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Perhaps the most natural way to define the "meaning" of strings

in a context-free language is to define attributes for each of the

nonterminal symbols which arise when the strings are parsed according

to the grammatical rules. The attributes of each nonterminal symbol

correspond to the meaning of the phrase produced from that symbol. |
This point of view is expressed in some detail in Knuth (19688), where

attributes are classified into two kinds, "inherited" and "synthesized".

Inherited attributes are, roughly speaking, those aspects of meaning

which come from the context of a phrase, while synthesized attributes

are those aspects which are built up from within the phrase. There can

be considerable interplay between inherited and synthesized attributes;

the essential idea is that the meaning of an entire string is built up

from local rules relating the attributes of each production appearing

in the parse of that string. For each production in the context-free

grammar, we specify "semantic rules" which define (i) all of the

synthesized attributes of the nonterminal symbol on the left hand side

of the greiuetion, and (ii) all of the inherited attributes of the
nonterminal symbols on the righthand side of the production. The initial

nonterminal symbol (at the root of the parse tree) has no inherited

attributes. Potentially circular definitions can be detected using an

algorithm formulated in Knuth (1968a).

The purpose of this paper is to develop these ideas a little further

and to present some additional examples of the "inherited attribute -

synthesized attribute" approach to formal semantics. The first example

defines the class of lambde expressions which have a reduced equivalent,
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in terms of & "canonical" reduced form. The second example defines the

simple programming language Turingol; this language was defined in

Knuth (1968a), in terms of conventional Turing machine quadruples,

while the definition in this paper is intended to come closer to the

Aindamental issues of what computation really 1s, and to correspond

more closely to problems which arise in the definition of large-scale

contemporary programming languages.

The formal definitions in this paper are probably not in optimum

rorm, but they seem to be a step in the right direction. It is hoped

that the reader who has time to study these examples will be stimulated

to develop the ideas further.

Ea Lambda expressions

Our first example of a formal definition concerns lambda expressions

ac discussed by Wegner (1968), restricting the set of variables to the

forme X,Xx',x",x"', etc. Informally, the lambda expressionswe consider

are either (i) variables standing alone; or (ii) strings of the

form MVE , where V is a variable (called a "bound variable") and E

is a lambda expression; or (1ii) strings of the form (E{E,), where

i, and E, are lambda expressions. If E, has form (ii), (E{E,) denotes
functional application, i.e., we may substitute E, for all "free"

scourrences of V in E , making suitable changes to bound variables

within © so that free variables of Ey do not become bound. For

example, Ax(x'x) is a lambda expression in which x' is free but x

is bound; it has the same meaning as x"(x'x") by renaming the bound
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variable, but Ax'(x'x') has a different meaning. The lambda

expression (Ax'Ax(x'x)x) has the same meaning as (Ax'Ax"(x'x")x) ,

by renaming a bound variable; and this has the same meaning as

A" (xx") , by substituting x for x' .

A lambda expression which contains no subexpressions of the form

(AVEE,) is called reduced. Some lambda expressions cannot be
converted into an equivalent reduced form; the shortest example is

(Ax(xx)ax(xx)) which goes into itself under substitution. We say a

lambda expression is reducible if it is equivalent to some reduced

lambda expression. Our goal is to give a formal definition of the

class of all reducible lambda expressions; this definition must make

precise the notions of "free variables", "bound variables", "renaming",

"substitution", etc. Fortunately, it is possible to create such a

definition in a fairly natural way, using inherited and synthesized

attributes.

Let E be a lambda expression. If E is reducible, our formal

definition will define the meaning of E to be a string of characters

which is a reduced lambda expression equivalent to E . The definition

has the attractive property that two reducible lambde expressions are

equivalent if and only if their meanings are exactly identical, character

for character. (A proof of this assertion is beyond the scope of this

paper, but can be based on the Church-Rosser theorem; cf. Wegner (1963).)

The definition is iterative, in that the meaning of E might turn out to

| be the meaning of another lambda expression E, ; if E is irreducible

| the process will never terminate, so we will obtain no meaning for E ,
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but if E is reducible the process will terminate in a finite number

of steps. (Again the proof is beyond the scope of this paper, but

uses well-known properties of lambda expressions.) It is recursively

unsolvable to decide whether or not a given lambda expression is

reducible, or if a given lambda expression is equivalent to the :

reduced form 'x' , so an iterative procedure such as described below

is probably the best we can do.

The formal definition involves some more or less standard notation.

Let N be the set of nonnegative integers; > is the set of all
subsets of N . A stringis a sequence of zero or more of the characters

x A (0)

and we let € denote the empty string. The set of all strings is

called 7" . Afunction f is a set of ordered pairs {(x,f(x))}
whose first components are distinct; domain(f) = {x] (x,£(x))ef} .

We write § for the empty set or empty function;

fyg={(xg(x))|xecdmain(g)} U {(x,£(x)) | x e domain(f)\domain(g)}

denctes the function f "overridden" by the function g . If f is

a function taking some subset of N into F , and if SC N ; we write

image of S under f = U {£(x)]|xeS N domain(f)} U {x|xeS\domain(£)} .

For example, if S = {2,3,4} and f = {(2,{1,4,5}),(4,{5,6})} , then

image of S under f = {1,3,L,5,6} .

If n is a nonnegative integer, '"var(n)" denotes the string

consisting of the letter x followed by n ' characters; thus,

var(2) = x" . The number of ' characters is called the index of the

variable.
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Now we are ready for the formal definition itself; it is convenient

to present the definition in a tabular format.
f

Terminal symbols: x A ( ' )

Nonterminal symbols: S E V

Start symbol: S

Inherited attributes: "

Name ofattribute Type of value Significance

bound (E) subset of N indices of variables

whose meaning is bound

by the context of E

subst(E) function from bound(E) specifies replacement
*

into T text for substitutions

subst f(E) fungtion from bound(E) specifies the indices
into 2-~ of free variables in the

corresponding replacement

text

arg(E) string text (if any) used as
argument in functional

application

argf(E) subset of N indices of free variables

in arg(E)

Synthesized attributes:

Name of attribute Type of value Significance

meaning(S) string reduced text of lambda

expressions (if it exists)

text (E) string string equivalent to E

(includes substitutions and

reductions)
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Synthesized attributes (continued):

Name of attribute Type of value Significance

free(E) subset of N indices of free variables
occurring in E (before

substitutions and reductions)

function(E) true or false is E explicitly a function? |
reduced (E) true or false is E reduced?

index (V) nonnegative integer number of "primes" in the
representation of this

variable.

Local variables (used as abbreviations for brevity, in semantic rules 3.2):

Name of variable Type of value Significance

mm nonnegative integer index chosen as new name
of bound variable

rr subset of N indices of free variables
in ss

SS string replacement text

Productions andsemantics:

Description No. Syntactic Rule Example | Semantic Rules

Statement 1 S = E (Ax (oe) Ax (xx) ) meaning(S) :=
if reduced(E)

then text (E)

else meaning(text(E)).

| bound(E) :=

subst (E) :=

subst f(E) :=

argf(E) := 0 .

arg(E) := €£ .
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Productions and semantics (continued):

Description No. Syntactic Rule Example Semantic Rules

Variable 2.1 V =x Xx index(V) := 0 .
— 4 3 . — .2.2 Vy = V, x! index (V,) : index (V,)+1

Expression 3.1 EV x! function(E) := false .
free(E) := {index(V)} .

reduced(E) := true .

text(E) :=

if index(V) e bound(E)
then subst(E)(index(V))

else var(index(V)) .

5.2 E; = AVE, Ax! (xx) function(E,) := true .
free(E,) =

free(E,)\{index(V)] ‘

reduced (E,) yu reduced (E,) "

then (mm := min{keN |

kf image of free(E,)
under substf(E,)}

ss := var(mm) ,

rr := {mm}) ;

| else ss := arg(E,),
rr im argf(E, ) ‘

text (E,) = if arg(E,) = €
then "A" ss text (E,)

else text(E,).

bound (E,) t=

bound (E } U {index(V)] .
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Productions and semantics (continued):

Description No. Syntactic Rule Example Semantic Rules

subst (E,) := subst (E,)
<4 {(index(V),ss)} -

substf(E,) := subst (E, )
uy {(index(V),tt)} .

arg(E,) 1= E

argf(E,) := D.

x x - i } oe .
5.2 Eg (E,E2) (xx) function(E,) := false

free(E.) := free(E,) !l free(E;) .
1 2 be

reduced(E, ) c= if function’E,)
then false

| else reduced (E,) A

reduced(E;) .

text (E,) := if function(E,)
then text(E,)
else "(" text (E,)

bound (E,) := bound (E) 2 bound(E, ) ‘

subst (E,) = subst (E;) := subst (E,) ‘

subst f(E,) += subst (Ey) := subst (E,) -

arg(E,) = text (E;) :

argf(E,) := image of free(E.)
under substf(E,) ‘

arg(E;) := E

argf (E;) i= 0.
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In rule 1, "meaning(text(E))" stands for meaning(S) in the

derivation tree which arises when text(E) is parsed.

As an example of this formal definition, consider finding the

"meaning" of (Ax'Ax(x'x)x) . We have the following parse tree, giving

integer subscripts to the nonterminal symbols:

~~

A A
Vv J

| |
i
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The semantic rules define the attributes as follows:

index (V,) = index (Vs) = index(V,) = index(V,) = index(V.) = 0;

index (V,) . index(V,) = 1.

licde bound subst substf arg argf function free reduced text

Ey ) i 3 € @ false {0} false Ax'(xx')

E, ¢ 3 iy Xx {0} true dg true Ax! (xt)

E. p ? 4) € @ false {0} true  X

eg, {1} {(LX)} (3, {oD} « $ true {1} true  Ax'(xx')

Eg {0,1} F ¢ £ @ false {0,11 true (xx')
E. {0,1} F G x' {1} false {1} true  X

E, {0,1} F G e fp false 0 true x!

where F = {(0,x"),{(1,x)}, G = {(0,{1}),(1,{0})}. Hence

meaning(S) = meaning(A\x'(xx')) , and we must parse Ax'(xx') .

A similar but much simpler derivation shows that meaning(Ax'(xx')) =

ANY (xx)

Some of the semantic rules can be eliminated by making the syntax

more camplicated. For example, the class of reduced lambdg expressions

is defined by |

S — AvS|N

N - (NS)|v

v = x|v
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and the class of nonreduced lambda expressions can be defined similarly.

But it seems unwise in general to play such games with the syntax,

and in fact as semantic rules become better understood we will probably

go the other way and simplify syntax at the expense of semantics.

The above syntax and semantics shows that inherited and synthesized

attributes can interact to provide a natural solution to a rather

complicated problem. But since they define lambda expressions in terms

of lambda expressions, it may be argued that they do not come to grips

with the problem of what lambda expressions really mean. Another

alternative is discussed below.

2. Turingol

A simple little language that describes Turing machine programs

was introduced in Knuth (1968a), where a semantic definition based on

quadruples was given. The following example program gives the flavor

of this "Turingol" language; it is a program designed to add unity to the

binary integer which appears just left of the initially scanned square:

tape alphabet is blank, one, zero, point; :
print "point";

£2 19 cerry

test: if the tape symbol is "one" then
{print "zero";

| carry: move left one square; go to test}; )

print "one";

realign: move right one square;

if the tape symbol is "zero" then go to realign.

11



Tt is worthwhile to search for a formal definition of Turingol !

which goes more deeply into the essential nature of computation itself,

instead of assuming the knowledge of an artificial representation of

Turing machines based on quadruples. The mapping from Turingol to

quadruples is nontrivial and worthy of attention, but it is only part

of the —— Therefore we shall now consider some approaches to the

"total" problem of a Turingol definition. ;

One way to define Turingol, which we shall criticize later, is

to introduce an intermediate language called TL/I; we can define Turingol

in terms of TL/I and then we can define TL/I in terms of "conceptual

computation”. TL/I is a machine-like language, consisting essentially

of sequential instructions whose operation codes are print, move, if,

jump, and stop. The example TL/I program below is almost self-explanatory,

so we shall turn immediately to the formal definition of Turingol.

It is convenient to let the symbol vv denote any positive integer,

and to let the symbol o¢ stand for any string of alphabetic letters.

These quantities could be syntactically defined, and we could make use

of their attributes value(v) , text(o) , but for simplicity we may

ignore such elementary operations and we can identify numbers and letter

strings with their representations. (In other words we are assuming

the existence of a "lexical scanning" mechanism, which must exist in

some primitive form anyway to recognize the terminal symbols. We could

in the same way have dispensed with index(V) in the lambda expression

example above.)
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The definition below involves "global" quantities, which may be

regarded as attributes of the start symbol at the root of the parse

tree although their values are accessible at any node. All actions

on global quantities can be reduced to a sequence of semantic rules

relating appropriate local attributes, but it is simpler and more

natural to abbreviate these rules using global quantities.

Global quantities may be global variables, global sets, or global

counters. If ¢ is a global variable and a is an expression, the

notation

define ¢ =

stands for a definition of t . (A string of the language is "semantically

erroneous” if its parse tree causes any global variable & to be defined

more than once, or if any undefined global variable is used in an

expression.)

If ¥ is a global set, the notation

del

denotes inclusion of the value of expression a in the set §¢ . If «

is a global counter, the notation

K+Q

denotes increase of the value of Kk by the value of the integer expression «a .

Global sets start out empty, and global counters start out zero; when

they appear in expressions, their value denotes the accumulated result of

all inclusion or increasing operations specified in the entire parse

tree. (Note that two inclusion or increasing operations can be done in

any order.)

15



Here finally is a formal definition of Turingol in terms of TL/1:

Terminal symbols: 0 . , © 3 {lv Lape alphabet is print move left

right one square go to if the symbol ‘then

Nonterminai symbols: P § L D O

Start symbol: P

Inherited attributes:

Name of attribute Type of value Significance

init(8), init(L) positive integer taddress' of beginning of this
statement or list.

Synthesized attributes:

£in(s), fin(L) positive integer raddress' following this statement
or list.

index (D) positive integer number of symbols in declaration.

a(o) left or right a direction.

Global variables:

label(o), for positive integer address associated with the
all © identifier ©.

symbol(c), for positive integer symbol number associated with
all o the identifier O.

Global counter:

nsymb integer mumber of symbols declared in
this program

14
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Example: The Turingol program for binary addition results in setting

the global quantities

nsymb = k symbol(blank) = 1

label(carry) = 5 symbol(one) = 2

label (test) = 3 symbol(zero) = 3 |

label(realign) = 8 symbol(point) = L

and "objprog" is the (envrdered) set of 11 strings

(1: print, 4)

(2: jump, 5)

(3: if, 2, 7)

(4: print, 3)

{5¢ apie, LEY)

(6: jump, 3)

(7: print, 2)

(3: gure, Eig) :

(9: if, 3, 11)

(10: jump, 8)

(11: stop)
This set of strings is a TL/I program.

Now we can present a definition of TL/I. For this purpose it is

handy to extend context-free syntax slightly, allowing the production

A —- set of B

where A and B are nonterminal symbols. This means that A can be,

instead of a string (an ordered sequence), a set (unordered) of quantities
having the form B .

Xt



A doubly-infinite tape, divided into squares and initially

containing positive integers in each square, is manipulated by the

actions of a TL/I program. There is a pointer which designates a

square on the tape. One formal definition of TL/I is based on these

concepts and an English language description of the operations to be

done, as follows.

Nonterminal symbols: P,S, C

Terminal symbols: v ( ) , : ifprint jump move left right

Start symbol: P

Inherited attribute: loc (a positive integer denoting the current

position within the program)

Synthesized attributes: meaning (English language description of operations)

Global variables: action(Vv) (English language description of operations

starting at step Vv)

18
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This example has some moreor less undesirable properties, .f not

outright errors, although we can rectify the situation in several

interesting ways. If we take the definition literally as it stands, most

TL/I programs will have "infinite" meanings; i.e., meaning(P) will
never be defined in a finite number of’ steps and we need to consider

a limiting process. Thus, the meaning of our binary addition example

comes out to be

"perform "erase the number of the square pointed to, replace it
by L, and then perform "perform "move the pointer one square left,
then perform "perform "if the tape square pointed to contains 2,
then perform "replace ...": otherwise perform "erase the number
on the square pointed to, replace it by 2, and then perform
"HOVE jprann toon \

Being infinite, this doesn't really constitute an English sentence,

nor does it readtoo welll! It is essentially an infinite branching

structure:

erase the number on the square
pointed to, replace it by 4

| move the pointer one square left

does the tape square pointed to contain 27

Yes No

erase the number on the square | erase the number on the square
| pointed to, replace it by 3 pointed to, replace it b 2

move the pointer one square left | move the pointer one squarc right

does the tape square pointed to | ‘does the tape square pointedto |
| contain 27 | contain 37 |

Yes No \ es No

20



Instead of this infinite branching structure we can take another

point of view; rather than expanding the "action" parts of the meanings,

we can consider the set of defined actions as a table which constitutes

the meaning. Our example program then means "perform action(1l)", where

action(l) = "erase the number on the square pointed to, replace

it by 4, and then perform action(2)".

action(2) = "perform action(5)".

action(1l) = "stop".

We can now imagine a man who performs the process specified by a TL/1

program, given a doubly infinite tape and a set of defined actions as

above; with one hand he points to the action he is currently doing, while

his other hand points to a place on the tape (and holds apencil and

an eraser). This is the "ambidextrous nan” model of computation.
At this pointwe can make some observations about the two-level

definition of Turingol that appears above. Is it really necessary to

introduce something like TL/I, or should we have gone directly to, say,

the infinite branching structure or the ambidextrous-man model? A glance

at the definitions shows that, indeed,we could have done things in one

step. The introduction of TL/I serves only to provide a convenient

shorthand, or a conceptual level slightly higher than the base, in which

to think about Turing machines, but it is really so close to our ultimate

models of computation that it could have been avoided. For more

sophisticated languages than Turingol it becomes increasingly more

important and helpful to introduce intermediate levels of semantics.

21
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But are our "ultimate" models of computation correct? Some

people believe that the user of a programming language should not really

understand his program in terms of a TL/I-like list of rules, or a

branching structure or flowchart, he should really think of it in

terms very close to the source language itself. The ambidextrous man

of our model should perhaps be directly interpreting the source language.

Such a viewpoint is defensible, but on the other hand it seems to be

asking for too much built-in sophistication on the part of the user.

He acquires such sophistication only after gaining more experience with

programming languages; grade school children can understand simple

machine languages but they are not ready for Algol. Perhaps that is

the reason many computer science educators are reporting that introductory

courses in programming are usually more successful if the students are

first taught a simple machine-like language before they learn algebraic

languages. They need to understand the underlying principles of

computation (what computers do) before seeing "problem oriented languages".

Therefore it is likely that the models discussed above aren't too

primitive. Furthermore as a practical reality, a person programming well

in some current language (FORTRAN, COBOL, ALGOL, PL/I, SNOBOL, etc.)

should perhaps think of his program in some terms relatedto its actual

machine representation, so that he knows what different constructions

really "cost" him.

If the models aren't too primitive, are they too sophisticated?

For example, positive integers should perhaps be defined in terms of
Peano's postulates, etc.; maybe all the concepts should be further
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formalized in terms of set theory or category theory. This takes

things from a domain children can understand into a more formal area

which is able to support mechanical proof procedures. In this paper

our concern is with finding a natural conceptual basis for definitions;

the basis must correspond to the way we actually think about computation,

otherwise the related formalisms are not likely to pe fruitful.

Suitable formalisms will correspond to the natural conceptual basis

rather closely, so we need not choose a more primitive formalism.

3. A Digression

Definition of programming language semantics by means of synthesized

and inherited attributes is intended to correspond closely to the way

people understand that language; the problem of producing compilers

for that language is not a main goal, for it is possible to understand

the meaning of a language without having to understand how to write a

compiler for it. The success of context-free grammars as a model for

syntax is based on its natural intuitive appeal (since the syntactic

tree structures form a first approximation to the semantic structures),

not on the fact that parsing algorithms can be devised for such grammars.

A grammar is "declarative" rather than "imperative"; it expresses

the essential relationships between things without implying that these

relationships have been deduced using any particular algorithm. In
general, we want to avoid any preoccupation with bits, advancing pointers,

building and unbuilding lists, when such things have little or nothing

to do with the intrinsic meaning of the language we are defining. On the
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other hand once a "natural" mode of definition has been found, the

next step should be to make practical use of it in the automation

of software production; it is a happy circumstance when an intuitive

description of a system can be almost automatically transformedinto

a practical working model based on that system. Much work remains to

be done on the question of whether formal definitions such as those of

this paper can be converted automatically to decent software programs;

the following example may be useful as a test case for such techniques.

Consider the probelm of writing an assembler for TL/I, converting

a TL/I program into a sequence of bits suitable for interpretation by

instructions on a microprogrammed computer. To make the problem

interesting,we shall assume that we want to compress the length of

the code, letting the number of bits to represent addresses and symbols

be a parameter. The following "formal semantics" specifies this

transformation precisely, in a problem-oriented fashion.

Let Memory(n,k) stand for the sequence of k bit positions

Memory(n) Memory(n+l) ... Memory(n+k-1) ,

and let Binary(n,k) stand for the sequence of k bits representing

(n mod 2%) in binary notation. Let length(Q) denote the length of

string a . TL/I can now be defined as follows:

Nonterminal symbols, terminal symbols, start symbol: As before.

Synthesized attributes: code(C) , a string of bite representing a coded

| instruction. 1length(C) , the number of bits

in code(C) .
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Global variables:

Memory(v) , a bit representing part of the encoded program.

loc(v) , a positive integer representing the first bit location

of an instruction.

a , a positive integer representing the size of address specifications.

b , a nonnegative integer representing the size of symbol |
specifications.

nsymb , number of symbols (computed by the Turingol definition).

Global counters:

addrs , the number of address fields in the program,

bits , the number of bits in non-address fields of the program.

Productions and semantics:

Syntactic Rule Semantic Rules

P — set of S define loc(l) = 1.

a i= min{keN|bits + k-addrs < Ky.
b := min{keN|nsymb < 2}.

S = (v:C) Memory (loc(Vv),length(C)) := code(C).

define loc(v+l) = loc(Vv)+length(C).

C = if, VvisV, code(C) := 00 Binary(v,-1,b) Binary(loc(v,),a).
bits+ (b+2); addrs+1; length(C) := 2+b+a.

C - move, left code(C) := 010; bits+3; length(C) := 3.

C - move, right code(C) := 011; bits +3; length(C) := 3.

Cc ~ print, Vv code(C) := 10 Binary(v-1l,b); bits+ (2+b).
length(C) := 2+b.

C — jump, Vv code(C) := 11 Binary(loc(v),a).
bits+ 2; addrs+ 1; length(C) := 2+a.

C —stop code(C) := 11 Binary(0O,a); length(C) := 2+a.
bits +2; addrs+ 1.

25



Note that these rules specify a three pass process (first we count

the addrs , then we can compute a and the loc's , then we can |
£111 in the addresses) in a compact "declarative" manner. \

L. Information structures :

The above definitions have adhered to old fashioned ways to

represent information (integers, functions, sets, etc.), while Computer

Science suggests that we ought to use some slightly different models and

develop their formalisms further. A wide variety of applications (see,

for example, Knuth (1963b), Chapter 2) suggests that it is useful to

represent the information in the real world, and its structural

interrelationships, by means of things called "nodes". Each node :

consists of several "fields", which contain values; the values may be

integers, strings, sets, etc., but (more importantly) the values may be |
references (i.e., pointers or links) to other nodes. The idea of

references can be and has been formalized in various ways in terms of

classical concepts, but recent experience suggests the usefulness of

regarding references themselves as primitives. This often frees us from

making arbitrary but conceptually irrelevant choices when we are

representing information; for example, index sets are often used in
mathematics when they really don't belong, and integers were used in our

definition of lambda expressions and Turingol above although we really

wanted only unique labels and a notion of order.

Let us therefore consider making semantic definitions in terms of |

the proper data structures. A study of the Turingol-to-TL/I example shows
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that we should replace the set of location-instruction pairs in TL/I

by a string of nodes (i.e., an ordered sequence of nodes). Each node

corresponds to an instruction; jump and if nodes contain references to

other nodes. We can concatenate strings of nodes just like strings of

letters; so, for example, we can do away with the inherited attribute |

"init(S)" . The semantics for rule L.2, L, = L,3S , becomes simply

"meaning(L,) 2 meaning (L,) meaning(S)" . In this way we obtain a

‘more appealing (and more simple) formal definition, because all attributes

are synthesized except for those which are implicitly present in global
quantities. This idea of node strings containing pointers between the

nodes, instead of absolute addresses which have to be determined by

strict sequence rules, has been very successful in some studies

recently conducted by the author on an experimental compiler-generating

language.

Instead of making a complete listing of Turingol's semantics from

the string-of-nodes point of view, it is perhaps even more interesting

to consider the slightly more complicated problem of translating Turingol

into a "self-explanatory flowchart". We may regard the meaning of a

Turingol program as a set of nodes whose structure is that of a flowchart,

easily readable by any ambidextrous man who wants to perform the algorithm.

We use the notation

new(E, i= My; Ey i= Tos «o03 & i= 7)

to denote the creation of a new node with m fields; the field named E

contains the value ns ; for 1 <j <m . The value of new( ... }) is
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a reference to this node. It is interesting to compare the Turingol

definition below with the definition above, since the inherited-vs.-

synthesized roles of "init" and "fin" are reversed.

Nonterminal symbols, terminal symbols, start symbol: As before.

Inherited attributes:

fin(8), fin(L) reference to node which follows statement
or list.

Synthesized attributes:

init(S), init(L) reference to node which begins statement
or list.

index (D) positive integer, the number of symbols
in declaration.

d(0) "Jeft" or "right", a direction.

Global variables:

label(c), for all ¢ reference to the node corresponding to
the label identifier o.

: symbol(c), for all © positive integer, the symbol number
associated with the identifier o.

Fields of nodes: The COMMAND field contains strings of words and numbers

explaining what to do when reaching this node; the

YES, NO, and NEXT fields contain references to other

nodes. All nodes generated by the new operation

constitute the "meaning" of a Turingol program.
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Productions and semantics:

No. Syntactic Rule Semantic Rules

1.1 D — tape alphabet is © index(D) := 1; define symbol(o) = 1.

1.2 Dy= D0 index (D,) 1= index(D,)+1,
define symbol(o) = index(D,) .

2.1 S — print "do" init (S) := new(COMMAND := "Erase the
number aon the square

pointed to, and replace it

by symbol(c); then go on

to the NEXT node." ;

NEXT := fin(S)).

2.2 S - move O one square init(S) :=new(COMMAND :="Move the pointer

one square to the d(0); then

go on to the NEXT node.";

NEXT := fin(S)).

2.2.1 0 = left d(0) := left.

2.2.2 0 - right d(0) := right.

2.3 S+gotoo init (8S) :=new(COMMAND :="Go on to the
| NEXT node."; NEXT := label(o)).

2.4 S = init (8S) :="new(COMMAND :="Go on to the NEXT

node"; NEXT := fin(8)).

3.1 S, — if the tape init (8,) :=new(COMMAND :="If the tape square
symbol is "o" pointed to contains symbol(v),
then S, then go on to the YES node;

otherwise go on to the NO node.";

YES :=init(S,); NO := fin(s,))-
| £in(S,) yi fin(S,) ‘

3.2 5, = 0:8, init(8,) :=1nit(8,); fin(S,) i= fin(S,) ”
define label(o) := init(S.).
por WS a a 1
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Productions and semantics (continued):

No. Syntactic Rule Semantic Rules

25 Ss = {L} init(S) :=init(L); fin(L) := fins).

ol L = 8 init(L) :=init(8); fin(L) :=fin(S).

h.2 L, = L,;8 init(L;) :=1init(L,); fin(L,) :=1init(S);
fin(S) := fin(L,)-

5 P - D;L. new(COMMAND := "Start at the NEXT node.";

NEXT := init(L)).

£in(L} := new(COMMAND := "Stop."),

This definition will produce the following flowchart from the binary

addition example:

(The flowchart contains three "go on" nodes which seem redundant,

although there are cases such as "loop: go to loop” which show that they

cannot be eliminated entirely.)

20



symbol(blank) = 1, symbol(one) = 2, symbol(zero) = 3, symbol(point) = Lk.

COMMAND = "Start at the NEXT node.”
NEXT =

COMMAND = "Erase the number on the
square pointed to, and replace
it by U4; then go on to the
NEXT node."

NEXT = |

COMMAND = "Go on to the NEXT node.”
NEXT =

COMMAND = "Erase the number on the

COMMAND = "Move the pointer one square pointed to, and replace
square to the left; then go it by 3; then go on to the NEXT
on to the NEXT node." node."

NEXT = = NEXT.

COMMAND = "Go on to the NEXT node." COMMAND = "If the tape square
NEXT = pointed to contains 2, then

go on to the YES node;
otherwise go on to the NO
node."

NO = YES =

COMMAND = "erase the number on the
square pointed to, and replace it
by 2; then go on to the NEXT node."

NEXT =

COMMAND = "Move the pointer one square
to the right; then go on to the
NEXT node."

’ NEXT =

| COMMAND = "If the tape square pointed
to contains 3, then go on to the

: YES node; otherwise go to the NO
NEXT = node."

COMMAND = "Go on to the NEXT node." = YES NO =

COMMAND = "Stop." |
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We could also consider lambda expressions again from the standpoint

of appropriate information structure. It is an easy exercise to define

the semantics so that, for example, the lambda expression (Ax'Ax(x'x)x)

becomes the structure

.. LAMBDA EXPRESSION =

TYPE = "APPLICATION"

FUNCTION = ARGUMENT =

| TYPE - "FUNCTION DEFINITION" TYPE = "FREE VARIABLE"
BODY = { NAME = "x"

TYPE = "FUNCTION DEFINITION"

BODY = ¢ |

| TYPE = "APPLICATION"
FUNCTION =, ARGUMENT =

{| TYPE = "FORMAL PARAMETER’ TYPE = "FORMAL PARAMETER"
1 | BINDING = | BINDING =

Thus, bound variables become "formal parameter” nodes which refer back

+ the appropriate function definition in which the variable is bound.

Such a structure gives the essential content of the lambda notation,

except for the definition of functional application which can now be

given in various ways in terms of the node structures.
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oT Summary

We have discussed several examples in which rather camplicated

functions have been defined on context-free languages. In each case

it was possible to give a definition which is concise, in the sense

that hardly anything is defined that isn't "necessary"; and at the same

time the definitions seem to be intuitive, in the sense that they

mirror the structure by which we "understand" the function. These

definitions are based on assigning attributes to the p—— symbols

of a context-free grammar, and relating the attributes which correspond

to each production.

We have also discussed some of the choices for a semantic basis

of programming languages. If we are interestedin information-theoretic

properties of algorithms, we may prefer an infinite branching structure

as & computational model; if we are interested in representations of

algorithms which are analogous to real live computer programs, we may

prefer an "embidextrous man" (essentially an automaton) model; if we

are interestedin the underlying structure, we may prefer an flowchart

model. Other models are also possible. Whatever the model, formal

definition via attributes seems to be helpful.

At the present time these ideas are being used and extended by

Wayne Wilner, to construct a formal definition of a major programming

language, SIMULA 67. The complexity of this language (over 300 productions

in the syntax) makes the semantics slightly less transparent than the

| examples in this paper, but in fact the definition turns out to be simpler
than anticipated.
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Perhaps the main direction for future work which is suggested by

the examples of this paper is to devise a suitable "context-free

grammar" for arbitrary node structures instead of just strings.

Attribute-definition on such grammars may lead to a very natural

declarative language for problem solving in terms of relevant structures.
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