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l. Introduction

This paper is intended to describe an axiomatic approach to the

semantics of Algol-like statements, which is mainly based on the

axiomatic treatments of the equivalence of Algol-like statements by

Igarashi (1964).

In Section 2, the class of Algol-like statements of our concern

is defined syntactically, in order to clarify the scope of the present

paper, which class is essentially generated by simple variables of a

type, go to statements, labels, assignment statements with a set

of functions, if-then-else with a set of predicates, semicolons for

concatenation, and parentheses to compose compound statements.

Besides McCarthy's operator, namely (- ,) for if-then-else,

some notations different fram usual ones will be introduced for the

sake of ~onciseness, which will possibly help us to apply cur mathematical

intuition, though the writer has no intention of proposing such a
notation for a gener.l use. It must be noted that we use only different

symbols and do not change the syntax. (Otherwise, it might became

uncertain that we are working on algorithmic languages.)

We use a generalized inductive definition in order to define the

class of our concern, which, although a little unnatural, constitutes

a basis for defining and proving same things related to that class, by

the help of the apparent induction principle induced by it.

In Section 3, the interpretation (that might be seen to be already

a kind of semantics) of the statements belonging to the above mentioned

class is given, which is done using induction on the class and the result
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has a somewhat analytical appearance. Actually we shall define the

interpretation as a function on the class into a certain set of partial functions,

and, presumably, one can prove everything about these Algol-like statements

using this function.

Some results included in the work by Manna and McCarthy (1969)

will be taken into consideration, when we define the interpretation of

conditional statements.

In Section 4, categories of a kind whose objects are Algol-like
statements, the interpretation being fixed, will be introduced in order

to clarify the meaning of the relations which have been used in

equivalence theories of Algol-like statements by Yanov (1958), Igarashi

(1964), de Bakker (1968), etc. (McCarthy (1963a) discussed the

equivalence of conditional forms, which was also related to Algol-like

statements, because the latter contain conditional statements.)

together with the correspondence between these relations and the notion

of correctness introduced by Floyd (1967) and refined by Manna (1968, 1969),

which ig also related to the discussions by Hoare (1969).

The relations I and T defined by Igarashi (1964) become
special cases of isomorphiems in one of these categories. (On the one

hand, these categories, whose objects are defined in Sections 2 and 3,

are intended to serve as a model of the formal system described in the

later sections, though we shall not enter into this point. On the other

hand, they can possibly be regarded as a basis for further algebraic

theories concerning programs, as a branch of mathematical theory of

computation.)
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In Section 5, a formal rystem representing the relations X

and = will be presented, which is a revision of the main formal

system (L.4) in the paper by Igarashi (196Lk), of which the latter will

sometimes be called 'the previous system'. Besides minor refinements,

it is so extended that partial functions and partial predicates may

be allowed in statements and that the ability of the formalism may be

considerably improved, although it is incomplete (which 1s inevitable).

Especially, Inference Rule 9 is new, for which McCarthy's notion of

homomorphisms of programs (unpublished) and Floyd's above mentioned

work are taken into consideration as well as the obvious relationship |

between program schemata, firstly treated Ly Yanov (1958), and finite

automata discussed by Igarashi (1963) and Rutledge (1964). This rule is,

however, still a result of compromise between capability and

simplicity.

Axioms related to go to statements have been entirely reformed.

In Section 6, a number of elementary metatheorems concerning the

formal system of Section 5 are proved. These metatheorems show that

any theorem in tle previous system becomes a theorem also in the

present system. Therefore each of the completeness theorems for the

previous system remains valid, though we shall not enter into this

point.

It must be noted that the incompleteness of the formal system does

not imply that this formalism gives only an inadequate description of

semantics, for describing or defining the meaning of a program can be

regarded as a rather special case of equivalence. In fact, for any

Algol-like statement A (in the sense of Section 2) in which variable
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symbols X19 +ee9X ~~ OCCUr and for any variable-free arithmetic expressions

(constants in effect) Cire TLL Y «esd, the following holds:

Let Cy,...5C ,d5,00 .»d be the values corresponding to

Cys reerC yds, ceed, , respectively. Then, A stops and gives the

final values d, JP 1-8 to XyseeosXy respectively, provided

that the initial values of X,,...,X are CYR , respectively,
if and only if the formula |

x, i= CyseeeiXy (= Cy iA = xy i= dyjeeeixy i= 4

is provable in the formal system of our concern. (See Theorem 55 |

by Igarashi (1964).)

Thug the formalism has an ability no less than the explicit definition

of the interpretation given in Section 3. (Namely,

JAl(e «esc se) - CY coord ye) if and only if the above formula is
provable.)

In Section 7, we shall define a special transformation of the class

of Algol-like statements of our concern. On the one hand, this

transformation can be regarded as a representation of a

conceptual compiler. On the other hand, it demonstrates how the meaning

of each statement can be defined in terms of certain primitive actions

on a conceptual machine. (Therefore, this transformation itself might

be regarded as a 'constructive' definition of semantics.)

In Section 8, we shall formally prove the validity of the above

transformation, (which mathematically means that each program is transformed

into a program equivalent to it), in the system presented in Section 5.

On the one hand, this can be regarded as a kind of proof of
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compiler correctness (at least most of the essential features of the

proof of compiler correctness being included), which has been done

firstly by McCarthy and Painter (1967) for arithmetic expressions,

using induction on expressions. On the other hand, this can be

regarded as a sufficient proof of the validity of the particular

description of semantics in Section 7 which is based on primitive

actions. (Also cf., Painter (1967) and Kaplan (1968).)

Notation and Terminology

We shall use the following notations and terminology.

l1. Sets.

Symbol {8 denotes the null set. S+S' denotes set SUS’
+

whenever SNS’ =f . n= {0,1,2,..0,} . n = {1,2,...} * (0) =f ‘

2. Functions.

We shall use the word function to mean a possibly partial function.

(fl) Expression

£f:8 -8

reads as follows.

(1) f(a) may or may not be defined, for each acS .

(44) If f(a) is defined, then f(a)eS' .

(111) If afS , then f(a) 1s undefined.

(£2) Dam f£ = {a|f(a) is defined} .
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(f3) Let S, cS, then f]s, means the function g defined as
follows. (f£:S —3')

‘ -S'g : So S

Dom g¢ = Dom £ N So .

g(a) = f(a) for each acDom g .

(f4) We note that f|Dam f is a total function for any f .

(f5) f = g means that f and g are defined on the same set and

that f|Dom f = g|Dom g , while the latter equality means the

equivalence of the total functions in the usual sense.

(fi) If f :S -S* and g : S' -S" , then gof, or gf, means

the function h defined as follows.

h : 8-38".

Dom h = Dom £ N {a|f(a) ¢Dom g} .

h(a) = g(f(a)) for each acDam g .

(£7) If £f :S =S , then f denotes the function f£o...of

(n times). lim 2° means the function g defined as follows.
n-

€ : S=85 .

a cDom g if and only if there existe MET such that
+1

£7 (a) = da (a) , so that f(a) = f(a) for any mM
and n >M_ .

M

g(a) = £ 8(a) for each aeDom g .

6



(8) If £:S—-S' and g:S = 8' , then r+g means the function

h defined as follows.

h: 8-5" .

Domh = (Dom f-Dom g) U (Domg - Dom ft)

U {ala eDom £ N Dom g and f(a) = g(a)} .

f(a) acbhom f
h(a) =

g(a) acbhomg - Dom f .

5. Predicates

We shall use the word predicate to mean a possibly partial predicate.

We shall write p(a) =T, p(a) =F, and p(a) =U , to mean p(a)

is true, false, and undefined, respectively. For each predicate p,

Vp denotes the total predicate defined by

T p(a) =U
(Vp)(a) =

F otherwise.

Similarly, for each function f , Vf denctes the total predicate

defined by

T f(a) is undefined
(V1) (a) =

F otherwise.

(Here p and f are assumed to be unary and defined on a certain fixed

set, for simplicity's sake.) Thus (V£)(a) means —*f(a) used

by Manna and McCarthy (1969), while we shall use #* for various

purposes in the present paper.
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| L. Truth Tables.

Since we are going to treat partial predicates, we have to

define the meaning of logical connectives ~~, A, V, D>, and =,

for three-valued logic, for which we shall use the truth tables by

Lukasiewicz (1941) denoted by Ty , and that by McCarthy (1963b) denoted

by Ton . Tg for the value U is as follows.

*

(U0) =U. (UAT =(PAU) =U. (UAF) =(FAU) =F.

*

UAU) =U. (UVT) =(TVvU)=T. (UVF) =(FVU) =U.

wvv) =u. (Wom =T. @U>DF) =U. {UU =U. |

(=F) =(F=U)«<F. (U=sU)=T.

In Tn the asterisked members, the remaining members being the
same, become as follows. (FAU =F and TvU=T.) (UAF) =U.

(UVT) =U. (UST) =U . In order to indicate the truth tables considered,

logical connectives will be suffixed by Ty or Ton . Thus, for instance,

Tom |

5. Structures.

By a structure R we shall mean a collection of functions and

predicates defined on a set, which is called the underlying set of @

and denoted by |R| , together with that set. In the present paper

these functions and predicates are possibly partial. We shall consider

two structures (or two similarity classes strictly) f and 2 in

the text.
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2. Formation of Algol-like Statements

Alphabet

et £, VY, ¥, and R be four disjoint sets whose elements

are called label symbols, variable symbols, function symbols, and

predicate symbols, respectively. The set ¥% is the union of disjoint

sets (0) (1), .»ey and the elements of $n) are called n-ary
function symbols. Similarly, @ is the union of disjoint sets

p(0) p21) ..»y and the elements of p(n) are called n-ary predicate
gymbols. The alphabet of Algol-like statements consists of all the

elements of £, V, 5, and P , together with the following special

symbols.

-1
A i= 3 (=, )

Tn some cases described below the logical symbols:

- A V YY &

will be also contained.

Algol-like Statements

Algol-like statements, or statements, are defined together with a

function denoted by ( ) which sends each statement onto a finite

subset of £ , by generalized inductive definition as follows.
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Atomic Statements

| (al) A is an atomic statement. (A) =§ .

(a2) For each Jef , ¢ and ot are both stamic statements.
- “1 -

(6) ag. (a7) = {a}.

(a3) For each xc¥ and each ye¥ , X :=y is an atomic statement.

(x :=y) =§.

Statements

An atomic statement is s statement. Any other word on the above

alphabet is a statement if and only if it is defined to be a statement

by a repeated use of the following rules.

(b1) If A and B are two statements such that (A)™ nN (B) =p,

then AjB is = statement. (A;8)” = (A)™+ (3) . |

(b2) If x := f£5,..., Xx xf are n statements and «(®) eg(0) ’
—.) co oD) -then x := x 'f,...f is a statement. (x:=x £1.02) Pp.

(b3) If x := £iseeesX i= t , A, and B are n+t2 statements

such that (A)" N (B) =f and o(Bep (0) , then

(Me out ~ A,B) is a statement. (Me ...2_ - A,B))= (A) +(B)" .

A statement which is defined to be so only by the above rules will be

called a basic statement.

(cl) If (p = A,B) is a statement, then (~ p ~ A,B) is a statement.

(=p ~48)" = ((»=~4B) .

10



(c2) If (p = A,B) and (q = A,B) are two statements, then

(pA q = 4B) and (pV q=A,B) are both statements. The

values of ( )~ are both identical with ((p - A,B) .

(¢c3) If (p —= A,B) is a statement such that xeV occurs in Pp

and neither ¥x nor W®x occurs in p , then (¥xp — A,B)

and (Axp — A,B) are both statements. The values of ( )©

are both identical with ((p = A,B)).

Parentheses and commas will be used also auxiliarly to avoid

syntactic ambiguity and to improve readability. Especially A) fy. fT
(n) n nand p ‘f...f are written as x J(2y5000t) and of Y£y0nnst,) ’

respectively. Semicolons will be abbreviated if there is no possibility

of ambiguity.

Representation by ALGOL 60

The statements in the above sense are intended to mean the statements

in the sense of ALGOL 60 (Naur et al., 1360) as fcllows.

A corresponds to a dummy statement (empty).

0 corresponds to go to oO .

ot corresponds to © : (Gummy statement labelled by o ).

(p = A,B) corresponds to if p then A else B.

tx, 33 —3y A, and V mean the same as in ALGOL 60.

The parentheses used to avoid ambiugity either correspond to begin

and end delimiting compound statements or mean the same as
in ALGOL 60.

(A)" denotes the set of labels standing in A .

11



Thus each statement can be regarded as a statement in the sense

of ALGOL 60 in sc far as neither ¥Y nor ¥ occurs in that. Thus we

shall call vo, "1 » I such that x:=f is & statement, and p

such that (p = A,B) is a statement, respectively, a go-to, a

labelling, an aritimetic expression, and a Boolean expression.

Notations

Statements are denoted by A,B,C,... . Arithmetic expressions and

Boolean expressions are denoted by f,g,h,... , and, P,q;Tryee.

respectively. Label symbols and variable symbols are denoted by

O,TyUs +s. » aNd, X,y¥,Z,... 5 respectively. We shall use a number

of functions and predicates defined on the statements which describe

elementary syntactic properties. The function ( ) , being a typical

example, was already defined in the above. All other functions and

predicates listed below can be effectively defined in a similar manner.

1. Sets of labels. By an occurrence of oef in a statement A we

mean only such an occurrence as is different from the occurrences in

the statements of the form go © occurring in A .

A" = {o]o occurs in A} .

AT = {o)o”t occurs in A} .

A =A yA.

AT =A -a"

A" = {o|oea’ NA” ana 0"! occurs textually earlier than an

occurrence of o in A} .

12



Thus A means the set of labels which are used for the purpose of
designating the destinations of the go to statements occurring in A .

12 A" 4p, then the control may leave A by executing a go to |
statement whose destination is not within A . Such a go to statement

will be calledan exit of A . If A” = § , there are no loops in A.

V(A] = {x|x occurs in A} ,

v(£] = {x|x occurs in f} ,

and

vip] = [x|x occurs in p} -

L(A] = {x| a statement of the form x :=f occurs in A} .

R[A] is defined by induction as follows:

For each atomic statement such that V[A] = § , RIA] = g .

R(x :=f] = Vif] .

R[A;B] = R[A] U R[B] .

R((p - A,B)] = Vip] U R[A] U RIB] .

Thus L[A] means the set of variables whose values may be changed by

the execution of A , while R[A] means the set of variables whose

values may affect the course of action and the results of executing A.

x, Substitution. Let ByseoesBy and A be n+l statements such

that B, occurs in A m, times (my > 0) , where the occurrences
may be overlapped by each other unless they are not the same. Let

B ’ je(m, ] , denotes the j-th occurrence of B, , where the order is

13



defined by the position of the occurrence of the first symbol. Let

CireresCy be n statements. Then, by

%8,, .»B {C2 oe -C.]
or (omitted commas)

[C.yeeesC ]
A8,---B, 1 n

is meant an arbitrary statement that is cbtained from A by substituting

~h(i,l ~h(i,?

Cy for 5% ’ J ! 1) , for each ie(n] , with the following
restrictions:

(1) 0<e <m .

(11) 1 <h(1,1) < «eo <n(i,4,) <m
~ t ]

(iii) The occurrence ghd) and ght »d') do not overlap each other,
for any distinct pairs (1,3) and (1+, 3')

(iv) The result of the substitution is a statement.

By

0

ABye«-B [CseeesCy)n

1s meant the unique statement that is obtained in the case that g =m

for every ie[n] , in the above, which does not always exist because of

the restriction concerning overlapping and the requirement that the

result should be a statement.

We shall use the same notation also for arithmetic expressions

and Boolean expressions.
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L. Copies. let 0,,...,0, be arbitrary distinct elements of
t + 4
A =A, and let T5007) be distinct and T, A , for any
ie[n] . Then

-1 -1,0

A . 1 STA Ty reer) ]
) n 1 NN n

is calleda copy of A . If Ay is a copyof A , and, A, is a

copy of A then A, is also calleda ccpy of A . Copies of A
are denotedby A',A",A"',... .

De Go=to and labelling.

A begins with a labelling, if A is of the form i:

A ends with a go-to, if either A is of the form Bo or A is

of the form (p <=B,C) and B and C both end with go-tos.

An occurrence of statement B in A is preceded Ly 8 go-to,

(equivalently, B is preceded by a go-to in A) , if A

is of the form C,[oB] .

15
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3. Int station of -1like Statements

By an interpretation of statements we shall mean (U,KR, J)
defined as follows.

let U be a subset of V, “4 the set of statements

{A|VIAl cU} , and K a bijection (i.e., 1-1 and onto function)
such that

kK :U=-1I,

where I is either (s] , for an 8, Or n in accordance with the

cardinality of U . Let ££“ denote $+ {¢] , vhere p is a new fixed

aymbol.

Lev. & be a structure that satisfies the following

conditions.

1. el A8-

(n) (0) (n)2. For each x‘ '€¥ , an n-ary partial function denoted by x

is defined. 1I1.e.,

n n

$0: al - fel

3. For each o(0)a , an n-ary partial relation denoted by p{™)
is defined. 1I.e.,

n

o{™ : |o|” ~ (0,F) .

The elements of |] will be denoted by 8;,P,,Cy, B5:05Cps ov

Thus by R will be meant the total functions by which «| a)
and o(®) I o™ as well as the structure itself, strictly.
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Let r° be a set of truth tables for logical connectives. Let

|8] adencte |R|*x£, i.e,

|] x... x |] x (er{e)) »
Eg —

8 times

if U 4s finite. The elements of |A] will be denotedby 8,0,C5000 o

For each ac|h| such that

a= (815-22r8,,0)

and each ueU , 8, denotes 8 (u) , and oe denotes o . We write
(a), instead of a frequently for the readability's sake. If U
le infinite, the infinite dimensicnal direct product |R|% will ve
used instead of |R|°% , namely s is considered to be infinite.

The total function J defined below sends each statement Ae,

onto a partial function, J[A] , from |B] into ial . JIA] wild

be written as Ap s thus

Ay : A - 12].

Two partial functions, one sending each aritmetic expression f

such that V(f] c U onto a partial function

Ty: |] - [1 ’

and the other sending each Boolean expression p such that ViplcU

onto a partial predicate

17



will be defined simultanecusly for the readability's sake.

For a partial function

eo: || - 18 >

¢ denotes the function defined by

¢: |5 - |

and

a . =

oa) =
@(a) otherwise.

Definition of

The definition of J[A] , i.e, Ay , given in accordance with
the last rule which should be used in order to define A to be a

statement (Secticn 2), which defines J[A] for every AeZ, effectively

by the induction principle induced by the definition of statements, is

as follows.

Atomic Statements

(1) A =A.

Ay(s) == for any acl -

Hereafter the phrase like 'for any ae|8|' will be omitted.

18



(a2) (1) A =0 .

| ) oo
(Ay(a)) = . u ’ ir & = ¢ 3

and

Aga) = a , otherwise.

| (11) A =o" .

(A (a)) [ x if &, =0;
y. = \e > = ’

and

Ap(a) = a , otherwise.

(a3) A =X :=Y »

vp(a) =a, -

Y p(8) x

8, U-x or vy

and

Ag(a) = a , otherwise.

Statements (non-atomic)

(pl) A = B;C «

Aya) = Ril (Cy By) ((Cy° By) (8) -

19



(b2) A =X t= 1) £1.08,

(Xe...)a) = (2, (8)eennt, p0))

(n)
(x £1...%) g(a) u =X

A = , if = >(Ape), § ueU-{x} or u =X ES
and |

Aya) = a , otherwise.

(b3) A = (Me, ...1, ~ B,C)

(6e,...2)p(8) = {2 (8) padyenurty(8)

1im (B, + CG)" B ,
Lim » » (0)

a =¢ and (oe ees) (8) =T
xX 1 np ’
or a €B

p §

lim (B, + CQ"
ul A p+ Cp Cpa)

Ag(a) = (1)
. =¢ and (pM. 1) pa) =F ,
or a eC ;

| x

a , a fa uct ule] ;

undefined, otherwise.

20



(¢l) A =(~p=B)C) .

(— P) 4(8) = "Lo (py(a)) : (See Section 1.)

A, 1s defined by the same rule as (1) of (b3) above except

that (6M e,..01) (8) , occurring twice in it, should be
replaced by (- p)4(a} ©

(c2) (1) A =(pA q = B,C) .

(p A q)4a) = N oEs(e)rapa)) . (See Section 1.) |

Ay is defined by the same rule as (1) of (b>) above
except that (ot™) £,..-2,) ple) should be replaced by
(pA q)pla) - |

The case A = {pV q = B,C) as well as the case (C3) will be

omitted, for it suffices to define (p Vv q)8°’ (¥xp)»’ and

(7xp)Py similarly and use (1) as the above.

Intuitive Meaning of J

Practically, J[A] , namely Ag , has the following meaning.
We consider a computational process denoted by (A,a) as follows:

1. Suppose

a= COPRRRFL 6) . (8s may be infinite)
Assign the value a = 8, x) to the variable x (identified with

21



the variable symbol x) as the initial value for each XxeU .

pp. [Execute A fram the point labelled by © , while the leftmost

point of A is chosen as the entry if ¢ = ¢ , and, if ofA”

then we consider A has no effect (i.e., identity transformation).

Then the following hold.

If the process (A,a) terminates at the exit whose destination

is 7, giving the final value bx to the variable x for each xeU ,

then

(J{A)(a)) =b for each xeU

and

(J[(Al(a)), =T >»
X

and vice versa.

If (A,a) terminates at the normal exit, i.e. the rightmost

point of A , then

(J[A)(a)) =v
X

while the relationship concerning the values remains unchanged, and,

if (A,a) does not terminate, then J[A] 1s undefined. The converse

are also valid.

Choice of T° .

As studied by Manna and McCarthy (1969), the choice of r° is an

important problem. We shall assume TI£ as the foundation hereafter,
unless we specify r° . However, it must be noted that all the axiom

22



schemata of the formal system presented in Section 5 are valid, which-

ever set of truth tables we may use. Fram the practical point of view,

the process of most implementations are related to Tom »ather than to y .

On the other hand, they make no difference in so far as all

£{") and p{™ are total and neither Y nor I is involved, which
is also the usual case when we consider actual ALGOL 60 programs which

contain no recursive calls of procedures.

Remark

Function J is an extension of Jy for T,-stataments and J

for T,-Statements (Igarashi 1964). For instance, J[A](a) defined
above is identical with |

CAS [CIPRREFTL SFL 0 |

The reader may notice that |@| in the present paper corresponds to J.

in that paper, while 5 in this paper is used in a different meaning.
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L. Categoryof Programs

Programs in the General Sense

It seems to be convenient for us to consider more genersl programs

as the background for the treatments of the properties of Algol-like

statements. By a program, let us mean a partial function fram an

arbitrary set to another set together with its denotation. This

definition does not exclude those partial functions which cannot be

defined effectively. Instead, we shall describe it explicitly whenever

the definability or constructiveness matters.

Programe will be denoted by A,B,C,... . For each A, J{A)

denotes the partial function corresponding tc A, and G[A] the graph

of J[A] . let D be an Algol-like statement such that Deg; ,

and (U,K,R,F°,J) be an interpretation. Then the pair (D, (U, 6, RTC, T))
is a program, for a unique partial function J[D] , namely Dy » is

determined by it. Therefore we shall assume the interpretation is

fixed hereafter, so that each Dea, represents & unique program. Thus
we identify an Algol-like statement with the program represented by it,

and the set of such programs will be denoted by ar .

What we shall do firstly is almost the same as considering a sub-

category of ens (the category of sets) whose objects are graphs of

partial functions. The only difference lies in that the denctations

are distinguished in our treatments. For instance, we do not say A

and B are identical nor A =B , even if J{A] = J[B) , while we may

say A and B are isomorphic.
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CategoryPr

Each program will be called an object of category Pr . The class

of all the objects, namely programs, is denoted by Ob Pr For each

pair A and B belonging to Ob Pr, Hom, (A,B) denotes the set of
triples of the form (A,{,B) such that

¢ : G{A]) = G[B]

and that { is a total function. The elements of Hom, (A,B) are

called morphisms of €r . If there is no possibility of confusion

the morphism (A,{,B) will be abbreviated by { . We frequently

write { : A-3 or ASE instead of Leiom,.(A,B) . If Abs lec ;
then (A,78,C) ¢ Home, (4,C) 1s defined as the composition of morphisms
(A,§,B) and (B,N,C) , where nt in (A,M¢,C) denotes the composition
of functions ¢ and T in the usual sense. Let |A) denote the

identity function of G[A] onto itself. The morphism (A, ideeAP? is
called the identity morphism of A and is denoted by 1, .

We shall see that Pr satisfies the axioms of category as follows:

1. Associativity of Composition. If

atslctn

then (ne) = ({N)¢t as morphisms.

2 dentity If ASB th 4 tl If cla then = 1. I en . an = A . ’ Mn AT .
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3. If the pairs (A,,B,) and (A55B,) are distinct, then

Hom, (A, +B, ) nN Hom, .(A5,B,) =§ .

Category Pr®

Let Pr denote the full subcategory of @r such that Ob Pr’

consists of only those programs A such that

pom(J(A)) c {5°

vhere

|#*| = {alac|d| and a =2} . (See the below modification of J.)

For each AcObPr® and BeOBPr® ,

by definition (of full subcategory).

We consider a map:

Ob Pr -~ Ob Prt

vhich sends each AcObPr onto AcOb Pr’ such that

SLA) - Jal | 1#| .
That is to say we shall forget computational processes starting from |

any entry different from the normal one, narely the leftmost point, if

A 1s sn Algol-like program, modifying J[A] into sal #1 ‘
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Hereafter ve shall be concerned with Pr’ , 80 that A,B,C,...

| will be understood as A BB L’ eee if the former do not belong to

Ob prt . Apparently the morphism (A,{,B) is a monomorphism,

epimorphism, or isomorphism, according as the function { is univelent

(1-1), onto, or univalent and ontc. We shall write { : ASB or

4
ASB to express that { : A -B is an isomorphism, and A=B to

express that there is an isomorphism from A to B , namely A and

B are isomorphic. |

Value-Preserving Monomorphisms

We pay special attention to such a monomorphism { that has the

following property:

Suppose { : A = B , and the function { : G(A] —~ G[B] sends

(a,b) eG[A] onto (c,d) eG[B] such that

a=¢c

and

b, =d for each ueX+ {x} ,

for a subset X of 1 , for any ae|l¥| .

In such a case, { (as a morphism and as a function) will be said to

preserve the values of X , or to preserve X, and we shall frequently

write - instead of { in order to indicate that { preserves X .
Moreover, if the choice of { itself does not matter, we write A 4 B

instead of Sx ¢ A=-B. Similarly we shall frequently write

AZB or ATB instead of by :A=B , and ASB insteadof

C,:A=B , that is ASB .
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Remarks

(1) AgBgC impliesA = C.x Y ny

(11) ty! = Ty implies that { preserves XNny .

(111) (8, = Ty implies that the function {|Im &, preserves XNY .

(1v) Nyx - 1, implies that { and 1 both preserve XUY .
(v) In an arbitrary category C , & morphism 7 is an isomorphism

if and only if there exists amorphism & and ¢,de0b C such

that

By = 1, and 75 = 1, -

Such & & is unique and usually denoted by > 1.

Proposition 3. If AzB and BygA, then AylGy B .

Proof. By definition of z there exists Ex :A-B . Then,

ty (a,7(4](a)) = (ay J(B1(a)) for any a€ Dom J[A] ,
because the right side is the unique element of the form (a,b)

belonging to G[B] . Similarly there exists T : B - A such that

Ty (e,3(B1(a)) = (a,J[A](a)) for any ac Dom J[B] .

Thus x is an isomorphism, for Tix = 1, and § Ty = 15
(cf. Remark (v)). Besides, § preserves XUY , by Remark (iv).

Q.E.D.
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Proposition 2. AxB if and only if ApB and BgA .

Proof. Sufficiency: Apparent from Proposition 1.

Necessity: If A X B , there exists 1% tA=3 and

"2:3 A such that {73 =1, (cf. Remark (v)). {7°
preserves X , by Remark (iv).

Q.E.D.

For each Ae! and Bed! , these value-preserving monomorphisms

or isomorphisms have the practical meanings listed below. The reader

may recall that A is understood whenever A denotes such a program

that Dam J[A]  |8%| 1s not satisfied.

1. Relation T° |

The following relationships are equivalent with each other.

(a) A 4 B .

(b) Dom J[A] c Dom J[B] , and for any aeDomJ[A] ,

(J[a}(a)), = (J[B](n)), for each ueX+ {x} .

(c) For each ac|B®| , if the process (A,a) (see Section 3) terminates

with the result b , be|M , then the process (B,a) terminates

with the result c¢ satisfying

b, = Cy, for each xeX ,

namely the values cf variables coincide variable-wise, and

b = C ]
X X

namely the destinations of the exits are identical.
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2. Relation é . |

The relationship A 7° nolds if and only if the following
conditions are satisfied.

1f (A,a) terminates, then (B,a) terminates for any ac|d°| .
Besides the destinations of the exits are identical.

3 Relation X .

The following relationships are equivalent with eac’: other.

(a) A x B.

(v) AgB and BgAh, or, by Proposition 1, AgB and Bg A .
(¢) Dom J[A) = Dom J[B] ,

and, for any aeDomJ[A],

(J(Al(a)), = (J{B)(a)), for each ueX+ {x} .

(4) The process (A,a) terminates if and only if (B,a) terminates,
and the same conditions as l(c) atove are satisfied by the results

of these processes.

L. Strong Equivalence and Ordering.

The relationship A = B holds if and only if A and B are

strongly equivalent in the usual sense. The relationship A i B holds
if and only if J{A] < J(B] in the natural ordering of partial functions,

namely ® <V¥ if and only if ¢ is a restriction of ¥. A=3B if

and only if A 5B and BoA , which are still weaker than J[A] = J[B)
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in the original sense of J[(A] and J[B] , being equivalent to

| JA] = J{ B] , 1.4,

by) Td “5 | Ta

5. Correctness.

Firstly, the concept of correctness of programs introduced by

Floyd (1967) and extended by Manna (1969) will be explained in our

notation so that the comparison becomes easier. Manna's definitions

are as follows: |

Program A is said to be partially correct w.r.t. predicates Pp

and ay if and only if

Pla) =T implies a,(7(A](a)) =T, for any aeDamJ[A] . (1)

Program A is said to be correct w.r.t. Py and ly if and only
if

pple) = T implies acDomJ{A] , (2)

besides (1) above.

Let 8 denote either oo or. o~ Lo for an arbitrary o such
+

that ofA" . Then, apparently, (1) and (2) are equivalent to the

following relationships in this order.

(p = As8) 3 (p = A5(q = A,8),8) (1)

(p = A,B) g (p ~ AB) (2)
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6. Representations of = and % by = .

3ince we shall consider a formal system which represents (although

incompletely) the concept of equivalence, namely relations % and =,

we shall see that 3 and X can be defined by = , here. We shall

use, however, X as well as = in the formal system because of its
practical applicability.

an
Let % (fy, .e sf) denote the statement

Relationship A I B holds if and only if

t esol t J. 7
1 ~ 1

for an arithmetic expression c¢ such that Vic] = and ty sees

such that {tyseeasty] = V[AlUuVIB]-X .

Relationship A 4 B holds if and only if

Y.,2esV i WES| |

ATI (us eee) 5 (A0y “ed LN E ECATIIR AREF

where the following conditions are satisfied:

{uys.eeou} = VIA) 0 VIB] .

[vs-eesvp} N (VIAJUVIBI UX) =.
++

{oy,.0050,] = A .

-1 -1 7 -1 -1

(Ag, TEL )’ ds a copy of Ao, "...0p {ade Section 2)- e1.,t r

such that (AoT™.. 0) NB =@ .
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Inductive Limits

The concept of inductive limits is useful in Pr and Pr’ .

For instance, we can frequently use the following method in order

to prove A A B .

We find two sequences of programs (4,) Len and (8,) sem
with morphisms such as

iJ .

I -
Thy : B, Bj 2

1 13 |
(A, 8) = lim (B )» &y — Ty }

and

i

for each ie and jen . This is a sufficient condition for a

such that § : A-B and that { preserves X to exist. If p and

q contradict each other, then (p = A,(q = B,4)) is a sum of

(p - A,4) and (q = B,A) , in the sense of the terminology of category,

being a special case of inductive limit, where 4 is a statement of
- a: - -

the form o Yo such that ofAX UB- and AT NB =a" NBT =p.

This fact may be considered as a justification of writing p-A+ p-B

instead of (p = A,B) conveniently used in the proof of the completeness

of L.3 by Igarashi (196k).
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5. Formal System Representing the Equivalence of Statements

Well-formed Formulas

For two arbitrary Algol-like statements A and B belonging

to dy and an arbitrary subset X of U,

A=3B

and

A X B

are well-formed formulas, or wffs. (cf. Intended Interpretation below.)

Substitution Rules

In the following schemata of axioms and inference rules, erbitrary

statements; variable symbols; label symbols; arithmetic expressions;

Boolean expressions; and sets of variable symbols can be substituted

in place of A,B,C,... 5 X;,¥»%Z ; SL PRREY TyTysees $s £58500 3 PrQAsTrevs 3

and X,Y,Z,... ; respectively, provided that the results of such

substitutions constitute wffs, and that all the restrictions imposed

on the schemata, immediately following each schema, are fulfilled.

An arbitrary copy of the statement that is substituted in place

of C can be substituted in place of C' in Axiom 12; any other

occurrence of substitution operator indicated by brackets should be

treated similarly; end an arbitrary statement of the form oto can be

substituted in place of A ; with the same proviso as the above.

A schema of wffs S(i) in which i occurs as index of statements

should be replaced by the line of the form

3h



B11) ... B(v)

before any other substitution, where ven? and v should be substituted

in place of n occurring in the restrictions.

The symbol 1 stands for a nullary predicate symbol such that

LL =T « Similarly Og = F .
The formulas in the sense of predicate calculus that are obtained

after the substitutions of the symbols fg cc 5 Drs: and that

constitute a part of vestriction, except those expressions containing

get-theoretic symbols, should be interpreted in one of the following

ways:

(I) Let d be a formula (in the sense of predicate calculus) that

contains exactly n variables such as STALE ’Xy Then, we consider |

that the restriction expressed by 4 1s satisfied if and only if

(II) We presuppose an axiom system T (or theory) that is consistent

(and semantically complete, preferably) and that contains all the

symbols belonging to ¥ or P and the two symbols = and ¥ . Then,

we consider the restriction expressed by d , as above, 1s satisfied

if and only if

a .I

In the both methods, logical connectives occurring in the restrictions

before substitutions should be read as the connectives of Ts , and
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@ = ¥ interpreted as either both sides are defined and equal, or

both sides are undefined.

Remark

Since semantically complete axiam systems do not always exist,

we have to note (I).

Axioms and Theorems

Any wef that is a result of substitution into an axiom schema is

an axiom. An axiom is a theorem. If

¥ eee Fn
¥

ig a result of substitution into an inference rule schema, and

¥y ‘s ¥, are theorems, then ¥ is also a theorea. All the theorems
are defined to be 80 only by these rules. We shall frequently write

I 5

to mean that § is a theorem.

Asterisks are used to emphasize a certain restriction, for the

readability's sake, so that they are not parts of the formal system.

Index like (Ia") » (IIInm") , etc. indicates that the same axiom or inference

rule was used and indexed by Ia, IIm, etc. by Igarashi (1964), for the

convenience of comparison.

Special Substitution

In the following schemata of axioms and inference rules, any

occurrence of = can be replaced by Gg , and vice versa.
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Axioms andInferenceRules

| Axiom 1.(a)  (AB)C = A(EC) .

(b) o((AB)C) = o(A(BC))

Axiom 2.(a) ANZA.

(b) AAT A. (Te)

Axiom 3.(a) olza. ) |
(b) got zp

Axiom L. OA = 0 .

ofr” .

Axiom 5. AL = A.

At _ ¢ . ]

Axiom 6. X :=XTA. (Ia)

Axiam 7.(a) x :=f}A}X :=g = A [£1%x :=g [21° . (oh)

Ral 6

L(A) n (viflu [x}) = 8 .

(b) X:=fjA;y i= = X t= £34 [f]5y i=g [f] . (1c")
x and y are distinct.

Lal n (viflu {x}) =¢ .

xfvi£] .
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Axiom 8. ASA. (1a)
LIAINX =p .

At ep

I

Every function or predicate symbol occurring in A represents
a total function or predicate, by the interpretation.

Axiom 9. (1 ~AB) =A . (IIIm')
Axiom 10. (p = A,B) = (~ p =~ ByA) (IIo)

Axiom 11.(s) (p = (@ = A,B).C) = (pAQ=A(PA-q-=BC)) . (11Ip')

(®) (p= (a = A,B),C) = (p ~4&C) .

pO Va.

Axiom 12.(a) (p = A,B)C = (Pp = AC,BC') . (IIIu')

(b) o(p — A,B)C = o(p = AC,BC") .

cfc’ .

Axiom 13. x :=2;(p = A,B) = (p [£1 —- x :=P;A,x :=1;B). (x11t')

* If xeV[f] , then pf] is restricted to be p[11° .

Axiom1k. (p = A,B) = (p ~ Alp -C,D)},B) .

LiAlnVipl =p .
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Axiom 15.(a) (P ~x:=f,A) = (p= Xx:=gA) .

(b) (p=x:=fA) = (p =~ AA)

po Vr.

Axiom 16.(a) A= Ale] .

f=g.

(v) A= Ala] .
PEQq.

Inference Rule 1.

ASBX +
7 (157)
BX

Inference Rule 2.

AB BFCX X +

Tage 2)Ax

Inference Rule 3.

Az B ASB

AZB

zc XuyY.
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InferenceRule &.

(» = AC) 3 (p= B,C) (a =AD) § (a BD)
RRA ShahARE

(r = A,E) § (r = B,E)

ropvVvagq.

Inference Rule S. (a) |

cA= 1B

C =C,lt]

A and B end with go-tos.

A and B occur in C .

(b)

cA = B .

c = CB]

B ends with a go-to.

A occursin C , or, A is

C [As sesh) J) vhere gece)AyeooAy A A,
are preceded by go-tos in Cc.

InferenceRule 6.

AZB

K pic)®

R[C]SX .

cna =ctnB =p.
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Inference Rule 7.

AZB 0AZX a,A x 948

CA x CB

++ - +4 -
Cc NA =C NB = {0y5-00s0,} .

Attn=e" ne =p

*

If C ends with a go-to, or A and B both begin with

labellings, then the upper left formula may be omitted,

provided that n >1 .

Inference Rule 8.

A = B o,A = a,B |- = +

— i (Ive)
c= C,[B]

ES - - ++ -

*

Same as above.

Inference Rule 9.

i 0. i, =i a i w 0 oad 1.41

IRSSE :SEE
k -

DA % D*B

ke[n] -
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1. The set 8S = CATIRILN 43 a non-empty subset of A ,
and a total function

L :68-2

sends each oy onto LA . { , together with S , satisfies
the following conditions:

5D 3

and |

Clo) =o for each ge3 N 8",

vhere

8' = | (ahH*t nA
) i

anc

gn =u AH na"
i

2. The following conditions are satisfied for each ie[n] .

(1) pl 1s of the form (py —- 0,8") and BP! is of the
form (py - 3,,8%) » where 81 1s either T, or
t;'r, such that v fA UB .

(11) All the occurrences of oy in al,...,AR are within
the statements of the form (Py = Oy el) , or all the
occurrences of CA in st, ...,B" are within the
statements of the form (py — 9, el) vhere el subjects
to the same restriction as st above.

(111) rict1cx.

3. If A does not begin with a labelling o © such that oeS ,

then all of AY,...,A" must end with go-tos. If B does not

begin vith a labelling o = such that oe{(S) , then all of

Bl,...,B? must end with go-tos.
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Intended Interpretation

A wtf of the form

A X B

will be interpreted as the relationship A X B in the sense of

category Prt (see Section 4). Similarly, wff

A=B

will be interpreted as the relationship A = B in ert.

Intuitively, it seems to be obvious that \ A x B always implies |

that relationship A X B in ©r’ holds so that the above system is
consistent. We shall not verify the consistency, however, in the present

paper, for which presumably the constructive definition of J will suffice.
(See Section 3.) |
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6. Elementary Metatheorems

Index such as (Th. 3") shows the number of the same theorem

for the formal systems treated DY Igarashi (1964). The results of

this section imply that every axiom of L.I in that paper becomes a

theorem in the present system and that for every rule of inference

of L.4 such as

¥ ces Fa
p J

the following holds:

1t b 5,0 FF, then F $s .

Therefore every theorem concerning completeness in that paper holds
aleo for the present formal sytetem.

Theorem 1. (Refle.ivity)

~ +

Proof.

ALE A . (Ax. 2a) (1)

A= AN . (Inf. 1, (1)) (2)

ATA . (Inf. 2, (1), (2)) (3)

Q.E.D.
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Thus X satisfies the equivalence law formally, the symmetricity

and the transitivity being Inf. 1 and Inf. Z.

Theorem 2.

if | SEAL seer FAL £5 A, then | A ZA,n-1

for any X such that XC nN Xs ‘
ie(n]

Proof. A repeated use of Inf. 3 and Inf. 2. |

| Q-E.D.

Theorem >.

(04,8) =B . (Th. 25, cf. McCarthy (19638)

Proof. (0 = A,B) = (= 1 = A,B) (Axiom 16b)

T (1 = B,A) (Axiom 10)

=p . (Axiom 9)

Q.E.D.

Theorem L.

If F pv-p, then
r

F (p=+AA) ZA . (IXIn', cf. McCarthy (19634))

Proos. (p+ (P—=4A),A) = (PA DP=A(PA-pD-AN)) (Axiom lla)

= (p-» AA) (Theorem 3, Inf. 8) (1)
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Similarly,

F (Gp (p-+44),A)  (~D=2410) . (2)

Thus,

(PVap—=(D+44)A) = (PVapP=4A) .

((1), (2), Inf. L)

The premise of the theorem, Axiom 16b, and Axiom 9 give the

conclusion.

Q.E.D.

The premise of Theorem h, being the law of the excluded middle,

holds if Py is total and I’ is semantically camplete. (See Section 5
method (II).)

Theorem 5.

- +
 (p-+A,(g=+B,C)) = (p= A8(=pAqa=B0C)) (1119)

with the same premise as Theorem 4.

Proof. |

(p = A,(q =» B,C)) Ep (q = B,C),A) (Axiom 10)

Z (~pA qeBy(~pA-q+C,A)) . (Axion lla) (1)

(p+ Ay(~PA qQ +B,C)) 2 (~ p= (PA q=+B,C),A) (Axiom 10)

ZT (~pPA-DA qQ=B,(=mpA-(=DPA q) =C,A)) (Axiom 11a)

Z(-~pAqQ=+B,(~pA-q=C,a)) . (Axiom 16b) (2)

Statements (1) and (2) are identical.

Q.E.D.

Lé



The above also implies that Axiom IIq of L.2 in the previous

| paper was dependent on others.

Theorem 6-

if k- f =g, then

F x:=fZx:=g . (1)

Proof. A special case of Axiom 16a.

Q.E.D.

If kpof=¢, then

lb (psx:=f3A,B) = (pox += g3A,B) (1IIV')

Proof. (p=xi=fA) = (p=x:=gA) « (Axiom 15a)

Right multiplying both sides by A,

(pox:=f;AA') = (P= Xx:=g;AA") (Axiom 12a)

By Inf. bL,

(p —=+ x :=T3A,B) = (p =» x :=g:A,B) .
Q.E.D.

Theorem8.

If kp=a, FAZB, and lc $D, then

I (p- AC) § (a=BD) - (111s)
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2 (~p-CB) (Axiom 10)

X (= p= D,B) (Inf. 4, premise)

= (p -+ B,D) (Axiom 10)

Z (@ =» B,D) (Axiom 16b)

By Theorem 2,

(p= AC) § (@-+B,D)
Q.E.D.

Theorem 9.

It | AFB and FF A3B, then

Fa = B . (In)
XUY

Proof. A special case of Inf. 3.
Q.E.D.

Theorem 10.

JY

Fags . (11%)

Proof. A special case of Inf. 3.

Q.E.D.
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Theorem 11. (Superfluous Labels)

12 ofa’ UB , then [AB AdTB. (1va')

Proof. AE oT (Axion 3a) (1)

AA B= AcE. (Inf. 8, (1)) (2)

A= AN . (Axiom 2a) (3)

oA = (OA)A (Axiom 2a)

= o(AN) (Axiom 1a) (4)

By Inf. 8 with (3) and (»),

AB=AAB . (5)

AB = acl

Q.E.D.

Theorem 12. (Disconnected Statements)

If of” and A NB =§, then

| AdB = Ac . (Ivb')

Proof. oB=0 . (Apion 4, premise) (1)

Also the premise implies that A’ N (0B) =A Nn (0)” =$ , so that

A(oB) = Ac. (Inf. 8, (1))
Q.E.D.
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Theorem 15. (Superfluous Go-Tos)

- -1l
Faza loo”) .

g

Proof. For any 71 ,

10! 2 raat

A T=2a

t otherwise, (1)

because the formula

00 = 0 (Theorem 12)

and Inf. 8 give

(oo) olzoot

Inf. 8 with (1) gives the conclusion.

Q.E.D.

Theorem 1L. (Additional Exits)
+ +

If } Ac= Bo for a co such that ofA” UB”, then

FF A=B . (Ive)

proof. Right multiplying both sides of the first formulas by ol, we
obtain

pce! = Boot (Inf. 6)

By the premise concerning ¢ and Inf. §,

A=B .

Q.E.D.
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Theorem 15. (Copies)

| ~ +lb ASA (Th. bl)

+ -

Proof. (1) The case that A” N (A') = f will be proved firstly.
A

Suppose A" -A = (a,...,a} and A' is
«1 -1.0

hy ...a acl. ..a=1lByr or sBpoBy yoesBy J”. Let B be
1 nl n .“1-1 .-1 «1 _-1_ .-1 | t

x [ J J io 4 Qa [ BN J oX
1 nl n

for any 1ic[n] . Then

LF AB . (Theorems 11 and 13) (1)

But

I B=8, (8) for each occurrence of a, , (2)
i

«l -1

because xy By 74 occurs in B , for which

a (ale ly.) = pa tety,) = 7 (Axiom 3b, Theorems 11, 13)At She SRA A at SE | BI ’ ’

go that Inf. 5a gives (2). Since the number of occurrences of a,

in B is finite,

B=B (Byres 1° (3)QA. ees 1 ’*n
1 n

by the repeated use of (2). But the right side of (3) is

' 1 -1 _-1 -1_-1 -1
AL glo B77 eS By TT
Py +o Bp
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by definition of A' , so that

F(3) =A , (4)

similarly to (1). Formulas (1), (3) and (4) give

+ -

(11) The case that A= N (A')” £ § is reduced to (i) as follows:

Consider another copy A" of A for which a NA") =¢ and
+ -

(A")" NA") =p. Then | A=A" and |A' = A" according to (1),

so that | A =A’ .

Q.E.D.

Theorem 16. (Operating o (1))

| If B occurs in A and ends with a go-to, and ocB , then

I oA = (aB)'A |

Proof. I 08 = (0B)! by Theoram 15. (oB)' ends witha go-to, so that

oA = (an) [(0B)'] (Inf. Se) |

= (0B)'A .

Q.E.D.

Theorem 17. (Operating o¢ (2))

If Oh 2 [Ay...3A] ends witha go-to, and, Bys-esBy are
1°°*"n

preceded by go-tos in A , then
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1 n

for any © such that of VU B, -
ie[n)

Proof. Similar to the above, while we notice the latter altemative

“in the restrictions of Inf. 5b.

Q.E.D.

Theorem 18.

1§4

Fe, AZ AA for each ieln]
and

I o,B = als for each 1ie[n] ,

for a subset S = {oys..050.} of A such that 8 > 8' , where

rh -st= uu WHT ne,
ie[n]

and each Al ends with a go-to, then

b- oA = 0B for any ie(n] .

i t t ~§
Proof. let D° be (1 = 0,,%) , where TAT UB , and A be

AS o (p%,...,0"1° , for each ie{n] . Then,
1°" "'n

pA = oA (Axiom 9, Inf. 6)
~ ad
= ATA (premise)

z alg. (repeat Inf. S, Axiom 9) (1)
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Similarly,

pip = Ap . (2)

In order to use Inf. 9, oy ig defined as 0, , and al is substituted
in place of al ’ pl , and ct of that schema. The left two schemata

of wifs became (1) and (2), and the right two

al [Gupeessd ] 3 A (3)
Oyeee0y 1 n’X

and

~1 . 1

AT 2 A . (4)

But the left side of (3) is al itself, so that (3) as well as (kh)

holds because of the reflexivity (Theorem 1). We examine the restrictions.

Condition 1. C(o,) =O, for each i¢[n] , so that the second
rn ~Aition, numnely

(a) =a for each 0eSNS" ,

where

s* = u (AH na",
fein]

is satisfied, while the first condition is included in the premise

of the theorem explicitly.
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. Condition 2. (i), (ii) Apparent. (iii) We define U as X .

| Condition 3. Apparent.

Thus, by Inf. 9,

- pia = pis for any ie[n] .

By the derivations for (1) and (2),

EE PRU |0,A = D'A = D'B 0,8 ‘
Q.E.D.

Tueorem 19. (Interchange of Copies)

If B ends witha go-to, and B and B' occurin A , then

F A= Ag, (B',B) (1ve’)

Proof. (1) The case that A begins with a labelling and that B

and B' are preceded by go-tos in A 1s proved firstly. Let C be

| App LAA] and D be the right side of the conclusion of the theorem.
re

Let 1 be a label such that T#A™ .

(oB) 'At 0eB~ (Theorem 16)

OAT = (oB')'AT ce(B')” (Theorem 16) (1)

(aC) * TAT aeC (Theorem 17)

Similarly,

(0B) 'Drt oeB

oDt = (oB') 'Dt oe(B') (2)

(oC) ' TAT oeC
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because Dp. plAsA] is also C . By Theorem 18, (1) and (2),

OAT = ODT for any OeA .

Therefore,

OA E oD for any OcA . (Theorem 14)

Choosing o0_ such that ot occurs at the leftmost of A,

A=D . (Theorem 13)

(11) If A does not begin with a labelling, then we prove

tla = or Ag, [BB] (3)
+

for a T such that 7fA~ , which is a special case of (i). Formula

(3) and Theorem 13 give the conclusion. If B or B' is not preceded

by go-tos in A , then we insert ox’l and BB” before B and B',

where afar and BAA . g~1p! being a copy of a 1B , (1) implies

Ag lonlee”lB] = Ag, lapT'Bn,ea”B] (4)

Because of a(a" 1B) = a(s™18") and Inf. 5a, used twice,

(B) = Ay,lee”'B',ma'B)

= Ag, [pe1B',00"1B] . (5)

Deleting aol and pe from the left sides of (4) and (5) by Theorem 11

and Theorem 13, we get

A= Agg.(B')B] .
Q.E.D.
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Theorem 21. (Go To leading to usual Statements)

Ir opr! occurs ia A , then

Fazafpr] (va)

Proof. (1) The case that ofB is proved firstly. Let C be

A Ll . Then

A=C . (Theorem 13) (1)

oir occurs in C and |

(a 1B7) 2 Brv (Theorem 11, Theorem 13)

= B't . (Theorem 15) (2)

By (2) and Inf. 5b,

C= C lB] |

= ABT]. (Theorem 13) (3)

Formulas (1) and (3) give the conclusion.

(11) The case that eB will be proved. Suppose B' is

B 1 lot eea ah pe . Let B" De Bild") ’
Gavee0 TF." +e0
1 nl n .+ - -

where do" fA” (J (B')" . Then o" 13 js acopy of © 1p , and

Bi(0]° = B' (1)
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Instead of (2) in the case (1), we have

o(a1pt) = (071B)s (Theorem 13)

Rr YI (Theorem 15) (5)

Therefore,

A= A [on pe) : (Inf. 5b) (6)
But every occurrence of o" in the right side of (5) can be replaced

by o , because of

| ("IBr) = o(o Br) (Theorem 15)

and Inf. Sa. Thus

(6) = (AJo""'B"1]) jul0)®

= (AB"t)) lol” . (Theorem 11) (7)

The right side of (7) is A[B't] because of (I), namely

A= AB).
Q.E.D.

Theorem 22. (Go To leading to Exits)

It tA" and o '1 occurs in A, then

-AzAl] (Ive)

| proof.  a(oM1) ® 1 (Theorem 13, Theorem 11)
and Inf. 5b give the conclusion. |

Q.E.D.
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Theorem 23.

It AA nc=a"nct=p, BND= nD =p, Fa = B,
RICJURID]JUX

and | CD, them

ia § BD (18")

Proof. (1) The case that

B nc” =8"nc’ =p (1)

is proved firstly. The first wff of the premise of the theorem implies

I AC = BC . (Inf. 6) (2)
R{C]JURI[D]UX

The second wff, C xD ys implies |

I Bc BD . (Inf. 7) (3)

Thus,

| Ac $BD (Theorem 2, (2), (3))

(ii) If (1) does not hold, we consider the copies B' and C*' such

that A'nc't, a"nct, nD”, B" nD, Bnc, ama

prone’ are all @ . By Theorem 15,

B = B'

and

c=¢' .
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We carry out the following derivation.

AC = AC’ (Inf. 6)

x B'D (by (i) above)

Namely,

Q.E.D.

"he above metatheorems thow that wff § 1s provable in the present

formal system if it is provable in the previous system as noted at the

beginning of this section. For the convenience of later use, Theorems

11 and 12 will be modified as follows. (Proofs are essentially the same

as before.) |

Theorem 11. (Superflucus labels)

If ofA” , then fF A= Ao” 1B] .

Theorem 12. (Disconnected Statements)

re AJA NB =p and B is preceded by a go-to in A, then

F A= AA] |

The first of the following theorems will be used in Section 8, while

the second is related to the notion of correctness. Theorem 2h says that

two statements which are concatenations of a number of statements (loops

may be contained semantically) are equivalent if the constituent statements
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are equivalent statement-wise, which fact 1s related to compilation.
Moreover, this theorem gives an example of proving the equivalence of

two statements which do not necessarily terminate.

Tacorem 2h.

If

F Ay XB

I oA, 3 0B, for each JeA;

and

| V(A,) cX , for each ie[n] ,

then

boAy..eAFF By-eoBy

and

b o(A,...A) $0(By...B)) for each oc U A[ .1 n’ X 1 n 1e(n) i

Proof. Let C and D De

-1 -1 _=1
TL ATT An Tn Agi

and

1118 7,7; B, = Re: X ’
t t

respectively, where ~i5..00T9 do not belong to (A).--A) U (B;.--B,) .
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definition. Then we notice the following.

1, ~ __- - .+ oT 4 Ay z oF op, for each Teh, + {r,) ’ (1)

because,

-l,

TTA FA (Theorems 11 Extended), 13)

X By (premise of the theorem)

=TSB, ’ (Theorem 11, Theorem 13)

and, for och, ,

WET (Theorem 11)
i § i

% oB, (premise of the theorem)

z orp . (Theorem 11)
i § :

Therefore,

\ ot 1A, = orilp,T for each och,+ {1 } (2)i 1441 X i 71 i+ i s

(Inf. 6, (1))

By Theorem 16,

- -1 -

\- oc = (ot, AT iey) 'C for each ogeA+ (r,} , (3)

} oD = (ov; ByT yy) "0 for each OeB,+ {t,} ‘ (4)
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But

(ot 1A T,..)' Z ot TA 1 (Theorem 15)
171 1i+l 1711+]

% 973 Bie (by (2))

E: (037 B,7 4,1)" sy (Theorem 15)

so that

-1 _ -

Foor ATi) § (0 DBT)’ (5)

We change the index i of Inf. 9 into J , define oy as cp » and

substitute oF (we can simply use 9 instead of (1 - 7,8") as
-1

shown in the proof of Theorem 18), C, D, (0474 ATi)" ’
- i i i

respectively. We note that

-1 ~ -1

- Co ATiq)! % (ot, ATiq)’ . (reflexivity) (6)

Then wffs (3) - (6) constitute the premises of Inf. 9, and all the

restrictions are apparently saticfied, so that

= oC ¥ cP for each aC (7)

Therefore, for each o cA ’

0(A--eA) = oC (Theorems 11, 13)

x OD (by (7)

= 01 (By--<B ) ‘ (Theorems 11, 13)
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Similarly,

x 74D

= B,...B, |
Q.E.D.

Theorem 25. (Verification Condition for Assigrment Operator)

Statement x := f is partially correct w.r.t. p and q if and

only if

F po q, [21° .  (cf., Floyd (1967) and Hoare(1969).)
T

Proof. We shall examine the conditions for p and q to satisfy

(p=x:=£,0) = (p =~x:=1;(q = A)d),5) . (1;

(See Section Lk, 5. Correctness, (1'))

(p =x:= f£5(q = A,0),5)

= (p= (a, [£1° - x :=f,X i= £340),0) (Axiom 13)

= (pA qlfl® ~x:=2(p Agr] 8,0)
(Axioms 5, lla)

2 (pA q,[£]° -~X:=1,4) . (Theorem L) (2)

Therefore, (1) is equivalent to

(p=x:=£,8) = (pA q[£]° -x:=£,4) , (3)
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for which, obviously,

0

F p=pAqlf]
r

namely

F po qlfl® (4)
r

is necessary (see 3 below) and sufficient.

Q.E.D.

Remarks

1. Formula of (4) is logically equivalent to Floyd's original |

formula (written in our notation):

0 0

ax (x = f(x1" A p(x 7) 2a

provided that the equality axioms ere satisfied.

2. We assumed the completeness of I (including the law of the

excluded middle) in order to use Theorem lL.

3. The necesgity is based on the meaning of formulas, which can be,

however, improved as follows.

We shall consider

= (p = M8) = A

as an assertion of the validity of formula p in the sense of predicate
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calculus, and denote it by

Fe

Then we can prove FX PO q,[£]° formally fram wif (3) by the
following derivation:

Let r denote DA q [21° , and A the statement (r -A,4) .

(p = x := 2,8) : ® = Ad) . (Axiom 8, Theorem 8) (5)

(r= x :=1,4) p (r = AQ) (similarly)
= (pnd) 5 (by (5)

80 that p

(p = AB) = (r = A48) (Inf. 3) (6)

(p =A) = (PAT = A(PA-T =8,8)) (Theorem L)

= (p-( ~- A,8),8) (Axiom lla)

(p= (p = Ma),Q) (vy (6)

(PAD ~MAPAAE =L0) (Axiom lla) |

= (p = ND) (Axiom 16b, Theorem 4) (7)

Similarly, |

(A PA- TMA) EDAD) (8)

Therefore

(PAT V mD AAT =) 2 (1-44) (Inf. 4, (7), (8))

| A. (9)
But

66



(p> q.[£1° = 08) = (p= x = AL) (Axiom 16b)

(pA Tr VapAar = AQ) , (similarly) (10)

so that

0 ”

F (po gq lf)” =A8) 2A (vy (9), (10))

The sufficiency comes from Axicm 16b.) |

4, Although the main reason that we introduced quantifiers into

Algol-like statements (see Section 2) is to include formulas of

usual predicate calculus in conditional statements in connection with

the notion of correctness, this syntactic generalization of Algol-like

statements may not be essential. For, the study of Engeler (1967)

seems to suggest that infinitary logic is frequently more appropriate

than ordinary logic. It must be noted that the example given by

Floyd (1967) may be considered to be based upon infinitary logic.

Also, the verification conditions for branch and join commands

(the rest not being essential) can be stated and proved without using

quantifiers, similarly to the above.
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7. Decomposition of Statements

Let V be a subset of ¥ such that V-V contains infinite

elements WosWys eos and IL be a subset of £ such that £-L contains

infinite elements 949977 ces « BY ay ig dencted the set of statements
defined by induction as follows.

(41) A belongs to 4, -

(d2) For each Jef , ¢ and o~1 belong to 5 .

(43) For each xe¥ and a fixed element w, of V-V, Xx :=w,

and w, i= X belong to a, .

(dk) For each (2) es(™) and e€,;..-,€ such that either
(0) Nt)

e,c¥ or e, eV for each ie[n-1], Wy f= Wae ee go
belongs to 2 .

(a5) For each o (8) gn) , Oef, and e,,...,€, as above,
(n)

(p Woe; ee +8 1=0sA) belongs to a, -

(el) If A and B belongto 4,, then AB belongs to 4, -

("NB =f should be satisfied. Otherwise, AB is not

a statement.)

Let ay be the set of statements consisting of all A such that

viaAlc Vv, Ar C L , and that the logical symbols other than —- and V
do not occur in A .

We shall establish a function

which has the following characteristics.
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1. Constructivensss:

$ is total and effectively defined. |

2, Correctness:

FA 7 §(A) for any Aed,

In other words, & 4s an algorithm that carries cut a translation

of @, into 4, , of which the latter coasists of sequences of
relatively simple statements. Moreover, we can formally prove that §

always gives a statement equivalent to the original one in so far as

the values of variables belonging to V and the destinations of exits

are -oncerned. (Actually we prove the above also for each emtry. cf.

proof of Theorem 26). |

| For the convenience of description. we introduce two sets of

statements, as follows: ’

a, = {x := f|xev and VIL] CV}.

as = ((p = 7,0) |r and V[plcV} .

* * *

Besides, a, ’ a, » and dx will Le used, whose elements differ

from a, ’ a, , and as , respectively, only in that some suffixes
are added. (See Definition of 8 below.) |

Definition of &

Let © and ¥Y be two functionsas defined below. Then

$(A) = Y(8,(A)) for each Aad, . |
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1. Definition of 8

We define the function

¥*

where the elements of a are statements whose symbols are possibly
suffixed. For each A and each vye7, 6, (A) denotes the image

of (A,v) . Actually, however, © is extended so that, for each

arithmetic expression f such that V[f]— V and for each Boolean

expression p such that V(plc Vv, 8, (f) and @,(p) are
defined. Besides, two auxiliary functions

Mayu {plvipl cv} =?

and |

wt {lviLl cv} =n

are defined.

Practical meaning of these functions are as follows.

w(f) : The number of vequired working storages to compute f .

8 (1) : The result of suffixing function symbols cccurring in ¢
so as to specify the allocation of working storages.

(v is irrelevant.)

Ap) : The number of auxiliary labels to compute p , which is the

number of occurrences of symbol —~ in pp.

w(p) : The nunber of required working storages to compute p .
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oe, (p) : The result of suffixing Pp to specify 8ll the
auxiliary labels using index greater than vv .

AA)

and Similar to A(p) and 8 (p) .
8, (4)

Functions ©, A , and yu are defined simultaneously by

_nduction on statements as follows.

Atomic Statements

(al) C= As or o™F
and

(a2) 8,(C) =C for each wv.

ANC) =0

(a3) Cax:=f, where £ =y:

u(r) = 0. |

8,(£) =f for each Vv .

8,(C) =X i= 8 (1) . (1)

AC) =0 (2)

Statements (non-atamic)

(bl) C = AB :

AC) = MA)+ M(B) -
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(b2) C ax :=s ft, where ?f = ne ie :
w(t) = Mm ,

where

M = oer u(t) (3) |

and m is the mmber of f, such that f¢V .

00) = Tl), em AF) OF) (4

~ 8,(C) and AC) are defined by (1) and (2) above.

(63) C = (p = A,B) , where p = (Me oe :

u(p) = Mm , |

where M and m are defined by (3) and (4) above.

8,2) = of)em WE) -0(5, 0)

Np) =0

(1) If A is tv and B is A, then

8,(C) = (8,(p) = 7,4) , (5)

i. |

AMC) = Mp) (6)

(11) If A is not of the form T or B is mot A ; then

8,(C) = (Buin (a)en() (®) ea, mo O(A)0,(1)(B) » (7)

72



where

N =v+A(A)+A(B) +A(D)

and

AC) = 2 . (6)

(cl) C = (~p = A,B) :

8, Pp) =u 8,0) -

A= p) = Mp)+l .

8,(C) and A(C) are definedby (5)-(8) above. (Substitute —p
in place of p .)

(e2) C = (p Vv q = A,B) :

8,(p Va) =8,(p) ve,

Mp VQ) =A) +Ma) -

8,(C) and AC) are defined by (5)-(8) above. (Subsitute Dp V q
in place of Pp .)

2. Definition of ¥

We define the function

Rk * 9% »*

* * *

By A  , f , and p willbe denoted @,(A) , 6,(f) , and

8, (Pp) , respectively, for certain values of v . Thus, for instance,
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(vl) below, i.e.

(AB) = v(A")¥(B")

reads as follows:

Since C = AB , q,(C) is of the form A's" . Define
v(A)v(B) as ¥(8,() -

vs plays the role of an accumulator.

v is defined by induction as follows.

Atomic Statements

(al) ¥(A) =A

(a2) ¥(o) =o . |

vo ct.

(11) If x # wy » then v(x :=y) is defined by (1) below.
(Substitute y in place of f .)

Statements (non-atomic)

v1) v(a*sh) = va")

(v2) (4) Y(v, r= n(0)) =W,y i= (0) .
* »

(11) lw, :- TA)... am) for +p-1!

=C _q:+:Cos Yo i= (My, .cq (n 21)

Th



vhere

r f eV

uy = \" 1° for ie(n-l} ,apr) TF

Co is Yq t= tf, ’

and

A fev
C, = for each 1ie(n-1] ,

u, i= Ty £4

g(i) being defined by the following induction:

#(0) = 0 .

pi) fev
B(i+1) =

B(1)+2 £, AV .

(111) W(x i= £) = ¥(w, := fx smug. (XA) (1)

v3) 1) wW6@ 1a) = (6 =n

(11) GSR...am or Tal Hy) WA» (2D

vhere Cos SETI Ups ererVy gy are the same as above.

(ef. (82)(34)0)

(111) ¥((p (1) 7(2) A%B)
* * «1 PS|

= YP ~(1)(2) 9, (2)*MIY(E )9,2)% (1) TA )%,(2) (2)

(A is not of the fom Tt , or B is not A .)
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*

(1) (1) Yigg P ~7:A)

* 1

= ¥((p =opA))o

(11) If A 4s not of the form Tt , or B isnot A, then
%*

Wy P= (1)0(2) A,B)) is defined by (2) above.

(Substitute —-, p in place of Pp .)
*

(2) (1) Y(( va =1,A)

| = ¥((p ~TA)Y(Q =A)

(14) If A 4s not of the form tT , or B is not A, then
* »

(lp Va ~ (1)7(2) A,B)) is defied by (2) above. |
(Substitute p" v q* in place of p .)

Example

We consider the statement

if x < 0 then x := -x , (1)

which was used as an example of compilation in (Igarashi, 1968).

Here, let us allow only binary - , and see how the statement

if x <0 then x := O-x , : (2)

namely

(Xx <0 =x := 0-x,A) (3)

in our notation, is treated.

Let A De (oP —-X = n(2n(0); 2) . Then,
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* (1) .. (2) _(0)
8,(A) =A = (px Np Xi=m ow x, A) |

and

» 1 -1

Y(A) = v +a x3 (p Jy - 012A), :
I (+)JR ¢-) HUE

Especially, we define x <O as o (Ly y O as (0) , and x-y
as (Oxy , 80 that A ‘becomes (3). |

For resdability's sake, #(A) i.e., ¥(A") will be written

in ALGOL 60 and listed with corresponding actions, symbols Ww, , J, ,

and 9, being replaced by acc, Ll, and 12, respectively.

acc = Xj; load x .

if ace < O them go to Li; jump on mires Il

go to 123 Jump 12 |

Ll: insert label Ll

acc := 0; load O

acc := acc -X; subtract x

X := acc; store x

L2: - insert label 12

(4)

Statement (4) is different only in trivial points from progrem [-}

(in the above paper) for which
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F( = 8
fx}

is proved as an example of derivation. That proof, for this particular

pair of statements, needed two pages of derivation (20 steps) preceded

by one page (10 steps) for an auxiliary formula, being derived directly

from the previous formal system. In the present paper, however, we

shall prove, also formally, that |

AG §(A)

is valid for every Aed, , which implies that (2) = (4).
v-{ace}
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8. Formal Proof of the Correctness of Decomposition

In this section we shall prove formally the following theorem which

implies the validity of the transformation defined in the previous

section.

Theorem 26. Let v, 6, ,0°%,J) be an interpretation such that Ma

is a total function for cach me¥ and that Pa 1s a total predicate

for each pe « Then |

A #8) for any Ady .

We shall prove the following lemmas firstly.

Lenma 1. If x/v(f] , then |

Fx:i=t;y:=g = y:=glf]°,
v-{x} x

and

Fx :=25 (p=o,A) = (p(f)° =0,0)
v-{x}

Proof. Choose z such that z £ x . |

X te ff; yimgueX:i=f;yi=g; 2 :i=2 (Axioms2a, 6, etc.)

Sx =f; y := 8 (£1; Zz i= 2 (Axiom Tb)

| =X =f; y := 8, [1] . (Conversely) (1)

xi=f = pA, (Axiom 8) (2)
v-{x}
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so that, right multiplying both sides of (2) by y := g [71° , we
| obtain

Xx =f; y := g 11° zy := g, [21° . (Inf. 6) (3)
v-{x}

It must be noted that only g[?]° instead of an arbitrary g[f]
should be used because it must not contain x to use Inf. 6. By

1) and (3), the first wff is provable, while the latter can be

proved in the same manner.

. Q.E.D.

Lemme 2. Let C and D dencte (p — A,B) and
-1 =1

(p = 1 ,A)BT, At," , respectively. Then :

Lc=p ,

and

I oC 2 oD for each geA UB .

Proof. Let C and D denote

-1 - -y (p~xx 14,08 'B)s

and .

© -1 - -] -1__-1

yp ~ 1,088 Br ATS
+ +

respectively, where aq, Bf, 7, and § do not belong to C~ yYyDdD® . Then,

by Theorems 11-13, fF c=C, fF oc=eC, fF DZD, ang,

b oD = oD , for any oceA” UB . Let COPRERLIN. be A UBU{oB,7) -
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(0,2 a 8) 0D o,eA” U {a}

o,D =ro o,eBU {p](77(p = T1508)’ a =.

(Theorem 16, Theorem 17)

But

(0,87'Br,)'D = (0,878) 17D

| z (087) 16D , (Theorem 22)
and

(777H(p = 73,08)'D = (p ~ 7,0) |

3 (p ~ a,A)BD (Theorem 21)

= (p = a,8)D (Axiom 12a)

= (p ~a,8)D . (Theorem 12)

Therefore

CVE 0eA”

(0(Bed 0,eB

o,D = A'8D 0, = (1)

B'sh c, =8

(p = ,8)D 0, =7 -
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Apparently (1) is provable if C is substituted in place of Db,
so that

0 ,C = o,D for each JC ur U {o8,7]

Therefore,

oC = oC 2 oD = oD for each oeA U B |,

and

cz@8z= yo =2/DEDD . (Theorem 18)
| Q.E.D.

Lemme J.

l o(p = A,B) = 0(q = B,A) for each dgeA” ' B .

Proof. Let © be a label symbol such that 77% UB . Then

o(p = AyB)T = o(p = AT,BT) , (Axiom 12b) (1)

o(q = ByA)T = o(q — Br,AT) , (Axiom 12b) (2)

and, by Theorem 16,

(A) *'1(p ~ At,Br) GeA |
o(p = AT,Br) = (3)

(6B) '1(p ~ At,BT) cel”.

Similarly,
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| 'v(q = Br,At) ged” ,

c(q = Br,At) = (1)
(0B) "t(q ~~ Br,At) geB”

Therefore, by Theorem 18,

o(p = A1,Bt) = a(q — Br,AT) , (5)

so that, using (1) and (2), oo

o(p = A,B)T = 0(q = B,A)T

Thus,

o(p = A,B) = 0(q = B,A) (Theorem 14)
Q.E.D.

Lemma b. If the interpretation satisfies the premise of Theorem 26, |
then

F(t, A@=TA FT (PVa=T,4)

Proof.

(p=7,A)(a=T,A) = (p= T(a=7,A)(a~=7,A)) (Axiom 12a)

S(p~ T,(@=1, A) . (Theorem 12) (1)
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(PVva-T,yA) =(=(-pA-q)=1T,4) (Axiom 16b)

2 (pA Q=AT) (Axiom 10)

T(~pAaq-~AMNEDPAG=T,T)) (Theorem4)

T(p=Ts(~q=~sT)) (Axiom 10)

Z(p-=T1,5(q=T34)) . (Axiom 10) (2)

Statements (1) and (2) are identical.

Q.E.D.

Proof of Theorem 26.

We shall prove the following statements, which include the |

conclusion of the theorem, by induction.

i. For each Ady such that A is neither of the form x := f nor

of the form (Pp — T,A) ,

- ka

F A TF Y(A)

and

F oA = ay(a) for each OeA  .

». Tor each statement of the form x := f belonging to ay or a, ’

F x :=1f = ¥(x i= £) ’
S{x:=f"]

where
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»* *

8x := £1] = [x}u (v-Wl£]-{w]) ,

* »

W(f ] being {w,|1 occurs in £ as suffix} .

3. For each statement of the form (p —= T,A) belonging to a, or as ’

_ *

F (p=1,0) 5 ¥((p ~7,4)) .

Bince VC Blx := f |, these statements imply

| AZ YA) for any Aed, -

Atomic Statements

v(A") is identical with A , so that the above statements are

apparent.

Y(w, t= ¥)X = v, is Ww, i= yy; Xx i=,
for which

Wy i= Ys Xi=W, = Xixy , (Lemma 1)
v-{v,}

and

8(x := y] = v-{v,] .

Statements (non-atomic)

Hereafter the statements 1-3 will be used as the induction

hypotheses.
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(bl) By Rypothesis 1,

+*

AT Y(A) ,

~~ * -
oA 3 o¥(A) for each O0eA ,

- *

and

* -

oB 3 ov(B ) for each 0eB

Therefore,

Lg

ABZ Y(A)Y(B)
and

- * *

CAB 3 ov(A )Y(B) (Theorem 2L)

(b2)(1) Apparent because Y(A') is identical with A.

(n) (n) (n)
(v2) (14) let D be mn Wolyeeeu, 4 ’ Dy, be |

(n)

k *

T, =V- uwif]- {u, |1elk) and u,fv} , for k =0,...,n-1.
1=0

We prove, firstly,

(n) = p(n)
Cpe + -CoP T, Dy for each k (1)

by induction on Kk .
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Step k = O :

v, i= 2, sla 1et] J (Hypothesis 2) (2)
We note that

RID® = wu, een } c8lw, t= 15) (3)

which is shown as follows.

8lw, := £0] - v-wif] . (by definition)

But ty definition of wif)) ,

vNig]

viinvag ,

ad, if uf! , then wAlf), (1=0,...,n-1) . Thus

AID(™1 WIE) = 6, so that (3) holds. By (2) and (3),

z Dp . (Axiom Ta) (4)

Step k+1 : We use (1) as the supposition of induction. prety, ve
prove the case that Ww, £V .

Cra (Cyr C2) = co" (Inf. 7, (2) (5)
X
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Cul Shunt? We, t= fy (Hypothesis 2) (6)
We note that

(ny _ x
R[D, ] = (WYvie,DD uu, eeu desl, = 1,1, (7)

which is shown similarly to the above, by

wie, nNvs=2¢ ,

vit,lev ,

and, 1f u fV , then u(fy, 1), (1=0,...,n-1) . Therefore

cy, 0{™ = wy i=, 5 DM (mt. 6) (8)
Slug, =f, q VU (w,]

foe p{® (Lemma 1) (9)
But

I, 0 (Slug i= fry) U MG} 0 (F=fugy))

C10 (fay) U (V=WI£,1D) 0 (V= fu) |

RLCIR RLWY

= Tye

so that

Corr CP 2 Duy (5) (8), (9), Theorem 2) (20)
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Secondly, the case that we, EY has to be proved. In this case,

and T,,. =T , 80 that (1) implies (10). Thus (1) has been proved.
let k =n-l .

(n) .~. n(n)
Cage DP 3% Py (by (1) (1)

Apparently, |

%* ¥%*

Tq = V-Wif ] = 8lv, c= £ ’

(n) ._ (mn) o
and D._3 is Wy i= for +Th-1 , that is Wy i= f , 80 that

c yoo p™ = want (by (12) (12)
S[wy:=f ] |

(v2) (114). By (v2) (11) above,

*

Ww, =f) = ,w =f,
0 Y-W[f ) 0

so that

%*

Y(w, :=£ )x :=¥ = Ww, =f; Xx :=W (Inf. 6)
0 0 x}u (v-wig*]) © 0

z= xzs=f . (Lemma 1)

v-{w,}

Therefore |

Xx =f = ¥Y(x := £') . (Theorem 2)
{x}u (vile -{w,})
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(b3)(1). Apparent because vA") is identical with A .

(b3)(i11). We have only to modify the proof of (b2)(1i) as follows.

Let p(n) be (0 ®wguy eeu ~ T,A}
p(® pe (Me ...2 ~1,A) , andk I RR Vs Rie U5 RE LL

Kk %*

Ty =V3 wiz, ) - {u, |1elk] and u, £V} - {wo} ,

for k - Oj esepn=l *

Then we can prove wff (1) above also for this case, using the

axioms, theorems, etc. in the same manner. Letting k = n-1l , we have

cy. -Dd™ -— (p = T,A) (13)
Y-W(f 1-{w,}

Therefore,

* ~t
Y((p - 7,7) v (p = 71,0)

(b3)(1ii). By (b3)(ii) above,

N *

(p = 9 (1)M Vv Y((p ~- 7(1)*M) . (1k)

By Hypothesis 1,

*

AT Y(A) ,

* [J

cA z a¥(A ) for each o0ecA

*

B J ¥(B) ,
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* -

oB Z 0Y(B) for each 0¢B ,

and

91) ¥ 1) (reflexivity)

Therefore,

» -1 ®, 1

"(py - I) M)e® )9,2)%y(1) Y(a )9, (2)

-~ -1 -1¥® 9,0) NB, (5)% (1) (2) (Theorem 24) (25)

% (p~AB) . (Lemma 2)

Thus

* * _*

(p = A,B) v Y((p “y(1)7(2) A,B)) . (16)

By the same theorem and lemma,

o(p = AB) § ov((p" “y(1)7(2) ALB)

(cl) (4).

Cwmo) FE @-onh) o (Hypothesis 3) (17)

Right multiplying both sides of (17) by ta , we have

Wp + 0pM)wt § ( ~ouNtet (If 6)

=(p=- 0470555703") (Axiom 12a)

= (p = A,7) (Theorems 11 - 13)

= (ap =T1,A) . (Axiom 10)
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Thus

»*

Y((~ Pp ~T,A) v (4p =TA) (Theorem 2)

{el)(41). By (c1) (1) above, (14) holds also in tais case, so that

the same proof as that of (b3)(iii) suffices. (Substitute —~p and

~y p in place of p and p in (14), respectively.)

(c2) (1).

Y(p ~TA)S (Bh) (Hypothesis 3) (18)

Y((g" =A) (a=) (Similarly) (19)

Therefore, by Theorem 2k,

* * ~

Y((p =1,A))¥((q =T,A) F (P= 750) (a = T,A)

TT (pV q=T,4A) « (Lemma 4)

Thus

Wp va =A) ZS (PVa=1,0)

(c2)(ii). By (c2(1) above, (1k) holds alsc in this case, so that the

same prcof as that of (b3)(iii) suffices. (Substitute p vq and
* * *

p vq inplaceof p and p in (14), respectively.)
Q.E.D.
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