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8. INTRODUCTION
SESSEESESESESESES

This paper proposes a set of general conventions for representing
natural-language (= ‘semantic’) Information in many=sorted
first=ordeer predicate calculus. The purpose of this work Iss of
course: to orovide a testingeground for existing theapem=-poroving
orograms, and to suggest a method for using theorem=provers for
auestlion-answerina and other Information retrieval. The ouroose Is
NOT to propose any system of logic, We stress oracticality, and the
contents of thls paper may well be quite trivial to a logician,

Our asproach consists of specifying functions and relations that
re-exXpress common|y encountered constructions in natural language
(e.g. ‘kernel sentences’, comparison of adjectives, subordinate
sentences, etc.) as well as specifying the Intended Interpretation
for, and some axioms for these functions and relations, The olven set
of axiors Is probably incomplete, but hooefully consistent, No oroof
of elther Is glven.

This approach should be contrasted with the, ‘monkey-banana’ approach.
where ons selects one particular problem environment, and tries to
write down a notation and a set of axioms that will handle thls
environment. Our reason for doing things the way we do Is as follows:

When a question or a problem (8s given to an advice taker or another
similar system, we clearly wish (in the long run) that the problem
statement shall consist only of very specific statements (‘Consider a
room In whieh there Isa monkey and a box‘). More general statements
(‘Tf a monkey is at a box, he can climb it’) shall not need to be
part of the problem statement. but sha!| be known to the advice taker
beforehand,

We should ask, therefore, what general axioms are necessary for such
a system, and equally Important, how we can select functions and
relations so that the amount of knowledge that has to be stored away
Is held reasonably finite. We believe that these questions are best
answered If we consider classes of semantic Information first, and
specific exercises afterwards.
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1, APPROACH
SSSESSEREESES

In this section, we shall outiine in general form some of the
problems that one encounters while expressing natural-ianguage (NL)
Information in predicate calculus (PC). Ne shall also outline
conventions which gre cigimed to handle these oroblems in o
satisfactory manner, The dstalls of the notation are left to later
sections,

Higher-order operations

Several! natural-ianguage constructions are In a cortain sense
‘nigher~order’, For example, |? we represent 'm !s expensive’ (where
m is an obJeet) through

Exponglive(m)
(whieh Is a reasonable, aithough net the only reasonable convention),
then 'm Is more expensive than n’ might be wei! expressed through
More(Expensive) (m,n)

where ‘More’ Is a second-order function that maps a monary
first-order predicate into a binary first-order predicate, Such a
function ‘More’ is of gourss proper oniy If we assian an Intenslional
interpretation to predicates such as ‘Expensive’,

It Is unfortunate, then, that although the technology of automatic
theorem=proving hag been developed rather far [see ¢,0. Groen 1969,
Alien 1978, Luckham 1978), there Is very |ittie work done eon
theorem=proving In higher-order logic. The paper by Darlington In the
oresent volume is an exception, It has even been sugaested (Robinson,
1969) to use present theorem=provers for simulating higher-order
loale,

With this state of affairs, ws propose that the ‘higher-order’
constructions In NL should be expressed directly in first-order PC,
The method, of courgs, ls to re-express what used to be predicates as
individuals, and to use a single application predicate. Thus ‘m Is
expensive’ is to be exnressed as

1S¢(m,expensive) | |
where IS is the application predicate. We need to distin ulsh betweenindividuals of two types: OBJECTS and PROPERTIES, oxemo 11] ed by ‘wm’
and ‘expensive’, respectively. Our other example: ‘'m Is wore
expensive than n’, (s then expressed through

IS(m, MORETHAN(oxDonsive, n))
whep® MORETHAN ig a function

[prooerties e oblects << properties)
with the obvious Intended (ntsrpretation.

It might De objected that present thaorem=provers have not been
designed to handle many=sorted Iogle, and that a notation wusina
many=sorted logle therefore |s no better than ea notation In
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higher-order loglc. The answer Is that recent results (Luckham
1978...) indicate that under certain (generous) restrictions,
ordinary resolution-based theorem=provers wiil handie many=-sorted
logic correctly without even knowing so (i.e. only correct
unitlications will ever be attempted),

| So far. properties have only been specified intuitively as
counterparts of adlectives or nouns, We shall not attempt to make the
interpretation of oroperties more precise than this, One Important
point. however! we shall require that properties are something ‘more
than’ the set of al| objects that have the prooerty (by the IS
relation). In other words, «e shail NOT have the following axiom!

Love 1Stm.p) E 1S(msal) 2 [p ® al |This intentional usage of properties is necessary 0.9. for our use of
the function ‘MORETHAN’, atove,

In this paver. we shall not be concerned with transformations between
situations, or the logle of actions, If we were, we would orobaply
oropos® that the predicate 1S should have a third argument, which
would be the situation in which the obJect has the property, For an
introduction to the situation concept: see e.g, [McCarthy and Hayes,
1969). As long as IS only has two arguments, we shall usually orefer
to write it infixed, eather than prefixed. Thus we write

x 1S axpenslive

synonymousiy with
IS(m,expensive)

Reorasentation of attributes

Expressions such as ‘John (s the father of Peter’ are represented as
follows, We consider ‘father’ as a property, and we have a property
modifying function OF of two arguments.

OF: (properties ® objects = properties)
so that we can write

john IS father
and

lonn 1S (father OF peter) | |
The sare conventions and the same function OF are used for other
similar constructions, e.g. ‘son of’, ‘color of’, ‘telophane number
of’, ote.

Reoresentation of sentence kernels

The simplest kind of sentence with a subject and an intransitive verb
is represented In the obvious wayt the subject goss into an ‘object’
individuals the verp into a ‘property’ (Individual. Thus ‘John is
running’ goes Into

john IS running
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For transitive verbs (see, give, etc.) we use the entire verb~oblact
constellation as a prooerty. Thus ‘John sees Mary’ goes Into

John 1S 0BJ(see ng mary)
Here, ‘OBJ’ is a function

foropert es @ oplects =< properties] |(similar In structure to MORE’) which enable us to compound the
croperty from Individuals that correspond to natural-ianguage words,
In this particular case, it sti|| makes sense to write

lehn IS seeing CL
In some other cases, this may not be sa (e.g. ‘John IS opposing’). In
such cases, we shal| say that the verb-property Itself (‘oonosina’)
is a property that no object can have, In orincliole, It would be more
attractive to add to the number of sorts. and to let e.0. ‘opposing’
have the sort of a ‘ore-propsrty’ which can be mapped Into a
property, using some suitable function, but at (east for the moment,
we shail nat bother to Introduce such tight-fitting sorts. <= We
shall later encounter severa! simijar cases where we must again
resist the temptation to Introduce tco many sorts.

For verbs with several objects ('glve’s ‘lend’'), we use several
functions similar to ‘0BJ’, It makes sense to have a function ‘TO’

. for what Is represented In our naturai language as the indirect
' oblect of a verb, For example, ‘John gives Fide to Mary’ would be
. reoresented as

John 1S giving 0B8J fido TO mary
Other similar functions (BECAUSE, FROM, etc.) can be introduced when
needed,

Notice that terms In our PC formulas are Intended to denote the

‘meaning’ (7) of NL phrases, rather than these phrases themselves, It
follows that the convention of having functions ‘08J’ and ‘70’ that
correspond to NL direet-odbject and Indirect-obJject constructions, Is
motivated by convenience, rather than by logical necessity, It is OK
to represent phrases [nvelving some verbs differently (e.g, by having
more functions besides ‘OBJ’ and ‘TO’), as long as we are prepared te
undertake the heavier burden in translation.

Representation of subordinate sentences

Verbs that govern a subordinate sentence, such as ‘knows (thatl’,
‘knows {whether)’, ‘belleves’, ‘claims Cthat)’, etc, make it
necessary to add some more conventions for handling these subordinate
sentences. We propose the following conventions!

We Introduce one more sort, EVENTS, and a functien |
at CobJects * oprocerties =< events)

Let » be an oblect and p a procerty (either an elementary oroperty,
such as ‘expensive’, or a composite property. such as ‘father of
John’). We express 'n believes that m is p’ through

n IS Bellevinglaimip))
where ‘Believing’ Ig a function (events < provertiesl), The event
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‘gim,p)’ then expregses the possibility or the Idea that m would have
the sroperty po,

It Is a matter of discretion whether we use 2 single-argument
function ‘Believing’ as defined here. or a (pre=)property individual
‘beileving’, used |ljike in

n 1S (believing THAT g(msp))
where THAT is an Infixed, binary function,

Here, again, It Is Important that the oroperty p should carry more
Information than merely that of being the set of all obJects that
have the property bp. For, the statement 'm believes that n Is a
unicorn’ must be considered to be different from the statement ‘m
believes that n Ig a zublahi’, sven though the set of all unicorns
equals the set of all zublahls ecuais the empty set.

It is hard to find a good English mnemonic for the function 0. In
other European languages, we would have sslected the subjunctive of
the oroesent tense of the verb ‘to be’ (waere, solt, sera. vores,
ete.). In English, by analogy, we should write ‘were’. It Is
unfortunate, then, that ‘were’ Is also used for past tense, In spite
of thig, we shal| represent g as an infixed ‘WERE’, and we hope that
the reader will get the right associations.

With these conventions. anc some sultabie priority conventions which
make up for the suporession of parentheses. we can write 'n belleves
that m is p’ through

n IS Believing m WERE op

Other similiar verbs (know, claim, etc.) are handled similarly to
bel leve,

Representation of ‘knows what’

Some properties (e.9, ‘father OF peter’) are only held by one sinale
oblect. It Is reasonable to have an operator ‘The’ which maps Such
oroperties Into opjects In the obvious way. Thus ‘Peter’s father is
tall’ would be expressed as

‘The father OF peter IS tall’
or more explicitly

‘(The (father OF peter)) IS tall’
The use of ‘The’ may be regarded as an Input convention only. One
would then eliminate ‘The’ bafore the theorem=prover is (et (case on
a staterent or a question.

Consider now a statement such as ‘John knows Poter’s father’ or ‘John
knows Peter's telephone number’, In the {first statement, ‘knows’
orobably has the meaning of ‘ls acquainted with’. If Dick Is the
father of Peter, then the first statement In synonymous with ‘John
knows Dick’, In this ease, the PC trarsiation of the first statement
is

5



John IS Agauainted=with The (father OF peter)
where ‘Acauaintedewith’ is a mapping [objects + properties).

By contrast, the second statement certainly means ‘John knows what
Pater’s telephone number Is’, If Peter’s telephone number IsIn fact
321-5678, then the second statment is not equivalent to ‘John knows
321-5678°, The use of oroperties enables us to handle this kind of
sentence. We do It by !ntroducing a function
Knowing L[orepesrties << properties)

so that we can write
“John IS Knowing (telsphone=numper OF peter)

with the obvious meaning. It would seem that this aocoroach Is
considerably more promising than the awkward
‘{dea=of=te|sphone~number’ constructions oroposed by McCarthy and
Haves [19691],

Referentia| opacity

In_the notation proposed here, al) functions and relations are
referentially transparent (l.e. If x = y, then f(x) = f(y) oetc.): The
reason why ws can oermit this even for expressions involvina
knowledge, belief, ete, Is of course that In this notation, some
onstructions which mlaht be expressed using eguaiity are expressed

Tn other ways, For example, we express ‘Sir walter Scott is the
author of Waverley’ through
 sir-walter=seott IS (author OF waverliey)
or (since there (sg only one author) through

gsirewalter=-secott 8 The (author OF waverisy)
but nat through
sir=waiter=scott = Auythorof(waveriey)

Deductions from bDeljefs

It is convenient to make certain assumptions about what It means for
a oerson to ‘belleve’ something. The first of these assumptions Is
that |f a person bellaves a, and If he alse beiisves b, then he
belleves any conclugion from (aad), (The A sign should not be taken| too (iterally). Sim iar assumptions apply to ‘knows’, etc.
Mow can this assumotion be axiomatized? We oropose to do this In the
followina manner!

(a) MWe Introduce functions AND, OR, Not, etc. which map events (or
palrs of events) Into events’

(b) MWe Introduce one more type, that of a ‘subordinate variable’,
which Is used syntactically like a constant, but which should
only occur In subordinate express! should on The purpose of
subordinate variables Is to act like variables in a simulated
logic that is performed on the arguments of ‘Beilevina’ (ete.),
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(This |s another case where we may later wish to add to the
nurber 0° types to make them fit tighter). |

(ec) Suppose we are planning to use the resolution ooerator [(Rabinson
1965) for deductions. We then invent a function

RESOLVE; [events * events + events)
which resolves all palrs of ‘clauses’ from the first and the
second araumsnt., and forms the ‘conjunction’ (using the function
AND on events)of the ‘resolvents’., The function RESOLVE must of
course do ‘unification’ on subordinate variab= jes, etc. We then
have the axiom

wn IS Relleving e A m 1S Belleving f 2
m 1S Belleving RESOLVE(e,f)

It we use some other Inference rules instead of or together with
the resolution rule, then simijar functions on events and
similar axloams for Belleve (etc.) are introduced.

(d) Ouring the deduction process. the function ‘RESOLVE’ is handied
with immediate evaluation, Cf, [ 13,

This would seem to be a satisfactory way of formulating the con-
vention that ‘If m pejleves a and m belleves b, then m believes the
conclusions from asb’. It must be understood, of course, that this
convention Is a rather crude approximation to the psychological
reality, (Even it m Is a computer, rather than a human being, It Is
<tit| an approximation for any reasonably interpretation of
‘bel leves’), = The detalled development of these suggestions Is left
to a later paper, and sha!l not bother us here any further,

Analytic vs, emplpical facts

We shal! make another, similar convention which aporoximates reallty.
Name !ys, wa shall attempt to distinguish between ‘analytical’ and
‘empirica:’ facts. An ‘analytical’ fact is a fact such as ‘all men
are mamrais‘i an ‘empirical’ fact !s a fact such as ‘John 1s asleep’.
The differance between the two Is critical because of the following
convention! If a is an empirical fact, and b is an analytic fact, and
m pellaves a, then m believes any conclusion from aab, In other
words, analytic facts are assumed to be bullt Into al! agents who are
capable of believing (and knowing, etc.).

Feorw thase gonventions, It immediately follOws that analytical facts
can not be subjected to beilef, knowledge. etc. We shal| therefore
adoot the convention that empirical facts are exactly those facts
Which are expressed with ths relation IS (which means they can be
expressed as events, using the function WERE). Analytical facts are
expressed with other relations, In particular, we need a binary

relation SUB between properties, used ¢.0. as in
elephant SUB mammal

this relation obeys the axioms
(p SUB @) > (mISo 2 m IS qQ}
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and

(op SUB q) > (Betieving(m WERE p) SUB Believing(m WERE a))
Notice that we do NOT have the stronger axiom

(op SUB a) 2 (Ymi(mISp >» mlIS a)
We do not. because we want the relation SUB to express that the
relationship between p and a Is an analytic ons,

In summary, only empiric facts can be subject to knowledge. beilef.,
atc. and only analytic facts may be expressed with SUB (and other,
simitar relations, which will be Introduced later on).

The distinction between analytic and empiric statements obviously has
some potential philoseohlical overtones, We hope to avoid most of them
by formulating the distinction In terms of an assumptionon the verbs
believe, know, etc., rather than In terms of ohll1osophical
considerations.

The predicate ‘Holds’

The ‘connectedness’ of our set of functions and relations reauires
that there should be some monary relation ‘Holds’ such that

Holds({m WERE p) = m 1S op
We shall find frequent use for this relation.

It might be argued that ‘Holids(e)’ is In essence an empirical fact,
and that it should therefore be expressed through 0.9.

e IS true
(where ‘true’ is a property an events), However, the only advantage
would be that we could write terms of the form

e WERE true

But this Is a very dispensable feature. since we have Anyway that
oe WERE true z o

We shall therefore prefer to use the predicate ‘Holds’.

Summary

In thls section, we have Introduced the following relations and
functions:

IS CobJects @ properties)
oF (properties * objects =< properties)
08J (oroperties ©» objects + properties)
TO Coroperties * objects + properties)
WERE Coblects & properties + events)
The Coroperties = objects)
RESOLVE (events + events =< events)
sus Cproperties © properties]
AND, OR (events @ events =~ events)
Not Cevents =~ events)

] :



Holds Cavents)
plus some specialized functions (whose definitions will later be
modified):

Be!lleving (events + properties)
Acauainted=-with (objects < ‘properties)
Knowing Coroparties + propertiesl

MORETHAN | (properties * ogabjects + orooertles)
These functiens and relations are Intended for expressing NL
information In a many~sorted, firsteorder predicate cal= culus, We
have oiven the intended (Interpretation of these functions and
relations, and out!ined the reasons for selecting these conventions,
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2. NOTATION AND OTHER CONVENTIONS
SEEESEEESSSEREESSSSSESEESESESRERXES

Before we proceed, we shall specify the notational conventions that
we will use (and which we have in fact already tacitly used).

Ortography

Binary functions and relations are usually written Infixed, and with
capital letters tnroughoutt OF, WERE, IS, Functions have higher
oriority than relations.

Monary functions and relations (and operators, see below) are written
oref ixed, and with an initial capital letter: Knowing, Holds, The,
Any. Monary functions have higher priority than binary ones. The
arquments are not necessarily enciosed by parentheses.

Parentheses are used freely to clarify or modify the order of
apollication of functions Or relations.

Constants and variables for objects and arapérties are written with
small letters theoughout, Variables are written with only one (etter.

We shall sometimes use db | # | x functions. The Algol gonstruction

*ifx then y’ ls an example of a bIfix. A function Is bifixed if It
is introduced In the form
More .. THAN o 0

In such cases, we really mean to have one binary function MORETHAN of
two arguments, and we wrlte

More tall THAN peter
when we mean

MORETHAN(tal | ,peter)

An _infix~to=prefix translator (in LISP) which also takes care of
blfixes is avaliable from the suthor.

Sorts

In the seguel., we Shall need two more sorts. Thus we use {first-order
oredicate calculus with the following sorts!
1, ObJects (for physical objects, persons, etc.)
2, Properties (for counterparts of nouns (excent proper names),

adjectives, and some verbs)
3. Events (for hypothetical or real events In the world, e.0,

“that |Jk is peter’s tel-ne"
"that the monkey is under the bananas"
"that the monkey Jumps to the ceiling"

4, Integers |
%. Locations (for gsnatia) positions, e,9, ‘In the room’, ‘under the

10



table’)

‘Declarations’ of variables | :

We shall use different variable symbols for different sorts,
according to the feilowing conventions!

ks®)N objects
0.00 propeéerties |
det, events
Yow integers
Ish locations

Finally, we use the following notation!
Q,R “modification functions (see below)
Rorop property function corresp. to R
S(x) {literal where x |3 One occurrence of a term
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3. AMENDMENTS TO FUNCTIONS OF SECTION 1
SESEESESEISISEEEZZEEITITSISSISZZIRTITESIE

In this section, we shall give some additional comments on the
functions that were Introduced In section 1. We shall also introduce
same useful additional functions which are closely related to those
of section 1, The things (n the present section are minor detalis.
They were not described In section 1 because that section wassupposed to olve an overview of the general aperoach In thls paper.

i
Boolean algebras for properties and events

We use the functions AND, OR, and Not, the relation SUB, and the
constants truth and faisity in a Boolean algebra in the obvious way.
(The direction of SUB (s such that

eo AND ¢ SUB oo
et cetera), ‘¢ SUB ft’ Is Intended to mean that follows
analytically from f, AND, OR, and Not are the functions we need for
the funetion RESOLVE that was outlined in last section. Axioms for
this algebra can be taken from any textbook and wit! not be (iterated
in this paper. ‘

The following axioms are more‘or less obvious:
Ho lds(Not eo) 2 ~ Holds(e}.
Ho lds(e AND ff) s Holds(e) A Holds(f)

We easly obtain theorems such eas
eo SUB f¢ A Haolds(e) 3 Holds(f)
Holds(e OR f) s Holdste) v Holds(f)

1f we have a function RESOLVE !ike in previous section, we also need
an axiom

e AND sus RESOLVE (e.f)

It |s convenient to have a relation EXCLUDES, defined by
® EXCLUDES ¢ 2 e¢ SUB Net f

For example, we have
m WERE male EXCLUDES m WERE female

A similiar algebra Is set up for oroperties, using the same symbols
for the functions and relations, Thus Not is a function
(events + events) v (nroperties + properties)

and similarly for the others,

We relate the two migebras through the following axioms
m WERE Not »p s Not(m WERE po)
m WEREp AND m WERE a = m WERE (p AND a)

and obtain as theorems
m WERE p OR wm WERE a = m WERE (p OR gq)
o SUB a > mm WERE p SUB m WERE q

The last theorem a0rees with our intuitive (dea that the relation SUB
12



on propertis should be used like In
boy SUB male

Property functions: Ofprops, Ateropsr...

Functions Ilke OF, OBJ, TO, ete, shall be cailed modification
functions, They shall be assumed to obey certain axioms; e.g, If FF
and GG are two arbitrary modification functions, we shall have

m FF p G6 gq s m GG a FF op

In order to handle 8.9. ‘Peter knows when John goes to school’, we
have for each modification funetion OF an assoclated property
tunction Ofproo [events + properties), satisfying

m IS (tp OF nn) = n [S Ofporop (m WERE op)

Example: John IS glving 0BJ fido TO mary
Is saulivaltent to

fido IS Oblorop (John WERE giving TO mary)
ig equivalent to

mary 1S Toproo (John WERE giving 0BJ fldo)
In natural language, the last phrase would be ‘mary is the one John
aives fldo te’ (or, morse precisely, ‘mary is one that John gives fideo
to’).

Example: peter 1S Knowing Toprop (John WERE giving 08J fide) In
natural tanguage: peter knows whom John gives flido to,

Knowledge and belief

Let us make the functions for expressing knowledge and belief
slightly more orecise, We use the following functions:

Belleving Cevents = properties)
Kxnowing-whether [events= properties)
Knowino-that (events < properties)
Knowing {orooerties< properties)
Acouainted=with [objects <= properties)

Starting from believing (the intention of which ls left unspecified),
we sf that a pergon knows ‘that’ an event, iff he belleveg It, and
it holas. A person ls sale to know ‘whether’ an event, Tt? he either
knows that the event, or knows that not the event. Furthermore. we
say that a person knaws a property or. |ff ha can determine for every
object m (given by Its name (assumed to be unique), rather than by «a
descriotion), whether (m WERE p), This knowledge could concelvably
pe implemented e.9. by main=~ taining a 1ist of all objects that have
the ornperty (or of those that do not have [t).

13



Finally,a person is acquainted with an object iff he knows, for
every property ps, Whether ths object has this property.

Exampless peter IS Knowing (telenr OF John)
peter lg Knowing-whether (321 WERE tel=nr OF John)
peter IS Knowing-that (321 WERE tel=nr OF John)
dick IS KXnowino=thgqt (peter WERE Knowing

(tel=nr OF John)

Paradoxes

In a previous section, we proposed that one should introduce a
counterpart of variables In the event structure. When this Is done
(we shail not do [t in this cacer), It becomes possible to construct
exoressions which egsentially Involve

Holds (m WERE Knowing=-that Not e)
where ¢ is made to reference back to the WERE-expression, This Is
then our Incarnation of the classical paradox: It Is Impossible to
attribute a truth=value to such an expression. ke can S586 two ways of
dealing with the matter, bath of which have some advantages!
(a) The ostrich (= head-in-the-sand) approach: It will be a while

until mechanlca! theorem-provers discover this paradox, If we
can trust each other with not telling the computer about I(t,
then Its theorem=prover will retain its sanity. )

(pb) The -three=vaiued logic approach: The axioms above ars weakened
Into

Holds(Not ¢) 2 =~ Holds(e)
Holdst(e AND f) 2 Molids(e) » Holds(f)

With these (and possibly some other) conventions, we do not have
any longer that

Holds(e) vv Holds(Not eo)
gs we obtain a three=-valued logic on the event (evel (since we
account for events e wheres

Holds(e)
Holds(Not eo)

neither )

Under this agoroach, the function RESOLVE will have to perform
resolution in a three=valued |oaic as described in Hayes (1969),

Yhe function ‘The’ and the operators ‘Any’, ‘Some’. and ‘Neo’

In those examples where we transiate simple natural-landuage
statements (nto our notation, we can gain much convenience by using
the functions or operators The, Any, Some, and No.

14



The funetion The [properties + obJects) assumes that the argument |s
a property which is satisfied by exactly one obJect, and has this |
ob.lect as value,

The operators Any and Some are used for those cases where the
‘argument’ is not guaranteed to satisfy the uniqueness criterium,

The expression ‘Any po’ (where © [is a property) (s used like a froe
variable ranging over all m such that m IS p.

The expression ‘Some po’ is equivalent to writing a new constant
symbol! (generated in a gensym=i|lke manner) pn. and stating somewhere
that pn IS po.

The expression ‘No n’ will only be used In a context of the form ‘No
op IS gq‘, and Is taken ag an abbpeviation fo

m IS p 3 «(m IS a)

There is an obvious algorithm for rewriting expressions that involve
The, Any, Some, and Ng Into pure predicate calculus.

‘The’ Is obviously similar, although not identical. to Church's lota
operator,

The function Slzeof

We need some means of specifying when the operator ‘The’ may be used.
It is proposed to do this through a function
Sizeof (oroperties << properties] Co

where the value ranges over properties on Integers, (It 1s possible
that this should be a separate sort, but we shall not delve Into this
matter), Ne intend

v IS Slzeof bp
to mean ‘exactly v different objects have the property p’, The reason
why we yse this formyliation, rather than e.g.

Size(p,v) | |
is of course that we consider size to be an emplrical property,

Whenever an expression of the form ;
S(The p) }

is used, with the sub-expression ‘The p‘ used on any level, we shall
fool ontitied to deduce

1 IS Slzeof o
This wil! later be given as a rule of Inference,

The function NWhatls
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Finally, we need some way of handling situations where a person Knows
(or Delleves,...) Something about an object which he knows bY its
descrintion only, We (Introduce the function ‘Whatis’ for this
ourpose, If p Is a property, then ‘Whatis p’ is taken to mean ‘theoblect (whatever Te is) that has property pp’, or more grudely. ‘the
Idea of an obJect with property 0‘, The function Whatis eliminates
the need for constructions such as ‘Idea=of=te|ephone~pnumber’ which
are used In (MeCarthy & Haves, 1969),

Example 11 ‘John’s telephone number Is next to johanna's’, viz.
‘peter betileves that John’s telephone number is next to Johanna’s’
can be represented as!

The (tel=nr OF john) IS Nexteto The
(tel=nr OF Johanna)

ceter IS Believing ([Whatis (tel=ne OF john)
WERE Next=tp Whatls (tel-nr OF Johanna)

Notice that peter may hold this bellef without knowing John’s or
Jjoharnna’s telephone numbers. Therefore, we should not write ‘The’
instead of ‘Nhatis’ in the second expression.

Example 2: Consider the two expressions

oeter 1S Knowing=whether (Whatis (tel=nr OF John) WERE
tel=nr OF dick)

and

peter IS Knowlng=whether (The (tel=nr OF john) WERE
tel=nr OF dick)

1f John’s actual telephone number Is 321, then the first of the above
sentences says that Pater would be abie to answer correctiy the
auestion

‘Do John and Olck have the same telephone number?’
whereas according to the second sentence, he would be able to answer
the auestion

‘1s 321 the telephone number of Diek?’,
{n_ vague words, If ‘The’ Is used, then the description is ‘evaluated’
during the conversation between you and me, whereas the ‘Whatis’
function performs a kind of auoting.

Inference ruies

We shall cbvieus|y need some canventional inference rules (e.0. the
resolution ceerater) and a rule for handling eouality. 1t may or may
not be a good idea to have special Inference rules for the operators
The, Any. and Some, (The aiternative is to eliminate these before the
deduction starts), In case we want to have such inference rules, here
they are!
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(1) Xx sy, Six) |e Sty)

(2) a IS oo, S(The p) |= Sim)

(3) S(The p) |e 1 IS Slzeof0

(4) wm IS po, StAny 0) jo Sim)

(95) S(Some p) | = (Im) m IS 0» A S(m)

in each of these rules, we assume S to be a (literal. We extend the
rules to Inference ruies on clauses in the obvious way,

Remark: In (5), onjy ONE occurrence of ‘Some p’ In S oan be
substituted for at a time, ‘m’ can be selected as any varlable which
does not occur In S or p.

Some ax|oms

Finally, lot us specify some axioms for the general (‘system’)
functions and relations that have been Introduced In this section.
Axioms for more special-purpose functions (e.g. the knowledge
tunctions) are postponed to next section. The axioms for the boolean
alaebras for properties and events are omitted altogether.

(1) Holds (m WERE p) 3 m IS oo

(2a) Holds(Not eo) 2 ~ Holdste)

(2p) Holdst(e AND f) S Holds(e) A Holds(f)

(3a) m MERE Not po = Not(m WERE p)

(3b) Mm WERE (po AND a) » (m WERE p) AND (m WERE ga)

(4) op R =m SUB -]

(5) p R mn Q@ n 2 p @ n R m

(6) m IS op R n s n [IS Rprop (m WERE bp)

(7) 11S Sizeof »p A mi1Sp A nliISop > mE op

(8) @ 1S Sizeof »p > «(m IS p)

(9) Ne oo IS a 2 t(vm) m IS p a -(m IS q))

Axioms (7) and (8) need to be supplemented with more oOenera! axioms
for the function Slzeof, and with an axlomatization of integers.
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MERE=Iflcation of axioms

In the next seetion, where axioms for special environments are glven,
we shall eo,g, see the axiom

m 1S MORETHAN(p,k) A Kk 1S MORETHAN(p. nN) >
_ mm 1S MORETHAN(D,n) er. (0)

This axiom Is of course perfectly equivalent to
Holds( m WERE MORETHAN(p,k) AND  k WERT MORETHAN(p,n) IMPLIES

m» WERE MORETHAN(o,n) ) eso (B)
where ‘e IMPLIES f’ is defined as ‘Not o OR f’. However, we aiso want
to use this axiom In deductions about be!iefsi If a person belleves
that m | taller than k, and that k is taller than n, then certainly
he believes that m is taller than n. Nelther of the above axioms
sermits us to make this deduction about his beilefs.

For beliaf, we sha!| use an axiom
a SUB f > Belfeving ee SUB Belleving f

It Is therefore reasonable to strengthen (b) into
m WERE MORETHAN(p,k) AND Kk WERE MORETHAN(D,Nn) SUB

m WERE MORETHAN(D,n) ees (EB)
A ‘clause form’ equivalent of (c) Is

CNot(m WERE MORETHAN(p,k) OR
Not(k WERE MORETHAN(p,n} OR
m WERE MORETHAN(g.n?] = truth coe (d)

Clearly, then, ‘e s truth’ ls our way of saying ‘Necessarily ¢° or
(less mystically) ‘everybody knows that e°, We should not be
surprised that all analytic facts come out as identical, tor the
reason for Introducing events was to have some object for bellsf,
knowledge, ete,» and we have already stated that analytic facts are
those Which are not subject to belief. ’

In princiole, It would be preferable to state all analytic axloms In
the stronger form exemplified In (c) and (d), rather than the weaker
form of (a) and (b). In the sequel, we shall simoly refer to these as
the stronger and the weaker form, respectively. Since we consider the
weaker form mare natural and more legible, we shall prefer to use it.
To fil] the gap. we specify here the procedure in an axiom can
be_ ‘strengthened’, 1.0. transformed from the weaker to the stronger
form. The procedure operates on clauses!

Let (Li, «+. Ln) be a clause in the weaker form, We define a
function r on Iliterais as follows:

r(‘Holds @°) = ‘¢f
t('=~ Holds #°) = ‘Not e’
rt'm 1S p’) 8 ‘m WERE op’
r(*=m IS p’) = ‘Nottm WERE p)’

and undefined for other arguments, Let Li, L2, ..., LJ (J 2 1) De
those literals fe which ¢r Is defined. Construct the clause

¢ r(L1) OR r(L2) OR ,.. OR r(LJ) = truth, LCJ*1)s,., Ln)
(the notation Is Impure, but the intention should be clear), This
is then the desired, strengthened clause, If J = 8, the clause
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+ can not be strengthened,

Most axioms In the geguel do not need strengthening, but a few do.
Axlom (7) above must not be strengthsnec.
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4, FUNCTIONS, THEIR INTENDED INTERPRETATIONS,
AND AXIOMS FOR VARIOUS DOMAINS

S33 SSEZE ESSE EEESSESEZESSSAETSSSERTEEEEE

In_ this section, we sha | work through various types of NL
information, and suogest a notation and a set of axioms that
reoroduce this kind of information. In every case, we shall rely On
the general! framework that was set up In previous sections,

Axlcrs for knowledge

Following the discussion in previous sections, we use the following
axioms?

Selieving Cevents « properties]
Knowing Coroperties < properties) |
Knowing=whether (events + properties)
Knowing=-that (events <= properties)
Acquaintedewith CobJects + properties)

It is convenient to start out from the function ‘Belleving’, and to
define the others In terms of It,

(KNOW 1) m IS Knowing=that o 2
Holds ¢ A m IS Belileving eo

(KNOW 2) Knowing-whether oo 3
Knowing=that eo OR Knowling=that Not e

(KNOW 3) m IS Knowing bp s
C(Yk) m IS Knowingewhether (k WERE p))

(KNOW 4) m IS Acqua inted-with ” =
((Yp) =m IS Knowing=whether (n WERE p)]

(KNOW 5) m IS Knowlng op A m IS Knowing a >
m IS Knowing=whether (Whatis p WERE a)

(KNOW 6a) (Believing @ AND Belleving f) = Believing(e AND f)

(KNOW 6b) ee SUB f > Believing eo SUB Belleving f
(KNOW 6c) eo SUB ¢ J Knewing=that ¢ SUB Knowing-that ¢

(KNOW 7a) Belleving ¢ EXCLUDES Believing Not e

(KNOW 7b) Knewing (Not op) = Knowing po

(KNOW 7¢) Knowling-whether (Not @) = Knowing=whether oo

(KNOW 74d) Knowing=-that ¢ EXCLUDES Knowing=that Not
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These axioms are not Independent, (7e¢) Is a direct corollary of (2)
(7d) can be deduced from (7a) and the strengthened version of (1)} ete.
Axfoms for the connectives ET and ZV,

The function ET 1s used to construct composite objects From simple
ob.lects, for use e.g. In constructions such as ‘Peter and Mary are
married’,

In English (like in several other European languages! there Is a
number of equivalent formulations such as

Peter and Mary are married =
Peter is married to Mary £2
Mary Is married to Peter

Peter and Mary are quarreling =
Peter Is quarreling with Mary 2 ...

Peter and Mary meet In the clty &
Peter meets Mary fn the clty 2 ...

We shall make universal use of the connective ZU for the various
orepcslitions used (n natural English (to, with, _¢ ...)s Thus we
would weite 0,0,

oeter IS married 2U mary

peter IS (meeting IN The clty) 2U mary
peter ET mary IS meeting IN The clty

Moreover, we use & special (analytic) predicate Zuable to mark those
oroperties (married, meeting, ...) which can be treated In this way,

We easly Jot down the following ax|oms!

(ET2V 1) m ET n 2 n ET m

(ETZVU 2) (m ET n) EY k = m ET (mn ET x)

(ET2U 3) m ET m s " |

(ETZU 4) gZuable 4] »
(m IS pop 28U n E m ET n 1S po)

Axiors for spatial |ocatlon

We introduce a new sort, LOCATION, and the following functions!
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Loe Clocatlons < properties)

Inside Cobjects « locations)
Outside oe

Near ndihy
Farfrom we

Atinside "a
At -".
Upon ofa

Under udihe
Above -We
Below ve
Beside “Wa

Between (objects + locations)

A location Is thought of as having an EXTENSION in space, and
optionally, having an EDGE, An object Is thought of as having an
EXTENSION and (always) an EDGE, We write 'm IS Loc |’ (where m is an
oblect, | Is a location) iff (1) the extension of m Is contained In
the extension of |, and [2] the edge of m has some segment in cammon
with the edge of |, If | has one. (These Ideas have been taken from
(Sehank = Tesler = Weber, 19701).

The following functions generate locations with an edge: Atinside,
At, Upon. Under, The other functions do not. The meaning of ail
functions should be rather obvious! Inside(m) has the same extension
as ®, and no edge: Atinside(m} has the same extension, but It also
has the edge of m ag Its edge; ete,

The function ‘Between’ |s supposed to take an argument of the far ‘m
ET n’ or ‘kK ET m ET mn’,

Wwe use a rejation SUBL on Clocatlions * locations) to describe
analytic ltocation=ineiusion.

(LOC 1) C1 SUBL Mh) 2 [Lec | SUB Loc Nh)
(LoC 2) Nea¢g m SUB_ Outside m
(LoC 3) Farfrom m SUB Outside =m
(LoC 4) Atinslde m SUBL Inside m
(Loc %) At m SyBL Near nm
(LOC 6) Upon m' SUBL At m
(LoC 7) Above m SUBL Near m
(LOC 8) Upen wm SUBL Above m

(LOC 9) Under m SUBL At m
(LOC 10) Below m SUBL Near nm
(LOC 11) Under m SUBL Below m

(LOC 12) m IS Loc R n 4 n IS Lec R =m
(WHERE R = Near, Farfrom, At, Beside)

(LOC 13) m IS Loe Upsn n = n IS Lee Under =
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(Loc 14) m IS Loc Above n ¥ n IS Loc Below w
(LOC 1%) m IS Loc R n > | |

~ k IS (Loc Between m ET n
(WHERE R = At, Inside)

For same of the further axioms, It Is convenient to have an auxliiary
relation EXCLUDEL on Clocations © |ocations), saying that twe
locations are mytyaily exclusive?

(LOC 16) | EXCLUDEL nh g Loc | EXCLUDES Lec h
(LoC 17) Inside m EXCLUDEL Outside m
(LOC 18) Near m EXCLYOEL Farfrom wm
(LOC 19) Below m  ExCLUDEL Above m
(LOC 28) Below m EXCLUDEL Beside =
(LOC 21) Apove m EXCLUDEL Beside =

Deduction using Loc axioms certainly nesds to be supported by a
natural! model!

It may or may not be a good Idea to use functions ‘Locinside’,
‘Locnear’, etc. which map directiy from an object to the rooertyof
having a location related to the object, We would then avola treating
locations as separate sorts. Having a special sort for |ocationsis
orobably a good (deg, if we pian to support the theoremeprover with
some kind of natural model,

AxToms for the comparison of adjectives

We use the followihg functions!

More .. THAN .,, Coroperties o objects << properties)
Ag 0 AS | J J - "no.

Less .. THAN ,, | -". .
Moat .. AMONG ,. Coropertiea # properties = properties)
Lesst .. AMONG ,, -" a

The meaning of these functions should be clear. Examples!

oeter IS More tall THAN John

John IS Less tall THAN peter
John IS As tail AS dick
peter IS Most tali AMONG (brother OF dick) |

The last expression |s Intended to say that Peter Is a prother of
Dick, and that no brother of Dick Is taller than Peter, although some
may be as tall as Pgter. If Peter Ip strictly the tallest of Dick’s
brothers, we can write the stronger statement
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peter = The (Most tall AMONG (brother OF dlick))

To explain that two properties are each other's opposites, we
Introduce a monary function

‘Unt C[oroperties =< properties)
to be used |lke In

peter 1S Un(old)
young = Un(e|d) oo

In cases where a oortain natural language permits severa| opposites
of an adjective (a.g.. both ‘tall’ and ‘long’ are English opooslites
of ‘short’), wa shall take the standpoint that this Is a case of
lexical ambiguity (for ‘short’) or of Imposed redundancy (‘tall’ vs.
‘long’), and that the set of properties must be smoothened by usina
two different individuals to rescive the ambiguity (‘shorti’ and
‘short2’) or by merging the two redundant oroperties into one
(‘long*tail’). With such arrangements, the function ‘Un’ can be made
unamblgous,

Notice the difference between ‘Not o’ and ‘Un po’. 1f the kind of
orapsrty expressed by ‘p‘’ and ‘Un p’ Is nat at all apollcable _to an
cblect, then the object has the preperty Not(p), but not the prooerty
Unto). For example, we say that a stone Is ‘Not(haopy)‘, but not that
Tt Is *Unthaooy)’,

Now some axlomss

(CADJ 1) m 1S More pg THAN k A k 1S More o THAN
n 2 m IS More © THAN n

(CADJ 2) ~ m IS More p THAN m

(CADJ 3) m IS Less po THAN k g
k IS More p THAN nm

(CADJ 4) m IS More p THAN Kk >
m IS More p THAN Any (As p AS k)

(CADJ 5) m IS More p THAN Kk >
Any (As op AS m) IS More p THAN Kk

(CADJ 6) m 1S Asp AS n 2
n [Ss As p AS nm

(CADJ 7) n IS As p AS n

(CAS 8) m IS Most p AMONG g¢ 3
(mISaqa A Noa IS More p THAN m)

(CADY 9) m IS Least p AMONG a =
(m IS a A Noga IS Less p THAN m)
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(CADJ 18) p 3 Un(Un(p))

(CADJ 11) Untp) SUB Not(p) |

(CADJ 12) As op AS n = - As Un(p) AS n
(CADJ 13) Ags op AS n EXCLUDES More p THAN n

(CADJ 14) More » THAN n = Less Un(p) THAN n

(CADJ 1%) Most po AMONG g¢ x Least Un(p) AMONG gq
Axioms for measures on adjectives

Ne use the following functions

Very (oroperties + properties]

Slightly - "a

We also assume that every object has exactly one of the followine
oroperties!

Very bp» :

Rather op

Sltohtly o

~~ Not p |
for every ‘baslc property’ o. (Very o, Rather p, etc, are not ‘basle
oroporties’, so we do not assume constructions [ike ‘Very Rather 0’).

Some axioms are!

(MADJ 1) Very p EXCLUDES Rather p |
(MADJ 2) Rather p EXCLUDES Silghtly oo
(MADJ 3) very o EXCLUDES Sjlightiy p
(MADJ 4) Very p SUB op
(MADJY 5) Rather p SUB op
(MADJ 6) S|lghtiy op SUB op |
(MADJ 7) Any Very p 1S More p THAN Any Rather p
(mADJ 8) Any Rather p IS More p THAN Any Silightiy o
(MADJ 9) Any Very o Is More o THAN Any silghtly D-.

(MADJ 18 a-=c¢? m IS As p AS n A m IS Op po >
n IS Op 0

(WHERE Op = Very, Rathsr, Slightly)
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§., CONCLUSION
SSSSSSSSSSESES .

: In this paper,, we—have proposed a set of functions and relations thatwe’, claim. are good for re~oxpressing a cross-section of tyolcal NL
sonstructions, We—hgvealse given some 75 axioms for these functions
and réigtions, This 1s an order of magnitude bigger than the axiom
sets that (to ewr knowledge) have before been used in theorem=proving
srogramg,.and It should present a challenge to them.

a
Some of the problems that should de treated next are?

a. Automate the translation feom a simplified natural language te
the notation presented here,

The reader will have noticed that In developing the notation: we took
considerable delight in staying close to NL concepts and
tormuiations. There are good and bad aspects to this: one good aspect
is certainly that It should simplify translation.

b. Polish us and extend tha axiom sets.

The axlom sets that have been given in this scetchy opaper are
somewhat haphazard, and they need debugging. We submit that this
debugging can best be performed in Interactive experiments an a
computer, and that human think power is not sufficient, We submit,
further, that the criteria for selecting an axiom set must be those
of power and of computational efficiency, and that the criteria
usually used in logic (elegance, minimal set of axioms, etc.) are
largely irrelevant,

ec. Osvelop short-cut methods whereby a theorem=orovér can manipulate
the algebras en oropsrties and svents in an efficient way.

d. Try to get some handle on those sentences in NL which are nat
intended to convey the Information of thelr ‘face value’assertion, and which are not either Intended as Tntormaton
requests (avestions).

Many of the sentences that we use (even in regular, non-fiction
orose) are pronounced only in order to focus the (istensr’s attention
on some fact that he already knows, or to teil the |istener that the
speaker knows & certain fact and has accounted for it, ete.
Statements of thig kind are not adequately handied i¢ we merely
transiate them Into PC and shuffle them into a data base, They must
be treated aulte differently. We consider this the most important
(and algo the most evasive) problem in NL processing today.
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