STAN-CS-70-173 SU-SEL-70-058

The Mutual Exclusion Problem

by
T. H. Bredt

August 1970

Technical Report No. 9

This work was supported in part by the Joint Services
Electronic Programs U.S. Army, U.S. Navy, and U.S.
Air Force under Contract N-00014-67-A-0112-0044
and by the National Aeronautics and Space-Adminis-
tration under Grant 05-020-377.

DIGITAL SYSTEMS LABORATORY
STANFORD ELECTRONILS LABORATORIES

STANFORD UNIVERSITY - STANFORD, CALIFORNIA

STAN-CS-70-173 SEL-70-058

THE MUTUAL EXCLUSION PROBLEM

by

T. H. Bredt

August 1970

Technical Report No. 9

DIGITAL SYSTEMS LABORATORY
Stanford Electronics Laboratories Computer Science Department

Stanford University

Stanford, California

This work was supported in part by the Joint Services Electronic
Programs U.S. Army, U.S. Navy, and U.S. Air Force under Contract
N-00014-6T7-A-0112-0044 and by the National Aeronautics and Space
Administration under Grant 05-020-337.

STANFORD UNIVERSITY
Digital Systems Laboratory
Stanford Electronics Laboratories Computer Science Department

Technical Report Number 9
August, 1970

THE MUTUAL EXCLUSION PROBLEM

by

T. H. Bredt

ABSTRACT

This paper discusses how n components, which may be programs or
circuits, in a computer system can be controlled so that (1) at most
one component may perform a designated "critical" operation at any
instant and (2) if one component wants to perform its critical opera-
tion, it is eventually allowed to do so. This control problem is
known as the mutual exclusion or interlock problem. A summary of the
flow table model* for computer systems is given. In this model, a
control algorithm is represented by a flow table. The number of internal
states in the control flow table is used as a measure of the complexity
of control algorithms. A lower bound of n + 1 internal states is shown
to be necessary if the mutual exclusion problem is to be solved.

Procedures to generate control flow tables for the mutual exclusion

* Bredt, T.H. and McCluskey, E.J. A model for parallel computer
systems. Technical Report No. 5, SEL Digital Systems Laboratory,
Stanford University, Stanford, California (April 1970).

i

problem which require the minimum number of internal states are
described and it is proved that these procedures give correct control
solutions. Other so-called "unbiased" algorithms are described
which require 2.n! internal states but break ties in the case of
multiple requests in favor of the component that least recently

executed its critical operation. The paper concludes with a discus-—

sion of the tradeoffs between central and distributed control algorithms.

ii

TABLEOFCONTENTS

ABSTRACT . « & « ¢ ¢ o o o s o o o o o o o o o o
TABLE OFCONTENTS
LIST OF TABLES
LIST OFFIGURES
INTRODUCTION.
THE FLOWTABLEMODEL FOR PARALLEL SYSTEMS
A PARALLEL SYSTEM FOR THE MUTUAL EXCLUSION PROBLEM
CONTROL FLOW TABLES.
Biased Control Flow Tables
Unbiased Control
CENTRAL VERSUS DISTRIBUTED CONTROL
Linear Control
Hierarchical Control
CONCLUSIONS

REFERENCES

iii

ii

iv

12

20

39

49

51

60

10.

11.

12.

LIST OF TABLES

General Form of.a Flow Table
Interpretation of Variable Values for Fig. 2 .

Sequential Programs for Component C, and a
Two-Component Control Mechanism .

A Possible Control Flow Table for n = 2 .

Biased Control Flow Tables From Procedure B

Possible Entries in Row 0 for n = 3 ", ¢ ¢ v v v o o o o o«

Number of Distinguishable, Correct Flow Tables
With n + 1 Internal States

Flow Table Set-up for n =3 .

Tag for Next Row Given 2,1,3,4 as Present
Tag in a Row with all Zi Equal to 0

Tags for Next Row Given 2,1,3,4 as Present
Tag and Z2 Equal to 1 for the Present Row.

n
n

Unbiased Control Flow Table From Procedure U, n

Unbiased Control Flow Table From Procedure U, n =

1
w

iv

11

13

15

22

29

37

42

43

45

47

48

LIST OF FIGURES

Parallel system for the two-component mutual
exclusion problem

Parallel system for the n-component mutual
exclusion problem

Chains which determine which component
to enable fornm=3

Relative chain positions of 1, j, and k

Incorrect flow table due to the violation
of the chain rule (n = 3) e e e e e e e e

A linear distributed control for the mutual
exclusion problem o e 0.

General form of a control component for Fig. 6 . . .
General organization for a linear distributed control

A binary tree hierarchical control structure

10

31

34

35

52

53

56

57

INTRODUCTION

In recent years, there has been a great deal of interest in the

mutual exclusion or interlock problem in multiprocessor and multi-

programmed systems [4,5,6,7,8,9,10,15,16 |. This problem occurs in
an environment where several system components (programs or circuits)
are operated concurrently. The components are assumed to contain
critical operations or instructions (critical sections), whose simul-
taneous execution must be avoided. Typically, critical sections
represent references to a common memory location or possibly the
modification of a common system table. A more detailed statement of

the mutual exclusion problem is given below.

The Mutual Exclusion Problem:*

Given two or more components in a parallel computer system,
which are operated concurrently and contain critical sections, control
these components so that the following two restrictions are always

satisfied.

Restriction 1:

A most one component is in a critical section at any instant.

Restriction 2:
If a component desires to enter a critical section, it is

eventually allowed to do so.

* Dijkstra [8,9,100 has solved a slightly different version of this
problem. He did not require that a given program must enter its
critical section but rather that the decision as to which program enter
its critical section next not be postponed indefinitely.

For components which are programs, this problem is often solved
by defining special hardware instructions and assuming the exclusive

execution of these instructions L 759,10,15,16 J. 1n [4] a model

for parallel computer systems was proposed in which fundamental-mode

flow tables are used to describe the operation of each component.
The purpose of this model is to study control problems such as the
mutual exclusion problem. In | 5], we have shown how flow tables
can be used for the analysis and synthesis of sequential programs.
The application of flow tables in the design of sequential circuits
is well known [24]. As a result, flow tables and the flow table
model provide a basis for the study of both hardware and software
solutions to the mutual exclusion problem. A flow table solution
for the mutual exclusion problem in the case where two components
are controlled is given in [4 7. This solution was shown to be correct
in [6] using a general analysis method based on the construction
of a directed graph representing the state transitions undergone by
the entire system. This type of analysis is not feasible as the
number of system components becomes large. The notion of correct
operation we use is the following. Given a problem, such as the mutual
exclusion problem, which is‘stated in terms of restrictions on system
operation, we say that a parallel system is correct with respect to
the given problem if the problem restrictions are always satisfied
during system operation.

In this paper, the solution of the mutual exclusion problem when
arbitrary numbers of processes must be controlled is considered.

Several different types of control structures are discussed and

various solutions or control algorithms given and proved to be correct.
These control algorithms are optimal in the sense that they require the
minimum number of internal states in a fundamental-mode flow table.

In the next section, a short summary of the flow table model is
given. This is followed by the specification of a parallel system for the
mutual exclusion problem and the characterization of different control

mechanisms.
THE FLOW TABLE MODEL FOR PARALLEL SYSTEMS

A detailed description of this model is given elsewhere | h,6].
The essential features are described here. The definition of a parallel

system in the flow table model is given below.

Definition 1:

A parallel system is a finite collection of components

e = {cl,ca,...,cn}

and a finite collection of lines

e = {&1,4;2,...,&M}

Each component Ci has a set of input variables called the

input set

Ii

1}
—
»
=
'_\
A
»
[N
N
-
.
-
"
[N
3
v

and a set of output variables called the output set

0, = {X ,X-) o M X, }
i
ot “m

1<ijs<M j=1,...,n

Each line {ﬁ = (Xj,xj) connects a component output variable

Xj with a component input variable X.. The lines carry
J

level values and value changes propagate from component output
to component input. Each output variable must be connected by
a line to exactly one input variable and each input variable
must be connected by a line to exactly one output variable.

The operation of each component is described by a completely
specified fundamental-mode flow table with a designated initial
internal state. The initial value for each line is the value

specified for the output variable associated with the line.

The general form of a fundamental-mode flow table is shown in Table 1.

Each row in the flow table represents an internal state of the compo-

nent whose operation the flow table describes. The present values of
the component input and output variables define the component input

state and output state, respectively. The total state of a component

is defined by its present internal state and input state. The total

system state or system state is defined by the N-tuple consisting of

the present total state of each of the components. The parallel system
designed in [1L] to solve the mutual exclusion problem for two programs
is shown in Fig. 1. The initial system state for this parallel system
is written (1-0,1-0,1-00). The interpretation of the line values 1is

given in the next section. The initial total state of component C3

Table 1., General Form of a Flow Table

Input State

XX, . . X
rz . n Output State

00...1 11...1 7 7 el

Internal =
State

S (next state)

e ={c;; & C5}

1.
£= {4, %2, L., 'ﬂh} cs 'Pﬁ?
'{,/1 = (Xl’xl)’ ’P/e = (xzixa) r.
4y = (212)); Yy =(252)) te

0, = {Xl}’ I, = {7y}

0y = fors Iy =iz

o, = {2, 25}, I, = {x15 %,}

1 2
0 ;1 X1 x2
1 2 <::> 0 1 (::> 0
2 (%i) 1 1 2 ‘E§> 1
C1 02
X)Xy
00 01 11 10 z,z,
(c2 last) 1 @ 2 3 3 00
(c2 gets) 2 1 @ @ 3 o1
(c, gets) 3 | &4 2 @ @ 10
(Cl last) &4 @ l 2 2 3 00
C3 (control)
Figure 1. Parallel system for the two-component mutual

exclusion problem,

in Fig. 1 is written 1-00. If the present internal state is the same
as the next-state entry determined by the component total state, the
component is said to be stable; otherwise, it is unstable. For a flow
table, we require that each unstable entry specifies a stable entry,

a table which does not satisfy this condition is called a state table.

The assumptions about delays in a parallel system are as follows

Assumption 1:
The time for a wvalue change to propagate from a component

output to a component input-(line delay) is finite and unbounded.

Assumption 2:

Within a component, delays are finite and bounded.

Line delays need not represent 'pure" delays and each component is
assumed to have no knowledge of the duration of delays in any other
component.

The use of flow tables rather than functions to describe component
operation distinguishes this model from others [1,2,3,12,13,14,17,18,
19,20,21,22,23,25,26,27]. Flow tables provide a direct, formal
correspondence between the model and the implementation of the model
whether the implementation is a program or a circuit. Our model
resembles the model of Muller [25] for speed independent circuits.

He restricts components to have single outputs and assumes line delays
are zero and component delays are unbounded. In other models components

communicate by sharing memory cells rather than by wired connections.

These models also assume that line delays are zero. The consideration

of line delays is particularly important in the mutual exclusion

problem as is the possibility that two or more components may make

simultaneous requests. That is, multiple-input changes may occur at

a component. In [4 7, a mode of operation is defined such that each
component input change results in a unique internal-state transition.
This mode of operation proceeds in two phases which can be described
as follows. When a component enters a stable total state, it deter-
mines the present input state by recording in a rank of flip-flops the
current input state. This is done using an internal clock signal.

The present input state determines whether the component remains
stable or undergoes an unstable transition to a new stable internal
state. During unstable transitions, computations such as the execution
of a critical section may be carried out. This response to the present
input state is the second phase of component operation. During this
second phase, all input transitions are isolated from the component

by the input rank of flip-flops. This two-phase operation defines

the basic cycle of operation for a component. We say that a component
has recognized an input-variable transition, if the new input value is
recorded in an input flip-flop. Because of our line delay assumption,
it can be guaranteed that when a component produces an output variable
transition, the new value propagates to the input at the other end

of the line and is recognized if and only if either the component
never changes the output value again or before the output value is
changed, the component must recognize an input change produced in
recognition of the propagation of its output value to a component

input. A further discussion of these considerations is given in i} 6 1.

A PARALLEL SYSTEM FOR THE MUTUAL EXCLUSION PROBLEM

In the n-process or n-component mutual exclusion problem, there
are n components which contain critical sections. Each component is
assumed to enter, leave and then re-enter its critical section in an
infinite loop. We first consider solutions to the mutual exclusion
problem with a single control component or control mechanism. The
complete specification of a parallel system, with the exception of
the control flow table, for the n-process mutual exclusion problem is
shown in Fig. 2. To clarify the description of the operation of the
system, we have deviated slightly from the form specified for a parallel
system in Definition 1 in labelling the lines. The interpretation of
the variable values for this parallel system is given in Table 2. The

operation of each component C 1 <1i < n,is as follows. Unless

i,

specifically stated otherwise, the component is initially in total state

1-0 and is unstable. In this state, the component does not want to
enter its critical section and is not in its critical section. Eventu-
ally, the component enters total state 2-0 where Xi is set to 1. The

component now wants to enter its critical section and will remain in
this total state until it recognizes the enabling wvalue Zi = 1. In

total state 2-1 the component enters and leaves its critical section
(exactly once). After it has left, the component enters total state
1-1 where x,i is set to O. This value propagates to the control

component which presumably acknowledges the arrival of the 0 value for

x5 by setting Zi to 0. When zi becomes 0, the cycle begins again.

10

!
z i
= 1 4
e {cl,cg,...,cnﬂ} i} . > r
L 2
£= {’Llycot,’aen} X Cn+l 2
+ | (control) X,
' z
n
X
n
s Zn
{1 = (X;,%x;), 1 =1,...,n e
n
{1 = (Zi’zi)’ i = n+l,...,2n
0, = {xi}, i=1,...,n
I, - {zi}, i=1,...,n
Onir = boZpre - 0%
- Z.
1
0] 1 X,
i i
= o)
O |
Flow Table for Ci’ 1 <i<n
Figure 2. Parallel system for the n-component mutual exclusion

problem without the control flow table.

Table 2.

Interpretation of Variable Values for Fig. 2

(1<i<n)

0 Ci is not in its critical section and does not

want to enter its critical section.

1 Ci is in its critical section Or Ci wants to

enter its critical section.

0 Ci may not enter its critical section.

1 Ci may enter its critical section.

11

12

For two components with critical sections, a control flow table is
given in Fig. 1.

In[5 7, it is shown how to obtain a sequential program from
a flow table and how for a certain class of programs, it is always
possible to construct a flow table. Program implementations of the
flow tables for Cl and a two-process control program are given in
Table 3. The assignment statements change values on interconnecting
lines. The wait statements are used to test the component input state
and to transfer to the appropriate next statement when an input
transition occurs. Each pair, e.g. (0,3), specifies an input state
and the number of the next statement to be executed if the input state
is recognized. There are no restrictions on the exclusiveexecution

of any statements in these programs.

CONTROL FLOW TABLES

In this section, the phrase control flow table refers to a flow

table for the control component (Cn+1) in Fig. 2. A control flow table
is said to be correct if the parallel system of Fig. 2, with that flow
table for the control component, 1s correct with respect to the mutual
exclusion problem. We say that a component Ci (1 £ 1 <n) is enabled
to enter its critical section when Zi has the wvalue 1.

"The following definitions serve to partition the class of correct

control flow tables.

Table 3.

10:

(b)

Sequential Programs for Component Cl and a Two-Component

Control Mechanism.

INPUT Z71;

OUTPUT X1; (initially X1 = 0)

DUMMY; (computation outside critical section)
WAIT (0,3);

X'1: = l;

WAIT (1,5);

DUMMY; (critical section)

X 0;

s
GO TO 1.

Program for Component C1

INPUT Xl,Xz;
OUTPUT. Zl,Zz; (initially Zl = z2 = 0)
2,:=0;

WAIT (01,4), (11,7), (10,7);
zl:=0;

Z2:=1;

WAIT (00,1), (10,6);

Z2:=O;

le=1;

WAIT (00,9), (01,3);

Z1:=0;

WAIT (O1,4), (11,4), (10,7).

Control Program for Two Components

13

14

Definition 2:

A correct control flow table is said to be unbiased it
components are enabled in the order in which their requests
are first recognized and if, when multiple requests are recog-
nized simultaneously for the first time, components are enabled
in the reverse of the order determined by their most recent access

to their critical sections.

The control flow table in Fig. 1 is unbiased. If a correct control
flow table is not unbiased, it is said to be biased.

Restriction 2 of the mutual exclusion problem states that if a
component Ci (1 = 1 <~ n) wants to enter its critical section, it is
eventually allowed to do so. We will consider this restriction to
be violated if it 1is possible for one or more components to halt
outside their critical sections (with Xi equal to 0) such that some
other component , say CU' is prevented from entering its critical
section when presumably it wants to do so. For example, the control
flow table shown in Table 4 will correctly control two components
C1 and C2 in the parallel system of Fig. 2 as long as both C1 and C2

run forever. The initial system state with this control flow table

is (1-1, 1-0, 1-00). Component C, is assumed to have just left its

1

critical section and will not be permitted to enter again until after

C, is enabled. If C2 should halt, C, will never be enabled again.

2 1

Didjkstra [8,9,10] also does not allow control solutions which fail

if one or more programs halt.

Table 4. A Possible Control Flow Table for n =2

X

00 | 01

X

172

10

X1
Q) E

el L

%
®

Z1Z2

10

01

16

The following theorems establish necessary conditions for correct

control flow tables.

Theorem 1:
If a control flow table is correct, there must be at least
one internal state with an output state for which 7z pas the
i

value 1, 1 =1,...,n,

Proof:
If there is no output state for which Zi has the value 1,

then z the input to component C., will never equal 1. There-
1

1/

fore component Ci’ will never enter its critical section violating

Restriction 2 of the mutual exclusion problem.

Theorem 2:

The output state for the initial total state of a correct

control flow table must have 7, equal to 0 for all i, i =1,...,n.
i

Proof:

Suppose there exists a correct control flow table with Zi
equal to 1 for some i in the initial total state. Initially,
lines are assumed to be stable and components Ci are assumed to
be in internal state 1. Thus component Ci is in the stable
total state 1-1. Component Ci may not request to enter its
critical section until Zi becomes 0. The control should be

stable initially since all x, are 0. The control will not

17

leave its stable initial state until a different input state
is recognized. Since X, cannot become 1, some other component
must request access to a critical section before Zi can be

changed to 0. This is not allowed in a correct control flow table.

Theorem 3:
If a control flow table is correct, Zi is changed from

0 to 1 only if X, is 1.

Proof: (By contradiction) -

Suppose Zi is changed from 0 to 1 when xi is 0. The output
variable Xi of component Ci may be 0 or 1. If Xi is 0, component
Ci could be trapped in total state 1-1 and either never released
or released only after a transition for another control input.
Neither case is allowed for a correct control flow table. If
Xi is 1, Ci is in internal state 2. As soon as zi becomes 1,

Ci may enter its critical section. It is possible that before
the input variable X, becomes 1, a different input, say xj,
becomes 1. If the control does not set Zj to 1 until after X,
becomes 1 then the enabling of Cj depends on the operation of Ci
which is not allowed. If-Zj is set to 1 before xi becomes 1,
both Ci and Cj may enter their critical sections simultaneously
which violates Restriction 1 and the control flow table is not

correct.

18

Theorem 4:
If a control flow table is correct, it must never enter a
total state for which the output state has more than one output

variable with the value 1.

Proof:

Suppose such a total state is entered and Zi and Z. have
the value 1. By Theorem 3, X, and xj must be equal to 1. It is
possible that Xi and Xj are also 1 since Xi and Xj are not set to
0 until the inputs z; and z.J have the wvalue 1 and line delays
cannot be controlled. Therefore Ci and C. may both be in internal
state 2 and may simultaneously enter their critical sections. Thig

violates Restriction 1 and the control flow table cannot be

correct.

Theorems 1-4 enable us to prove the following theorem which establish-
es a lower bound on the number of internal states required for a correct

control flow table.

Theorem 5:
For a given n, every correct control flow table must have

at least n + 1 internal states.

Proof:

By Theorem 2, the output state for the initial internal state
must have Zi equal to 0 for all i, i = 1,...,n. By Theorems 1
and 4, there must be at least one internal state for which Zi has

the value 1 and Zj has the value 0, j # i for each i, 1 =1,...n.

19

The number of internal states required by a correct control
flow table provides a measure of the complexity or cost of the control
function or algorithm for the mutual exclusion problem which is in-
dependent of whether the algorithm is implemented as a program or as
a circuit.

The following theorem establishes another necessary condition for
a correct control flow table. This condition is not required to
determine the lower bound on the number of internal states but will be

used later.

Theorem 6:
If a control flow table is correct, output variable Zi

is changed from 1 to 0 only if xi is 0.

Proof:

Suppose Zi is changed from 1 to 0 when x, is 1. By Theorems
2 and 4 either the output state for the next internal state has
no Zj equal to 1 or exactly one Zj equal to 1. Suppose no Zj is

equal to 1. Now if some Xy becomes 1, it must be recognized

in a finite time (Assumption 2) and the control flow table must

enter a stable state for which Zk is 1. If it does not, the

enabling of C, depends on the activity of some other component,

k

which is forbidden. The enabling of C allows Ck to enter its

k’
critical section. During this interval, from the moment the state

for which Zi is 1 is left until Ck enters its critical section,

the 1 value produced on Zi may be propagating to the input of

20

component Ci' It is possible that Ci will recognize this 1
value and enter its critical section. Both Ciand Ck would be
in critical sections simultaneously violating Restriction 1 and the
control flow table is incorrect.

Suppose that when the control flow table left the state
for which Zi was 1, it went directly to a state for which Zj is 1.
If Xj is 0, the flow table is incorrect by Theorem 3, 1If xj is 1,
then an argument similar to one given for component Ck above
shows that Ci and Cj can be in critical sections simultaneously
and the solution is again incorrect.

Thus in both cases, when we leave an internal state for which

Zi is 1 when xi is 0, the control flow table is incorrect.

Biased Control Flow Tables

For a given value of n, the following procedure constructs a
biased control flow table with the minimum number of internal states.
Procedure B
(Biased Control Flow Table With n + 1 Internal States)

1. Define a flow table with 2n columns, one column for each
possible input state, and n + 1 internal states (rows),
which are numbered 0, 1, 2,n.

2. Let the initial internal state be state 0 with output state
such that Zi has the value 0 for all 1i.

3. Let Z, have the value 1 and 2 the value 0 (j # i) in the

output state for row 1i.

21

4. Define the table entries as follows.
a. In row 0
In each column, the entry is the same as the least
subscript of an input variable with the value 1. The
entry is 0 if all xi are 0.
b. In row 1 (1 £ i€ n)
In each column, if X, has the value 1, the entry is<:),
_If X, has the value 0, the entry is the least j such that
j > i and xj has the value 1 or, if no such j exists,
the least j such that XJ has the value 1. If all input

variables are 0, the entry is 0.

The flow tables generated by Procedure B for n = 2 and n = 3 are
shown in Table 5. These flow tables are biased because, in the case
of a particular multiple request, in each row the same component is

enabled regardless of which component last executed a critical section.

Theorem T:

For each n, the flow table obtained from Procedure B

is correct.

The proof of Theorem 7 will be a direct consequence of a later theorem.

Table 5. Biased Control Flow Tables From Procedurec B

X X

00 01
11 10 leZ

X1X2X3

000 001 011 010 110 111 101 100

2 1

2 |

@
e

Z129%3

000

100

010

001

22

e3

With the control algorithm defined by the control flow table, a com-
ponent must wait for at most n-1 other components to execute critical
sections before it executes its own critical section.

We will now consider the general class of biased control flow

tables which are correct and use the minimum number of internal states.

Definition 3:

Two flow tables are said to be distinguishable if when the

same input sequence is recognized by each flow table, different

output sequences are produced.

If two flow tables are not distinguishable, they are indistinguishable.

We will determine the number of distinguishable control flow tables
that are correct and have n + 1 internal states. Next we give
conditions sufficient to guarantee that Restriction 1 of the mutual

exclusion problem is satisfied.

Theorem 8:
If a control flow table is such that the following conditions
hold:
1. The flow table is initially stable with initial output
state in which Zi is equal to 0 for all i, i =1, ...,n.

2. Each output state has at most one Zi with the wvalue 1.

24

3. The value of output variable Zi is changed from 0 to 1
only if xi is 1.
4. The value of output variable Zi is changed from 1 to 0
only if X is 0.
Then, at most one component Ci (1.5 i_f n) may be in a critical

section at any instant (Restriction 1 is satisfied).

.Proof:

By condition 1 and the definition of the parallel system in
Fig. 2, no component is initially in its critical section. By
condition 3 and the flow table specification of operation for
component Ci (1 < i < n) in Fig. 2, a component is enabled to
enter its critical section (Zi is set to 1) only if that component
is in the stable total state 2-1. If Zi is set to 1, condition 4
ensures that it is not set to 0 until xi becomes 0. But the flow
table for component Ci shows that Xy cannot become 0 until after
Ci has left its critical section and entered the stable total
state 1-1. Component Ci cannot re-enter its critical section until
zi becomes 0, which only happens after X, becomes 0 at the control
input. It follows that if component Ci is in its critical section,
then Zi must have the value 1 or, equivalently, if Zi has the value
0, component C.1 is not in its critical section. The fact that at

most one component may be in a critical section at any instant

follows from condition 2.

25

The following theorem establishes the output state requirements

for a correct control flow table with n + 1 internal states.

Theorem 9:
If a control flow table is correct and has n + 1 internal
states, then
1. The output state for the initial internal state must
have Zi equal to 0 for all i, i=1,...,n.
2. For each i, i = 1,...,n, there must be exactly one
output state with Zi equal to 1 and Z::| equal to 0

for all j, j # i.

Proof:

If condition 1 does not hold, the flow table is incorrect by
Theorem 2. If condition 2 does not hold, then either some Zi is
never equal to 1 in any output state, which is not allowed by
Theorem 1, or more than one Z, is 1 in some output state, which

i

is not allowed by Theorem 4.

In the remainder of this section the phrase "control flow table”
refers to a control flow table with n + 1 internal states, numbered
o,1,..., n, and 2" columns. The initial internal state is state 0 with
output state in which Z; is 0 for all i. The output state for row i,

i=1,...,n, 1is Z, equal to 1 and Z3 equal to 0,3 # i.

26

The selection of table entries in row 0 is covered by the following

two theorems.

Theorem 10:

Consider a control flow table with n + 1 internal states as
just defined. If this flow table is correct, the entries in
row 0 must satisfy the following conditions.

1. In the column in which all input variables have the

value 0, the entry is 0.
2. In the other columns, the entry is j where j is the
subscript of an input variable xj that has the value 1

in that column.

Proof:

If condition 1 does not hold, some Zi is set to 1 when xi
is 0. By Theorem 3, the flow table is incorrect. If condition 2
does not hold, either the entry is 0, a stable entry, or the
entry specifies a row with Zi equal to 1 in a column with X,
equal to 0. The latter case is ruled out by Theorem 3. If
the entry is 0, the enabling of-a component depends on an input

change produced by another component, which is not allowed.

27

Theorem 11:

Consider a control flow table with n + 1 internal states as
defined earlier. If the entries in rows 1 through n are specified
correctly and

1. In the column with all Xy equal to 0, the entry is 0.

2. In the other columns, the entry is j where j is the

subscript of an input variable xj that has the value 1
in that column.

then the flow table is correct and each choice of the entries in

row 0 results in a distinguishable control flow table.

Proof:

Each choice of an entry in a column with some X equal to 1
specifies an internal state with a different output state; therefore,
each choice of the row 0 entries results in a distinguishable flow
table. The correctness of the flow table follows from the fact
that when a 1 input value is recognized, exactly one of the
components which produced a 1 input value is enabled and also

from the assumption that rows 1 through n are correctly specified.

n
There are 2 - (n + 1) entries in row 0 in columns where more than
one input variable has the value 1 (n entries have exactly one input

variable equal to 1 and one has no input variables equal to 1).

28

*
There are entries with exactly p input variables equal to 1 . By

Theorem 9, for each of these entries there are p ways to select

that entry and each selection gives a distinguishable flow table,
assuming rows 1 through n are correct. Therefore, the total number

of distinguishable flow tables which can be produced on the basis of

row 0 alone 1is

0

where p =pPe. . . .p
n .
() times
P

For n = 3, Table 6 shows the possible entries in row O.

® p! (np!

Table 6. Possible Entries in Row 0 for n = 3

000 001 011 010 110 111 101 100

0 @ 3 2,3 | 2 1,21,2,31,31

30

It remains to consider how the entries in rows 1 thnough
n may be chosen to give correct, distinguishable flow tables. The
flow tables produced by Procedure B use a fixed "rule" to determine,

in the case of multiple requests, which component is to be enabled

next. This rule is stated in step 4b of the procedure. This rule
can be restated in more general terms. For each n, there is a "chain"
consisting of a circular ordering of the n integers 1,2,...,,n. In

the case of Procedure B, the next integer after integer i in the chain
is given by the sum i (mod n) + 1. The chain for n = 3 is shown
in Fig. 3a. The rule to determine the entries in row i

can be restated in terms of the "chain rule" below.

Chain Rule:

Consider row i (1 < i < n). The next-state entry in each
column is speoified by the next integer j in the chain after
or including the integer i such that Xj has the value 1 in that

column. If all input variables have the value 0, the entry is 0.

The chain of Fig. 3a and the chain rule produce the same next-state
entries for n = 3 as the Procedure B. For n = 3, there is one other
chain that is different from the chain in Fig. 3a. This chain is
shown in Fig, 3b. In general, for each n, there are (n - 1)! distinct
chains since the present position is always fixed by the row number and

there are (n - 1)1 possible arrangements of the other n - 1 integers.

31

(a) Chain used in Procedure B

(b) Another chain

Figure 3. Chains which determine which component to enable for n = 3.

32

The importance of chains and the chain rule in the determination of the

entries in rows 1 through n is demonstrated by the following two theorems.

Theorem 12:

Assume the entries in row 0 are chosen correctly. If the
selection of entries in rows 1 through n of a control flow table
with n + 1 internal states as defined earlier does not follow the

chain rule for any chain, the flow table is incorrect.

Proof:

There are two ways to violate the chain rule. One way is
to have a non-zero entry in the column with all input variables
equal to 0. As a result, some output variable Zi is set to 1
when Xy is 0 and the flow table is incorrect by Theorem 3. The
other way involves the selection of next-state entries in columns
with at least one input variable equal to 1. Suppose the rule is
violated in the case exactly one input variable is equal to 1.
Then the flow table is incorrect by Theorem 3. ©Next, consider the
violation of the chain rule when more than one input variable has
the value 1. If, in row i, the-violation occurs such that row i
is left when X, has the value 1, the flow table is incorrect by
Theorem 6. Suppose this is not the case. There must be an entry
in some row, say row i, such that for some input state with at

least two input variables, xj and X (j,k # i) equal to 1, the

33

rule specifies that the entry should be j and the entry is k
instead. Thus, component C. enters its critical section next

k

instead of CU' Suppose that, while in row k, input variable xi
becomes equal to 1 again (component Ci wants to re-enter its
critical section). When Xy becomes 0, both Xy and x.J are equal

to 1 along with all other input variables that were equal to 1

in row i or became equal to 1 while the control component was

in internal state k. The relative positions of i, j, and k in

the chain are shown in Fig. 4. From row k, component Ci must be
enabled (row i must be entered) before component Cj is enabled.
Otherwise, the chain rule is not violated. Suppose that while in
row i1 and when X, becomes 0, the input state recognized is exactly
the same as the previous time the flow table was in row i. As
before, row k is entered next. For this pattern of requests,

row j i1s never entered and component C., never enters its critical
J

section. Restriction 2 is violated and the flow table is incorrect.

Theorem 12 is equivalent to saying that if the entries in row 0 are
specified correctly and. the flow table is correct, then the entries

in rows 1 through n must satisfy the chain rule for some chain. This
establishes the necessity for using the chain rule. An example of the
violation of the chain rule for all chains is shown in Fig. 5. The
2-101 entry is incorrect for the chain of Fig. 3a (it should be 3).
For the chain of Fig. 3b, the 1-011 entry should be 3 and the 3-110

entry should be 2. The undesired transitions are also shown in Fig. 5.

Figure 4.

\

Relative chain positions of i,

‘,//.o “‘“‘\?i:;i:§

O

3

and k.

3

Figure 5.

1%2%3
000 001 011 010 110 111 101 100
(:) 3|l 2211111
ABEOI0I0)e
0 / <:> <:jk \
o | [AI®IO|G] 3]
-
o |O|@] 2] 1]|®|®)] 1

35

212923

000
100
010

001

Incorrect flow table due to the ‘vielation of the chain rule

36

Either i =2, = 3, and k = 1 with initial input state 111 or i = 1,

J =3, and k = 2with initial input state 111.

No two chains result in exactly the same specification of next-

state entries and each assignment gives a distinguishable flow table

for some input sequence. Therefore the total number of distinguishable,

correct flow tables which have n + 1 internal states is

The values of this expression for n = 2,3, and 4 are given in Table 8.

The following theorem establishes that following the chain rule

with some chain to fill in the entries in rows 1 through n is sufficient

to solve the mutual exclusion problem if the entries in row 0 are

specified correctly.

Theorem 13:

Given a control flow table with n + 1 internal states as
described earlier. If the entries in row 0 are chosen correctly
and the entries in rows 1 through n are chosen using the chain

rule with a fixed chain, the flow table is correct.

Table 7.

Number of Distinguishable,

Internal States

Correct Flow Tables With n + 1

48

124, 416

37

38

Proof:

The flow table definition and the entries determined by the
chain rule satisfy conditions 1 - 4 of Theorem 8; therefore,
Restriction 1 of the mutual exclusion problem is satisfied.
Suppose Restriction 2 can be violated. That is, some component
Ci is such that Xy is 1 but Zi is never set to 1. If there are
not multiple requests (more than one input wvariable is 1),Ci
will be enabled. Therefore more than one input variable must
be 1. Rut, the definition of the chain rule and the structure
of a chain guarantee that after at most n - 1 components enter

their critical sections, component Ci must be enabled.

Combining the results of Theorems 10 - 13, we have the following

theorem which establishes necessary and sufficient conditions for a

correct control flow table with n + 1 internal states.

Theorem 14:

Consider a control flow table with n + 1 internal states

as defined earlier. This flow table is correct if and only if
1. In row 0
a. In the column with all Xy equal to 0, the entry is 0.
b. In the other columns, the entry is j where j is the

subscript of an input variable XJ that has the wvalue

1 in that column.

39

2. In rows 1 through n, the entries are chosen by using

the chain rule with a fixed chain.

The proof of Theorem T follows as a corollary of Theorem 1l4. Notice
that Theorem 14 defines a general procedure which can be used to construct
a correct flow table with n + 1 internal states. This procedure can be
used instead of the Procedure B defined earlier.

This completes our discussion of control flow tables that have

the minimum number of internal stat-es.

Unbiased Control Flow Tables

Let us consider unbiased control flow tables (Definition 2).
By Theorem 2, there must be at least one row with output state for
which Z, is 0 for all i, 1 =1,...,n, By Theorem 1, there must be at
least one row for which Zi is 1 and Zj is 0 for all 3, j # i,
1 <i,j < n. There must be n! rows with all output variables equal
to 0. Each row must correspond to a unique past history'of critical

section executions. This must be done in order to

40

ensure that when multiple simultaneous requests are recognized, the
component enabled is the component which has been out of its critical
section the longest. There must be (n-1)! rows with exactly one

Zi equal to 1 for each i, 1 =1,...,n. This is also required to

decide which component to enable when component Ci leaves its critical

section. Thus in order to be unbiased, the control flow table must

have "perfect memory". The total number of internal states is

n! + n (n-1)! = 2n!, The following theorem has been established.
Theorem 15:

For a given n, an unbiased control flow table must have at

least 2n! internal states.

Theorem % and Theorem 15 show that the cost, in terms of the number
of internal states, of providing unbiased service is rather high.
The following procedure can be used to construct an unbiased

control flow table for any specified value of n.

Procedure U
(Unbiased Control Flow Table With 2n! Internal States)
1. Define a flow table-with 2" columns and 2n! internal states.
2. Let the first n! internal states (rows) have the output state
with all Zi equal to 0. Give each of these rows a unique tag

which is one possible order of the subscripts of the n

components Cl""’cn*'

¥ We adopt the convention that the leftmost element of the tag is the
subscript of the component which was most recently (or currently) in
its critical section. The rightmost tag element refers to the com-
ponent least recently in its critical section.

41

Divide the remaining n! rows into n groups of (n-1)! rows. In
group i, i = 1,...,n, let the output state be Zi equal to

1 and Zj equal to 0, j #1i. Give each row in group i a

unique tag which has i in the first position and the sub-
scripts of the other components in the other positions.

(A control flow table as specified thus far is given in Table
8 for n = 3)

The table entries are determined as follows:

a. In rows with all Zi equal to O,

(1) there is a stable entry in the column with all
input variables equal to 0. Other columns have
unstable entries.

(2) For entries which are unstable, compute a sub-order
from the present tag which is the tag positions which
are the subscripts on an input variable which is
equal to 1. Form a new tag using the last element of
the sub-order as the first element of the new tag, the
remaining elements of the sub-order as the final
elements, and the remaining elements of the original
tag as the middle elements (For tag 2, 1, 3, 4, the
input states and new tags are shown in Table 9).

The unstable entry is the number of the row with the

new tag which has an output variable equal to 1.

Table 8. Flow Table Set-Up for n = 3

X1X2X3
tag s 000 001 011 010 110 111 101 100 Z,2,%4
1,2,3 1 000
1,3,2 2 000
2,1,3 3 000
2,3,1 4 000
3,1,2 5 000
3,2,1 6 000
1,2,3 7 100
1,3,2 8 100
2,1,3 9 010
2,3,1 10 010
3,1,2 11 001
3,2,1 12 001

A

| :

least recent

most recent

Table 9. Tag for Next Row Given 2,1,3,4 as Present Tag in a Row

With all Zi Equal to 0

Input State Sub-Order New Tag
(x1x2x3x4)

0001 4 4,2,1,3
0010 3 3,2,1,4
0011 3,4 4,2,1,3
0100 2 2,1,3,4
0101 2,4 4,1,3,2
0110 2,3 3,1,4,2
0111 2,3,4 4,1,2,3
1000 1 1,2,3,4
1001 1,4 4,2,3,1
1010 1,3 3,2,4,1
1011 1,3,4 4,2,1,3
1100 2,1 1,3,4,2
1101 2,1,4 4,3,2,1
1110 2,1,3 3,4,2,1

1111 2,1,3,4 4,2,1,3

44

In rows with exactly one output variable, say Zi' equal to

1, the first element of the tag must be 1i.

(1) If all input variables are 0, the new row is the
row with the same tag and all output variables
equal to 0.

(2) If input variable X, is equal to 0, compute a new
tag as in Step 4a(2). The unstable entry is the
number of the row with the new tag.

(3) If p input variables are equal to 1, 1 € p £ n and
Xi is equal to 1, find the sub-order of elements in
the present tag for which the corresponding input
variables have the wvalue 1. If the sub-order consist-
ing of the p - 1 elements which are not equal to i
is exactly the same as the sub-order consisting of
the final p - 1 elements in the present tag, the

entry is a stable entry. If not, form a new tag

using the sub-order corresponding to the p-1 input
variables which are 1 as the suffix of the new tag
and the remaining elements of the present tag as the
prefix. The unstable entry is the number of the

row with the new tag which has an output variable
equal to 1 (For n = 4 and present tag 1,4,2,3 there
are stable entries in columns X X K34 = 1000,

1010, 1110, 1111. ©Each row has n stable entries. A
complete list of the new tags for the row with tag

2,1,3,4 and Zg equal to 1 is shown in Table 10,

Table 10.

Tags for Next Row Given 2,1,3,4 as the Present Tag and

Z, Equal to 1 for the Present Row

2

Input State

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

Sub-Order

New Tag

2,1,3,4
4,2,1,3
3,2,1,4
4,2,1,3
2,1,3,4
2,1,3,4
2,1,4,3
2,1,3,4
1,2,3,4
4,2,3,1
3,2,4,1
4,2,1,3
2,3,4,1
2,3,1,4
2,4,1,3

2,1,3,4

45

(stable)

(stable)

(stable)

(stable)

46

The control flow tables generated by this procedure for n = 2 and n = 3
are shown in Tables 11 and 12, respectively.

The key steps in Procedure U are those which determine the next
row to be entered. This is always done in such a manner that the
component which has been out of its critical section the longest will
be enabled next, the modification of the tags in Step 4a(2) and 4b(3)
ensures that in the presence of multiple requests, the control will
first enable the component which has been out of its critical section
the longest and make the other components with pending requests next
in line after the first component enabled executes its critical
section. Procedure U satisfies conditions 1-4 of Theorem 8, so
Restriction 1 of the mutual exclusion problem must be satisfied. The
fact that Restriction 2 is also satisfied follows directly from the
way the procedure determines the next component to be enabled. It

follows that:

Theorem 16:
For any given n, Procedure U gives a correct control flow

table which is unbiased.

A direct consequence of the definition of an unbiased control flow
table is the fact that for a given row with its past history of critical
section executions (tag) and for a given input state,the flow table entry

is always uniquely specified.

Table 11.

Unbiased Control Flow Table From Procedure U,

tag

XX2
00 01 .11 10
ORIERE
@4-3 3
S ERIOlO
200K

Z1Z

00

00

10

01

2

n =2

47

Table 12.

Unbiased Control Flow Table From Procedu re U, n = 3

10

11

12

XsX

X1%2%3
(:)\ 001 011 010 110 111 , 101 100
— i Tt 9 0 T 127 7
2 | !
Jiziun | o9 9 10 9 12 1 8
312 | 11 9 |8 |12 ' 2
©, 12 |1z | 7
<:>I4 12 11 10 |8 771 I 7
= 1
|)
U 1 9 | 10 | 10 | 10 P 8
(:) 12 {910 | 8 {8 | 71| 8
2 |11 9 9 8 (E) | 7 (g)
3 |12 <:> (9] 10 <§> 12 | 7
4 |12 9 (19) (19) (E9> 7 7
s @ @] 0 |10 G| 7 | s
6 !(::) 11 |10 | 8 (::)'(Ié) 8

412923

000

000

000

000

000

000

100

100

010

010

001

001

48

49

Theorem 17:
For each n, the correct control flow table that is wunbiased

*
and has 2n! internal states is unique

CENTRAL VERSUS DISTRIBUTED CONTROL

To this point, all control and decision-making has been performed
in a single component. As the number of components controlled (n),
becomes large so does the number of inputs and outputs for this com-
ponent. Fortunately, however, we have shown that the number of in-
ternal states which are necessary to obtain a correct solution for
each n is just n + 1. In this section, we will briefly discuss some
alternate control organizations. Rather than concentrating all
decision-making in a single control component we will consider the
consequences of using more than one. Before proceeding, we must
introduce some terminology which will be useful in the following
discussion. The question of exactly where the "control" lies in a
given system is rather difficult to specify. Thus far, for the mutual
exclusion problem, we have considered the control function to reside

in component C of Fig. 2. This is natural because of the interpre-
n

+ 1

tation we attach to this system; however it is also conceivable that
_in some situation the control function might be thought to reside the

components C C

11 Cgr v e .,Cn which in turn drive the single component Cn + 1.

* except for the numbering of the internal states.

50

We will resolve such ambiguities in an arbitrary way be simply stating
for a given system where the control responsibility is assumed to be.
In the case of the mutual exclusion problem as shown in Fig. 2 the
control is assumed to be in component Cn .1

The parallel system in Fig. 2 is an example of a system with a

central control mechanism. More precisely we say the following:

Definition:
In a given parallel system, 1f the control function is
performed by a single component, that system is said to have

central control.

If a system does not have central control, it is said to have distributed
control; that is, the control function is performed-by more than

one component. For a given circuit it is often possible to partition
the circuit in many different ways, making it difficult to determine

if the circuit represents a single component or several components
which communicate with each other. In the case of a parallel system,
as defined in Definition 1, we distinguish components on the basis

of the delay assumptions for a parallel system. Any circuit in

which it must be assumed that delays are finite and bounded in order

to ensure correct operation is considered to be a single component.

On the other hand,if it is possible to partition a circuit such that
the parts can communicate even though the delays in the interconnecting
lines are finite and unbounded, the parts are considered to be separate

and distinct components.

51

Linear Control

In this section, distributed control solutions to the mutual ex-
clusion problem are considered. One type of distributed control is
shown in Fig. 6. In this case each component Ci'l £ i 4 n, has
its own control component Cn+i with which it communicates in the same
manner as components communicate with the central control in Fig. 2.
Before component Ci can be enabled, its control component must communicate
with its left and right neighbor control components to determine if
it is possible for Ci to enter its-critical section. With this type
of organization it is necessary to propagate a request for permission
to enter a critical section to all control components. We assume
each component can communicate only with its left and right neighbors.
Because line delays are unbounded, when a control component produces
an output value transition it must recognize an input wvalue change
produced in recognition of the propagation of its own output value
before it can proceed.* This means that pairs of lines are required,
one to send a request and one to receive the reply. Furthermore
a control component must not only send requests to its neighbors but
receive requests from them as well. The general form of a control

component-is shown in Fig. 7.

* A further discussion of the consequences of the line delay assumption
is given in [€].

52

LA c i e —_ c _,é-—-“.:j c
Cn+l. n+2 n+i |~ 2n
| | : i

% X5 = X
% Z> Zl Zn
] [
Cl CE Ci XX Cn
! 1
Figure 6. A linear distributed control for the mutual

exclusion problem.

Ticl Ry
Bio1 S
P Cosi

B i-1 n Py
9.1 !

(1 < i < n), xi,Zi as before

0 no

0 no

pi-l = 0O no

0 no
0O no

0 no

0 no

|
|
|
wr-
|
|
|
|

request for permission to enable C (k S i)

k

”"
11 1" 11

permission to enable Ck (k < 1)

1" 1" 11 " 11

request for permission to enable Ck (k > i)

"
1 " 11 11 11 "

permission to enable C,_ (k > 1i)

k
1" " H

request for permission to enable Ck (k < 1)

[1]
il 11 11 1 1 1

permission to enable Ck (k < 1)

", 1’ 1 1

request for permission to enable Ck (k > 1)
"
1 1 1

permission to enable C (k > i)

k

1" 1" 1" 1" "

Figure T. General form of a control component for Fig. 6.

53

34

For correct operation, each control component must have a sufficient
number of internal states to remember whether a component to his left,
right,or his own component was in its critical section last. This
information is necessary to resolve ties which result when multiple
requests are recognized and also to know whether to pass permission to
enable to another component or to wait for that component to pass
permission to enable to you. Only with this information can it be
guaranteed that no component is permanently excluded from its critical
section. We conclude that at least three internal states are required
for each general control component (the leftmost and rightmost
control components need to remember only whether their own component
or a neighbor was in its critical section last). The actual number
of internal states is difficult to calculate and we will not do so here.
However on the basis of this examination of the control structure in
Fig. 6 we can conclude that the total number of internal states required
for control will be at least twice as many as for a central control.

Of course the number of inputs and the structure of each control component
in Fig. 6 is fixed so we can add components simply by adding another
control component without any redesign. Without examining actual
implementations of central control components, which we do not propose

to do in this paper, it is difficult to make any evaluation of either
approach on a basis other than the total number of internal states

required for the control function.

The distributed nature of the control affects the choice
of the initial internal state for each control component. That

is, 1if each control component is started in the same

55

initial state it is always possible for the system to be incorrect.
Suppose each control component were initialized so that it thought
its own component had been out of its critical section the longest.
Then it would be possible for simultaneous requests to arrive and for
each control to wait indefinitely for enabling permission from its
neighbors. As a result only certain combinations of initial control
component states can be used. For example if n = 4 then we might
initialize C_ to think Cl was in its critical section last and C6’ c7, and
C8 to think their left neighbor was in a critical section last. In
the use of multiple requests, C5 must give permission to C6 before
it waits for permission to enable Cl' The conclusion of this
discussion is that there must be a certain "asymmetry" in the choice
of the initial internal states for the control functions.

We classify the form of control in Fig. 6 as linear because it
is possible to arrange the components in the manner shown in the figure
where each control component communicates only with its left and right
neighbors [117. Many other forms of linear control are also possible
in which groups of components could communicate with a common control
which would then communicate with its neighbors. The general organiza-
tion is shown in Fig. 8. It is our conjecture that in all such
organizations the number of internal states for the control is always

greater than the number required for a central control.

Hierarchical Control

A different distributed control structure is shown in Fig. 9.

This structure is know as a hierarchical structure because in this

case before a component can be enabled permission must be received

56

[\ -\ -\

(@]

Figure 8. General organization for a linear distributed control.

57

AN

4

|
’///

Figure 9.

A binary tree hierarchical control structure,

58

from the control components higher in the control "tree". Fig. 9 is an
example of a binary control tree where each lower level control
communicates with two components and higher level control components
communicate with two lower level components. It can be shown that
such a tree has n-1 control components (non-terminal nodes) and by
arguments similar to those in the last section it follows that
(1) there must be an "asymmetry" in the choice of the initial control
state and (2) the total number of internal states required for control
components is greater than the number required for central control.
We conjecture these conclusions are valid for hierarchical tree
control structures which are not restricted to be binary.

Both linear and hierarchical control structures are biased
because the control cannot store the complete history of accesses

to critical sections.

59

CONCLUSIONS

The use of the flow table model has made it possible to characterize
in a precise way the cost of a correct solution to the mutual exclusion
problem as measured by the number of internal states required by the
control function. In addition, procedures can be given to generate
correct control flow tables.

Distinctions between central and distributed (linear, hierarchical)
control can also be made in this model and the effects of one type Of
control over the other evaluated. More work needs to be done in this

area.

1]

(2]

[3]

]

(5]

rél

7]

(8]
9]

[10]

(11]

[12]

60

REFERENCES

Adams, D.A. A computation model with data flow sequencing.
Cs-117 (Thesis), Computer Science Department, Stanford
University, Stanford, California (Dec 1968).

Adams, D.A. A model for parallel computations. Proc.
Symp. on Parallel Processor Systems, Technologies, and
Applications, Naval Postgraduate School, Monterey, Calif,
June, 1969 (in press).

Ashcroft, E. and Manna, Z. Formalization of properties
of parallel programs. AIM-110, Artificial Intelligence
Project, Stanford University, Stanford, Calif, (Feb 1970).

Bredt, T.H. and McCluskey, E.J. A model for parallel computer
systems. Technical Report No. 5, SEL Digital Systems
Laboratory, Stanford University, Stanford, California (Apr 1970).

Bredt, T.H. Analysis and synthesis of concurrent sequential
programs. Technical Report No. 6, SEL Digital Systems
Laboratory, Stanford University, Stanford, Calif, (May 1970).

Bredt, T.H. Analysis of parallel systems. Technical
Report No. 7, SEL Digital Systems Laboratory, Stanford
University, Stanford, Calif. (to appear).

Dennis, J.B. and Van Horn, E.C. Programming semantics
for multiprogrammed computations. Comm. ACM 9 (March 1966) .
143-155.

Dijkstra, E.W. Solution of a problem in concurrent
programming control. Comm.aCM 8 (Sept 1965), 569.

Dijkstra, E.W. The structure of the "THE" multiprogramming
system. Comm. ACM 11 (May 1968), 341-346.

Dijkstra, E.W. Co-operating sequential processes.in
Programming Languages, Genuys, F. (Ed.), Academic Press
New York (1968).

Hennie, F.C. Finite State Models for Logical Machines.
John Wiley and Sons, New York, N.Y. (1968).

Karp, R.M. and Miller, R.E. Properties of a model for
parallel computations: determinacy, termination, queueing.

SIAM J. Appl. Math., 14 (Nov 1966), 1390-1411.

61

{137 Karp, R.M. and Miller, R.E. Parallel program schemata: a
mathematical model for parallel computation. IEEE Conference
Record of the 8th Annual Symposium on Switching and Automata
Theory (Oct 1967), 55-61.

{147 Rarp, R.M. and Miller, R.E. Parallel program schemata.
J. of Computer and System Sciences 3, 2 (May 1969), 147-195.

[15] Knuth, D.E. Additional comments on a problem in concurrent
programming control. Comm, ACM, 9 (May 1966), 321-322.

[16] Lampson, B.W. A scheduling philosophy for multiprocessing
systems. Comm, ACM 11 (May 1968), 347-360.

[17] Luconi, F.L. Completely functional asynchronous computational
structures. IEEE Conference Record of the 8th Annual
Symposium on Switching and Automata Theory (Oct 1967), 62-70.

[18] Luconi, F.L. Asynchronous computational structures.
MAC-TR-49 (Thesis), Massachusetts Institute of Technology,
Cambridge, Massachusetts (Feb 1968).

[19] Luconi, F.L. Output functional computational structures.
IEEE Conference Record of the 9th Annual Symposium on
Switching and Automata Theory (Oct 1968), 76-84.

[20] Manna, Z. Termination of algorithms. Computer Science
Department, Carnegie-Mellon University, Pittsburgh,
Pennsylvania (Apr 1968).

[21] Manna, Z. Properties of programs and the first-order
predicate calculus. J. ACM (Apr 1969).

[22] Manna, Z. The correctness of programs. J. of Computer
and System Sciences, 3 (May 1969).

[23] Manna, Z. The correctness of non-deterministic programs.
Artificial Intelligence J. 1, 1 (1970).

[24] McCluskey, E.J. Introduction to the Theory of Switching
Circuits. McGraw-Hill Book Co., New York, N.Y. (1965).

f_25] Muller, D.E. and Bartky, W.S. A theory of asynchronous
circuits. Proc. of an International Symposium on the Theory
of Switching, the Annals of the Computation Laboratory of
Harvard University, Vol. 29, Part I, Harvard University

Press (1959), 204-243.

62

[26] Rodriquez, J.E. A graph model for parallel computations.
Ph.D Thesis, MIT, Department of Electrical Engineering,
Cambridge, Massachusetts (Sept 1967).

[27] Slutz, D.R. The flow graph schemata model of parallel
computation. MAC-TR-51 (Thesis), MIT, Cambridge, Massachusetts
(sept 1968) .

