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Abstract: The semantics of elementary Algol-like statements is

discussed, mainly based on an axiomatic method.

Firstly, a clags of Algol-like statements is introduced
by generalized inductive definition, and the interpretation
of the statements belonging to it is defined in the form of
a function over this class, using the induction principle
induced by the above definition. Then a category of program
is introduced in order to clarify the concept of equivalence
of statements, which becomes & special case of isomorphism
in that category.

A revised formal system representing the concept of
equivalence of Algol-like stetements is presented, followed
by elementary metatheorems.

Finally, a process of decauposition of Algol-like
statements, which can be regarded as a conceptual campiler,
or a constructive description of semantics based on primitive
actions, js defined and its correctness is proved formally,
by the help of the induced induction principle.
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1. Introduction

This paper is intended to describe an axiomatic approach to the
semantics of Algol-like statements, which is mainly based on the
axiomatic treatments of the equivalence of Algol-like statements by
Igarashi (196L).

In Section 2, the class of Algol-like statements of our concern
is defined syntactically, in order to clarify the scope of the present
paper, which class is essentially generated by simple variables of a
type, go to atatements, labels, assignment statements with a set
of functions, if-then-else with a set of predicates, semicolons for
concatenation, and parentheses to compose compound statements.

Besides McCarthy's operator, namely (- ,) for if-then-else,
some notations different from usual ones will be introduced for the
sake of ~onciseness, which will posaibly help us to apply our mathematical
intuition, though the writer has no intention of propoaing auch.a.
notation for a gener.l use. It must be noted that we use only different
symbols and do not change the syntax. (Otherwise, it might become
uncertain that we are working on algorithmic languages.)

We use a generalized inductive definition in order to define the
class of our concern, wvhich, although a little unnatural, constitutes
a basis for defining and proving same things related to that class, by
the help of the apparent induction principle induced by it.

In Section 3, the mtez'pret.;tim (that might be seen to be already
a kind of semantics) of the statements belonging to the above mentioned

class is given, which is done using induction on the class and the result



has a somewhat analytical appearance. Actually we shall define the
interpretation as a function on the class into a certain set of partial functioms,
and, presumably, one can prove everything about these Algol-like statements

using this function.

Some results included in the work by Manna and McCarthy (1969)
will be taken into consideration, when we define the interpretation of
conditional statements.

In Section L, categories of a kind whose objects are Algol-like
statements, the interpretation being fixed, will be introduced in order
to clarify the meaning of the relations which have been used in
equivalence theories of Algol-like statements by Yanov (1958), Igarashi
(1964), de Bakker (1968), etc. (McCarthy (1963a) discussed the
equivalence of conditional forms, which was also related to Algol-like
statements, because the latter contain conditional statements.)
together with the correspondence between these relations and the notion
of correctness introduced by Floyd (1967) and refined by Manna (1968, 1969),
which is also related to the discussions by Hoare (1969).

The relations £ and T  Qdefined by Igarashi (1964) become
special cases of isomorphisms in one of these categories. (On the one
hand, these categories, whose objects are defined in Sections 2 and 3,
are intended to serve as a model of the formal system described in the
later gections, though we shall not enter into this point. On the other
hand, they can possibly be regarded as a basis for further algebraic
theories concerning programs, as a branch of mathematical theory of

computation.)



In Section 5, a formal rystem representing the relations i
and = will be presented, which is a revision of the main formal
system (L.4) in the paper by Igarashi (1964), of which the latter will
scmetimes be called 'the previous system'. Besides minor refinements,
it is so extended that partial functions and partial predicates may
be allowed in statements and that the ability of the formalism may te
considerably improved, although it is incomplete (which is inevitable).
Especially, Inference Rule 9 is new, for which McCarthy's notion of
homamorphisms of programs (unpublished) and Floyd's above mentioned
work are taken into consideration as well as the obvious relationship
between program schemata, firstly treated Ly Yanov (1958), and finite
automata discussed by Igarashi (1963) and Rutledge (1964). This rule is,
however, still a result of compromise between capability and
simplicity.

Axioms related to go to statements have been entirely reformed.

In Section 6, a number of elementary metatheorems concerning the
formal system of Section 5 are proved. These metatheorems show that
any theorem in the previous system becomes a theorem also in the
present system. Therefore each of the completeness theorems for the
previous system remains valid, though we shall not enter into this
point.

Tt must be noted that the incompleteness of the formal system does
not imply that this formalism gives only an inadequate description of
semantics, for describing or defining the meaning of a program can be
regarded as a rather speclal case of equivalence. In fact, for any

Algol-like statement A (in the sense of Section 2) in which variable



symbols X 5 eeyX, oOCCUr and for any varisble-free arithmetic expressions

(constants in effect) elre "'cn’dl""’dn , the following holds:

Let El’ ...,'én,al, ...,an be the values corresponding to
cl"“’cn’dl""’dn , respectively. Then, A stops and gives the
final values al,...,an to X,,...,X, , respectively, provided
that the initial values of X;;...,X, Aare 'él,...,'én , respectively,

if and only if the formula

Xy i= cl;...;xn = cn;A = xl i= dl;...;xn i= dn

is provable in the formal system of our concern. (See Theorem 55

by Igarashi (1964).)

Thug the formalism has an ability no less than the explicit definition
of the interpretation given in Section 3. (Namely,

J[A](El,...,'én,,,) = (El, ...,5n,;) if and only if the above formula is
provable.)

In Section 7, we shall define a special transformation of the class
of Algol-like statements of our concern. On the one hand, this
transformation can be regarded as a representation of a
conceptual compiler. On the other hand, it demonstrates how the meaning
of each statement can be defined in terms of certein primitive actions
on a conceptual machine. (Therefore, this transformation itself might
be regarded as a 'constructive' definition of semantics.)

In Section 8, we shall formally prove the validity of the above
transformation, (which mathematically means that each program is transformed
into & program equivalent to it), in the system presemted in Sectionm 5.
On the one hand, this can be regarded as a kind of proof of



compiler correctness (at least most of the essential features of the
proof of compiler correctness being included), which has been done
firstly by McCarthy and Painter (1967) for arithmetic expressions,
using induction on expressions. On the other hand, this can be
regarded as a sufficient proof of the validity of the particular
description of semantics in Section 7 which is based on primitive

actions. (Also cf., Painter (1967) and Kaplan (1968).)

Notation and Terminology

We shall use the following notations and terminology.

1. Sets.
Symbol § denctes the null set. &+S' denctes set SUS'

whenever 805" =$ . MN={0L2..0). 7 ={L,2...}. (0]=9.
If n>1, then [n] = (1,2,...,n} .

2. Functions.
We shall use the word function to mean a possibly partial function.
(f1) Expression
£ :8 -8
reads as follows.

(1) f(a) may or may not be defined, for each acS .
(41) Ir f(a) is defined, then f(a)es' .

(111) If afs , then f(a) 1s undefined.

(£2) Dam £ = {a|f(a) is defined]} .



(f3) Let S;cS, then f|So means the function g defined as
follows. (f£:8 - 8')

g :S, -8'.

0
Dam g = Dam £ N SO .
g(a) = f(a) for each acDom g .

(f4) We note that f|Dam f is a total function for any f .

(f5) f = g means that f and g are defined on the same set and
that f|Dom f = g|Dam g , while the latter equality means the
equivalence of the total functions in the usual sense.

(f8) If £ :S -S*' and g : S' - S" , then gof, or gf , means
the function h defined as follows.

h:8=5".
Dom h = Dom £ N {a|f(a) eDom g} .
h(a) = g(f(a)) for each acDam g .
(1) If £ :S =S , then £ denotes the function fo...of

(n times).  1lim ¢° means the function g defined as follows.

n- o

€ :S =85 .
acDom g if and only if there exists M..e‘n such that

fM"(a) = fM‘+l(a) , 80 that fm(a) = f(a) for any m 314.

and n >M_ .

M
g(a) = £ 8(a) for each aeDom g .



(f8) If £ :8—~S' and g:S = 8' , then f+g means the function
h defined as follows.

h:8-58" .

Dom h = (Dom f-Dom g) U (Dom g - Dom f)
U {alaeDom £ N Dom g and f(a) = g(a)} -
f(a) ac¢Dhom £

h(n) =
g(a) acbhom g - Dom f .

3. Predicates
We ghall use the word predicate to mean a possibly partial predicate.
We shall write p(a) =T, p(a) =F, and p(a) =U , to mean p(a)
is true, false, and undefined, respectively. For each predicate p,
Vp denctes the total predicate defined by

p(a) =U
otherwise.

(Vp)(a) =

Similarly, for each function f , W denctes the total predicate
defined by
f(a) 1is undefined
(V1) (a) =
F otherwise.
(Here P and £ are assumed to be unary and defined on a certain fixed
set, for simplicity's sake.) Thus (Vf)(a) means —*f(a) used
by Manna and McCarthy (1969), while we shall use * for various

purposes in the present paper.



L. Truth Tables.

Since we are going to treat partial predicates, we have to
define the meaning of logical connectives —~, A, V, D, and =,
for three-valued logic, for which we shall use the truth tables by

Lukasiewicz (1941) dencted by r‘t , and that by McCarthy (1963b) denoted

by Ty . Ty for the value U is as follows.
~U)=U. (UAT)=(TAU) =VU. (UAF)*s(FAU)=F.
(UAU) =U . (UVT)*-(TVU)='1'. (UVF) =(FVU) =U .
(Uviy) =U. (u:T)*='r. UWo>F)=U. (UDU) =U.
(ToW =U. (FoU)=T. (U=T) =(T=U) =F .
(U=F)=(FsU)=F. (U=sU)=T.

In I‘m the asterisked members, the remaining members being the
seme, become as follows. (FAU=F and TvU=T.) (UATF) =U.
(UVT) =U . (UDT) =U . In order to indicate the truth tables considered,
logical connectives will be suffixed by 1'" or l‘m . Thus, for instance,

A. (UF) =U .
rm’

5. Structures.

By a structure R we shall mean & collection of functions and
predicates defined on a set, which is called the underlying set of f
and denoted by |R| , together with that set. In the present paper
these functions and predicates are possibly partial. We shall consider
two structures (or two similarity classes strictly) @ and 2 in

the text.



2. Formation of Algol-like Statements

Alphabet

let £,V , ¥, and R be four disjoint sets whose elements
are called label symbols, variable symbols, function symbols, and
predicate symbols, respectively. The set ¥ 1is the union of disjoint
sets ’(0),’(1)’ «+ey and the elements of s(“) are called n-ary
function symbols. Similarly, e 1s the union of disjoint sets
P(o),P(l), «ssy and the elements of P(n) are called n-ary predicate
symbols. The alphabet of Algol-like statements consists of all the
elements of £, V, §, and P, together with the following special

symbols.
A =3 (=, )

In some cases described below the logical symbols:
- AV ¥V T

will be also contained.

Algol-like Statements

Algol-like statements, or statements, are defined together with a
function dencted by ( )~ which sends each statement onto a finite

subset of £ , by generalized inductive definition as follows.



Atamic Statements

(al) A 1is an atomic statement. (A) =§ .

(a2) For each oef , ¢ and o~! are both atamic statements.

(@) =g . (TH x{a).

(a3) For each xc¥ and each ye¥ , X :=y is an atomic statement.

(x t=y)” =§ .
Statenents

An atomic statement is o statement. Any other word on the above
alphabet is a statement if and only if it is defined to be a statement

by a repeated use of the following rules.

(b)) If A and B are two statements such that (A)" N (B)” =~ §,

then A;B is = statement. (A;B)” = (A)”+(B)™ .

(v2) If x := yrrens X i= £, are n statements and ‘(n)es(n) s

then x := t(n)fl...fn is a statement. (x:= x(“)rl...rn)‘ =p.
(p3) If x := 13 es% 3= fn 5 A,and B are nt2 statements
guch that (A)" N (B) = p and p(")ep(“) , then

(p(")rl...fn - A,B) is a statement. ((p(n)fl...fn - A,B)) = (A)"+(B)" .

A statement which is defined to be sc omly by the above rules will be

called a basic statement.

(1) If (p = A,B) is a statement, then (-~ p ~ A,B) is a statement.
(~p "’A)B)_).- = ((p "AIB))- .



(c2) If (p -A,B) and (q —A,B) are two statements, then
(pAq=hB) and (pVq=A,B) are both statements. The

values of ( )~ are both identical with ((p - A,B)) .

(¢3) If (p — A,B) is a statement such that xeV occurs in p
and neither ¥x nor Fx occurs in p , then (¥xp - A,B)
and (%xp - A,B) are both statements. The values of ( )*©

are both identical with ((p = A,B)) .

Parentheses and caommas will be used also auxiliarly to avoid

syntactic ambiguity and to improve readability. Especially '(n) fl. ..fn

(n) n n
and p fl...fn are written as x( )(fl,...,i’n) and p( )(fl,...,fn) ’
respectively. Semicolons will be abbreviated if there is no possibility

of ambiguity.

Representation by ALGOL 60

The statements in the above sense are intended to mean the statements

in the sense of ALGOL 60 (Naur et al., 1960) as fcllows.

A corresponds to a dummy statement (empty) .

o corresponds to go to o .

ot corresponds to o : (Gummy statement labelled by o ).

(p = A,B) corresponds to if p then A else B.

t=, 33 =mgy A,and V mean the same as in ALGOL 60.

The parentheses used to avoid ambiugity either correspond to begin
and end delimiting compound statements or mean the same as
in ALGOL €0.

(A)” denctes the set of labels standing in A .



Thus each statement can be regarded as a statement in the sense
of AIGOL 60 in so far as neither Y nor @ occurs in that. Thus we
shall call g, o1, f such that x:=f 1is a statement, and p
such that (p - A,B) is a statement, respectively, a go-to, a

labelling, an aritimetic expression, and a Boolean expression.

Notations

Statements are denoted by A,B,C,... . Arithmetic expressions and
Boolean expressions are denoted by f,g,h,... , and, P,q;Ty.e. ,
respectively. Label symbols and variable symbols are denoted by
O,TyUs.+. », &nd, X,¥,Z,... 5 respectively. We shall use a number
of functiona and predicates defined on the statements which describe
elementary syntactic properties. The function ( )~ , being s typical
example, was already defined in the above. All other functions and

predicates listed below can be effectively defined in a similar manner.

1. Sets of lLabels. By an occurrence of oef in a statement A we

mean only such an occurrence as is different from the occurrences in

the statements of the form o % occurring in A .

A = {o|o occurs in A} .
A" = {ala'l occurs in A} .
A=A uA .

FAM S
A"t - {alaeA* N A~ and ot occurs textually earlier than an

occurrence of o in A} .



Thus A" means the set of labels which are used for the purpose of
designating the destinations of the go to statements occurring in A .
It At # § , then the control may leave A by executing a go to
statement whose destination is not within A . Such a go to statement

will be called an exit of A . If A*=¢,therearenoloopsin A

2. Sets of Variables.
v(a] = {x|x occurs in A} ,
v(£) = {x|x occurs in f} ,
and
vip] = {x|x occurs in p} .

L{A] = {x| a statement of the form x :=f occurs in A} .
R[A) is defined by induction as follows:

For each stomic statement such that V[A} = § , RIA] = p .
Rlx:=f]) = vigl .
R[A;B] = R[A]) U R[B] .

Rl{(p = A,B)] = Vip] U R[A] U R[B] .

Thus L[A] means the set of variables whose values may be changed by
the execution of A , while R[A] means the set of variables whose

values may affect the course of action and the results of executing A .

3. Substitution. Let Bl’ ""Bn and A be n+l statements such
that B, occurs in A m, times (m, > 0) , where the occurrences
may be overlapped by each other unless they are not the same. Let

ﬁi ’ Je[nil , denotes the j-th occurrence of Bi , where the order is

13



defined by the position of the occurrence of the first symbol. Let

Cl""’cn be n statements. Then, by

AB]_’ .. -,Bn[cl’ .e .,Cn]
or (omitted commas)
A5,...5 [Cp o sG]

iz meant an arbitrary statement that is cbtained fram A by substituting
Ah(1,1) -h(1,24)

Cy for B, yeeesBy , for each ie(n] , with the following
restrictions:

(1) o<t <m .

(i1) 1 <h(1,1) < .o <h(1,li) <, -

(i1i) The occurrence ﬁi(i’” and 51251',,1') do not overlap each other,
for any distinct pairs (i,)) and (1',3") .

(iv) The result of the substitution is a statement.
By

G .,cn]°

A3

is meant the unique statement that is obtained in the case that ! g =0y

1I - .Bn

for every ie(n] , in the above, which does not alvays exist because of
the restriction concerning overlapping and the requirement that the
result should be a statement.

We shall use the same notation also for arithmetic expressions

and Boolean expressions.

1k



L. Coples. Ilet 0y,...,0, be arbitrary distinct elements of
+ > t

A" -K, and let 7y,...,7, De distinct and 11£A , for any
ie[n] . Th‘n

-1]o

A I CIVRRrL A -ri reenr T

ﬂl. --O‘n dl . ..dn

is called a copy of A . If A1 is a copy of A, and, A2 is a
copy of Al,then A’Z i1s almo called a ccpy of A . Copies of A

are denoted by A',A",A"',... .

5. Go-to and Labelling.

A begins with a labelling, if A 1is of the form o B .

A ends with a go-to, if either A is of the form Bo or A is

of the form (p = B,C) and B and C both end with go-tos.

An occurrence of statement B in A is preceded by & go-to,
(equivalently, B is preceded by a go-to in A) , it A
is of the form CA[aB] .

15
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3. Int station of -like Statements

By an interpretation of statements we shall mean (U, R, T°,J)
defined as follows.

let U be a subset of V, % the set of statements
{A|VIAl c U} , and K & bijection (i.e., 1-1 and onto function)

such that
kK :U=-1I,

where I is either [s) , for an s, Or 7l+ in accordance with the
cardinality of U . ILet £ denote g+ {t} , vhere . is a new fixed
aymbol.

le. & be a structure that satisfies the following

conditions.

L. el AP
2. For each =¥ 5™ , an n-ary partial function dencted by xé“)

is defined. I.e.,
SN U LU
3. por each pl® '™ , an n-ary partial relation denoted by p‘("‘)
is defined. I.e.,
o+ Ial" - F) -
The elements of |R| Wwill be denoted by 84,b;,Cy;, 85:P59C0s oo -

Thus by R will be meant the total functions by which <P }- x‘(‘“)

and p(“) I p'(t") as well as the structure itself, strictly.

16



Let T° be a set of truth tables for logical connectives. Let
|8 dencte |R|"xf, 1.e.,
|l x -cox lol x (2 (D) »

—— p—
s times

if U 1is finite. The elements of |8 will be dencted by a,Db,C)... .

For each ac|p| such that
a= (al,...,n.,a)

and each ueU , 8, denotes ‘x(u) , and lx denotes o . We write
(a), instesd of &, frequently for the readability's sake. If U
is infinite, the infinite dimensicnal direct product |R|* will ve
used instead of |R|® , namely s is considered to be infinite.

The total function J defined below sends each statement Aeau
onto s partial function, J[A], from |8 into |8 . JIA] will

be written as A’ » thus

Ay : o -8l .

Two partial functions, one sending each aritmmetic expression f

such that V(f] c U onto a partial function
f,: ‘3I - Ial ’

and the other sending each Boolean expression p such that viplcu

onto a partial predicate

sz "‘ ind {T’F} »

17



will be defined simultanecusly for the readability's sake.

For a partial function
o: |l ~ 18l >

¢ denotes the function defined by

¢ : |af - |8l
and

a a =3

- x

o(a) =
¢(a) otherwise.

Definition of &

The definition of J[A} , i.e., A’ , given in accordance with
the last rule which should be used in order to define A tobea
statement (Becticn 2), which defines J[A] for every AeZ; effectively
by the induction principle induced by the definition of statements, is

as follows.

Atomic Statements

(/1) A=A .

A’(a) =a for any acl|d| .

Hereafter the phrase like 'for any &e|8|' will be omitted.



(a2) (1) A =0 .

awy =4 ‘
A = ’ ir = H
»* . U T ®
and
A}(a) = a , otherwise.
(11) A =070

L

RS
(A("-))=r , 1t ox=o;
y. \l
and
A"(a) = a , otherwise.
(a3) A=Xx:=Y .

y’(a,) = -
y,(n) x

(A (&)) = » it % =t
8 U-x or vy

AD(a.) = a , oOtherwise.

Statements (non-atomic)
(b1) A = B;C .

o) = 1n 537 B"(Ep0 2P

19



(b2) A =x := x(“)fl...rn .

(g e a) = (8, p8)snns8y, p(0))
(n)
(™2 .. 2 ) o(8) u=x
(Ag(a)), = 1o ERVEEE
"‘) b { ueU-{x} or uw =X R
and

A,(I.) = a , otherwise.
(b3) A = (p(n)fl...fn - B,C) .

(W2 .2 (8) = o2y H(8)nerty p(8))

/m (By+ 6,)“ By(a)

n=o

.X = and (p(n)fl...fn)’(a) =T,

or & €B
x

lim (B, + CQ"

u a(Bj + LB) cj(a)

AJ(‘) = ﬂ (l)
ax =¢ and (p(n)rl"'fn).b(") =F ,

or a e ;
X

s, nxf-B'UC'u{»};

undefined, otherwise.

N




(cl) A= (~p=B,C) .
(= P)J(t) = -uro (p’(l)) . (See Section 1.)

Ay 1s defined by the same rule as (1) of (b3) above except

that (9(n)f1'”fn)p(‘) , occurring twice in it, should be

replaced by (- p)g(8) .
(@) (1) A =(pAa-B0C) .

(p A Q) p(a) = "ro(P,a(‘)"l,(‘)) . (8ee Section 1.)

Ay is defined by the same rule as (1) of (b3) above
except that (ot®) £1-+1,) p(8) should be replaced by

(P A q)pla) -

The case A = {p V q = B,C) as well as the case (C3) will be
omitted, for it suffices to define (p Vv q) 3’ (¥xp) 3’ and

(7xp) Iy similarly and use (1) as the above.

Intuitive Meaning of J

Practically, J[A] , namely A, , has the following meaning.

We consider a computational process denoted by (A,a) as follows:

1. Suppose
a-= ("1"“”‘3’ ¢) . (s may be infinite)
Assign the value & = &, x) to the variable x (identified with



the variable symbol x) as the initial value for each xeU .
2. Execute A fram the point labelled by o, wvhile the leftmost
point of A is chosen as the entry if ¢ = ¢ , and, if ofA”

then we consider A has no effect (i.e., identity transformation) .

Then the following hold.
If the process (A,a) terminates at the exit whose destination
is 7, giving the final value b » to the variable x for each xeU ,

then

(3[A)(a)),

bx for each xeU

and

"
-
-

(3(A1(s)),

and vice versa.
If (A,a) terminates st the normal exit, i.e. the rightmost

point of A, then
(J[A](l))x =t ,

while the relationship concerning the values remains unchanged, and,
it (A,a) does not terminate, then J[A] is undefined. The converse

are also valid.

Choice of I'o

As studied by Manna and McCarthy (1969), the choice of T° is an
important problem. We shall assume I‘t as the foundation hereafter,

unless we specify l"° . However, it must be noted that all the axiom

22



schemata of the formal system presented in Section 5 are valid, which-
ever set of truth tables we may use. Fram the practicel point of view,

the process of most implementations are related to I‘m rather than to rt .

On the other hand, they make nc difference in so far as all
fén) and pén) are total and neither ¥ nor ¥ 1s involved, which
is also the usual case when we consider actual ALGOL 60 programs which

contain no recursive calls of procedures.

Remark
Function J is an extension of Jl for Tl-stttments and J

for Ta-atl.tenents (Igarashi 1964). For instance, J{Al(a) defined

above is identical with
EATSIC S PO I

The reader may notice that |R| in the present paper corresponds to y.

in that paper, while 2 in this peper 13 used in a different meaning.
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L. Category of Programs

Programs in the General Sense

It seems to be convenient for us to consider more general programs
as the backgiround for the treatments of the properties of Algol-like
statements. By a program, let us mean a partial function fram an
arbitrary set to another set together with its denotation. This
definition does not exclude those partial functiona vhich cannot be
defined effectively. Instead, we shall describe it explicitly vwhenever
the definability or constructiveness matters.

Programs will be denoted by A,B,C,... . For each A , J[A)
denotes the partial function corresponding to A, and G[A] the graph
of J[A) . Let D Dbe an Algol-like statement such that Deau ’
and (U,%,R,T°,J) be an interpretation. Then the pair (D, (U, % R:T%, 7))
is a program, for a unique partial function J[(D] , namely D.’ , s
determined by it. Therefore we shall assume the interpretation is
fixed hereafter, so that each Deau represents & unique program. Thus
we identify an Algol-like statement with the program represented by it,
and the set of such programs will be dencted by a4t .

What we shall do firstly is almost the same as considering a sub-
category of ens (the category of sets) whose objects are graphs of
partial functions. The only difference lies in that the denctations
are distinguished in our treatments. For instance, we do not say A
and B are identical mor A =B , even if J{A] = J[B] , while we may

say A and B are isomorphic.
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Category Pr

Each program will be called an object of category Pr . The class
of all the objects, namely progrems, is denoted by Ob Pr For each
pair A and B belonging to Ob Pr, Hanpr(A,B) denoctes the set of

triples of the form (A,{,B) such that
¢ : 6[A) - aG[B)

and that { is a total function. The elements of H%(A,B) are
called morphisms of fr . If there is no possibility of confusion

the morphism (A,{,B) will be abbreviated by { . We frequently

write { : A=-B or AiB instead of Ce}!abr(A,B) . ¢ 4 A-;oB nc s
then (A,7ME,C) eﬂcnpr(A,C) i1s defined as the camposition of morphisms
(A,§,B) and (B,M,C) » vhere TNt in (A;M¢,C) denctes the composition
of functions ¢ aend T in the usual sense. Let “G[A] denote the
identity function of G[A] onto itself. The morphisa (A,i.dG[ A],JIL) is
called the identity morphism of A and is denocted by 1, .

A
We shall see that @©r satisfies the axioms of category as follows:

1. Associativity of Cmnition, It

AS'BHC-;'D )

then {(n¢) = (M)t as morphisms.

2. Ildemtity. If AEB,thcn ;-uA. It CEA,thm ﬂ-lAﬂ-



3. If the pairs (A,B;) and (A;,B;) ere distinct, then
Hotpy (AysB,) N Homp (ABp) = -
Category Pr*

Let Pr® denote the full subcategory of @r such that Ob Pr’

consists of only those programs A such that
pom(J1A)) € B°|
wvhere
|8°| = {a]ac|df and s = ¢t} . (See the below modification of J.)

For each AcObPr® and BeOBPr ,

Hu"‘(A,B) - ch\,r(A,B) ’

by definition (of full subcategory).

We consider a map:
Ob Pr - Ob Pr¥
which sends each AcObPr onto LA cObpPr® such that
LAl - Jial] \#| -

That is to say we shall forget camputational processes starting from
any entry different from the normal one, namely the leftmost point, if
A 1s sn Algol-like program modifying J{A] imto J{al||F] .
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Hereafter ve shall be concerned with ?rz' , 8o that A,B,C,...
will be understood as :.A’ r_B, LC sees 1f the former do not belong to
Ob Pr® . Apparently the morphism (A,{,B) is & momomorphism,
epimorphism, or isomorphism, according as the function { is univalent
(1-1), onto, or univalent and ontc. We shall write {:ASB or

A =B toexpress that { : A - B is an isomorphism, and A =B to
express that there is an isomorphism from A to B, namely A and
B are isomorphic. ’

Value-Praserving Monom isms

We pay special attention to such a monomorphism { that has the

following property:

Suppose { : A - B , and the function { : G[A] = G[B] sends
(8,b) €G[A] onto (c,d) eG[B] such that

a=c
and

b, =d, for each ueX + {x} ,

for a subset X of 11, for any ac|¥| .

In such a case, { (as a morphism and as & function) will be said to
preserve the values of X , or to preserve X, and we shall frequently
write (x instead of [ in order to indicate that { preserves X .
Moreover, if the choice of § itself does not matter, we write A p B
instead of ;x + A =B . Similarly we shall frequently write

AivB or AiB instead of ;x:A‘-'-"B, and A= B instead of

;U:A'-'oB,tha.t is AﬁB.



Remarks

i AgBgC 14 A - C.
(1) gBgC implies -

(11) gx; =Ty implies that { preserves XxXny .
(111) Q& = Ty implies that the function {|Im &, preserves XNY .
(1v) “’!‘X - 1, implies that & and T Dboth preserve XUy .

(v) In an arbitrary category C , & morphism 7 is an isomorphism
if and only if there existsamorphism & and ¢,de0bC such
that

byslc and 78=1d.

Guch @ © is unique and ususlly denoted by L.
Proposition 3. 1If AgB and BgA, then A f,B.

Proof. By definition of 3 there exists gx :A -B . Then,

lx(a.J[A](A)) = (a,J(B](a)) for any acDamJ[A]l,

because the right side is the unique element of the form (a,b)

belonging to G[B] . Similarly there exists T : B - A such that
nr(c,J[B](a)) = (a,J[A](s)) for any acDom J[B] .

Thus tx is an isomorphism, for “y‘x = lA and gxn! = :|.B
(c¢f. Remark (v)). Besides, § preserves XUY , by Remark (iv).

Q.E.D.
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Proposition 2. AiB if and only if AXB and nia.

Proof. Sufficiency: Apparent from Proposition 1.

Necessity: If A i B , there exists §x :A=3 and
¢1:B -2 such that §73 =1, (cf. Remark (v)). {7
preserves X , by Remark (iv).

Q.B.D.

For each Aeq? and Bedt! , these value-preserving monomorphisms
or isomorphisms have the practical meanings listed below. The reader
may recall that aA is understood vhenever A denotes such a program

that Dom J[A] © |#°| 1s not satisfied.

1. Relation T

The following relationships are equivalent with each other.
(a) A 4 B.
(b) Dom J(A] € Dom J[B] , and for any aeDomJ[A] ,

(J[a)(a)), = (J[B](a)), for each uek+ {x} .

(c) For each ac|d*| , if the pro?en (A;8) (mee Bection 3) terminates

with the result b, be|d| , then the process (B,a) terminates
with the result c satisfying
bx =c, for each xeX ,
namely the values of variables coincide variable-wise, and
b =¢
x x
namely the destinations of the exits are identical.
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2.

Relation a .

The relationship A aB nolds if and only if the following

conditions are satisfied.

1f (A,a) terminates, then (B,a) terminates for any ;e|.b"| .

Besides the destinations of the exits are identical.

3. Relation i .

The following relationships are equivalent with eac: other.

(a) A i B .

(¢) Dom J[A] = Dom J[B] ,
and, for any aeDamJ[A],

(J[A](t))u = (J[B](l))“ for each ueX+ {x} .

(4) The process (A,s) terminates if and only if (B,s) terminates,
and the same conditions as 1(c) atove are satisfied by the results
of these processes.

4. Strong Equivalence and Ordering.

The relstionship A = B holds if and only if A and B are
strongly 5\_1_111;1@1: in the usual sense. The relationship A 7 B holds

if and only if J[A] < J[B] in the patural ordering of partial functions,

namely @ <V if and only if @ is a restriction of ¥ . A= 3B if

and only if AUB and BﬁA,vhicho,re still weeker than J[A] = J(B]



in the original sense of J(A] and J(B] , being squivalent to
J[LAl = J[LB] > 1.0,

A,l 1] - a,! 12 .

9. Correctneas.

Firstly, the concept of correctness of programs introduced by
Floyda (1967) and extended by Manna (1969) will be explained in our
notation so that the comparison becomes easier. Manna's definitions

are as follows:

Program A is said to be partially correct w.r.t. predicates p"
and q‘o if and only if

pj(a) =T implies qb(J[A](a)) =T, for any aeDamJ[A] -

Program A is said to be correct w.r.t. Py and q’ if and only
ir

p,(a) =T implies aecDomJ([A] ,

besides (1) above.
Let 8§ denocte either o or- c'la for an arbitrary o such
+
that OfA” . Then, apparently, (1) and (2) are equivalent to the

following relationships in this order.
(p = A,8) (P = As(q = A,8),8) -

(p = A,)8) ;; (p - A®)
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6. Representations of and i- by = .
3ince we shall consider a formal system which represents (although

incompletely) the concept of equivalence, namely relations % and =,

X
we shall see that 4 and ; can be defined by = , here. We shall
use, however, T as well &s = in the formal system because of its

X
practical applicability.

XoeeoX

Let T ¥ “(rl, ...,£) denote the statement
X =1 3eeey X 37 f‘n .
Relationship A § B holds if and only if
t,.00t t,...t
1 ~ 1
AL Bie,eeese) = B3E Bleyeeesc)

for an arithmetic expression c such that Vic] =% eand tl""’tm

such that {tl,...,tm] = V[AJUVIB]-X .
Relationship A 4 B holds if and only if

Vlno-

- - -1 Ugee-ld
AT n(ul,...,un) s (At!mrll cee O )' s 1

vhere the following conditions are satisfied:
{ul,...,un} = v{a) n viB] .

fygseeesvp} 0 (VIAT U VIBI UX) = g .

++
{ul,...,ak} = A .

(Aa;.l...o;l)' is a copy of Aoil...o;l (see Section 2)

- =1.,t t
such that (Aull...okl)" Ne =9 .
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Inductive Limits

The concept of inductive limits is useful in fr and Pr’ .
For instance, we can frequently use the following method in order
to prove A 7 B .

We find two sequences of programs (Ai) and (Bi)

ien ien

with morphisms such as

.
A=Ay,
9 .. .
Ty’ : By =By

(A)l;) = 1_1_’51 (Bi,ﬂ;") ’

for each 1€ and jen . This is a sufficient condition for a {

such that { : A-B and that { preserves X to exist. If p and

q contradict each other, then (p - A,(q = B,4)) is a sum of

(p - A,8) and (q - B,A) , in the sense of the terminology of category,
being & special case of inductive limit, vhere & iz a statement of

the form o lo such that ofAt UB- and AT NB =a nBT .p.
This fact may be considered as a justification of writing p-A+p-B
jnstead of (p = A,B) conveniently used in the proof of the completeness

of L.3 by Igarashi (196L).
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5. Formal System Represent the Equivalence of Statements

Well-formed Formulas

For two arbitrary Algol-like statements A and B belonging

to dU and an arbitrary subset X of U,

[

A=3B
and

Ax

are well-formed formulas, or wffs. (cf. Intended Interpretation below.)

Substitution Rules

In the following schemata of axioms and inference rules, srbitrary
statementa; variable symbols; label symbols; arithmetic expressions;

Boolean expressions; and sets of variable symbols can be substituted

in place of A,B,Cr... 5 X:¥52 5 a,al,..., TyTysees 3 £58yeee 3 PrQTreee 3

and X,Y,Z,... ; respectively, provided that the results of such
substitutions constitute wffs, and that all the restrictioms imposed
on the schemata, immediately following each schema, are fulfilled.

An arbitrary copy of the statement that is substituted in place
of C can be substituted in place of C' in Axiam 12; any other
occurrence of substitution operator indicated by brackets should be
treated similarly; and an arbitrary statement of the form o *o can be
substituted in place of A ; with the same proviso as the above.

A schema of wffs S(i) in which i occurs a8 index of statements

should be replaced by the line of the form
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&) ... B(v)

before any other substitution, where ve? and v should be substituted
in place of n ocecurring in the restrictions.

The symbol 1 stands for a nullary predicate symbol such that
1R=T . Similarly OR=F .

The formulas in the sense of predicate calculus that are obtained
after the substitutions of the symbols f,8 ..c 5 PsQ - and that
constitute a part of vestriction, except those expressions containing
get-theoretic symbols, should be interpreted in one of the following

ways:

(I) Let @ be a formula (in the sense of predicate calculus) that
contains exactly n variables such as xl, ceerXy . Then, we consider

that the restriction expressed by & 1is satisfied if and only if

(Vxl. ..?xnmj =T .

(II) We presuppose an axiom system [ (or theory) that is consistent
(and semantically complete, preferably) and that contains all the
symbols belonging to ¥ or P and the two symbols = and ¥ . Then,
we consider the restriction expressed by & , a8 abov<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>