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Perhaps the most natural way to define the "meaning" of strings
in a context-free language is to define attributes for each of the
nonterminal symbols which arise when the strings are parsed according
to the grammatical rules. The attributes of each nonterminal symbol
correspond to the meaning of the phrase produced from that symbol.
This point of view is expressed in some detail in Knuth (1968a), where
attributes are classified into two kinds, "inherited" and "synthesized".
Inherited attributes are, roughly speaking, those aspects of meaning
which come from the context of a phrase, while synthesized attributes
are those aspects which are built up from within the phrase. There can
be considerable interplay between inherited and synthesized attributes;
the essential idea is that the meaning of an entire string is built up
from local rules relating the attributes of each production appearing
in the parse of that string. For each production in the context-free
grammar, we specify "semantic rules" which define (i) all of the
synthesized attributes of the nonterminal symbol on the left hand side
of the prodnétion, and (ii) all of the inherited attributes of the
nonterminal symbols on the righthand side of the production. The initial
nonterminal symbol (at the root of the parse tree) has no inherited
attributes. Potentially circular definitions can be detected using an
algorithm formulated in Knuth (1968a).

The purpose of this paper is to develop these ideas a little further
and to present some additional examples of the "inherited attribute -
syntheﬁized attribute" approach to formal semantics. The first example

defines the class of lambda expressions which have a reduced equivalent,



in terms of a "canonical" reduced form. The second example defines the
simple programming language Turingol; this language was defined in
knuth (1968a), in terms of conventional Turing machine quadruples,
while the definition in this paper is intended to come closer to the
sundamental issues of what computation really is, and to correspond
more closely to problems which arise in the definition of large-scale
contemporary programming langu&ages.

The formal définitions in this paper are probably not in optimum
rorm, but they seem to be a step in the right direction. It is hoped

that the reader who has time to study these examples will be stimulated

to develop the ideas further.

1. Lambda expressions

Our first example of a formal definition concerns lambda expressions
sc discussed by Wegner (1968), restricting the set of variables to the
forms X,x',x",x"', etc. Informally, the lambda expressions we consider
are either (i) variables standing alone; or (ii) strings of the
corm M\VE , where V is a variable (called a "bound variable") and E
is a lambda expression; or (iii) ‘strings of the form (EIEQ)’ where

Eal

5, end E, are lambda expressions. If E; has form (ii), (ElEa) denctes
functional application, i.e., we may substitute E, for all "free"
occurrences of V in E , making suitable changes to bound variables
within £ so that free variables of 52 do not become bound. For

example, Mx(x'x) is a lambda expression in which x! is free but x

is bound; it has the same meaning as Ax"(x'x") by renaming the bound

n



variable, but Ax'(x'x') has a different meaning. The lambda
expression (Ax'Ax(x'x)x) has the same meaning as (Ax'Ax"(x'x")x) ,
by renaming a bound variable; and this has the same meaning as

X" (xx") , by substituting x for x' .

A lambda expression which contains no subexpressions of the form
(KVEEQ) is called reduced. Some lambda expressions cannot be
converted into an equivalent reduced form; the shortest example is
(Mx(xx)Mx(xx)) which goes into itself under substitution. We say a
lambda expression is reducible if it is equivalent to some reduced
lambda expression. Our goal is to give a formal definition of the
class of all reducible lambda expressions; this definition must make
precise the notions of "free variables", "bound variables", "renaming",
"substitution", etc. Fortunately, it is possible to create such a
definition in a fairly natural way, using inherited and synthesized
attributes.

Let E be a lambda expression. If E is reducible, our formal
definition will define the meaning of E to be a string of characters
which is a reduced lambda expression equivalent to E . The definition
has the attractive property that two regiucible lambde expressions are
equivalent if and only if their meanings are exactly identical, character
for character. (A proof of this assertion is beyond the scope of this
paper, but can be based on the Church-Rosser theorem; cf. Wegner (1968).)
The definition is iterative, in that the meaning of E might turn out to
be the meaning of another lambda expression El 3 if E is irreducible

the process will never terminate, so we will obtain no meaning for E,



but if E 1is reducible the process will terminate in a finite number
of steps. (Again the proof is beyond the scope of this paper, but
uses well-known properties of lambda expressions.) It is recursively
unsolvable to decide whether or not a given lambda expression is
reducible, or if a given lambda expression is equivalent to the
reduced form °‘'x' , so an iterative procedure such as described belowr
is probably the best we can do.

The formal definition involves some more or less standard notation.
Let g be the set of nonnegative integers; eg is the set of all
subsets of N . A string is a sequence of zero or more of the characters

x ()

and we let € denote the empty string. The set of all strings is
called ?* . A function f is a set of ordered pairs {(x,f(x))}
whose first components are distinct; domain(f) = {x] (x,f(x))ef]} .

We write @ for the empty set or empty function;

fug={(xe(x))|xecdmain(g)} U {(x,f(x)) | x € domain(f)\domain(g)}

denctes the function f "overridden” by the function g . If f is

N
a function taking some subset of N into 2 , and if SC N , we write

image of S under f = U {f(x)|xeS N domain(f)} U {x|xeS\domain(f)} .

For example, if S

{2,3,4} and f = {(21 {l,h:‘i}):(h,{%G})} » then

image of S under f = {1,3,k,5,6} .

If n is a nonnegative integer, "var(n)" denotes the string
consisting of the letter x followed by n ' characters; thus,
var(2) = x" . The number of ' characters is called the index of the

variable.



Now we are ready for the formal definition itself; it is convenient

to present the definition in a tabular format.
f

Terminal symbols: x A ( ' )

Nonterminal symbols:
Start symbol: S

Inherited attributes:

Name of attribute

S E V

Type of value

bound(E)

subst(E)

substf(E)

arg(E)

argf(E)

subset of N

function from bound(E)
*
into T

functio§ from bound(E)
into 2~

string

subset of N

Synthesized attributes:

Name of attribute

Type of value

meaning(S)

text(E)

string

string

Significance

indices of variables
whose meaning is bound
by the context of E

specifies replacement
text for substitutions

specifies the indices

of free variables in the
corresponding replacement
text

text (if any) used as

argument in functional
application

indices of free variables
in arg(E)

Significance

reduced text of lambda
expressions (if it exists)

string equivalent to E
(includes substitutions and
reductions)



Synthesized attributes (continued) :

Name of attribute Type of value
free(E) subset of N
function(E) true or false
reduced(E) true or false
index(V) nonnegative integer

Siggificance

indices of free variables
occurring in E (before
substitutions and reductions)
is E explicitly a function?
is E reduced?

number of "primes" in the

representation of this

variable.

Local variables (used as abbreviations for brevity, in semantic rules 3.2):

Name of variable Type of value

mm nonnegative integer
rr subset of N

ss string

Productions and semantics:

Description No. Syntactic Rule

Example

Statement 1l S - E

Significance

index chosen as new name

of bound variable

indices of free variables

in ss

replacement text

Semantic Rules

(Ax () Axt (x'x)) meaning(S) :=

iz'reduced(E)
then text(E)
else meaning(text(E)).

bound(E) :=
subst(E) :=
substf(E) :=

argf(E) := 9 .

arg(E) := ¢ .



Productions and semantics (continued):

Syntactic Rule

Description No. Example
Variable 2.1 V -=x X
- t )
2.2 Vl V2 x
Expression 31 E-YV xt
- ] ]
Bel El 7&.\1‘!32 Ax!(x'x)

Semantic Rules

index(V) := 0 .

index(vl) = index(V2)+l ;

function(E) := false .
free(E) := {index(V)} .
reduced(E) := true .
text(E) :=
if index(V) € bound(E)
then subst (E) (index(V))

else var(index(V)) .

ﬁmction(El) := true .

free(El) 1=
free(EE)\{index(V)} 3
reduced(El) t= reduced(Eg) 2
H&rg(El) =€ b
then (mm := min{keN |
s ~
kf image of free(El)
under substf(El)}
ss := var(mm) ,
rr := {m}) ;
else ss := arg(El),
T o= argf(El) 0
text(El) = garg(El) = E
then "A\" ss text(EE)
else text(Ee).

bound(Ee) Te

borund(El) U {index(V)] .



Productions and semantics (continued):

Description

No.

Syntactic Rule

Example

Semantic Rules

-3

El - (E2E

3)

(x'x)

Subst(EQ) :=subst(El)
W {(index(V),ss)} -

substf(Eg) :=subst(E1)
Y {(index(V),tt)} .
arg(E,) := € .

argf(Eg) =P .

function(E,) := false .
free(E.) := free(E,) ') free(E,)
1 2 2

reduced(E.) := if function(Ez)

then false

else reduced(Ee) A

1)

reduced(Ei) .
text(El) :=if ﬁmction(EE)
then text(Ee)
else "(" text(E2)
text(EB) e .
bound(EQ) u:bound(Ej) = bound(El) .
subst(Ee) :=subst(E3) :=subst(El) .

substf(E,) :=substf(E =substf(El).

2) 3)

argf(E2) := image of free(E;)
under substf(Ei) .

arg(Ej) 1= € .

argf(EB) =P .



In rule 1, "meaning(text(E))" stands for meaning(S) 1in the
derivation tree which arises when text(E) is parsed.

As an example of this formal definition, consider finding the
"meaning" of (Ax'Ax(x'x)x) . We have the following parse tree, giving

integer subscripts to the nonterminal symbols:

( E2 E3
,af"’—”‘1--~“-~‘
AN
V3 ¥ A Vh ES b'e
| | /NN
p'e x ( Eg E7 )
|\
VS V6
Vél/n\\' \\%
\
x



The semantic rules define the attributes as follows:

index(V,) = index(V;) = index(V)) = index(V,) = index(V_{) = 0;

index(vl) = index(vs) =1.
lcde bound subst substf arg argf funct{on free reduced text
N ¢ e p gfalse (0} false Nx'(xx')
g, b f ¢ x [0} tme  $  tme ()
B, p g e $ false {0}  true x
g, {1} {(L,x} {LDHY ¢ ¢ true {1} true  Ax'(xx')
Eg {0,1} F G 3 $  false 0,1}  true  (xx')
E. {0,1} F G x' {1} false {1}  true x
ET {0,1} F ) £ 1) false 0 true  x!

where F = {(0,x"),{1,x)} , G = {(0,{1}),(1,{0})} . Hence
meaning(S) = meaning(Ax'(xx')) , and we must parse Ax'(xx')

A similar but much simpler derivation shows that meaning(Mx'(xx')) =
A" (xx') .

Some of the semantic rules can be eliminated by making the syntax
more camplicated. For example, the class of reduced lambdﬁ expressions
is defined by

S = AVS|N
N - (NS)|V

v - x|v*

10



and the class of nonreduced lambda expressions can be defined similarly.
But it seems unwise in general to play such games with the syntax,
and in fact as semantic rules become better understood we will probably
go the other way and simplify syntax at the expense of semantics.

The above syntax and semantics shows that inherited and synthesized
attributes can interact to provide a natural solution to a rather
complicated problem. But since they define lambda expressions in terms
of lambda expressions, it may be argued that they do not come to grips

with the problem of what lambda expressions really mean. Another

alternative is discussed below.

2. Turingol

A simple little language that describes Turing machine programs
was introduced in Knuth (1968a), where a semantic definition based on
quadruples was given. The following example program gives the flavor
of this "Turingol" language; it is a program designed to add unity to the
binary integer which appears just left of the initially scanned square:
tape alghabet if‘blank, one, zero, point;
print "point";
g9 o carry;
test: if the tape symbol is "one" then

{print "zero";
carry: move left one square; gg’zgltest};
print "one";
realign: move right one square;
if the tape symbol is "zero" then gglzglrealign.

1L



It is worthwhile to search for a formal definition of Turingol
which goes more deeply into the essential nature of computation itself,
instead of assuming the knowledge of an artificial representation of
Turing machines based on quadruples. The mapping from Turingol to
quadruples is nontrivial and worthy of attention, but it is only part
of the problém. Therefore we shall now consider some approaches to the
"total" problem of a Turingol definition.

One way to define Turingol, which we shall criticize later, is
to introduce an intermediate language called TL/I; we can define Turingol
in terms of TL/I and then we can define TL/I in terms of "conceptual
computation”. TL/I is a machine-like language, consisting essentially
of sequential instructions whose operation codes are 2{2222 move, if}

Jump, and 5222: The example TL/I program below is almost self-explanatory,
so we shall turn immediately to the formal definition of Turingol.

It is convenient to let the symbol v denote any positive integer,
and to let the symbol ¢ stand for any string of alphabetic letters.
These quantities could be syntactically defined, and we could make use
of their attributes value(v) , text(o) , but for simplicity we may
ignore such elementary operations and we can identify numbers and letter
strings with their representations. (In other words we are assuming
the existence of a "lexical scanning" mechanism, which must exist in
some primitive form anyway to recognize the terminal symbols. We could
in the same way have dispensed with index(V) din the lambda expression

example above.)



The definition below involves "global" quantities, which may be
regarded as attributes of the start symbol at the root of the parse
tree although their values are accessible at any node. All actions
on global quantities can be reduced to a sequence of semantic rules
relating appropriate local attributes, but it is simpler and more
natural to abbreviate these rules using global quantities.

Global quantities may be global variables, global sets, or global

counters. If ¢ is a global variable and Q is an expression, the

notation

define ¢

a

stands for a definition of & . (A string of the language is "semantically
erroneous” if its parse tree causes any glohal variable ¢ +to be defined
more than once, or if any undefined global variable is used in an
expression.)
If £ is a global set, the notation

Qeg
denotes inclusion of the value of expression & in the set § . If «
is a global counter, the notation

K+Q
denotes increase of the value of « by the value of the integer expression
Global sets start out empty, and global counters start out zero; when
they appear in expressions, their value denotes the accumulated result of
all inclusion or increasing operations specified in the entire parse
tree. (Note that two inclusion or increasing operations can be done in

any order.)

13



Here finally is a formal definition of Turingol in terms of TL/1:

Terminal symbols: O . , @ 3} {} ¥ tape alphabet is print move left

right one square 52’22’i£’the sngol then

Nonterminas symbols: P S L D 0]

Start symbol: P

Inherited attributes:

Name of attribute Type of value

init(8), init(L) positive integer

Synthesized attributes:

fin(s), fin(L) positive integer
index(D) positive integer
a(o) left or right

Global variables:

label(o), for - positive integer
all o

symbol(c), for positive integer
all o

Global counter:

nsymb integer

1k

Siggificance

taddress' of beginning of this

statement or list.

taddress' following this statement
or list.

number of symbols in declaration.

a direction.

address associated with the
identifier c.

symbol number associated with
the identifier o.

number of symbols declared in
this program
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Example: The Turingol program for binary addition results in setting
the global quantities

nsymb = L symbol(blank) = 1
label(carry) = 5 symbol(one) = 2

label(test) = 3 symbol(zero) = 3
label(realign) = 8 symbol(point) = L

and "objprog" is the (un&rdered) set of 11 strings
(1: print, b)
(2: Jump, 5)
(3: if, 2, 7)
(k: print, 3)
(52 movey leth)
(6: jump, 3)
(7: primt, 2)
(6: move, zight)
(9: if, 3, 11)
(10: jump, 8)
(11: stop)

This set of strings is a TL/I program.
Now we can present & definition of TL/I. For this purpose it is

handy to extend context-free syntax slightly, allowing the production

A - set of B
wvhere A and B are nonterminal symbols. This means that A can be,

instead of a string (an ordered sequence), a set (unordered) of quantities
having the form B .

X




A doubly-infinite tape, divided into squares and initially
containing positive integers in each square, is manipulated by the
actions of a TL/I program. There is a pointer which designates a
square on the tape. One formal definition of TL/I is based on these

concepts and an English language description of the operations to be

done, as follows.

Nonterminal symbols: Pp,s,C
Terminal symbols: v () , : if print jump move left right
Start symbol: P

Inherited attribute: loc (a positive integer denoting the current

position within the program)
Synthesized attributes: meaning (English language description of operations)

Global variables: action(v) (English language description of operations

starting at step v)

18
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This example has some more or less undesirable properties, .f not
outright errors, although we can rectify the situation in several
interesting ways. If we take the definition literally as it stands, most
TL/I programs will have "infinite" meanings; i.e., meaning(P) will
never be defined in a finite number of steps and we need to consider
a limiting process. Thus, the meaning of our binary addition example
comes out to be

"perform "erase the number of the square pointed to, replace it

by 4, and then perform "perform "move the pointer one square left,
then perform "perform "if the tape square pointed to contains 2,

then perform "replace ..."; otherwise perform "erase the number

on the square pointed to, replace it by 2, and then perform

"move e .ll oory oty oY oRE e oY . \

Being infinite, this doesn't really constitute an English sentence,

nor does it read too well! It is essentially an infinite branching

structure:
erase the number on the square
pointed to, replace it by L
move the pointer one square left
does the tape square pointed to contain 27
{ Yes No E
erase the number on the square erase the number on the square
pointed to, replace it by 3 tgginted to, replace it by 2
move the pointer one square left move the pointer one squarc right
does the tape square pointed to does the tape square pointed to
contain 27 contain 37

T ) Fe o\

.. * e e e

20




Instead of this infinite branching structure we can take another
point of view; rather than expanding the "action" parts of the meanings,
we can consider the set of defined actions as a table which constitutes

the meaning. Our example program then means "perform action(l)", where

action(l) = "erase the number on the square pointed to, replace
it by 4, and then pertorm action(2)".
action(2) = "perform action(5)".

action(11l) = "stop".

We can now imagine a man who performs the process specified by a TL/I
program, given a doubly infinite tape and a set of defined actions as
above; with one hand he points to the action he is currently doing, while
his other hand points to a place on the tape (and holds a pencil and

an eraser). This is the "ambidextrous mén“ model of computation.

At %his point we can make some observations about the two-level
definition of Turingol that appears above. Is it really necessary to
introduce something like TL/I, or should we have gone directly to, say,
the infinite branching structure or the ambidextrous-man model? A glance
at the definitions shows that, indeed, we could have done things in one
step. The introduction of TL/I serves only to provide a convenient
shorthand, or a conceptual level slightly higher than the base, in which
to think about Turing machines, but it is really so close to our ultimate
models of computation that it could have been avoided. For more
sophisticated languages than Turingol it becomes increasingly more

important and helpful to introduce intermediate levels of semantics.

21




But are our "ultimate" models of computation correct? Some
people believe that the user of a programming language should not really
understand his program in terms of a TL/I-like list of rules, or a
branching structure or flowchart, he should really think of it in
terms very close to the source language itself. The ambidextrous man
of our model should perhaps be directly interpreting the source language.
Such a viewpoint is defensible, but on the other hand it seems to be
asking for too much built-in sophistication on the part of the user.
He acquires such sophistication only after gaining more ‘experience with
programming languages; grade school children can understand simple
machine languages but they are not ready for Algol. Perhaps that is
the reason many computer science educators are reporting that introductory
courses in programming are usually more successful if the students are
first taught a simple machine-like language before they learn algebraic
languages. They need to understand the underlying principles of
computation (what computers do) before seeing "problem oriented languages".
Therefore it is likely that the models discussed above aren't too
primitive. Furthermore as a practical reality, a person programming well
in some current language (FORTRAN, COBOL, ALGOL, PL/I, SNOBOL, etc.)
should perhaps think of his program in some terms related to its actual
machine representation, so that he knows what different constructions
really "cost" him.

If the models aren't too primitive, are they too sophisticated?
For example, positive integers should perhaps be defined in terms of

Peano's postulates, etc.; maybe all the concepts should be further
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formalized in terms of set theory or category theory. This takes

things from a domain children can understand into a more formal area
which is able to support mechanical proof procedures. In this paper

our concern is with finding a natural conceptual basis for definitions;
the basis must correspond to the way we actually think about computation,
otherwise the related formalisms are not likely to be fruitful.

Suitable formalisms will correspond to the natural conceptual basis

rather closely, so we need not choose a more primitive formalism.

Bs A Digression

Definition of programming language semantics by means of synthesized
and inherited attributes is intended to correspond closely to the way
people understand that language; the problem of producing compilers
for that language is not a main goal, for it is possible to understand
the meaning of a language without having to understand how to write a
compiler for it. The success of context-free grammars as a model for
syntax is based on its natural intuitive appeal (since the syntactic
tree structures form a first approximation to the semantic structures),
not on the fact that parsing algorithms can be devised for such grammars.
A grammar is "declarative" rather than "imperative"; it expresses
the essential relationships between things without implying that these
rela’ci;)nships have been deduced using any particular algorithm. In
general, we want to avoid any preoccupation with bits, advancing pointers,
building and unbuilding lists, when such things have little or nothing

to do with the intrinsic meaning of the language we are defining. On the
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other hand once a "natural” mode of definition has been found, the
next step should be to make practical use of it in the automation
of software production; it is a happy circumstance when an intuitive
description of a system can be almost automatically transformed into
a practical working model based on that system. Much work remains to
be done on the question of whether formal definitions such as those of
this paper can be converted automatically to decent software programs;
the following example may be useful as a test case for such techniques.
Consider the probelm of writing an assembler for TL/I, converting
a TL/I program into a sequence of bits suitable for interpretation by
instructions on a microprogrammed computer. To make the problem
interesting, we shall assume that we want to compress the length of
the code, letting the number of bits to represent addresses and symbols
be a parameter. The following "formal semantics" specifies this
transformation precisely, in a problem-oriented fashion.

Let Memory(n,k) stand for the sequence of k bit positions
Memory(n) Memory(n+l) ... Memory(n+k-1) ,

and let Binary(n,k) stand for the sequence of k bits representing
(n mod 2%) in binary notation. Let length(q) denote the length of

string @ . TL/I can now be defined as follows:
Nonterminal symbols, terminal symbols, start symbol: As before.

Synthesized attributes: code(C) , a string of bite representing a coded
instruction. length(C) , the number of bits

in code(C) .
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Global variables:
Memory(v) , a bit representing part of the encoded program.
loc(v) , a positive integer representing the first bit location
of an instruction.
a , a positive integer representing the size of address specifications.
b , a nonnegative integer representing the size of symbol |
specifications.

nsymb , number of symbols (computed by the Turingol definition).

Global counters:
addrs , the number of address fields in the program,

bits , the number of bits in non-address fields of the program.

Productions and semantics:

Syntactic Rule Semantic Rules
P~ set of S define loc(l) = 1.

a := min{keN|bits + k-addrs < 2k}.
b := min{keN|nsymb < 2k}.

1¢2]

- (v:C) Memory(loc(Vv),length(C)) := code(C).
define loc(v+l) = loc(Vv)+length(C).

C = if, v,V code(C) := 00 Binary(vl-l,b) Binary(loc(vg),a) .

bits + (b+2); addrs+ 1; length(C) := 2+b+a.

2

C - move, left code(C) := 010; bits+ 3; length(C) := 3.
C - move, right code(C) := 011; bits +3; length(C) := 3.
C - print, v code(C) := 10 Binary(v-1,b); bits+ (2+b).

length(C) := 2+b.

C - jump, Vv code(C) := 11 Binary(loc(v),a).
bits+2; addrs+ 1; length(C) := 2+a.

C - stop code(C) := 11 Binary(0,a); length(C) := 2+a.
bits +2; addrs+ 1.

25




Note that these rules specify a three pass process (first we count
the addrs , then we can compute a and the loc's , then we can

£111 in the addresses) in a compact "declarative" manner.

L. Information structures

The above definitions have adhered to old fashioned ways to
represent information (integers, functions, sets, etc.), while Computer
Science suggests that we ought to use some slightly different models and
develop their formalisms further. A wide variety of applications (see,
for example, Knuth (1968b), Chapter 2) suggests that it is useful to
represent the information in the real world, and its structural
interrelationships, by means of things called "nodes". Each node
consists of several "fields", which contain values; the values may be
integers, strings, sets, etc., but (more importantly) the values may be
references (i.e., pointers or links) to other nodes. The idea of
references can be and has been formalized in various ways in terms of
classical concepts, but recent experience suggests the usefulness of
regarding references themselves as primitives. This often frees us from
making arbitrary but conceptually irrelevant choices when we are
representing information; for example, index séts are often used in
mathematics when they really don't belong, and integers were used in our
definition of lambda expressions and Turingol above although we really
wanted only unique labels and a notion of order.

Let us therefore consider making semantic definitions in terms of

the proper data structures. A study of the Turingol-to-TL/I example shows
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that we should replace the set of location-instruction pairs in TL/ I
by & string of nodes (i.e., an ordered sequence of nodes). Each node
corresponds to an instruction; m and }'f; nodes contain references to
other nodes. We can concatenate strings of nodes just like strings of
letters; so, for example, we can do away with the inherited attribute
"init(S)" . The semantics for rule L.2, L, = L35 , becomes simply
"mea.ning(Ll) t= meaning(Lz) meaning(S)" . In this way we obtain a
‘more appealing (and more simple) formal definition, because all attributes
a'.re synthesized except for those which are implicitly present in global
quantities. This idea of node strings containing pointers between the
nodes, instead of absolute addresses which have to be determined by
strict sequence rules, has been very successful in some studies
recently conducted by the author on an experimental compiler-generating
language.

Instead of making a complete listing of Turingol's semantics from
the string-of-nodes point of view, it is perhaps even more interesting
to consider the slightly more complicated problem of translating Turingol
into a "self-explanatory flowchart". We may regard the meaning of a
Turingol program as a set of nodes whose structure is that of a flowchart,
easily readable by any ambidextrous man who wants to perform the algorithm.

We use the notation
nelvr(gl 1= T}l; 52 3= T3 +ee3 §m 1= %)

to denote the creation of a new node with m fields; the field named §J.

contains the value ng , for 1< j<m . The value of new( ... ) is
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a reference to this node.

It is interesting to compare the Turingol

definition below with the definition above, since the inherited-vs.-

synthesized roles of "init" and "fin" are reversed.

Nonterminal symbols, terminal symbols, start symbol: As before.

Inherited attributes:

fin(S), fin(L)

Synthesized attributes:

init(8), init(L)

index(D)

a(o)

s1lcbal variatbles:

label(c), for all ¢

symbol(g), for all ¢

reference to node which follows statement
or list.

reference to node which begins statement
or list.

positive integer, the number of symbols

in declaration.

"1eft" or "right", a direction.

reference to the node corresponding to
the label identifier o.

positive integer, the symbol number
associated with the identifier o.

Fields of nodes: The COMMAND field contains strings of words and numbers

explaining what to do when reaching this node; the

YES, NO, and NEXT fields contain references to other

nodes.

A1l nodes generated by the new operation

constitute the "meaning" of a Turingol program.
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Productions and semantics:

No.
1.1

1.2

2.1

2.2

2.2.1
2.2.2

2.3

2.4

3.1

3.2

ngtactic Rule

D= tage alghabet 25'0

S - print “g"

S - move O one square
PPt PG NPT

0 - left

0 — riggt

B~ gg %9 o

S, — if the tape

1 PPN NI PIT

symbol is "o"

then 82

Semantic Rules

index(D) := 1; define symbol(o) = 1.

index(D = index(D2)+l,

)
define symbol(c) = index(Dl).

init(S) := EgzﬁCOMMAND :="Erase the
number on the square
pointed to, and replace it
by symbol(c); then go on
to the NEXT node." ;
NEXT := fin(S)).

init(S) :=EE!KCOMMAND :="Move the pointer
one square to the d(0); then

go on to the NEXT node.™;
NEXT := fin(S)).

d(o) := left.
d(0) := right.

init(S) :=new(COMMAND :="Go on to the
NEXT node."; NEXT := label(c)).

init(8) :="new(COMMAND :="Go on to the NEXT
node " ; NEXT := fin(S)).

init(Sl) :=new(COMMAND :="If the tape square
pointed to contains symbol(v),
then go on to the YES node;

otherwise go on to the NO node.";

YES :=init(82); NO := fin(Sl)).
fin(s,) := fin(Sl).

init(S,) :=init(8,); fin(S,) :=fin(s,).

define label(ao) := init(Sl).
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Productions and semantics (continued):

No. Syntactic Rule Semantic Rules

1.3 s - {1} init(8) :=init(L); fin(L) :=fin(S).

1 | L -8 init(L) :=init(8); fin(L) :=fin(S).

L.2 L, - L3S init(Ll) :=ini't(L2); fin(Le) :=1init(8S);

fin(8) := fin(Ll) .

5 P - D;L. new(COMMAND :="Start at the NEXT node.";
NEXT := init(L)).
£fin(L) := new(COMMAND := "Stop."),

This definition will produce the following flowchart from the binary

addition example:

(The flowchart contains three "go on" nodes which seem redundant,

although there are cases such as "loop: go to loop" which show that they

cannot be eliminated entirely.)
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symbol(blank) = 1, symbol(one) = 2, symbol(zero) = 3, symbol(point) = L.

COMMAND = "Start at the NEXT node.”
NEXT = 1

|

COMMAND = "Erase the number on the
square pointed to, and replace
it by L4; then go on to the
NEXT node."

NEXT = ’

B

COMMAND = "Go on to the NEXT node.”
NEXT = '
_L COMMAND = "Erase the number on the
COMMAND = "Move the pointer one square pointed to, and replace
square to the left; then go it by 3; then go on to the NEXT
on to the NEXT node." node."
NEXT = ¢ - = NEXT.
COMMAND = "Go on to the NEXT node.” COMMAND = "If the tape square
NEXT = o= 4# pointed to contains 2, then
go on to the YES node;
otherwise go on to the NO
node."
NO = ¢ YES = &—

1

COMMAND = "erase the number on the
square pointed to, and replace it
by 2; then go on to the NEXT node."

NEXT = ¢

|

COMMAND = "Move the pointer one square

to the right; then go on to the
NEXT node."
NEXT =

=9

i

COMMAND = "If the tape square pointed
to contains 3, then go on to the
YES node; otherwise go to the NO

‘ NEXT = node."
COMMAND = "Go on to the NEXT node." = YES NO = @

COMMAND = "Stop."
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We could also consider lambda expressions again from the standpoint
of appropriate information structure. It is an easy exercise to define
the semantics so that, for example, the lambda expression (Ax'Ax(x'x)x)

becomes the structure

LAMBDA EXPRESSION = ¢

|

TYPE = "APPLICATION"
FUNCTION = p ARGUMENT =

L

TYPE - "FUNCTION DEFINITION" TYPE = "FREE VARIABLE"
BODY = q NAME = "y"
[ TYPE - "FUNCTION DEFINTTION"
BODY = §
TYPE = "APPLICATION"
FUNCTION = ARGUMENT =
TYPE - "FORMAL PARAMETER' | TYPE = "FORMAL PARAMETER"
BINDING = BINDING = ¢

"

Thus, btound variables become "formal parameter" nodes which refer back
+  the appropriate function definition in which the variable is bound.
Such a structure gives the essential content of the lambda notation,
except for the definition of functional application which can now be

given in various ways in terms of the node structures.
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5e Summary

We have discussed several examples in which rather complicated
functions have been defined on context-free languages. In each case
it was possible to give a definition which is concise, in the sense
that hardly aenything is defined that isn't "necessary"; and at the same
time the definitions seem to be intuitive, in the sense that they
mirror the structure by which we "understand" the function. These
definitions are based on assigning attributes to the nontefminal symbols
of a context-free grammar, and relating the attributes which correspond
to each production.

We have also discussed some of the choices for a semantic basis
of programming languages. If we are interested in information-theoretic
properties of algorithms, we may prefer an infinite branching structure
as a computational model; if we are interested in representations of
algorithms which are analogous to real live computer programs, we may
prefer an "ambidextrous man" (essentially an automaton) model; if we
are interested in the underlying structure, we may prefer an flowchart
model. Other models are also possible. Whatever the model, formal
definition via attributes seems to be helpful.

At the present time these ideas are being used and extended by
Wayne Wilner, to construct a formal definition of a major programming
language, SIMULA 67. The complexity of this language (over 300 productions
in the syntax) makes the semantics slightly less transparent than the
examples in this paper, but in fact the definition turns out to be simpler

than anticipated.
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Perhaps the main direction for future work which is suggested by
the examples of this paper is to devise a suitable "context-i;ree
grammar" for arbitrary node structures instead of just strings.
Attribute-definition on such grammars may lead to a very natural

declarative language for problem solving in terms of relevant structures.
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