principle and the other a "going-down" principle.

We will illustrate each of these with a different version of the factorial

( program. The output predicate 1s
—

¥(x,2) : z = factorial(x) ,

L where
factorial(y) <= if y = 0 then 1 else y-factorial(y-1l) .

L This example will 1llustrate clearly the difference between the programs
generated by using "going-up" induction and "going-down" induction: the

-

— all



"going-up" programs compute x! in the order 1 , 1-2, 1:2:3 ,, ..

while the "going-down'* programs compute x , X+(x-1) , x-(x-1).(x-2) ,....

The proofs required for the synthesis of the programs use two

axioms 1nduced by the above definition:

factorial(0) = 1

and

u > 0 DO [factorial(u) = u-factorial(u-1l)] .

We will not include those proofs, but merely will give the programs

extracted, 1n order to illustrate the relationship between the form of

the induction principle used in the proof and the form of the constructed

program.

(a) Iterative goilng-up induction

The reader 1s probably familiar with the most common version of

the induction principle over the natural numbers,

do)

(Wy) lay) oaly,+1) 1

(vx)a(x)

Intuitively, this means that 1f a property & holds for 0 and if

whenever it holds for A it holds for ytd , Then 1t holds for every

natural number x . We call this version iterative going-up induction.

For our purpose we use a special form of the principle in which

a(y,) is (By,)B(y57,) » where [B still represents an unspecified

property. The induction principle now becomes

18



| - (%y,)5(0,7,)
(Vy) [(8y,)B(v 59,5) 2 (Fy,)B(y,+1,3,)1

| | The program form associated with this rule is 1llustrated in Figure 5.

| If the theorem to be proved happens to be of the form

! (vx) (dz) B(x, 2) ,

and 1f going-up induction 1s applied, the program extractor then knows

1 that the program must be of the form illustrated in Figure 5.

_

| Figure 5: Iterative "going-up" program form

_ The constant a and the function g(y1s¥,) are unspecified 1n
the above form. The task of the program constructor 1s now to write

— subroutines to campute a and g in such a way that the program of

Figure 5 will satisfy the desired relation. This 1s done as follows.

| —

| . _

oT 19
f



The theorem to be proved is of the form (V¥x)(¥z)Bx,z) . This

| 1s precisely the form of the consequent of the induction principle.

Therefore, 1f we can prove the two antecedents, then we are done. This

suggests—-that we attempt to prove the two lemmas:

A) (%y,)B(0,¥,) 2
and

(B) (Vy)(Ey)B(y 595) 2 (Fy) B(y+L:v,) 1,

or equivalently, translating into prenex normal form,

* - *
' +(B') (Vy) (Vy) (By) [B(yy57,) 2 BlyytLiyo)]

The proof of Lemma A generates a subroutine with no variables

that yields a value for Vs satisfying 8(0,y,) . This is the

desired definition of the constant a ; hence

(1) (0,2) is true.

The proof of Lemma B' generates another subroutine which yields

*

a value of 7, in terms of Yq and Yo - This subroutine provides

a definition of g(y159,) satisfying

(2) B(y155,) 2 B(yi+1,8(yy5v,)) for all y, and y, .
The proof of the lemmas concludes the proof of the theorem

(Vx) (4z)R(x5,2). We have now completely specified a program that

computes a function =z = f(x) satisfying B(x,f(x)) for all values of x .

For the suspicious reader we are ready to verify the above assertion.

Consider the iterative "going-up" program form labeled as in Figure 6.

20
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| -

(v5 7) = (y7%1, &(yys v,) )

Figure 6: Labeled iterative 'going-up' program form

We will use Floyd's approach [1967] and show that whenever control passes

through arc a , B(y,> Ys) 1s true for the current values of Yq and Yo .

Furthermore, whenever control passes through arc 8 , B(x, z) 1s true

for the initial value of x and the final value of z .

Beginning at the START node, we set Yq to 0 and Yo to a ,

and so when we pass through arc @ , B(y157,) (i.e., (0, a) )

1s true by (1).

Now suppose that at some point in the execution, control 1s passing through

arc & and currently B(y57,) 1s true and Yq # Xx . Then, by (2)

(3) B(y,*1, g(yys¥,)) is true.

Traveling around the loop we simultaneously set Yq to yotl and Yo

to g(y15¥,) and reach arc @ again. That B(y15¥,) is satisfied at

this time follows directly from (3) and our assignments to Yq and Vy

Clearly, wemust at some time reach arc & with yi = X since x

: ~- is a natural number. Then we set z to Ys and pass to arc B . Since

B(y157,) was true at arc & and yg = x B(x, z) is true at arc B .

This concludes the proof that the program constructed has the desired

properties.

21



Example 6: Iterative "going-up" factorial program.

We wish to construct an iterative "going-up" program for computing

the factorial function. The theorem to be proved is

(Vx) (7z)[z = factorial (x)] .

Applying the iterative going-up induction principle (with B(y,>¥,) being

Vy = factorial(y,) )» we are presented with the two lemmas

(A) (%y,)ly, = factorial(0)]
and

* *
. _ . _ .

(B') (Yy1) (Vy,)(3y,) ly, = factorial(y,)] > [y, = factorial(y,+1)1} .

*

The lemmas are proven, and the values for Yo and Yo (i.e., a and

g(y157,) ) found are 1 and (y,+1) ‘Yo , respectively. The program

extracted is illustrated in Figure 7.

(v1575) = (0,1)

T

CoE

F .

— + .

(7157p) © (v9+1 (3771) 7)

Figure 7: Iterative "going-up" factorial program

Note that for simplicity we have assumed in the above discussion that the

program to be constructed has only one input variable x and one output

variable z . This restriction may be waived by a straightforward generalization

of the induction principle given above as illustrated in Examples 15 and 15.

22



) 2
i (b) Recursive going-up induction

1 —_ We present another going-up induction principle that leads to a

| different program form. The principle

a(o)

(vx) (x)

|
1 1s logically equivalent to the first version but leads to the construction

of a recursive program of the form

| { = f(x) where
ne Le) <= if y = 0 then a elseg(y,f(y-1)) .

: _ We call this version recursive going-up induction. Note that the f is

1 a dummy function symbol that need not be declared primitive.

CL ~ We have omitted the details concerning the derivation of this

program but they are quite similar to those involved in Section (a) above.

(c) Iterative going—down induction

Another form of the induction principle 1s the iterative going-down

tT form

(Byy)a(y;)

| (vy) ly; #0 A aly) = alyy-1)]

oT ao)

| — The reader may verify that this rule 1s equivalent to the recursive
| going-up induction, replacing d by ~d 'and twice using the fact

LT that p AA g Dr 1s logically equivalent to ~r A gD -p .

In this case we use a special form of the principle in which

ay) 1s of the form (Ty,)B(%, 5155) , where x 1s a free variable.
;
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The induction principle now becomes

(vy) ly, #0 A (By)8(%,5,,7,) 2 (Fy)B(%,y,-1, ¥,)1

Suppose now that the theorem to be proved is of the form

(vx) (82) B(x,0, 2) .

The theorem may be deduced from the conclusion of the above induction

principle. If the iterative going-down induction principle 1s used, the

program to be extracted 1s automatically of the form illustrated in

Figure 8.

T

Cz>

F

| (vv) «= (y1-L8(x,57575))

Figure 8: Iterative "going-down" program form

Thus, all that remains 1s to construct subroutines to compute the functions

The antecedents of the induction principle give us the two lemmas

to be proved

- and
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| ~ (B) (fy) [yy #0 A (Fy) B(x555,) 2 (By,)B(%,7,-1Lv,)1
_ or equivalently,

| ( ¥ Lo *B B!) (Vy) (¥3,) (Ey)[yy #0 A B(x¥57,)2 B(x, y,-1L,y,)1

| The proof of Lemma A yilelds subroutines to canpute Yq and Yo in

— terms of x, which define the desired functions h, (x) and h, (x) ’

| respectively. The proof of Lemma B' ylelds a single subroutine to

| ~ compute v, in terms of x, Yq and Vo thus defining the desired

| _ function g(x, V1 Yo) ~The program is then completely specified, and its

| correctness and termination can be demonstrated using Floyd's approach,

— as was done before.

| Note that iterative going-down induction 1s of value only if the

— constant 0 occurs in the theorem to be proved. Otherwise, the theorem

| prover must manipulate the theorem to introduce 0 .

Example 7: Iterative "going-down" factorial program.

| We wish to construct an iterative "going-down" program for computing

the factorial function. The theorem to be proved 1s again

| (vx) (Hz)[z = factorial (x)] .

= The theorem contains no occurrence of the constant 0 . Thus, the

| theorem prover tries to introduce- 0 , using the first part of the definition

of the factorial function (i.e., factorial(0) = 1) and its supply of

— axioms (u+l = u , in particular), deriving as a subgoal

| (dz) [factorial(0)+z = factorial(x)] ,

~ where x . 1s a free variable. This theorem is in the form of the consequent

| of the iterative going-down induction, 1i.e., (Zy,)B(%,0,¥,) ; hence, the
[N_-—

theorem prover chooses the induction hypothesis B(%,¥15¥,) to be

- i factorial(y,) Vp = factorial(x) .
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The lemmas proposed are

(A) (%y,) (gy, [factorial(y, ) 'y, = factorial(x)] ,
and

HK

(B') (Vy) (Vy,) (Fy) {vy £0 A [factorial(y,) vy, = factorial (x)]
*

- [ factorial(y,-1) -y, = factorial(x)]} .
: *

The values obtained for Yq Yo , and Yo (1L.e., h, (x) , h, (x) , and

8(%,7759,) )s respectively, are x , 1 , and ¥,°Y, . The program
constructed 1s illustrated in Figure 9.

(y,5¥,) = (x1)

= CHALT

(y1575) = (y1-1y, +75) |

Figure 9: Iterative "going-down" factorial program

(d) Recursive -going-down induction

The recursive going-up induction was very similar to the iterative

going-up induction. In the same way, the recursive going-down induction,

(qy ay)

(Yyy) la(y;*1) = aly) |

ao)

26



‘

L | is very similar to the iterative going-down induction. The form we are most

L interested in is
(By) (Fy) B(%,5157,)

_ (Vy) [(@y,)B(x, 7,175) > (Ty,)B(%,¥5¥,)
4

L (Ty,)B(%,0,,) >

§ where x 1s a free variable.

L If the rule is used in generating a program, the two appropriate
lemmas allow us to construct h, (x) , h, (x) and g(%,5,57,) as before,

8 and the program extracted 1is
] z = f(x) = £'(x,0) where

L f(x,y) <= if y = h, (x) then h,, (x) else g(x,y,f'(x,y+1)) .

L Example 8: Recursive "going-down'" factorial program.
g The program we wish to construct this time 1s a recursive "going-down"

program to compute the factorial function. Again the theorem

4 | (Vx) (32) [z = factorial (x)]
. 1s transformed into

L (dz) [factorial(0)z = factorial (x)] .

L We continue as before and the program generated 1is
€ = f(x) = £'(x,0) where

r

8g | <= ify = x then 1 else (ytl)-f'(x,y+1)

21



L.2 Lists

Our treatmentsof lists and natural numbers are in some ways analogous,

since the constant NIL and the function cdr in LISP play the same role as

the constant 0 and the "predecessor" function, respectively, in number

theory. The induction principles of both data structures are closely

related, but since there is no exact analogue in LISP to the “successor"

function in number theory, there are no iterative going-up and recursive

going-down list induction principles. Hence, we shall only deal with two

induction rules in this section: recursive (going-up) and iterative

(going-down) list inductions. In the discussion in this section we shall

omit details since they are similar to the details in the previous section.

Weshallillustrate the use of both induction rules by constructing

two programs for sorting a given list of integers. The output

predicate 1s

¥(x,2) : z = sort(x)

where

(Vy) (V2) {[z= sort(y)] = if Null(y) then Null (z)

else (VYu)[Member(u,y) oz =merge(u,sort(delete(u,y))) 1}.

Here,

Member (u,y) means that the integer u is a member of the list y ,

delete(u,y) 1s the list obtained by deleting the integer u from the

list yv , and

merge(u,v) , where v is a sorted list that does not contain the integer u ,

is the list obtained by placing u 1n 1ts place on the list v ,

so that the ordering 1s preserved.
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'

[ The theorem to be proved 1s
: (Vx) (3z)[z = sort (x)] .
|N-

| (a) Recursive list induction
The recursive (going-up) list induction principle 1s

t

—

a(NIL)

1 (Vy) [~ Null(y,)A a(edr(y,)) 2 aly) 1

(vx)a(x)

-

The program-synthesis form of the rule 1is

— (8y,) B(NIL,y,,)

(Vy) [~ Nudl(y,) A (Fy,)B(cdr(y,),¥,) © (By,)B(y15v,) |
[|—-.

(vx) (Ty,) B(x,5,)

The corresponding program form generated 1s

— z = f(x) where

f(y) <= if Null(y) then a else g(y,f(edr(y))) .
-

_ Example 9:Recursive sort program.
The sort program obtained using the recursive list induction

— principle 1s

Zz = sort (x) where

1
sort (y) <= if Null(y)_ then NIL else merge(car(y),sort(cdr(y))) .

] } — —
(b) Iterative list induction

— The reader can undoubtedly guess that the iterative (going-down)

list induction principle 1s

29



(By )a(y,)

(yy) I~ Mull(y;)A aly) = a cdr(y,))]
a(NIL)

We are especially interested in the form

(Vy)[~ Null (yy) A (8y,)B(%,57.55,) 2 (Fy,)8(x;cdr(y,),y,)]

(8y,)B(x,NIL,y,) ’

where x 1s a free variable.

The corresponding program form generated 1s illustrated in Figure 10;

it employs the construction known among LISP programmers as the "edr loop".

(y159,) Nn (hy (x),h,(x))

= |

Cand CEE
F

| (¥1575) « (edr(y,),e(x,¥15¥,))

Figure 10: Iterative list program form
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_ Example 10: Iterative sort program.

2 Using the iterative list induction, we can extract the sort program

Sa of Figure 11.

He (¥35¥,) = (x,NIL)

Lo Figure 11: Iterative sort program

4.3 Trees

_ There 1s no simple induction rule for tree structures which gives
3

rise to an iterative program form, because such a program would have to

Co — use a complex mechanism to keep track of its place in the tree. However,

| there 1s a simple recursive tree-induction rule:
[ Le

]

| (Yy,) [Atom(y,) > a@(y,) ]

CC (Vy) [~ Atom(y,) A a(left(yy)) A a(right(y,)) > aly,)]

| (Yx)a(x) |

In the automatic program synthesizer we are chiefly interested in the

— following form
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(Vy) [Atom(y,) 2 (Ty,)B(y »v,) 1

(Vyy) [~ Atom(y,) A (Zy,)B(Left(y1),v,) Ay,)B(right (v4) ,¥,) - (Ty) B(y55,) I

(Vx) (y,)B(%,¥,) |

If we want to prove a theorem of form (V¥x)(Hz)A(x,z) using tree

induction, we must prove two lemmas

(A) (Vy,) [Atom(y,) = (8y,)B(yy5v,) 1

or equivalently,

(ah) (¥y,) (gy) laton(y)) © Bly,v)1
and

(8) (Vy) [~ Atom(y,) A (Ty,)B(1left (v1) ’ Vo) A (Fy) B(right (v,) »Vo) > (8y,)B(y > Vo) 1,

or equivalently,

* X
1 t ~~ 3 ?

(B') (yy) (¥y,) (Vy}) (Fy,)[~ Atom(y,) A B(left (yy) ,v,) AB(zight(y),v5)2B(y v5) 1

From the proof of Lemma A' we define a subroutine h(y,) to compute Yo

in terms of y, . The proof of Lemma B' yields a subroutine 8(¥12¥50 9)
*

: 1

to compute Yo in terms of ERE and Ap .

The corresponding program form 1s

Zz = f(x) where

f(y) <= if Atom(y,) then h(y,) else g(yy,T(Left(y,)), (right(y,)))

Note that this program form employs two recursive calls.

Example 11: Recursive maxtree program (see Example 3).

We wish to give the synthesis of a TREE recursive program for finding the

maximum among the terminal nodes in a binary tree with integer terminals.

This will be the first detailed example of the construction of a program

- containing loops.
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-
| The theorem to be proved 1s

| (vx) (32) [z = maxtree(x)] ,
— —

where

{

. (1) [z = maxtree(x)] = [Terminal(z,x) A(Vu)[Terminal(u,x) > u < zl] ,

( and

— (2) Terminal (u,v) <= 1fAtom(v) then u =v

else Terminal(u,left(v)) v Terminal(u,right(v)) .
“-

: We assume that maxtree itself is not primitive.

\§ The theorem is of the form (V¥x)(¥z)RA(x,z) ,where B(x,z) is

z = maxtree(x) . Taking =z to be Vo this is precisely the conclusion
L

of the tree induction principle. Therefore, we apply the induction with

L B(yys¥,) + v2  maxtree(y,).
r Hence, 1t suffices to prove the following two lemmas:
]

-

f —_—

(a')  (¥y,) (@y,) [Atom(y,) > y, = maxtree(y;)],

L and
*

L (B') (Vy) (Vy) (¥yh) (Fy)[ ~ Atom(y,)

AY, = maxtree(left(y,))
— _ .

Ay} = maxtree(right (y,))

* axtree(y.)| . DY, =m ree(y,) 1.
|—-—

, The proof of the lemmas will rely on the definition of maxtree (Axiom 1)

— and the following two axioms induced by the recursive definition (2)

L of the Terminal predicate:
(2a) Atom (v) D [Terminal(u,v) = (u = v)] ,

(

fC and

(2b) ~ Atom(v) D[Terminal(u,v) = [Terminal(u,left(v)) V Terminal(u,right(v))]1].
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1

First we prove Lemma A'. By Axiom lit follows that we want to prove

(Vy) (Zy,) {Atom(y,) o> [Terminal(y,,y;) A (Yu) [Terminal(u,y,)>u<y,] I] ,

or equivalently, using Axiom (2a) (with u being Ys and v being ¥q) ,

(Vy) (@y,) atom(y,) © ly, = yy A (Vu)lu =y; Du <y, 11}

It clearly suffices to take Ys to be y1 to complete the proof of

the lemma. Therefore, the subroutine for h(y;) that we derive from

the proof of this lemma is simply h(y,) =¥,

The proof of Lemma B' is a bit more complicated. Let us assume

that y; is a tree such that ~ Atom(y) and let y, = maxtree(left(y,))

andy} = maxtree(right(y,)) . We want to find a 7, (in terms of
ys v2 , and yh) for which v, = maxtree(y, ) : This means, by Axiom 1,
that we want Vs such that

Terminal (y,,y,) A (Vu) [Terminal (u,y.) Du < 7]

This implies, by Axiom (2b) and our assumption ~ Aton(y, ) , that we

have to find a v, satisfying the following three conditions:
* ¥

(1) Terminal (y,,left(y;)) V Terminal(y,, right (y,)) ,

ii) (Vu) [Terminal(u,left(y)) > u < v,)
and

(iii) (Yu) [Terminal (u, right (y,)) Du < y,] :

It was assumed that y, =_maxtree (left (y,)) and

v5 = maxtree(right(y,)) . Thus, using Axiom 1, condition (i) implies

t£& v, < Vo V v, < Vo » condition (11) implies that ip < 7, , and

condition (iii) implies that V5 < , . This suggests that we take y,
to be max(y,sy}) , which indeed satisfies the three conditions. Therefore,
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(
f

- the subroutine for 8(y1s¥,50 95) that we extract from the proof of this lemma

The complete program derived from the proof 1is

]

|. z = maxtree(x) where

| maxtree(y,) <= if Atam(y,) then yy¢
Ce .

else max (maxtree (left (y,)),maxtree(right(y,)))

o~

L

—

|

—

|
.

L
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- 5. COMPLETE INDUCTION

Lo The so-called complete induction principle 1s of the form

(vy)Lt (Vu) [u<y,> au) 12 a(y.)}

~ (vx)a(x) -

o Intuitively, this means that 1f a property & holds for a natural number

vq whenever it holds for every natural number u less than Yq then it

. holds for every natural number x .

Although this rule 1s in fact logically equivalent to the earlier

- number—-theoretic induction rules (see, for example, Mendelson [196k4]),

1 we shall see that it leads to a more general program form than the previous
rules, and therefore 1t 1s more powerful for program-synthetic purposes.

be However, 1t puts more of a burden on the theorem prover because less of

the program structure 1s fixed in advance and more 1s specified during

ht the proof process.

We are most interested in the version of this rule in which acy)

has the form (By,)B(y57,) , i.e,
he

(Yy,) { (Yu) [wu < y; 2 (&y,)8(wy,) 12 (By,)B(y,v,)

— (Vx) (2y,)B(%,y,) -

Thus, in order to prove a theorem -of the form

(vx) (32)B(x, 2)

- it suffices to prove a single lemma of the form

* *

(A) (Yyy) (3u) (¥y,) (By) {lu < yy 2 Bw, 3,) 1 28)
—

From a proof of the lemma we extract one subroutine for computing the

“ value of u in terms of y, (called h(y;) ), and another for computing

the value of , in terms of y; and y, (called g(y1s¥,) ). These
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functions satisfy the relation N

(1) [h(y,) <yq 2 BM0(y)s¥,) 12 8(yy58(y5vy)) for every y; and yj, .

The program form associated with the complete induction rule 1s

then the recursive program form:

z = f(x) where
(2) Lo <= g(y,£(h(y))) .
This form requires some justification.

Assume that the function f satisfies the output predicate

(3) Blu, £(u)) for all u < x .

We will try to show

B(x, £(x)) .

First, suppose h(x) <x . Then by the hypothesis (3), B(h(x),f(h(x))) .

Therefore, from (1) (taking V1 to be x and Yo to be f(h(x)) ) we

obtain B(x,g(x,f(h(x)))) , i.e., by (2), B(x,£(x)) .

Now, suppose h(x) > x . Then taking Yq to be x , the antecedent

of (1) is true vacuously, and we conclude A(x,g(x,f(h(x)))) , i.e., by (2),

B(x, £(x)) |

Example 12: The recursive quotient program (see Example 1).

We want to construct a recursive program to find (the integer part

of) the quotient of two natural numbers X; and X, , given that X, f ‘0.

Our output predicate 1s therefore

¥(xq5%,,2) : (Fr) [x = Z-XtrAr < x, ] :
The theorem 1s then

(vx) (Vx,) {x #0 DO (3z) (ar) [x = ZX FTAT < x, 1} :

Assume now that X, is a fixed positive integer. Then we wish to prove

(vx) (dz) (dr) (x; = z-xtrAr <x,] .

" The theorem 1s now 1n the same form as the conclusion of the complete
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C induction rule, taking x to be X10 Ys to be z , and

Therefore, the single lemma to be proved 1is

]

- ¥ II(ar) (Vy) (8a) (Vy) (yp) lu <yy © (Er) [u = yx, +ra vr <x]

> (Er)lyy = v,%, rA r <x,l},
-“

' or equivalently,

—

2) (vr) (ar){1 :; (Vy) (Fu) (¥y,) (Fy,) (Vr) ( u< you =y,xtr ar <x]
- _ x * *

> [v1 Yo XT AT < x,]} :

| *

n. If Yq <x, we satisfy the conclusion of the lemma by taking Vo to
*

be 0 (and r to be Yq) . If, on the other hand, ¥; > x, , We take
* W

u to be Vm Xp y, to be y,+1 (and r to be r) 3 then the

conclusion follows using an appropriate set of axioms for arithmetic.
—

The program derived 1s then

C di

} wiv, xg) r ediv(y,sx,) <= if y; < %, then 0 else aiw(y, - x,x)+1l .
1.

Although the program we constructed has two input variables, we were

— able to use the single-variable induction principle in 1ts synthesis by

treating the second input X, as.a free variable. Typically when constructing
—

programs with more than one input variable, we shall have to use a suitably

. generalized induction rule.

f

The next example will use two input variables, and we will not be
—

able to treat either of them as a free variable. Therefore we take this

— opportunity to demonstrate how to generalize the complete induction

principle to construct programs with two inputs.
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The form of complete induction was

(Fy) {Vw lu<y, 2a(u) 1 2aly;) 3

(vx)a(x) |

For the two-input-variable case, we take a(y,) to be

(Yy,) (833) B(v1, Ys ¥=) , obtaining the version

| (vy) Lr) [u<yy > (¥y,)(Ty5)Bw, vy, v3) 2 (V5) (By2) B(y15¥,50 35) }_reepee —————————————————

Suppose we want to prove a theorem of the form

(Vx) (Vx,) (22) B(x; X55 z)

This 1s the same as the consequent of the complete induction rule. Thus,

it suffices to prove the antecedent as a lemma:

(4) (Fy) (vw) [uw < 3,5 (Vy,) (875)8(w, 5,552) 12 (Vy) (By) B(y15 5,575) } 5

or equivalently,

(a1) (Fy1) (Fy) (30) (Ty,) (V5) (375) {Tu <y, © Bw, ¥a0 7) 1 2B 55,575)}

From the proof of this lemma we extract three subroutines

ho (¥15¥,) ’ bh, (¥157,) , and 9 (V1,Tp7¥,) corresponding to u ,
* *

Io and V3 » respectively. The program extracted from the proof
of the theorem will be of the form

7 = £(x,5%,) where

£(y155,) <= 8(y v0 Thy (7535) 50, (y57,)))
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ne Example 13: The greatest common divisor program.

EK The program to be constructed must find the greatest common
n=

{ divisor (gcd) of two positive integers xq and X, . For simplicity,

a we ignore the possibility of x; OI X, being 0 , and the theorem to
CL

] be proved is then

= where

-— [7 = ged (x,,x,) | = {z]x] A z |x, A Tulu|x, A ulx, Du < zl}.

- Here, ulv means 'u divides v evenly" . Recall that the function gcd
should not be considered to be primitive.

| — The theorem is in the same form as the conclusion of the complete

2 induction rule (for two input variables), taking V3 to be z , and
xe

» Therefore, we must prove the following lemma:

: Vy.) (Vy) (Fu) (Ey) cag alu, vy.

 — % 3

N This 1s one of the proofs we consider to be a challenge for existing
| theorem-proving systems. We suggest taking

I.

u to be ren(y,,y,)

3 * tob
| ~~ Yo tO DEY

* to b i f ( ) = 0 th 1and Vg 0 be 1 rem\y,s¥,) = then y else yj,

where rem (yy, vy) 1s the remainder when Vo 1s divided by yi
Therefore,

- hy(y5¥,) is rem(y,,vyy)
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hy(ys¥,) is vq,

is = .and g(y1,¥,3) if rem(y,,y,) = 0 then y, else A

The complete gcd program extracted is therefore

z = ged(x,,%,) where

ged(yy,y,) <= if rem(y,,y;) = O then y,
1 Cc

£ Se ged (rem(y,,y,),y,) .
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5

— 6. TRANSLATION FROM RECURSION TO ITERATION

_ Iterative programs and recursive programs compute the same class
of functions (namely, the partial recursive functions). However,

— recursive programs are camonly far more inefficient in time and space

than the corresponding iterative programs. Although it is straightforward

~ to transform an iterative program into an equivalent recursive program,

| the reverse transformation presents difficulties. (See, for example,
—

McCarthy [1963a], Strong [1970], and Paterson and Hewitt [1970].)

. LISP and ALGOL compilers, for example, translate recursive programs

into iterative programs that use stacks, without changing the essence of

— the computation. Using program-synthetic techniques, 1t 1s sometimes

possible to perform the transformation in such a way that the resulting

- iterative program performs the computation in a fundamentally better way
C than the original recursive program. Although we have no mechanism to

; ensure this improvement in general, we shall see how this occurs in the

~~ two examples presented in this section, the first concerning the reverse

function and the second, the Fibonacci sequence.

(-

L Example 14: The reverse function (see Example 2).
We are given a recursive reverse program:

~~ z = reverse(x) where

. reverse(y) <= 1f Null(y) then NIL
else append(reverse(cdr(y)),list(caxr(y))) .

L As we mentioned earlier, this definition 1s quite inefficient since it

1 involves repeated computation of the append function, which in itself
requires a relatively complex computation.

_ . -
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The theorem to be proved 1s

(Vx) (dz)[z = reverse (x)] .

Recall that the reverse function 1s not considered to be primitive .

For efficiency we also omit the append function from the list of

primitives.

Since we want to write an iterative program, we must use the

iterative list induction rule:

(¥y,) [~ Bll(y;) A (Fy,) B(x, ,27,) O (Fy,)B(xcdr(y,),v,) |

(8y,)B(%,NIL,y,)

Aside from this rule we have two axioms that result directly from the

given definition of the reverse function:

(1a) reverse (NIL) = NIL ,

(1b) -Null (y) D [reverse(y) = append(reverse(cdr(y)),list(car(y)))] .

Furthermore the system will use the following axioms chosen from its supply

during the course of the proof;

(2a) append (NIL,u) = u ,

(2b) append (u,NIL) = u ,

(3) append (u,append(v,w)) = append (append (u,v),w) , and

(4) append (list(u),v) = cons(u,v) .

The theorem to be proved, (vx) (2z)[z = reverse(x)] , is not in

the correct form to apply the iterative induction because NIL does not

occur in it. However, by Axiom 2a and the definition of reverse
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L (Axiom la), our theorem prover will translate the theorem into the

| following satisfactory form:
(vx) (7z) [append(reverse(NIL),z) = reverse(x) ]

L Therefore, we can apply the iterative list induction rule with

L B(%,5,5¥,) : append (reverse(y, ),,) = reverse(XxX) ’

| and the two lemmas to be proved are:
(A) (Ty) (%y,) [append(reverse(y,),v,) = reverse(x)] |

L and
>*

¥

| > gppend(reverse(cdr(y;)),y,) = reverse (x)]
Using Axiom 2b, the system chooses Yi to be x and Yo to be NIL ,

L concluding the proof of Lemma A.

| To prove Lemma B', the system assumes ~ Null (yy) and
append (reverse(y,),v,) = reverse(x) . Using the definition of reverse

L (Axiom 1b), and the assumption that ~ Null(y,) , 1t derives
reverse(y,) = append (reverse (cdr(y,)), List (car(y,))) :

L Substituting in the hypothesis, 1t deduces

| append (append (reverse(edr(y,)),list(car(y,))),¥,) = reverse(x) .
Using the associative rule for append (Axiom3), it obtains

L append (reverse(cdr (vy, )), append (1ist(car(y,)),v,)) = reverse(x)
Then, from Axiom 4, it derives

L append (reverse (cdr(y,)),cons(car(y,),¥,)) = reverse (x) .

| Comparing this formula with the desired conclusion, the system takes*

Np to be cans(car(y,),¥,) , concluding the proof.
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Such a proof 1s well within the capabilities of existing theorem

provers. In fact, the above proof of Lemma B' has actually been found

(see Brice and Derksen [1970]) using the QA3 theorem-proving system

(Green and Raphael [1968]) with Morris's E-resolution [1969].

Since 1n the proof of Lemma A, J and Yo Were replaced by x
>*%

and NIL, respectively, and in the proof of Lemma B', ¥, was replaced

by cons (car(y,),V,) , the iterative program illustrated in Figure l2
will be constructed. Note that this program is far more efficient than

its recursive counterpart.

- _ Caz>

Figure 12: Iterative reverse program

Example 15: The Fibonacci sequence.

The advantage of iteration over recursion is particularly apparent

in the computation of the Fibonacci series

1, 1, 2, 3, 5, 8, 15, 21, 34, 55, ...,

each of whose terms (after the second) 1s the sum of the preceding two.

Given a natural number Xx , the value of the x-th Fibonacci number
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1s most simply defined by the recursive program.

- z = fibonacci(x) where

| fibonacci(y) <=_1if (y = 0 Vy=1) then 1
“

else fibonacci(y-1)+ fibonacci (y-2) .

— In practice this program 1s grossly inefficient, involving many repetitions

of the same computation. We would like to use our approach to translate

= this program into an efficient iterative program with no redundant

camputation.
-

The theorem to be proved 1s simply

L (vx) (3z)[z = fibonacci(x)] .

~~ The recursive definition of the fibonacci function implies the axioms:

. (1a) (u= 0 Vu = 1) DO fibonacci(u) = 1,

(1b) (u > 2) © fibonacci(u) = fibonaceci(u-1) + fibonacci (u-2) ,
—

or equivalently,

.

fibonacci(u'+2) = fibonacci(u'+l)+ fibonacci(u') .

. Axiom la suggests to the theorem prover that the case (x =0Vzx= 1)

be treated separately; in.this event, we take_z to be 1 and the

output relation 1s satisfied.

It remains to prove
-

(Vx){x > 2 o(¥z)[z =fibonacei(x)]} ,

or equivalently (using Axiom lb)
§

C (vx) {x > 2 = (8z)[z = fibonacci (x-1) + fibonacei(x-2)]} .
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Thus, taking x' to be x-2 ,we have

(vx') (Fz) [z = fibonacci(x'+l) + fibonacci(x')] .

Since the "plus" operator is primitive, taking 2z to be z.+z, ,

it suffices to prove

(vx') (22) (2z,) [24 =_fibonacci(x'+1) Az, = fibonacci(x®)] .

Note that we now have two output variables Zq and z, rather than

one. However, the proof procedure is precisely analogous to the single-

variable case; the iterative going-up induction principle used 1s

(Fy,) (y4)8(0; Yoo V3)

(vx) (By) (Ty2) B(x, 575)

with

By ps V5) Y= fibonacei(y,+1) A V3 = fibonacei(y,) .

+Taking Zq to be Vo and Zs to be V3 (L.e., z 1s Io Vz ) ;
the conclusion of this induction rule 1s identical to the modified

theorem. Thus, the two lemmas to be proved are

(A) (%y,) (8y3) Ly, = fibonacei (1) Ay, = fibonacei(0)]

and

(B')  (¥y,) (¥y.)(¥v:) Tyo) (Fy.) (ly, = fibonacci(y +1) Ay, =fibonacci(y,)] >
1 2 37 TYR V3 2 1 5 1

* *

ly, = fibonacci (y+2) Ay = fibonacci (y, +1) 1} :

Lemma A 1s proved using Axiom la taking y, and y; both to be 1 .
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: To prove Lemma B' we assume y, = fibonacei (y,+1) and
: ¥

L ¥3 = fibonacci(y,) . Then taking Vo = Vot¥s , as suggested by Axiom lb,
¥

and. V3 = Y2 » as suggested by the hypothesis, we have completed the
L - =

proof of Lemma B'.

L The program extractor combines all the replacements and substitutions
| made in the proof to form the program of Figure 13, which exhibits none
|
“ of the crude inefficiencies of the original recursive program. The reader

f may observe how closely the operations in the program mirror the steps
fe
hu

of the proof.

L START

T |

CHAT>

w Pr .

-

(¥15905¥ ) © (0,1,1) |
—

T | —

L 4 Io Jz

= (1595593) « (FtL754p) |

_

| - Figure 13: Iterative fibonacci program
|
—

3 . _
48

.





C

Te FUTURE RESEARCH

Clearly the results reported in this note represent but a step in

the direction of automatic program synthesis. Our chief goal was not

to present a completed work, but rather to stimulate other people to

examine these problems.

(a) Suggested theorem-proving research

The foundation of our approach, and its chief weakness, lie 1n the

g theorem prover. We have mentioned that many of our proofs are probably
beyond the state of the art of mechanical theorem proving, although

none of them are terribly difficult. We therefore can use our experience

to pinpoint some weaknesses 1n the current methods and to suggest some

~ directions for theorem-proving research.

Any theorem-proving system stores its knowledge either in the form

= of axioms (which are simply assertions) or rules of inference (which are

L methods for transforming assertions). A system that relies mainly on

axioms is very general; new facts may be introduced without modifying

the system because new axioms may be added long after the system 1s

written. However, without restrictive strategies about how each axiom

= is to be used, such systems tend to thrash and flounder. On the other

_ hand, systems such as King's[1969] (see also King and Floyd [1970]),

which rely on rules of inference applying to a specific semantic domain,

— proceed with a great sense of direction but usually require reprogramming

when new facts are introduced.

= We therefore would like to see a system that combines the virtues

C of both approaches, using rules of inference when possible and axioms when
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necessary. We further hope that the user would be able to introduce

new rules of inference without being forced to reprogram the system.

Thus we would be able to give the system special knowledge about the

semantic domain (the integers or lists, for example) without affecting

its generality.

We are dissatisfied with the large number of equivalent induction

principles required by our system. One might prefer to have a single

general induction rule witha more powerful program extraction mechanism

(see, for example, Burstall [1969], Park [1970], and Scott [ 1969]).

It 1s not yet clear what this mechanism would be, and we are not sure

that the machine implementation of such a rule in a theorem-proving

system would be feasible.

Finally, it occurred to us during the preparation of this paper

that partial function logic (see McCarthy [1963b]) would be a more

appropriate vehicle for program synthesis, because in this language we

may discuss partial functions, whereas in the usual predicate calculus

all operations and predicates are assumed to be total. We believe the

techniques we have already outlined above apply to partial function logic

as well. Some work has already been done by Hayes [1969] towards the

machine implementation of this logic. Taking this remark in conjunction

with a paper by Manna and McCarthy [ 1970] suggests that partial function

logic may be the most natural language for program analysis and synthesis.

(b) -Language and representation

In our discussion we have used a modified predicate calculus in

specifying the program to be constructed. This suggests that predicate

calculus could be used as a higher-level programming language, where the
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- compiler would be a program synthesis system, extracting a program 1in

- a lower-level language.
On the other hand, we are not bound to the use of predicate calculus

- as our source language. Programmers might find such a language lacking

| in readability and conciseness. However, any language that might be
~ developed for expressing input and output relations would be satisfactory

L so long as the system could translate 1t into the language its theorem

: prover understood.

. Of course, there are cases 1n which 1t 1s as easy to write the program

| itself as to write input and output relations describing it. However,
= this 1s more likely to be the case with trivial examples than with

. complex realistic programs.

{

. : (c) Interactive program synthesis

- We have not considered the possibility that the synthesizer might
interact with the user in constructing its programs. However, an

- interactive approach might lead immediately to a more practical system.

For example, 1f the theorem prover were interactive the power of the
f

— program synthesizer would be greatly increased. Alternatively, we

might interact by allowing the user to suggest program segments to the

synthesizer, allowing the system to incorporate them into the program.

L

(d) Program modification

C
We have not approached the problem of constructing efficient programs

in any systematic way. We have contented ourselves with the construction

of correct programs, and have seldom been very critical of the programming

g



quality exhibited. Although in Section 6we illustrated that we can

write more efficient programs by avoiding recursion and declaring inefficient

subroutines non-primitive, more general work in this direction is clearly

needed.

Once we have developed a method for controlling the efficiency of the

extracted program, wenot only can produce better programs with the purely

synthetic approach, but also can use our techniques to write better

compilers and program optimizers, which transform programs written by

human beings. We take such a program (or a portion thereof) and transform

it into its representation in predicate calculus (see Ashcroft[1970],

Burstall [ 1970], Manna [1969], and Manna and Pnueli [1970]), which is

then taken as the specification of a new, more efficient reconstruction.

Another way program~synthetic techniques may be used in the

improvement of an already existing program is in the construction of

an automatic debugging system. Current program verification methods

give us a way to detect and locate errors in a program; we then can

use the program-synthetic approach to replace the incorrect segment

without affecting the remainder of the program.
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