STAN-CS-70-170 SU-SEL-70-024

Analysis and Synthesis of Concurrenf%
- Sequential Programs : ;

by
T. H. Bredt

May 1970

Technical Report No. 6

This work was supported in part by the Joint Services
Electronic Programs U.S. Army, U.S. Navy, and U.S. i
Air Force under Contract N-00014-67-A-0112-0044 :
and by the National Aeronautics and Space Adminis=
tration under Grant 05-020-377.

DIGITRL SYSTEMS LABORATORY |
STANFORD ELECTRONICS LABORATORIES

STANFORD UNIVERSITY - STANFORD, CALIFORNIA

STAN-CS-70-170

SEL-70-024
ANALYSIS AND SYNTHESIS

OF .
CONCURRENT SEQUENTIAL PROGRAMS

by

T. H. Bredt

May 1970

Technical Report No. 6

DIGITAL SYSTEMS LABORATORY

Stanford Electronics Laboratories

Computer Science Department
Stanford University

Stanford, California

This work was supported in part by the Joint Services Electronic
Programs U.S. Army, U.S. Navy,

and U.S. Air Force under Contract
N-00014-67-A-0112-0044 and by the National Aeronautics and Space
Administration under Grant 05-020-337.

STANFORD UNIVERSITY
Digital Systems Laboratory
Stanford Electronics Laboratories Computer Science Department

Technicai Report Number 6
May, 1970

ANALYSIS AND SYNTHESIS

OF
CONCURRENT SEQUENTIAL PROGRAMS

by
T. H. Bredt

ABSTRACT

This paper presents analysis and synthesis procedures for a
class of sequential programs. These procedures aid in the design
of programs for parallel computer systems. In particular, the in-
teractions of a given program with other programs or circuits in a
system can be described precisely. The basis for this work is a
model for parallel computer systems in which the operation of each
component is described by a flow table and the components interact
by changing values on interconnecting lines. The details of this
model are discussed in another paper*. The analysis procedure pro-
duces a flow table description of a program. In program synthesis,
a flow table description is converted to a sequential program. Using
flow table design procedures, a control program for the two-program

mutual exclusion problem is produced.

* Bredt, T.H. and McCluskey, E.J. A model for parallel computer
systems. Technical Report No. 5, SEL Digital Systems Laboratory,
Stanford University, Stanford, California (April 1970).

TABLE OF CONTENTS

ABSTRACT . ¢ ¢ ¢ ¢ ¢« ¢ o o o o o @

TABLE OF CONTENTS . . « ¢ « « « &
LIST OF TABLES « ¢« « « o
LIST OF FIGURES . ¢ « « o ¢ o« + &
INTRODUCTION . . . ¢ ¢ ¢ o« ¢ « o
 ANALYSIS OF PROGRAMS
Programs of the Class ?
Control Assignment Statement
Wait Statement”
Go To Statement
Dummy Statement
Halt Statement

State Tables and Programs . . .

Preliminaries ¢« « « &

Determination of Immediate Successor Output

States

Determination of Immediate Successor Row Number . .

Determination of Next-State Entries

ExampleS. . « « o« ¢ « « o o &

« o . .

State Tables and Flow Tables « « « « o o« « o =

Inaccessible States and Inaccessible Sets of States

Indistinguishable State Tables

ii

.

.

ii

iv

10
12
12
13
15
15
18
18
19
19
23
25

25

TABLE OF CONTENTS

SYNTHESIS OF PROGRAMS

Procedure to Obtain a Program &f
for Any Flow Table

CONCLUSIONS . « ¢ ¢ « o o o o o
ACKNOWLEDGEMENTS . . « « « « « « &

REFERENCES . . ¢« « « ¢ « ¢ « « o o

iii

Class 9

(Continued)

33

36

43

44

45

A

10.
11.
12,

13.

14.

15.

©16.

17.

LIST OF TABLES

Flow Tables for the Two-Process Mutual Exclusion Problem
General Form of a Flow Table . . . » . . « « « ¢ ¢« « ¢« &
Example Program of Class ®
Statement Forms and Next Statement Numbers
Program of Table 3 With State Table
Example of @ Program . . . « « + o o o o o o o o o o o o
Construction of the State Table for the Program of Table
State Table for the Program of Table 6 e .
Example of Inaccessible States
Example of an Inaccessible Set of States
Example of a Program and State Table With a Cycle
Flow Table for State Table in Table 5 . . . « . . « «
Flow Table for the State Table of Table 8 and Program

of Table 6 . . ¢« « ¢« « ¢ « o o o o o o o o o e o o o
Control Program for the Two~Program Mutual Exclusion Problem
Another Control Program for the Two-Program Mutual

Exclusion Problem RN
Program 1 Without Dummy Statements « . + &
Program 1 With Dummy Statements e o s o o o o o o o o @

iv

14

17

. 20

22

22

24

. 26

26

28

32

34

38

40

41

42

LIST OF FIGURES

Parallel system configuration for the two-process
mutual exclusion problem

General form of a system component
Cyclic transitions for the state table in Table 11
Example of a state table with a cycle

Another example of a state table with a cycle . .

INTRODUCTION

In another paper [1], a modgl for parallel computer systems
was proposed. This model provides a basis for fhe formal study
of program and circuit interaction in computer systems. The motiva-
tion for the model is the desire to solve control problems such as

the mutual exclusion or interlock problem, which has been studied

by Dijkstra and many others [2, 3, 4, 5, 7, 9]. 1Its solution
requires the control of two or more programs which are executed
concurrently and contain special functions enclosed in "critical sec-
tions'". It is necessary to ensure that (1) at most one program
is executing a critical section at any instant and (2) if a program
wants to enter a critical section, it is eventually allowed to do sof
In our model flow tables [13] are used to describe the behavior
of each component (program, circuit) in a system. Components in-
teract by changing the values on lines which interconnect them.
These lines carry binary level signals. The use of lines for inter-
component communication differs from the more common use of shared

memory cells [2 , 3 , 4 , 5, 9]. oOur model is on a more primitive

level and can be used to describe implementations in which memory cells

are shared. It is assumed that the delays in the interconnecting lines

are finite and unbounded. Component internal delays are assumed to be

finite and bounded.

* This is a slightly different version of the problem considered by

Dijkstra. Dijkstra did not require that a given program must enter its
critical section but rather that the decision as to which program would

enter its critical section could not be postponed indefinitely.

In this paper, analysis and synthesis procedures are defined
which make it possible to relate program implementations with the flow
table model. These procedures are appléed in the analysis and synthesis
of programs for use in the mutual exclusion probleﬁ. A configuration
for a parallel system which is appropriate for a discussion of the
mutual exclusion problem was specified in [1]. This configuration is
reproduced in Fig. 1? In [1], flow table descriptions for the three
components in the system were produced. These flow tables are shown
in Table 1.

In [1], a spg?ial mode of operation was defined for the components
in a system. Each component operates independently of other components
using the following operation cycle. First, the present input state
of the component is determined and recorded in a rank of flip-flops.
Second, the input state and the present internal state of the component
determine the component response. When the response is complete,
the input state is determined again and the cycle repeats. With this
mode of operation, component inputs may change at any time without
adverse effects. The flow tables, such as those shown in Table 1,
specify the operation of the component during the second phése discus-
seq above.

The sequential programs studied in this paper contain only a
limited subset of the facilities available in high-level programming
languages such as ALGOL or FORTRAN. The limitations have been made
to facilitate the description of the analysis and synthesis procedures.

It is reasonable to make these limitations because we are interested

* Lower case denotes input variables and upper case, output variables.

x1
Z1 zl
e | Process 1
x1 Control
x Z2 z
2 2
. .
Process 2
X2
xi =1 Process i wants to enter critical section i (CSi) or process i
is in CSi.
xi =0 Process i does not want to enter CSi and process i is not
in CSi.
zi =1 Process i may enter CSi.
z, =0 Process i may not enter CSi.

Figure 1. Parallel system configuration for the two-process mutual

exclusion problem.

-m

Table 1. Flow Tables for the Two-Process Mutual Exclusion Problem

2 |©f o L] 2)] o
2 (:) 1 1 2 (:) 1 1

(a) Process 1 (b) Process 2

00 01 11 10 Z,2, N

(2 last) 1 (:) 2 | 3| 3 00
(2 gets) 2 1 @ @ 3 01
2

(1 gets) 3 4 2

@] 1w

3 00

(1 last) 4 (:) 2

(c) Control

(Initially each component is in internal state 1)

in the interactions of programs with other programs and circuits and
not in the analysis of the computations carried out by the programs.
In this regard, our work has quite a different emphasis from that of
Floyd [6], Knuth [9], and Manna [10 , 11 , 12].

We begin with a discussion of how sequential programs can be
analyzed to produce a flow table description of their operation.
Later, synthesis, the specification of a sequential program from a

flow table description, is considered.

ANALYSIS OF PROGRAMS

The general form for components is shown in Fig.2. Interaction
is accomplished by changes in input and output variable values.
The analysis procedure consists of constructing first a state table
and then a flow table as shown in Table 2. If the table entry is the
same as the row number, the entry is said to be stable; otherwise, it
is unstable. For a flow table, we require that every unstable entry
specify a stable entry. A state table has the same form as a flow
table except that it is not necessary for this condition to be sat-
isfied. The analysis method is analogous to the procedures used for
sequential circuits [13].

Each program is assumed to be a sequential program, a program in

which only a single instruction or statement is executed at a time.
The execution of a program begins with the first statement. The

next statement to be executed may be the statement following the one

xl - S Z1
x2 B P Z2
X
n o M
xl,xz,...,xn are input variables (lower case)
Zl,Zz,...,zm are output variables (upper case)
Figure 2. General form of a system component .

Table 2.

Internal
State

General Form of a Flow Table

Input State

X X, « o« « X
12 n

00...1 11...1

S (next state)

Output State

lez...zm

1I0. . .0

just executed or a statement elsewhere in the program at a location
determined by the current values of the input variables or by con-

ditional and branching statements which use control information in-

ternal to the program such as the values of internal program variables.

Internal control information can be included in a flow table by adding
extra rows for the possible internal control states. This can be

done as long as the control can be described by finite means. The
addition of internal control information complicates the flow table
analysis. Since we are interested in the interactions of programs
with other componénts, the types of internal control allowed will be
limited. We assume that programs can be put in a form where the next
statement to be executed is either the statement following the one
just executed or is specified by a ''go to'" statement or determined

by the input state of the component.

Programs of the Class 9

A precise description of the class of programs to be considered

follows.

Definition 1:

A program of the class ? is a finite sequence of

statements of the following types:

a. Control Assignment
b. Wait

c. Go to

d. Dummy

e. Halt

The statements may be numbered with integer labels. Each
such number is followed by a colon (:). Statements are
separated by semi-colons. The last statement is followed by

a period. Each program includes declarations of the input

and output variables. The declarations have the form:

INPUT xl,x .,Xn where Xi is an input variable

90"
OUTPUT Zl,Zz,...,Zm where Zi is an output variable
The initial values of the output variables (the initial

output state) must be specified for each program.

The format and interpretation of the statement types are as
follows.

Control Assignment Statement. The control assignment statement

is used to assign a binary value, either O or 1, to an output variable.
This statement has the form:
variable := value

The following are examples of control assignment statements.

Subscripts may be used on variables to keep clear the correspondence
between programs and flow tables. When a control assignment state-
ment is executed, the program component must include suitable mech-

anisms to maintain the designated value on the output line.

10

Wait Statement. The wait statement is used to test the present

input state of a program component and to transfer to the appropriate
next statement when a designated input state is recognized. This
statement has the form:

WAIT (Sl’il)’(SZ’iZ)"' . ’(Sk’ik)
Each pair (sj’ij) consists of an input state Sj and a statement num-

b
n

ber ij' The input state is represented by a binary number b1b2"'

where bi is the value of the input variable xi, bi =0 or 1, for
i=1%,...,n. The statement number specifies a statement in the pro-
gram. Examples of wait statements are given below:
(single input variable)
WAIT (0,3)
(two input variables)
WAIT (01,4),(11,7)
Each input state must appear at most once in a wait statement. When
a wait statement is executed, the current input state must be det-
ermined. This is done in the manner described in [1]. If the present
input state is the same as one of the specified input states, the
number of the next statement is given by the statement number in the
input-state number pair. If the input state does not appear in the
Wai; statement, the execution of the program must be suspended. The
first wait statement example given above is used with a component with

one input variable, say X If X1 has the value O when the statement

1
is executed, statement number 3 is executed next; otherwise, execution

of the program is suspended. When execution is suspended, there are

11

two alternative actions. The processor which is executing the program

may loop and repeatedly execute the wait statement until the actual

input state of the component matches one of those specified. Looping

is not always desirable since a processor is occupied which could

be assigned to the execution of another program. A second alternative

frees the processor to execute other programs. The suspended program

is added to a queue of programs which are waiting for changes in their

input states. The interpretation of the control assignment statement

must then be modified so that, when a control assignment statement

is executed, the input states of waiting programs are determined

and any programs which are ready to continue execution are either

re-assigned to processors or put in another queue of programs which

are ready to resume execution as soon as processors are available.

The overhead required for this alternative may be substantial. The

creation and testing of queue entries must be made critical sections

and protected by mechanisms of the type we are investigating. We

will not adopt either alternative but mention them as possible imple-

mentations. Both alternatives have been proposed before [5 , 9 1.
The combination of the control assignment statement and the

wait statement provide a means of communication which is similar to the

use of wakeup and block functions proposed by Saltzer [14] and dis-

cussed by Lampson [9]. The wakeup function corresponds roughly

to the control assignment statement and the block function to the

wait statement. 1In Saltzer's approach, each process has an associated

work queue and wakeup waiting switch. The block function causes

execution of a program to be suspended until some form of enabling

12

signal is received. The wakeup function provides the enabling signal.
The wakeup waiting switch is used fo prevent enabling signals from
being lost. When a process reaches a point where further progress
depends on the arrival of a enabling signal, it performs the following
steps [14].
1. Resets the wakeup waiting switch to off.
2. Look in the work queue. If there is an entry continue;
otherwise, go to step 3.
‘3. cCall the block function. This function returns if the
wakeup waiting switch is on.
When a process wishes to send an enabling signal to another process,
.the steps are as follows:
1. Make an entry in the work queue of the other process.
2. Call the wakeup function for the process, turning the wakeup
waiting switch on.
The two alternative forms of waiting used with the wait statement, a
loop or entry in a queue and release of the processor, can be used
“with the block function.

Go To Statement. The go to statement is the standard state-

ment used for branching in most programming languages. It has the form:
GO TO i
where i is the number of some statement in the program.

Dummy Statement. The purpose of the dummy statement is to gather

together those portions of programs which are not essential to inter-

action with other system components. To an observer, the execution of

13

this statement represents a delay of unknown duration which has no
effect on the input or output variables of the component. In the mutual
exclusion problem, the critical section is reprgsented by a dummy
statement. This statement has the form:

 DUMMY

Halt Statement. This statement is provided to indicate that a

process is to be terminated unconditionally. It has the form:
HALT
In the following discussion, the use of the word program will
refer to a~program of the class P as just described. An example of such
a program is shown in Table 3. The only variables which appear in
these programs are input variables and output variables for the com-

ponent. In the example of Table 3, X, is an output variable and Z1 is

1
an input vaiiable. These variables are global variables defined for
the entire system and are associated with the lines which interconnect
system components. If a variable is used in both a control assigmment
statement and a wait statement in the same program, the interconnection
must be with the component itself. The primary function of the input

and output variables is for inter-process control rather than intra-

process control and no examples of this latter use will be given.

Table 3.

Example Program of

DUMMY ;
wAIT (0,4)
X1:=1;
WAIT (1,6)
DUMMY ;

GO TO 1

.
»

the Class 9

(initially X

1

is 0)

14

15

State Tables and Programs

We now describe how programs of the class % can be analyzed to
produce a state table. This procedure is analogous to the construction
of the state table which describes the operation-of a sequential cir-
cuit. Each internal state or row in the state table describes the
execution of some statement in the program. We assume, in this section,
that the statements in a program are numbered in ascending order,
starting with 1. We use the Moore model in which an output state is
associated with each internal state.

Preliminaries. Given a program with t statements, n input

variables, and m output variables, define a state table with t rows,
row i corresponding to statement i (1 < i < t) and 2n columns, one
column for each input state. The initial row (internal state) of the
state table is row 1. The output state of row 1 is the initial output
state of the program. 1If the first statement is a control assignment
statement, the value assigned to the control variable should appear in
the output state for row 1. -

To fill in the state table we must specify the output state and
next internal state for each row in the table. For a circuit, the
output state can be determined once the internal state is known. For
a program, the output state is determined first by the initial output
state and subsequently by the most recently executed control assignment
statement for each output variable. 1In general, a given statement
may have more than one immediate predecessor (statement which is

executed immediately before) and the statement may be entered with

16

different Qutput states. In this case, there must be more than one
row in the state table for the given statement, one row associated with
the execution of the statement for each possible output state. This
problem complicates the procedure for determining the state table.

The procedure to complete the state table can be outlined as

follows:
Consider each row of the state table in order.

1. If the output state of the row is completely specified,
then for each immediate successor of the corresponding

statément:

a. Determine the immediate successor output state.
b. Determine the immediate successor row number.

c. Determine the next-state entries for the row.

2. If the output state of a row is not completely specified,
pass over that row and consider it again after all other
rows. If after all rows have been processed, there
remain rows with unspecified output states, these rows

correspond to inaccessible statements, statements which

are never executed. Such rows can be deleted from the

table.

We now give the details for performing steps a-c above. The
statememt forms and immediate successor statement numbers for each

form are given in Table 4. Before filling in the next-state entries

17

Table 4. Statement Forms and Immediate Successor Statement Numbers

Immediate Successor

Form of Statement i . . Statement Number
i Z. 1= « i+ 1
J

1<j<m

aa=0o0r1
is DUMMY i+ 1
i: HALT i
i: GO TO_t t
i: WAIT (sl,il),(sz,iz),---,(sk,ik) i i

18

for a row, the output state and number of the row corresponding to
each immediate successor statement must be determined. This is done
in the following manner.

Determination of Immediate Successor Output States. Let state-

ment number w be an immediate successor of statement number i and
let the output state of the row corresponding to statement i be
completely specified. We wish to determine the output state for the
row which corresponds to statement w. This output state is the same
as the output state for the row associated with statement number i

unless statement w_is a control assignment statement

w: Z, 1= ¢ 1<€j<€£m, o 0 orl

in which case, the value of Zj in the output state is ¢ .
Having determined this output state, we determine the number
of the row corresponding to the immediate successor statement.

Determination of Immediate Successor Row Number. If two

output states differ in the value of some output variable which is
specified (0 or 1) in both output states, the output states are

said to conflict. If the output state determined for the row
corresponding to statement number w and the output state for row w
do;not conflict, row w corresponds to statement w and is given the
output state determined above. Otherwise, a row with the conflicting
output state must be added to the state table. This row should be

tagged with a w to indicate that it corresponds to statement w.

When adding rows, it is unnecessary to add more than one row for
a given statement with a given output state. If a state table has no
conflicting output states, the number of the row corresponding to a
statement is the same as the statement number.

Determination of Next-State Entries. ILet i' be the number

of the row corresponding to statement number i. If statement i is
a control assignment, dummy, go to, or halt statement, each next-
state entry in row i' is the number of the row corresponding to
the immediate successor statement.

In a row corresponding to a wait statement of the form

i: WAIT (sl’il)’(sz’iz)"'"(sk’ik)

the entry in the column for input state sj (1 <j < k) is the number
of the row corresponding to immediate successor statement ij' The
next-state entries in columns which do not correspond to one of the

s. are stable entries, i'.

input states sl,sz,..., "

Examples. For many programs, conflicting row output states
never occur. The program of Table 3 is such a program. This program
and its state table, as produced by the procedure just described, are
shown in Table 5.

To illustrate the procedure when row output states do conflict,

consider the following situation. We wish to control the operation of

two concurrent programs, program 1 and program 2, such that
1. Program 1 is enabled whenever it requests to

be enabled.

Table 5.

Program of Table 3 With State Table

INPUT Z, ;
OUTPUT X, ; “(initially X

1: X1 :=0

2: DUMMY ;

3: WAIT (0,4) ;

4. Xl 1= 1

5: WAIT (1,6) ;

6: DUMMY ;

7: GO TO 1

a) Program

2
3
®
5
6
7
1

H MR H O O O

2
3
4
5
®
7
1

<2 O O w N

b) State Table

1

is 0)

20

2. Program 2 may be enabled if and only if program 2

requests to be enabled and program 1 is not

requesting to be enabled.
The system configuration for this problem is the same as for the
mutual exclusion problem and is shown in Fig. 1. The interpretation
of the variable values is the following. If xi is 1, program i
is requesting an enabling signal. Program i is enabled by placing a
1 value on the Zi line. In different terms, the problem is to guaran-
tee that Z2 is never set to 1 unless the X, input to the control
mechanism is 0. Suppose that instead of using flow tables to design
a solution to this problem, a program is written directly using control
assignment and wait statements. One possible control program is shown

in Table 6. To determine if this program controls program 1 and

2 as intended, the corresponding state table will be constructed.

The output state for row 6 is specified as 10 when row 3 is filled
in. When statement 6 is reached from statement 5, the output state

for statement 6 must be Z1Z2 = 11. Therefore, the output states

conflict and an additionsl row must be added to the table (row 12).

Row 12 also describes statement 6 but with output state le2

The state table after the completion of row 5 is shown in Table 7a.

= 11.

No more output state conflicts occur until row 12 is reached. The

state table at this stage is shown in Table 7b.

Table 6. Example of a Program

(initially le2 = 00)

INPUT XI,XZ;

OUTPUT Z1:Z2;

2 TV~
WAIT (01,4),(11,6),(10,6);

Z2 :=1;

WAIT (00,2),(11,6),(10,10);

Table 7.

© 0 93 O U AW NN

[
N = O

(6)

© 0 g9 O U P W N

- e
= o

(6) 12

22

Construction of the State

Table for the Program of

Table 6
*1%2
00 01 11 10 Z,Z,
2 2 2 2 00
3 3 3 3 00
3 4 6 6 00
5 5 5 5 01
2 5 |12 | 10 01
10
00
11
(a)
*1%2
00 01 11 10 Z,2Z,
2 2 2 2 00
3 3 3 3 00
3 4 6 6 00
5 5 5 5 01
2 5 |12 |10 01
7 7 7 7 10
1 8 7 7 10
9 9 9 9 00
4 4 4 4 00
11 11 {11 |11 00
6 6 6 6 00
11
®)

s

i

23

Row 12 describes the execution of statement 6. This statement is
followed by statement 7 in the program. But again, the output

states conflict so an additional row (row 13) must be added

to correspond to the execution of statement 7 with output state le2 =11.
Additional rows must be added for statements 1 , 8 , and 9 as well.

The complete state table is shown in Table 8. The analysis of this
program will be continued later; however, a careful examination of the
state table will reveal that the program is incorrect. Suppose pro-

gram 2 sets X, to 1 and is enabled by the control program (Z2 is set

2
to 1). The control program enters internal state 5. Now let program
1 set Xl to 1. The control program next enters internal state 13.
But, it is now possible for program 2 to set x2 to O then reset it

to 1 and be re-enabled immediately because the control does not set
Z2 to 0 in the case when x2 goes to O when x1 is 1.

State Tables and Flow Tables

It is always possible to produce a state table which corresponds
to every program of the class 9, just as it is always possible to
produce a state table corresponding to every sequential circuit.
However, it is not always possible to reduce this state table to an
"equivalent' flow table for circuits or for programs. We now consider
under what conditions and how the reduction of a state table to a
flow table can be performed. A flow table differs from a state table
only in that for a flow table every unstable table entry must specify
a next internal state entry that is stable. This condition is not
required for state tables. A flow table may reduce the number of internal

states and provide a more concise description of component operation.

Table 8.

State Table for the Program of Table 6

(6)
)
(¢Y)
(8)
(9

W 0 g9 6o U S w N -

=
- O

12
13
14
15
16

1%2
00 01 11 10
2 | 2| 2| 2
3 | 3] 3| 3
(:) 4| 6| s
5 { 5] 51| 5
2 (:) 12 | 10
77| 7| 7
s @)
9 | 9]l 9| o
4 | 4 4
11 |11 |11 |11
6 | 6| 6| 6
13 |13 |13 |13
14 |15 (:) (:)
2 | 2] 2] 2
16 |16 | 16 | 16
4| a] a| 2

Z1Z2

00
00
00
01
01
10
10
00
00
00
00

11
11
01
01
01

24

25

Inaccessible States and Inaccessible Sets of States. It is

possible that when a state table is constructed some of the in-

ternal states are never entered. - For circuits, ﬁhere may be states

that are not the initial state and which do not appear as the next-state
entry in any row of the state table other than their own row. Such

states are called inaccessible states. It is also possible to have

an inaccessible set of states which is a set of states which does not

include the initial state such that no state of the set is entered
from any state not in the set [13]. For programs, the procedure

for obtaining the state table is such that all states which are retain-
ed may be entered. For example in Table 9, internal states 6 and 7

are inaccessible and are removed. In Table 10, internal states 5, 6,
7, and 8 form an inaccessible set of states and also are removed.

Indistinguishable State Tables. The notion of equivalence we

will use is called indistinguishability and is defined as follows [13]:

Definition 2:

Two state tables are said to be indisting-
uishable if and only if when both tables are
in their respective initial states, any in-
put sequence applied to both state tables
results in identical output sequences from

both tables.

The state table obtained for a program may indicate that the
program produces multiple changes for the value of an output variable

during some unstable -internal-state transition. In an environment

Table 9. Example of Inaccessible States

Table 10.

INPUT Z; (initially X is 1)
OUTPUT X;

X := 1;

WAIT (0,3);

DUMMY;

X :=0;

GO TO 1;

X :=1;

GO TO 2

a) Program

INPUT X; (Z is O initially)
OUTPUT Z;
Z := 0;
WAIT (1,3);
Z :=1;
WAIT (0,1);
Z := 0;
WAIT (1,7);
1= 1;
WAIT (0,5).

a) Program

4 6 O bR W N

W g9 O U bW N

0 1
2 2
2 |
4 4
) 5
1 1

b) State Table

Example of an Inaccessible Set of States

b) State Table

O O H K+ K

= = © O

26

-

27

where line delays are unbounded, such multiple changes should not be used
since it cannot be known if the intermediate output values are recognized.
The effects of multiple output changes are discussed in more detail in [1].

For this reason, we assume that each output variable changes value at

most once during each unstable transition.

It is possible that the state table obtained for a given program

will contain a cycle.

Definition 3:

A state table is said to contain a

EXElE if for a fixed input state the com-

panent represented may operate indefinitely

without ever becoming stable.
An example of a program and associated state téble containing a cycle
is shown in Table 11. The cyclic transitions are shown in Fig. 3.

During the cycle, the value of output variable X, changes more than

1
once. The program of Table 11 could be used as program 1 in a solution
to the mutual exclusion problem; however this should not be done
because of the multiple-value transitions during the cycle. A

further discussion of the difficulties with this program is given in
[1, p.23].

The assumption that output variables change value at most once
during unstable transitions allows us to restrict our attention to
cyclés in which this assumption holds. Associated with each cycle is
a set of internal states of the state table which are entered during

the indefinite operation which defines the cycle. Call this set C.

Since output variables change value at most once during a cycle and

Table 11. Example of a Program and State Table With a Cycle

Figure 3.

(initially X1 is 0)
INPUT Zl;

OUTPUT Xl;

WAIT (1,5);
DUMMY ;

GO TO 1.

a) Program

S W

= = - = O O

a U W N

1
o 1
2 2
3 3
4 4
Ol
6 6
1 1

b) State Table

Cyclic transitionse for the state table in Table 11.

28

H M - O O

29

the states in C are entered an unspecified number of times, all the
internal states in C must have the same output state. Two examples of
state tables with such cycles agg shown in Figs. 4a and 5a. 1In Fig. 4,
if input variable x changes from O to 1 during fhe cycle, the next
stable entry is 3. As a result, this state table cannot be disting-
uished from the flow table shown in Fig. 4b in which the cycle has
been replaced by a single stable entry and the internal states re-
numbered. Unfortunately, the example of Fig. 5 shows that it is not
always possible to simply replace cycles by stable entries. In this

example, if an x_x_:00 — 11 transition is recognized during the

12
cycle and while the component is in internal state 1, the next internal
state will be state 3. If the input transition is recognized while
in internal state 4, the next internal state will be state 2. States
2 and 3 have different output states. If the cycle is removed by
replacing rows 1 and 4 by a single row, identical to row 1 except
for a stable entry in the 00 column, the flow table shown in Fig 5b
is obtained. However it is possible for the state table and the flow
table to be presented with the 00,11 input sequence and for them
to produce different output sequences. Unfortunately, we are
as yet unable to characterize in a general way the conditions under
which cycles can be replaced by stable entries.

In most cases, the state tables obtained for programs will not

contain cycles. Such tables are said to be cycle-free. If a state

table is cycle-free and each output variable changes value at most

o
-
N
o
=
N

I
2D
N~
0
o o
T I
Ha(/£§
\E;> M“
s

) 1
b)
a)
c={1,2}
Figure 4. Example of a state table with a cycle.
X. X
172 *1%2

10 z.Z 00 01

12

3 | 00 1 (:) 2
(:) 10 3] 1| 2

b)

C={l,4}

Figure 5. Another example of a state table with a cycle.

30

2,2y
00
01

10

31

once during each unstable internal state transition, the state table
can always be transformed into a flow table. The procedure is the
following. For each row with a stable entry, reblace all unstable
entries with the number of the stable state entered at the end of the
internal-state transition. All rows which have only unstable entries
can then be eliminated. The initial internal state of the flow
table is the first row with a stable entry which is entered as a
successor of the initial internal state in the state table.

The stgte table in Table 5 is cycle-free and has at most single
output-variable changes during unstable transitions. The flow
table, with states renumbered is shown in Table 12. This flow table
is identical to the flow table in Table 1 which was specified in the
synthesis of program 1 for the mutual exclusion problem. Therefore,
the program of Table 3, which was analyzed to produce the flow table
in Table 12, is a suitable program for the mutual exclusion problem.

The flow table in Table 12 is completely specified. That is,

each next-state entry and output state is specified. In general, all
state tables and flow tables obtained for programs will be completely

specified. This is a direct consequence of the definition of the

32

Table 12. Flow Table for State Table in Table 5

33

procedure to obtain these tables. A result from switching theory
is the following [13]. For any completely specified flow table
it is always possible to obtain a unique* flow table with a minimum
number of internal states which is indistinguisﬂable from the
original table.

Another example of the reduction of a state table to a flow
table, the flow table for the state table of Table 8, is given in
Table 13. The difficulty discussed earlier is detectable by examining
internal state 4 when x1x2: 11 » 10 » 11. If the table entry in row 4,
column 10 is changed from(:)to 3, the difficulties are avoided.

SYNTHESIS OF PROGRAMS

In this section, formal synthesis procedures are specified which
make it possible to produce, from a flow table, a program of the class 9.
As a result, it is possible to design control programs for problems
such as the mutual exclusion problem.

The first step in the synthesis procedure is to obtain a flow
table of the form shown in Fig. 2 with a minimum number of internal
states. Techniques for obtaining such flow tables are well known [13].
The flow table obtained may or may not be completely specified. Let
us consider the possibility that the flow table is not completely
specified. If a next internal-state entry is unspecified in the table,

it will be assumed that the designer intended that this entry never

* Except possibly for the numbering of the internal states.

Table 13.

Flow Table for the

of Table 6

34

State Table of Table 8 and the Program

172
00 01 11 10 lez
(:) 2 3 3 00
1 <:> 4 3 01
1 2 <::> (::) 10
1 2 <:> <:> 11

35

be entered during the operation of the component. If the value of

an output variable is unspecifiéd for some internal state, it will

be assumed that the designer does not care what the value of the out-
put variable is when the component is in that internal state. Consider
first, the implementation of the flow table as a sequential circuit.
When the excitation functions for the circuit are determined, all
unspecified entries in the table, both internal-state entries and
output-state entries, become completely specified. Now consider the
implementation of the flow table as a program. Since unspecified
internal-state entries are never entered, they can be changed to
stable entries without affecting the operation of the component.

When this is done a flow table is obtained in which all next internal-
state entries are completely specified and only the values of certain
output variables may be unspecified. For a program, the present
output state depends on the most recently executed control assignment
statement for each output variable. Furthermore, once a value is
assigned to an output variable in a program, the value of that variable
will always be defined for as long as the program exists. Therefore,
for a program, it is possible for the value of an output variable to
be undefined only from the time the execution of the program starts
until the first control assignment statement is executed for the var-
iable (it is assumed that a value is assigned to each output variable
at least once in every program). Rather than allow this interval

when the value of an output variable is undefined, we require that

the initial state of every program be completely specified. This

36

means that, if a flow table is to be implemented as a program, the

output state associated with the initial internal state must be completely

specified.

In the remainder of this discussion, it will be assumed

that all next internal-state entries are specified and that the initial

output state is completely specified for any flow table which is to

be implemented as a program,

Given any completely specified flow table, the following procedure

constructs a program of the class 9.

Procedure to Obtain a Program of the Class ? for Any

Flow Table

-

Declare input and output variables; specify
the initial output state.

Define a wait statement for each row in the
flow table, For each unstable entry in a
given row, define the pair (sJ,iJ) in the
wait statement, where sjis the input state
for the unstable entry and ij is the number
of the next internal state. If all entries

in a row are stable, replace the wait state-

ment by a halt statement.

37

3. Before each statement from step 2, place

control assignment statements to define

the output state for the corresponding

row in the flow table. Number the first

of these statements with the number of the

corresponding row in the flow table.

The program obtained for the control flow table in Table 1 is

shown in Table 14. This procedure results in a program of the class ?
which does not contain any 'go to" statements. It follows that given

any flow table F, it is always possible to obtain a program of the

class ? which is indistinguishable from all other programs which are

implementations of F and which does not contain any go to statements.

The progrems produced by this procedure may be inefficient in the
following two ways. First, they may contain unnecessary control
assignment statements. For example, in the program of Table 14 which
corresponds to the control flow table in Table 1, internal state 1

is always entered when Z, has the value O; therefore, statement 1

1

can be removed and the second statement given the number 1. Similarly,

internal state 4 is always entered with Z_ 6 equal to 0. Consequently

2
the statement 22:=0 after statement number 4 is unnecessary. A
second source of inefficient operation is the following. A control
assignment statement may be executed when in fact the output variable
already has the value specified by the assignment statement. In such

cases, it may be possible to transfer to a different statement and

avoid executing the assignment statement. There are many instances of

|
iy

Table 14. Control Program for the Two-Program Mutual Exclusion Problem

(2 last)

(2 gets)

(1 gets)

(1 last)

(initially Z_,Z, are 0)

1°72

INPUT Xl,Xz;
OUTPUT lezz;
Zl 1= 0;

z

]
Qo

2 :

Z1 1= 0;

Z2 i= 1

WAIT (00,1),(10,3);

Z1 :=1;

Z2 := 0;

WAIT (01,2),(11,2),(10,3).

a) Program

3 01

®
4 | 2 (?i) <};) 10
(Z) 2 | 2| 3 00

b) flow table

38

39

this inefficency in the program of Table 14. For example if we
reorder the assignment statements for statement 3 and its immediate
successor it is possible to transfer directly to the le = 1 statement
when entering internal state 3 from internal states 1 and 4. After
taking advantage of these and similar economies, the program shown in
Table 15 can be obtained. We claim that this program has the fewest
number of statements of any program which implements the control

flow table in Table 1. Furthermore, control assignment statements

are executed only when the value of an output variable must be changed.
We have not yet obtained a general algorithm to perform this simpli-
fication of programs. The interested reader may verify that the pro-
grams of Tables 14 and 15 are indistinguishable by constructing the
flow tables for these programs using the analysis procedures from

the proceeding section.

The programs produced by the synthesis procedure do not contain
any dummy statements. The reason for this is that dummy statements
represent computations which have no effect on the output variables
and which are not affected by the values of the input variables.

These statements may be inserted in any sequence of statements, with
appropriate statement renumberings and possible introduction of go to
statements, without affecting the external behavior of the component
other than to introduce delays in value transitions for line variables.
To illustrate the synthesis procedure when dummy statements are
inserted, a program 1 for the mutual exclusion problem will be designed.
The flow table is given in Table 1. The program obtained by applying

the synthesis procedﬁre is given in Table 16. The critical section is

40

Table 15. Another Control Program for the Two-Program Mutual Ex-

clusion Problem

(initially Z_,Z, are 0)

1’72

INPUT xl.xz;

OUTPUT Zl,Zz;

2: WAIT (01,4),(11,7),(10,7);

3: Z1 := 0

4: Z2 t= 1;

5: WAIT (00,1),(10,6);

6: Z2 1= 0
7: Z. :=1;
1

8: WAIT (00,9),(01,3);
9: Z. := 0;

10: WAIT (01,4),(11,4),(10,7).

Table 16. Program 1 Without Dummy Statements

(initially X_, is 0)

1
INPUT Zl;

OUTPUT X
1;

X1 := 0
WAIT (0,2);
X, :=1;

WAIT (1,1).

a) Program 1

b) flow table

41

42

entered after the execution of the second wait statement and before
execution of statement number 1. To represent the critical section

a dummy statement can be inserted at the end of the program followed
by a go to statement. After statement number 1, another dummy state-
ment can be inserted to represent computation performed outside the
critical section. The modified program is shown in Table 17. Except
for the numbering of the statements, this program is identical to the
program of Table 3 which was analyzed earlier to produce the same flow

table used to start this synthesis example.

Table 17. Program 1 With Dummy Statements

(initially X, is 0)

1
INPUT Zl;
OUTPUT Xl;
DUMMY ; (remainder of program 1)

WAIT (0,2);

WAIT (1,3);
3: DUMMY ; (critical section)

GO TO 1.

43

CONCLUSIONS

The flow table model presented in [1] and the analysis and
synthesis procedures presented in-this paper have been valuable in
the design of a solution or control algorithm for the mutual exclusion
problem. An important feature of this model is the ability to consider
both program and circuit implementations. By restricting control
operations to be finite (which does not appear to be a restriction
for the mutual exclusion problem) it is possible to find "optimal”
implementations in the sense that the number of internal states
required in—a flow table is minimized. The procedures we have defined
make it possible to determine if a program or circuit is correct in the
sense that its operation is described by a given flow table. The det-
ermination of correct operation for an entire parallel system has
not been considered in this paper but will be the subject of an additio-
nal paper in which we continue our investigation of flow table models

for parallel computer systems.

44

ACKNOWLEDGEMENTS

The author would like to thank Professor Edward J. McCluskey for
his many comments and criticisms. Thanks are also due to Harold S. Stone

for proofreading a draft of this report.

[1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

45

REFERENCES

Bredt, T.H. and McCluskey, E.J. A model for parallel computer
systems. Technical Report No. 5 , SEL Digital Systems Labora-
tory, Stanford University, Stanford, California (Apr 1970).

Dennis, J.B. and Van Horn, E.C. Programming semantics for
multiprogrammed computations. Comm. ACM, 9 (March 1966),
143-155.

Dijkstra, E. W. Solution of a problem in concurrent programming
control. Comm. ACM, 8 (Sept 1965), 569.

Dijkstra, E. W. The structure of the "THE" multiprogramming
system. Comm. ACM, 11 (May 1968), 341-346.

Dijkstra, E. W. Co-operating sequential processes. in Program-
ming Languages, Genuys, F. (Ed.), Academic Press, New York (1968).

Floyd, R.W. Assigning meanings to programs. Proc. of Symposium
on Applied Mathematics, Vol. 19, American Mathematical Society
(1967), 19-32.

Knuth, D.E. Additional comments on a problem in concurrent
programming control. Comm. ACM, 9 (May 1966), 321-322.

Knuth, D. E. The Art of Computer Programming. Vol. 1,
Addison-Wesley Publishing Co., Reading, Mass. (1968).

Lampson, B. W. A scheduling philosophy for multiprocessing
systems. Comm. ACM, 11 (May 1968), 347-360.

Manna, Z. Termination of algorithms. Computer Science
Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania
(Apr 1968).

Manna, Z. Properties of programs and the first-order predicate
calculus. J. ACM (Apr. 1969).

Manna, Z. The correctness of programs. J. of Computer and
System Sciences, 3 (May 1969).

McCluskey, E.J. Introduction to the Theory of Switching Circuits.
McGraw-Hill Book Co., New York, N.Y. (1965).

Saltzer, J.H. Traffic control in a multiplexed computer system.
MAC-TR-30, Massachusetts Institute of Technology, Cambridge,
Mass. (July 1966).

