
STAN-CS-70-170 | | SU-SEL-70-024 |

Analysis and Synthesis of Concurrent |
~~ Sequential Programs : |

| |

T. H. Bredt |

May 1970 |

|

|

Technical Report No. 6
|

"This work was supported in part by the Joint Services
Electronic Programs U.S. Army, U.S. Navy, and U.S. |
Air Force under Contract N=-00014-67-A-0112+-0044

and by the National Aeronautics and Space Adminis-
tration under Grant 05-020-377. | oo

~ DIGITAL SYSTEMS LABORATORY |

STANFORD ELECTRONICS LABORATORIES
STANFORD UNIVERSITY - STANFORD, CALIFORNIA |

:

~a "

r

am

-

-.

-

STAN-CS-70-170 SEL- 70-024

\ N

. ANALYSIS AND SYNTHESIS
~~ OF

CONCURRENT SEQUENTIAL PROGRAMS

by

: T. H. Bredt

May 1970

* Technical Report No. 6

<

DIGITAL SYSTEMS LABORATORY

Stanford Electronics Laboratories Computer Science Department

Stanford University

Stanford, California |

This work was supported in part by the Joint Services Electronic

Programs U.S. Amy, U.S. Navy, and U.S. Air Force under Contract

- N-00014-67-A-0112-0044 and by the National Aeronautics and Space |

Administration under Grant 05-020-337.

A
FN
Lae

. R

=

-

-.

oo

he

.

-

-

-»

|

“

.

-

h,

STANFORD UNIVERSITY |
Digital Systems Laboratory

N Stanford Electronics Laboratories Computer Science Department |

Technical Report Number 6
v May, 1970

ANALYSIS AND SYNTHESIS

OF

CONCURRENT SEQUENTIAL PROGRAMS

by

‘ T. H. Bredt

_ ABSTRACT

This paper presents analysis and synthesis procedures for a
$

class of sequential programs. These procedures aid in the design

¢ of programs for parallel computer systems. In particular, the in-

teractions of a given program with other programs or circuits in a

system can be described precisely. The basis for this work is a

model for parallel computer systems in which the operation of each

component is described by a flow table and the components interact

by changing values on interconnecting lines. The details of this

*

model are discussed in another paper . The analysis procedure pro-

: duces a flow table description of a program. In program synthesis,

a flow table description is converted to a sequential program. Using

flow table design procedures, a control program for the two-program

mutual exclusion problem is produced.

* Bredt, T.H. and McCluskey, E.J. A model for parallel computer

systems. Technical Report No. 5, SEL Digital Systems Laboratory,
Stanford University, Stanford, California (April 1970).

| i

|.

TABLE OF CONTENTS |

ABSTRACT . «¢ ¢ ¢ + o o o o o o Co. co + + + se se eo 8 eo oo i

TABLE OF CONTENTS «+ + « « « « « oo 0 o + o «+ « oo « oo o ii

LIST OF TABLES « + « « ¢ +o ¢ os os os o o o os os o os o os o o os os iv

LIST OF FIGURES + « « « « ¢ o « o o o o o eo o o os so o o o « \

' INTRODUCTION . + + « « « o o o so so o o o o o ao o so o » o os « 1

ANALYSIS OF PROGRAMS + + « + + « ov ov vo oo ee ea ea 5

Programs of the Class P . . « + « « « o oo « « ov « oo o 8 |

Control Assignment Statement ¢ ¢ ¢ ¢ +o 0 eo 9

Wait Statement’ «4 4 4 4c 4 4 es ee 0 aaa eos 10

Go To Statement «¢ « ¢ ¢ o o o¢ ¢ o « o « so os o oo = 12

| Dummy Statement . . « « ¢ ¢ « + 4 oo oe co +o 0 + es 12 /

Halt Statement . . . ¢ « ¢ ¢ ¢ ¢ o o « o o os a o os o o =» 13 |

State Tables and Programs . . . « « o + Co. “+ + 5 5 8 8 = 15

Preliminaries « ¢ « « o « « oo oo 0 0 ee ee 15

Determination of Immediate Successor Output States . . . 18

Determination of Immediate Successor Row Number 18

] Determination of Next-State Entries . . « « « + « ¢ +o « 19

EXampleS. « « « « o © + o os o o o os ao o o o + a so 0 0 oo» 19

State Tables and Flow Tables «. « « «« ¢ « « « ¢ « & 23
Inaccessible States and Inaccessible Sets of States . . . 25

Indistinguishable State Tables . . «. « « « ¢ « « « oo « 25

ii

TABLE OF CONTENTS (Continued)

SYNTHESIS OF PROGRAMS . « « « + vv vo 0 oo 0 to 0 a ou 33

Procedure to Obtain a Program of the Class P

for Any Flow Table . . « « «+ « « « o o so o 5s os os o o o o 36

CONCLUSIONS « « + « o so « o os o o « so o o so o o o o o o o o a 43

ACKNOWLEDGEMENTS . « + ¢ o o os o 5s o 5s « so 8s so o os o o o oo « 44

} REFERENCES . LJ * [] * [J * [LJ [J] ® [J] [J LJ LJ] ® LJ L | 2 [] . . [] [J J [45

‘

|

iii

L,

LIST OF TABLES |

1. Flow Tables for the Two-Process Mutual Exclusion Problem . . . 4 |

2. General Form of a Flow Table . . . «+ « + « « « « oo « o oo + 17 |

3. Example Program of Class @ « « « ¢ « « « + + « « . 14

4, Statement Forms and Next Statement Numbers 17

; 5. Program of Table 3 With State Table +. . « . «. . . 20

6. Example Of @ Program . . . « « + o o o os os o o o so o a os o o o 22

7. Construction of the State Table for the Program of Table 6 . . 22 |

8. State Table for the Program of Table 6 « « « « « . . 24

9. Example of Inaccessible States « « « « «+ « « « . 26

10. Example of an Inaccessible Set of States «. . . 26

11. Example of a Program and State Table With a Cycle 28

12. Flow Table for State Table in Table 5 . . «. « « « « « «+ + « « 32

13. Flow Table for the State Table of Table 8 and Program |

Of Table 6 . . « « « « o o o so o os 5s so os so as oa o oo o o » « + 34

14. Control Program for the Two~-Program Mutual Exclusion Problem . 38

15. Another Control Program for the Two-Program Mutual |
Exclusion Problem . . . « « « . EE 40

16. Program 1 Without Dummy Statements « « « « « « o + « 4]

17. Program 1 With Dummy Statements =. . « « + « « « ¢ so ¢ « « « +» 42

iv |

LIST OF FIGURES

ho

1. Parallel system configuration for the two-process

> mutual exclusion problem « ¢ ¢ ¢ ¢ ¢ « « « « « « «+ . 3

2. General form of a system component + + + «+ + + + . 6

3. Cyclic transitions for the state table in Table 11 28

4, Example of a state table with a cycle « ¢ +. +. « « +. 30

o9. Another example of a state table with a cycle 30

iY

LY

\%

-—

]

roe ['

J

5

: :

| ”

INTRODUCTION
.

' In another paper [1], a model for parallel computer systems |

was proposed. This model provides a basis for the formal study

of program and circuit interaction incomputer systems. The motiva-

: tion for the model is the desire to solve control problems such as

| the mutual exclusion or interlock problem, which has been studied |

by Dijkstra and many others [2, 3, 4, 5, 7, 9]. Its solution

requires the control of two or more programs which are executed

concurrently and contain special functions enclosed in "critical sec-

tions'. It is necessary to ensure that (1) at most one program

) is executing a critical section at any instant and (2) if a program |
| wants to enter a critical section, it is eventually allowed to do hy

) In our model flow tables [13] are used to describe the behavior

of each component (program, circuit) in a system. Components in- |

teract by changing the values on lines which interconnect them.

These lines carry binary level signals. The use of lines for inter- |

- component communication differs from the more common use of shared

memory cells [2 , 3 , 4 , 5, 9]. Our model is on a more primitive

level and can be used to describe implementations in which memory cells

| are shared. It is assumed that the delays in the interconnecting lines

’ are finite and unbounded. Component internal delays are assumed to be

i finite and bounded.

* This is a slightly different version of the problem considered by
Dijkstra. Dijkstra did not require that a given program must enter its

critical section but rather that the decision as to which program would

enter its critical section could not be postponed indefinitely.

re - .

In this paper, analysis and synthesis procedures are defined

which make it possible to relate program implementations with the flow |

table model. These procedures are applied in the analysis and synthesis

of programs for use in the mutual exclusion problem. A configuration

for a parallel system which is appropriate for a discussion of the

: mutual exclusion problem was specified in [1]. This configuration is

| reproduced in Fig. 1 In [1], flow table descriptions for the three
| components in the system were produced. These flow tables are shown |

| in Table 1. | | |

In [1], a special mode of operation was defined for the components

in a system. Each component operates independently of other components

| using the following operation cycle. First, the present input state

of the component is determined and recorded in a rank of flip-flops.

Second, the input state and the present internal state of the component)

determine the component response. When the response is complete,

the input state is determined again and the cycle repeats. With this

mode of operation, component inputs may change at any time without |

_ adverse effects. The flow tables, such as those shown in Table 1,

| specify the operation of the component during the second phase discus- |

sed above. |

: The sequential programs studied in this paper contain only a

limited subset of the facilities available in high-level programming |

languages such as ALGOL or FORTRAN. The limitations have been made

to facilitate the description of the analysis and synthesis procedures.

It is reasonable to make these limitations because we are interested

* Lower case denotes input variables and upper case, output variables.

hb

_ 5

Ee EC Fw*1 Control
x Z Zz
2 2 2

N Xs = 1 Process i wants to enter critical section i (CSi) or process i

is in CSi.

x, = 0 Process i does not want to enter CSi and process i is not

. in CSi.

Zz, = 1 Process i may enter CSi.

Zs = 0 Process i may not enter CSi.

‘ Figure 1. Parallel system configuration for the two-process mutual

exclusion problem. |

pe :

Table 1. Flow Tables for the Two-Process Mutual Exclusion Problem

Zy . | z,

0 1 X, 0 1 Xx,

2 JO] Le]

(a) Process 1 (b) Process 2

XX,

00 01 11 10 Z,2,

(2 last) 1 (1) 2 00

(c) Control |

(Initially each component is in internal state 1) Lo

5 i

\ in the interactions of programs with other programs and circuits and

not in the analysis of the computations carried out by the programs.

In this regard, our work has quite a different emphasis from that of

Floyd [6], Knuth [9], and Manna [10 , 11 , 12 |].

We begin with a discussion of how sequential programs can be

4 analyzed to produce a flow table description of their operation.

Later, synthesis, the specification of a sequential program from a

flow table description, is considered.

ANALYSIS OFPROGRAMS

= | The general form for components is shown in Fig.2. Interaction

) is accomplished by changes in input and output variable values.

The analysis procedure consists of constructing first a state table

and then a flow table as shown in Table 2. If the table entry is the

same as the row number, the entry is said to be stable; otherwise, it

is unstable. For a flow table, we require that every unstable entry

| specify a stable entry. A state table has the same form as a flow

table except that it is not necessary for this condition to be sat-

isfied. The analysis method is analogous to the procedures used for

sequential circuits [13]. |

Each program is assumed to be a sequential program, a program in

. which only a single instruction or statement is executed at a time.

The execution of a program begins with the first statement. The

| next statement to be executed may be the statement following the one

, .

6 =

*1 2q

%a 2g

: X Z
n m

X 1 Xgr eenX are input variables (lower case)

Zy0255 00092 are output variables (upper case) |

Figure 2. General form of a system component.

. Ne

Table 2. General Form of a Flow Table

Input State

3 X X LJ LJ L xX

12 a Output State

00, ® » ss os 0 4 & @1 11 1 2,2, Z

Internal BEER E
El

S (next state)

:

"

just executed or a statement elsewhere in the program at a location |

determined by the current values of the input variables or by con-

ditional and branching statements which use control information in-

ternal to the program such as the values of internal program variables.

Internal control information can be included in a flow table by adding

+ extra rows for the possible internal control states. This can be

done as long as the control can be described by finite means. The

addition of internal control information complicates the flow table :

| analysis. Since we are interested in the interactions of programs

with other componénts, the types of internal control allowed will be

limited. We assume that programs can be put in a form where the next

| statement to be executed is either the statement following the one :

just executed or is specified by a ''go to' statement or determined

by the input state of the component.

Programs of the Class 7? | |

A precise description of the class of programs to be considered

follows.

Definition 1:

A program of the class ? is a finite sequence of |

| statements of the following types: |

a. Control Assignment

| b. Wait

c. Go to |

d. Dummy |

e. Halt

”

A The statements may be numbered with integer labels. Each

such number is followed by a colon (:). Statements are

’ separated by semi-colons. The last statement is followed by

a period. Each program includes declarations of the input

and output variables. The declarations have the form:

. INPUT X)0Xg0 een X where Xs is an input variable

OUT PUT AEX IIERERY% where Zs; is an output variable

| The initial values of the output variables (the initial

output state) must be specified for each program.

The format and interpretation of the statement types are as

follows.

. Control Assignment Statement. The control assignment statement

| is used to assign a binary value, either 0 or 1, to an output variable.

This statement has the form:

variable := value |

The following are examples of control assignment statements.

X :=1 |

- Z, += 0 |
Subscripts may be used on variables to keep clear the correspondence

between programs and flow tables. When a control assignment state-

| ment is executed, the program component must include suitable mech-

s anisms to maintain the designated value on the output line. |

10 ie

Wait Statement. The wait statement is used to test the present]

input state of a program componentand to transfer to the appropriate

next statement when a designated input state is recognized. This

statement has the form: |

WAIT (5,51,):(8551,)5-..,(5, 1))

: Each pair (s5,1,) consists of an input state oF and a statement num-

ber 1, The input state is represented by a binary number b,b,...b,

where b, is the value of the input variable Xs b, = 0 or 1, for

i=1%,...,n. The statement number specifies a statement in the pro-

gram. Examples of wait statements are given below:

(single input variable)

| WAIT (0,3) .

_ (two input variables)

WAIT (01,4),(11,7)

Each input state must appear at most once in a wait statement. When

a wait statement is executed, the current input state must be det-

ermined. This is done in the manner described in [1]. If the present

- input state is the same as one of the specified input states, the

number of the next statement is given by the statement number in the |

input-state number pair. If the input state does not appear in the

wait statement, the execution of the program must be suspended. The

first wait statement example given above is used with a component with ,

one input variable, say Xx; If X, has the value 0 when the statement

is executed, statement number 3 is executed next; otherwise, execution

of the program is suspended. When execution is suspended, there are

. two alternative actions. The processor which is executing the program

may loop and repeatedly execute the wait statement until the actual |

input state of the component matches one of those specified. Looping

is not always desirable since a processor is occupied which could

be assigned to the execution of another program. A second alternative

‘ frees the processor to execute other programs. The suspended program

is added to a queue of programs which are waiting for changes in their

input states. The interpretation of the control assignment statement

must then be modified so that, when a control assignment statement

is executed, the input states of waiting programs are determined

and any programs which are ready to continue execution are either

3 re-assigned to processors or put in another queue of programs which |

are ready to resume execution as soon as processors are available.

The overhead required for this alternative may be substantial. The

creation and testing of queue entries must be made critical sections |

and protected by mechanisms of the type we are investigating. We

will not adopt either alternative but mention them as possible imple-

) mentations. Both alternatives have been proposed before [5 , 9].

The combination of the control assignment statement and the

wait statement provide a means of communication which is similar to the

| use of wakeup and block functions proposed by Saltzer [| 14] and dis-
cussed by Lampson [9 |]. The wakeup function corresponds roughly

- to the control assignment statement and the block function to the

wait statement. In Saltzer's approach, each process has an associated |
work queue and wakeup waiting switch. The block function causes

execution of a program to be suspended until some form of enabling

signal is received. The wakeup function provides the enabling signal. |
The wakeup waiting switch is used to prevent enabling signals from

being lost. When a process reaches a point where further progress

depends on the arrival of a enabling signal, it performs the following

steps [14 |. | |

ES 1. Resets the wakeup waiting switch to off.

2. Look in the work queue. If there is an entry continue;

otherwise, go to step 3. |

‘3. Call the block function. This function returns if the

wakeup waiting switch is on.

When a process wishes to send an enabling signal to another process,

the steps are as follows: |

1. Make an entry in the work queue of the other process.

2. Call the wakeup function for the process, turning the wakeup |
waiting switch on.

The two alternative forms of waiting used with the wait statement, a

loop or entry in a queue and release of the processor, can be used

"with the block function.

Go To Statement. The go to statement is the standard state- |

nent used for branching in most programming languages. It has the form:
GO TO i | |

where i is the number of some statementin the program.

Dummy Statement. The purpose of the dummy statement is to gather |

together those portions of programs which are not essential to inter-

action with other system components. To an observer, the execution of

13 3

. this statement represents a delay of unknown duration which has no

effect on the input or output variables of the component. In the mutual

exclusion problem, the critical section is represented by a dummy

statement. This statement has the form: |

DUMMY

' Halt Statement. This statement is provided to indicate that a

process is to be terminated unconditionally. It has the form:

HALT

| In the following discussion, the use of the word program will

refer to a—program of the class P as just described. An example of such

a program is shown in Table 3. The only variables which appear in

? | these programs are input variables and output variables for the com-
) ponent. In the example of Table 3, Xy is an output variable and Z, is

an input variable. These variables are global variables defined for

the entire system and are associated with the lines which interconnect

system components. If a variable is used in both a control assignment

statement and a wait statement in the same program, the interconnection

] must be with the component itself. The primary function of the input

and output variables is for inter-process control rather than intra-

| process control and no examples of this latter use will be given.

| "

Table 3. Example Program of the Class 9

INPUT Z,)

: OUTPUT X, ; (initially X, is 0)
1: X, i= 0;

. 2: DUMMY ;

3: WAIT (0,4) ;

4: xy = 1 |
5: WAIT (1,6) ;

6: DUMMY)
7: GOTO 1 . |

15 ig

State Tables and Programs

We now describe how programs of the class ? can be analyzed to

g produce a state table. This procedure is analogous to the construction

of the state table which describes the operation of a sequential cir-

cuit. Each internal state or row in the state table describes the

oo execution of some statement in the program. We assume, in this section,

that the statements in a program are numbered in ascending order,

starting with 1. We use the Moore model in which an output state is

associated with each internal state.

| Preliminaries. Given a program with t statements, n input |

variables, and m output variables, define a state table with t rows,

] row i corresponding to statement i (1 < i €£ t) and 2" columns, one

| column for each input state. The initial row (internal state) of the

state table is row 1. The output state of row 1 is the initial output

state of the program. If the first statement is a control assignment

: statement, the value assigned to the control variable should appear in

the output state for row 1. :

. To fill in the state table we must specify the output state and

next internal state for each row in the table. For a circuit, the

output state can be determined once the internal state is known. For

| a program, the output state is determined first by the initial output

(state and subsequently by the most recently executed control assignment

] statement for each output variable. In general, a given statement

| may have more than one immediate predecessor (statement which is

executed immediately before) and the statement may be entered with

different output states. In this case, there must be more than one

row in the state table for the given statement, one row associated with

the execution of the statement for each possible output state. This |

problem complicates the procedure for determining the state table.

The procedure to complete the state table can be outlined as

follows:

Consider each row of the state table in order.

1. If the output state of the row is completely specified,

then for each immediate successor of the corresponding

statément:

a. Determine the immediate successor output state.

: b. Determine the immediate successor row number.]

c. Determine the next-state entries for the row. }

2. If the output state of a row is not completely specified,

pass over that row and consider it again after all other

rows. If after all rows have been processed, there

remain rows with unspecified output states, these rows

correspond to inaccessible statements, statements which

are never executed. Such rows can be deleted from the

table. | |

We now give the details for performing steps a-c above. The

statement forms and immediate successor statement numbers for each

form are given in Table 4. Before filling in the next-state entries |

17

) Table 4. Statement Forms and Immediate Successor Statement Numbers

. Immediate Successor

Form of Statement i . Statement Number

i: Z. :1= CO i+ 1
J

; 1<3=m |
aa =0o0or1

i: DUMMY | i+ 1

is HALT i

i: WAIT (s101,),(85,15) 500050854) ised |

! .

”

for a row, the output state and number of the row corresponding to

each immediate successor statement must be determined. This is done

in the following manner. .

Determination of Immediate Successor Output States. let state-

ment number w be an immediate successor of statement number i and |

let the output state of the row corresponding to statement i be

completely specified. We wish to determine the output state for the

row which corresponds to statement w. This output state is the same

as the output state for the row associated with statement number i

unless statement w_is a control assignment statement |

wi zg t=© 1€3j€m, @ =0or]l |

. in which case, the value of Zs in the output state is (. J

Having determined this output state, we determine the number)

of the row corresponding to the immediate successor statement.

Determination of Immediate Successor Row Number. If two

output states differ in the value of some output variable which is

specified (0 or 1) in both output states, the output states are

said to conflict. If the output state determined for the row

| corresponding to statement number w and the output state for row w

do not conflict, row w corresponds to statement w and is given the

output state determined above. Otherwise,a row with the conflicting

output state must be added to the state table. This row should be

tagged with a w to indicate that it corresponds to statement w.

When adding rows, it is unnecessary to add more than one row for

a given statement with a given output state. If a state table has no

] conflicting output states, the number of the row corresponding to a

statement is the same as the statement number. |

Determination of Next-State Entries. let i' be the number

: of the row corresponding to statement number i. If statement 1 1is

| a control assignment, dummy, go to, or halt statement, each next-

state entry in row i' is the number of the row corresponding to

the immediate successor statement.

| In a row corresponding to a wait statement of the form

i: WAIT (s,511),(85,15) 5.5 (5, 51))

. | the entry in the column for input state oF (1 <j <k) is the number

] of the row corresponding to immediate successor statement 1, The |
next-state entries in columns which do not correspond to one of the

input states S118g0 018) are stable entries, i'.

Examples. For many programs, conflicting row output states

never occur. The program of Table 3 is such a program. This program

) and its state table, as produced by the procedure just described, are

shown in Table 5.

To illustrate the procedure when row output states do conflict,

| consider the following situation. We wish to control the operation of

two concurrent programs, program 1 and program 2, such that

- 1. Program 1 is enabled whenever it requests to

| be enabled.

20 :

Table 5. Program of Table 3 With State Table

INPUT Z, ; |

| OUTPUT X, ; “(initially x, is 0)
1: X4 := 0 ;
2: DUMMY ;

3: WAIT (0,4) ;

: | 4: xy += 1;
| 5: WAIT (1,6) ;

6: DUMMY ,;

7: GOTO 1 .

] a) Program

| “1
0 1 Xx, |

1 2 2 0

2 3 3 0

5 | a |B] o
4 5 5 1 | |

s ||| 1
- 6 7 7 1

7 1 1 1 |

b) State Table

oo "

RX 2. Program 2 may be enabled if and only if program 2

requests to be enabled and program l is not

requesting to be enabled. |

The system configuration for this problem is the same as for the

mutual exclusion problem and is shown in Fig. 1. The interpretation

P of the variable values is the following. If Xx, is 1, program i

is requesting an enabling signal. Program i is enabled by placing a

1 value on the Z, line. In different terms, the problem is to guaran-

tee that Z, is never set to 1 unless the x, input to the control

mechanism is O. Suppose that instead of using flow tables to design

a solution to this problem, a program is written directly using control

. assignment and wait statements. One possible control program is shown

| in Table 6. To determine if this program controls program 1 and

2 as intended, the corresponding state table will be constructed.

The output state for row 6 is specified as 10 when row 3 is filled

in. When statement 6 is reached from statement 5, the output state

for statement 6 must be Z,2, = 11. Therefore, the output states

} conflict and an additionsl row must be added to the table (row 12).

Row 12 also describes statement 6 put with output state 2,29 = 11.
The state table after the completion of row 5 is shown in Table 7a.

| No more output state conflicts occur until row 12 is reached. The

: state table at this stage is shown in Table 7b.

-

22 Li

Table 6. Example of a Program Table 7. Construction of the State

Table for the Program of |

| Table 6

. XX, oo

00 61 11 10 ZZ,

1 2 2 2 2 00

(initially Z,2, = 00) 2 3 3 3 3 00 |3 3 4 6 6 00

INPUT X,,X,; 4 5 5 5 5 01

OUTPUT ZZ, 5 2 5 | 12 | 10 016 10

1: 2Z, :=0; _ |

| 2: Z, :=0; _ 8 oo
3. WAIT (01,4),(l1,6),(10,6); o

10 00

4: Zg t= 1; 11

5: WAIT (00,2),(11,6),(10,10); (6) 12 11

6: Zz, :=1 | (a) |
7: WAIT (00,1), (01,8); XX,

8: Z, :=0; 00 01 11 10 ZZ,
9: GO TO 4; 1 2 2 2 2 00

. 10: 2, i= 0; 2 3 3 3 3 00| 3 3 4 6 6 00

11: GO TO 6. 4 5 5 5 5 01

| 5 2 5 |12 |10 01

: 6 7 7 7 7 10

| 7 1 8 7 7 10

8 9 9 9 0 00

9 4 |} 4 4 4 00

10 11 j11 |11 {11 00

11 6 6 6 6 00

(6) 12 11

(®)

-

) Row 12 describes the execution of statement 6. This statement is

followed by statement 7 in the program. But again, the output |

states conflict so an additionalrow (row 13) must be added

to correspond to the execution of statement 7 with output state 2X =11.

Additional rows must be added for statements 1 , 8 , and 9 as well.

The complete state table is shown in Table 8. The analysis of this

program will be continued later; however, a careful examination of the |

state table will reveal that the program is incorrect. Suppose pro-

| gram 2 sets X,, to 1 and is enabled by the control program (Z, is set
to 1). The control program enters internal state 5. Now let program

1 set X, to 1. The control program next enters internal state 13.

: But, it is now possible for program 2 to set X, to O then reset it

_ to 1 and be re-enabled immediately because the control does not set

Z, to 0 in the case when X, goes to 0 when Xx) is 1.

State Tables and Flow Tables

| It is always possible to produce a state table which corresponds

to every program of the class ?, just as it is always possible to

produce a state table corresponding to every sequential circuit.

However, it is not always possible to reduce this state table to an

"equivalent flow table for circuits or for programs. We now consider

under what conditions and how the reduction of a state table to a

flow table can be performed. A flow table differs from a state table

. only in that for a flow table every unstable table entry must specify

a next internal state entry that is stable. This condition is not

required for state tables. A flow table may reduce the number of internal

states and provide a more concise description of component operation.

Table 8. State Table for the Program of Table 6

X1%o

00 01 11 10 Z,Z,

. 1 2 2 2 2 00
2 3 3 3 | 3 00

3 (3) 4 6 6 00
4 5 5 5 5 01

: | 5 2 (5) 12 [10 | 01 |
6 7 7 7 7 10

Ca || @|®)
8 9 9 9 9 00

9 4 4 4 4 00 |

| 10 11 11 | 11 | 11 00

11 6 6 6 6 00

(6) 12 13 | 13 | 13 | 13 11

(7y 13 | 14 | 15 13) (13) 11
(1) 14 2 2 2 2 01

(8) 15 16 | 16 | 16 | 16 01 |

(9) 16 4 | a] a] 4] or

{

. Inaccessible States and Inaccessible Sets of States. It is

possible that when a state table is constructed some of the in-~- |

ternal states are never entered.- For circuits, there may be states

that are not the initial state and which do not appear as the next-state

entry in any row of the state table other than their own row. Such oo

: states are called inaccessible states. It is also possible to have

an inaccessible set of states which is a set of states which does not

include the initial state such that no state of the set is entered

| from any state not in the set [13 |]. For programs, the procedure

for obtaining the state table is such that all states which are retain-

ed may be entered. For example in Table9, internal states 6 and 7

© are inaccessible and are removed. In Table 10, internal states 5, 6,

| 7, and 8 form an inaccessible set of states and also are removed.

Indistinguishable State Tables. The notion of equivalence we

will use is called indistinguishability and is defined as follows [13]:

Definition 2:

Two state tables are said to be indisting-

uishable if and only if when both tables are

in their respective initial states, any in-

put sequence applied to both state tables

results in identical output sequences from |

both tables.

The state table obtained for a program may indicate that the

program produces multiple changes for the value of an output variable

| during some unstable -internal-state transition. In an environment

26 -

Table 9. Example of Inaccessible States

INPUT Z; (initially X is 1) ~ | z

OUTPUT X; 0 1 X

1: $= :X Ls 1 2 2 1
2; 3);WAIT (0,3); 0 3 (2) .

: 3: .DUMMY 3 4 4 1
4. ee O°: X := 0; 4 5 5 0
o: 1;

6: += 1;X 1 5

7: 2 . | |GO TO 7

a) Program b) State Table

Table 10. Example of an Inaccessible Set of States

INPUT X; (Z is O initially) X |

OUTPUT Z; oO 1 Z

Clr Z:=0; 1 2 | 2 0

2: WAIT (1,3); 2 © 3 0
3: Z:=1li 3 a | 4 1

4: WAIT (0,1); 4 1 O, 1
dS: Z := 0; | 5

6: WAIT (1,7); 6

7 Z :=1; v |

8: WAIT (0,5). 8 |

a) Program b) State Table

where line delays are unbounded, such multiple changes should not be used :

. since it cannot be known if the intermediate output values are recognized.

The effects of multiple output changes are discussed in more detail in [1].

For this reason, we assume that each output variable changes value at

most once during each unstable transition.

It is possible that the state table obtained for a given program

:) will contain a cycle.

Definition 3:

A state table is said to contain a

| cycle if for a fixed input state the com-

panent represented may operate indefinitely

| without ever becoming stable.

: An example of a program and associated state table containing a cycle
| is shown in Table 11. The cyclic transitions are shown in Fig. 3.

During the cycle, the value of output variable x4 changes more than

once. The program of Table 11 could be used as program 1 in a solution

to the mutual exclusion problem; however this should not be done

because of the multiple-value transitions during the cycle. A |

. further discussion of the difficulties with this program is given in

[1, p.23].

The assumption that output variables change value at most once

during unstable transitions allows us to restrict our attention to

: cycles in which this assumption holds. Associated with each cycle is

] a set of internal states of the state table which are entered during

the indefinite operation which defines the cycle. Call this set C.

Since output variables change value at most once during a cycle and

Pits

28 oe

Table 11. Example of a Program and State Table Witha Cycle : oo

(initially X, is 0)) z, :
; 0

INPUT Zy 1 X,
ouTPUT Xs 1 2 2 0

2 3 3

1: xy r= 0; 0 |
‘ 3 4 4 1

2; DUMMY ; 4 Oo 5 1
3: X= 1; 5 6 6 1

6 1 1 1
4: WAIT (1,5);

5S: DUMMY; |

h b) State Table
6: GO TO 1.

a) Program

%1

0 1 Xy

1 0

2 | 0

- 3 1

4 | 1

5 1

6 1

Figure 3. Cyclic transitions for the state table in Table 11.

the states in C are entered an unspecified number of times, all the |

internal states in C must have the same output state. Two examples of

B state tables with such cycles are shown in Figs. 4a and 5a. In Fig. 4,

if input variable x changes from O to 1 during the cycle, the next

stable entry is 3. As a result, this state table cannot be disting-

| uished from the flow table shown in Fig. 4b in which the cycle has
| been replaced by a single stable entry and the internal states re-

numbered. Unfortunately, the example of Fig.5 shows that it is not

~ always possible to simply replace cycles by stable entries. In this

example, if an X,%5:00 —» 11 transition is recognized during the

cycle and while the component is in internal state 1, the next internal

state will be state 3. If the input transition is recognized while

| | in internal state 4, the next internal state will be state 2. States

- 2 and 3 have different output states. If the cycle is removed by

replacing rows 1 and 4 by a single row, identical to row 1 except

for a stable entry in the 00 column, the flow table shown in Fig 5b

| is obtained. However it is possible for the state table and the flow

i table to be presented with the 00,11 input sequence and for them

to produce different output sequences. Unfortunately, we are |

: as yet unable to characterize in a general way the conditions under

which cycles can be replaced by stable entries.

: In most cases, the state tables obtained for programs will not

| contain cycles. Such tables are said to be cycle-free. If a state

: table is cycle-free and each output variable changes value at most

X X

0 1 Z 0 1 Z |

1 C) 2 | o) 1 | 12] oo |] — : i .

2 1 3 0 2 1 (2)] 1
3 | 1 73%] 1

” b)

c={1,2}

Figure 4. Example of a state table with a cycle.

*1%2 X1%2

O00 O01 11 10 z,Z, 00 01 11 10 Z,Z,

1 | a] 2] 3]| 3] oo 1 (1) 2 | 3 | 3] oo
2 |[1 (2) (2) 3 | o1 2 | 1 No 3 | o1 | |
3 [laf] 2 (3) (3) 10 3 | 1 | 2 (3) (®) 10

C4 1 2 2 3 00

b)

oo c={1,4)} |

Figure 95. Another example of a state table with a cycle. |

| 31 |

once during each unstable internal state transition, the state table

) can always be transformed into a flow table. The procedure is the

following. For each row with a stable entry, replace all unstable

entries with the number of the stable state entered at the end of the

| internal-state transition. All rows which have only unstable entries
| can then be eliminated. The initial internal state of the flow

table is the first row with a stable entry which is entered as a

~~ successor of the initial internal state in the state table.

The state table in Table 5 is cycle-free and has at most single

output-variable changes during unstable transitions. The flow

table, with states renumbered is shown in Table 12. This flow table

| | is identical to the flow table in Table 1 which was specified in the

] synthesis of program 1 for the mutual exclusion problem. Therefore,

| the program of Table 3, which was analyzedto produce the flow table

in Table 12, is a suitable program for the mutual exclusion problem.

The flow table in Table 12 is completely specified. That is, |

each next-state entry and output state is specified. In general, all

| state tables and flow tables obtained for programs will be completely

specified. This is a direct consequence of the definition of the

Table 12. Flow Table for State Table in Table 5

: 0 1 x,

-

, procedure to obtain these tables. A result from switching theory

is the following [13 |]. For any completely specified flow table

) it is always possible to obtaina unique” flow table with a minimum

number of internal states which is indistinguishable from the

original table.

; Another example of the reduction of a state table to a flow

table, the flow table for the state table of Table 8, is given in

Table 13. The difficulty discussed earlier is detectable by examining

B internal state 4 when X Xt 11» 10 » 11. If the table entry in row 4,

column 10 is changed trom(@)to 3, the difficulties are avoided.

; SYNTHESIS OF PROGRAMS

In this section, formal synthesis procedures are specified which

make it possible to produce, from a flow table, a program of the class 9.

Asa result, it is possible to design control programs for problems

such as the mutual exclusion problem.

The first step in the synthesis procedure is to obtain a flow

table of the form shown in Fig. 2 with a minimum number of internal

states. Techniques for obtaining such flow tables are well known [13].

oo The flow table obtained may or may not be completely specified. Let

; us consider the possibility that the flow table is not completely

. specified. If a next internal-state entry is unspecified in the table,

it will be assumed that the designer intended that this entry never

* Except possibly for the numbering of the internal states.

34

Table 13. Flow Table for the State Table of Table 8 and the Program

of Table 6

a | *1%2

00 O01 11 10 2,2,

”

& be entered during the operation of the component. If the value of

) an output variable is unspecified for some internal state, it will
be assumed that the designer does not care what the value of the out-

put variable is when the component is in that internal state. Consider

first, the implementation of the flow table as a sequential circuit.

When the excitation functions for the circuit are determined, all

unspecified entries in the table, both internal-state entries and

output-state entries, become completely specified. Now consider the

implementation of the flow table as a program. Since unspecified

internal-state entries are never entered, they can be changed to

stable entries without affecting the operation of the component.

- When this is done a flow table is obtained in which all next internal-

i state entries are completely specified and only the values of certain

output variables may be unspecified. For a program, the present

output state depends on the most recently executed control assignment

statement for each output variable. Furthermore, once a value is

assigned to an output variable in a program, the value of that variable

will always be defined for as long as the program exists. Therefore,

for a program, it is possible for the value of an output variable to

be undefined only from the time the execution of the program starts |

until the first control assignment statement is executed for the var-

jable (it is assumed that a value is assigned to each output variable

X at least once in every program). Rather than allow this interval

when the value of an output variable is undefined, we require that

the initial state of every program be completely specified. This

L

36

means that, if a flow table is to be implemented as a program, the

output state associated with the initial internal state must be completely |

specified. In the remainder of this discussion, it will be assumed

that all next internal-state entries are specified and that the initial

output state is completely specified for any flow table which is to

- be implemented as a program,

| | Given any completely specified flow table, the following procedure

constructs a program of the class ?.

Procedure to Obtain a Program of the Class F for Any Flow Table

1. Declare input and output variables; specify

the initial output state.

| 2. Define a wait statement for each row in the |

flow table. For each unstable entry in a

given row, define the pair (55515) in the

wait statement, where 81s the input state

for the unstable entry and 1, is the number |

3 of the next internal state. If all entries

in a row are stable, replace the wait state-

ment by a halt statement.

37

- 3. Before each statement from step 2, place

control assignment statements to define

the output state for the corresponding

row in the flow table. Number the first

of these statements with the number of the

corresponding row in the flow table. |

The program obtained for the control flow table in rable l is

shown in Table 14. This procedure results in a program of the class ?

which does not contain any "go to" statements. It follows that given

any flow table F, it is always possible to obtain a program of the

class ? which is indistinguishable from all other programs which are

. implementations of F and which does not contain any go to statements.

. The programs produced by this procedure may be inefficient in the

following two ways. First, they may contain unnecessary control

assignment statements. For example, in the program of Table 14 which

corresponds to the control flow table in Table 1, internal state 1

is always entered when zy has the value 0; therefore, statement 1

can be removed and the second statement given the number 1. Similarly,

internal state 4 is always entered with 2, equal to 0. Consequently

the statement Z,:=0 after statement number 4 is unnecessary. A

| second source of inefficient operation is the following. A control

He | assignment statement may be executed when in fact the output variable

; already has the value specified by the assignment statement. In such

cases, it may be possible to transfer to a different statement and

avoid executing the assignment statement. There are many instances of

ag 5

Table 14. Control Program for the Two-Program Mutual Exclusion Problem _

(initially Z,,Z, are 0) | |

INPUT SEY

| OUTPUT 211295

1: Z, i= 0;

Z,, := 0;

| wAIT (01,2),(11,3),(10,3);

2: i= ; |Zz 0;

: Z, = 1; |

WAIT (00,1),(10,3);

3: c= 1;Zz, 1;

WAIT (00,4),(01,2);

4: zy := 0;

Z, := 0; |

WAIT (01,2),(11,2),(10,3).

| a) Program

| *1%2

. 00 0
1 11 10 2,24

i | |

(2 last) 1 (1) 2 | 3] 3 00
E

(2 gets) 2 1 (2)i(2); 3 01

(1 gets) 3 4 2 (3) (3) 10
Fein

(1 last) 4 (4) 3 00

b) flow table

TTT

3 this inefficency in the program of Table 14. For example if we

reorder the assignment statements for statement 3 and its immediate

successor it is possible to transfer directly to the 2 * = 1 statement

| when entering internal state 3 from internal states 1 and 4. After

taking advantage of these and similar economies, the program shown in

Table 15 can be obtained. We claim that this program has the fewest

number of statements of any program which implements the control

flow table in Table 1. Furthermore, control assignment statements

are executed only when the value of an output variable must be changed.

We have not yet obtained a general algorithm to perform this simpli-

fication of programs. The interested reader may verify that the pro-

E grams of Tables 14 and 15 are indistinguishable by constructing the

. flow tables for these programs using the analysis procedures from

the proceeding section.

The programs produced by the synthesis procedure do not contain

any dummy statements. The reason for this is that dummy statements

represent computations which have no effect on the output variables

and which are not affected by the values of the input variables.

These statements may be inserted in any sequence of statements, with

appropriate statement renumberings and possible introduction of go to

statements, without affecting the external behavior of the component

’ other than to introduce delays in value transitions for line variables.

. To illustrate the synthesis procedure when dummy statements are

inserted, a program 1 for the mutual exclusion problem will be designed.

The flow table is given in Table 1. The program obtained by applying

the synthesis procedure is given in Table 16. The critical section is

40 .

Table 15. Another Control Program for the Two-Program Mutual Ex-

clusion Problem as

: | (initially 2,129 are 0)

INPUT SERTY

OUTPUT 21245 | | |

a 1: Z, := 0;

2: WAIT (01,4),(11,7),(10,7); -

4: Z, t= 1; |

5: WAIT (00,1),(10,6);

7: Z :=1;
1

8: WAIT (00,9),(01,3);

9: Zy := 0;

- 10: WAIT (01,4),(11,4),(10,7),

| 41 a

h Table 16. Program 1 Without Dummy Statements

(initially x, is 0)

INPUT 2% |

OUTPUT X,.

1: Xy := 0;

WAIT (0,2);

2: Xx, += 1;

WAIT (1,1).

a) Program 1

“1

0 1 X
. 1

C0) |
| : [@]1]

b) flow table

”

42 -

entered after the execution of the second wait statement and before

execution of statement number 1. To represent the critical section

a dummy statement can be inserted at the end of the program followed |
by a go to statement. After statement number 1, another dummy state-

ment can be inserted to represent computation performed outside the

tH critical section. The modified program is shown in Table 17. Except

for the numbering of the statements, this program is identical to the

program of Table 3 which was analyzed earlier to produce the same flow

table used to start this synthesis example.

Table 17. Program 1 With Dummy Statements .

(initially xy is 0)

INPUT Zs

) OUT PUT X15

1: Xy = 0;

DUMMY ; (remainder of program 1)

WAIT (0,2); |

2: Xy c= 1; |

WAIT (1,3); | |

3: DUMMY ; (critical section)

GO TO 1. |

43 :

- CONCLUSIONS

The flow table model presented in [1 |] and the analysis and

synthesis procedures presented inthis paper have been valuable in

the design of a solution or control algorithm for the mutual exclusion

problem. An important feature of this model is the ability to consider

- both program and circuit implementations. By restricting control

operations to be finite (which does not appear to be a restriction

for the mutual exclusion problem) it is possible to find optimal’

implementations in the sense that the number of internal states

required in-a flow table is minimized. The procedures we have defined

make it possible to determine if a program or circuit is correct in the

‘ sense that its operation is described by a given flow table. The det-

ermination of correct operation for an entire parallel system has

not been considered in this paper but will be the subject of an additio-

nal paper in which we continue our investigation of flow table models

| for parallel computer systems.

44 a

ACKNOWLEDGEMENTS a

The author would like to thank Professor Edward J. McCluskey for

his many comments and criticisms. Thanks are also due to Harold S. Stone

for proofreading a draft of this report. |

45 |

REFERENCES

-

[1] Bredt, T.H. and McCluskey, E.J. A model for parallel computer
systems. Technical Report No. 3 , SEL Digital Systems Labora-

« tory, Stanford University, Stanford, California (Apr 1970).

[2] Dennis, J.B. and Van Horn, E.C. Programming semantics for
multiprogrammed computations. Comm. ACM,9 (March 1966),
143-155.

[3] Dijkstra, E. W. Solution of a problem in concurrent programming

; control. Comm. ACM, 8 (Sept 1963), 569.

[4] Dijkstra, E. W. The structure of the "THE" multiprogramming
system. Comm. ACM, 11 (May 1968), 341-346.

[5] Dijkstra, E. W. Co-operating sequential processes. in Program-
ming Languages, Genuys, F. (Ed.), Academic Press, New York (1968).

[6] Floyd, R.W. Assigning meanings to programs. Proc. of Symposium
on Applied Mathematics, Vol. 19, American Mathematical Society
(1967), 19-32.

. [7] Knuth, D.E. Additional comments on a problem in concurrent
: programming control. Comm. ACM, 9 (May 1966), 321-322.

- [8] Knuth, D. E. The Art of Computer Programming. Vol. 1,
Addison-Wesley Publishing Co., Reading, Mass. (1968).

[9] Lampson, B. W. A scheduling philosophy for multiprocessing
systems. Comm. ACM, 11 (May 1968), 347-360.

[10] Manna, Z. Termination of algorithms. Computer Science
| Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania

(Apr 1968). |

[11] Manna, Z. Properties of programs and the first-order predicate
calculus. J. ACM (Apr. 1969).

[12] Manna, Z. The correctness of programs. J. of Computer and
: System Sciences, 3 (May 1969).

[13] McCluskey, E.J. Introduction to the Theory of Switching Circuits.
: McGraw-Hill Book Co., New York, N.Y. (1965).

. [14] Saltzer, J.H. Traffic control in a multiplexed computer system.
' MAC-TR-30, Massachusetts Institute of Technology, Cambridge,

Mass. (July 1966).

P- .

3 "

Ld

a

‘

E

a

i

-

.

1

.

It

3 . -

