
THE SCHEDULING OF N TASKS WITH

~ M OPERATIONS ON TWO PROCESSORS

BY

HENRY BAUER

HAROLD STONE

STAN-CS-70-165

JULY 1970

| COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

| FN
a.

| 4

ABSTRACT

The job shop problem 1s one scheduling problem for which no

efficient algorithm exists. That 1s, no algorithm is known 1n which

the number of computational steps grow algebraically as the problem

enlarges. This paper presents a discussion of the problem of

scheduling N tasks on two processors when each task consists of

three operations. The operations of each task must be performed in

order and among the processors. We analyze this problem through four

sub-problems. Johnson's scheduling algorithm 1s generalized to solve

two of these sub-problems, and functional equation algorithms are used

to solve the remaining two problems. Except for one case, the algorithms

are efficient. The exceptional case has been labelled the "core"

problem and the difficulties are described.

Reproduction in whole or 1n part 1s permitted

for any purpose of the United States Government.

This research was supported by the U.S. Atomic Energy
Commission under contract number AT (O4-3)326 PA23
and NSF GJ 687.

}
2

Cy

.

The Scheduling of N Tasks with M Operations on Two Processors

by

Henry Bauer and Harold Stone

I. Introduction

The 'job shop problem 1s one scheduling problem for which no efficient

algorithm exists [Conway 1967]. That is, no algorithm is known in which

the number of computational steps grow algebraically as the problem

enlarges. This paper presents a discussion of the problem of scheduling

N tasks on two processors when each task consists of three operations.

: The operations of each task must be performed in order and among the

processors. We analyze this problem through several sub-problems.

| Johnson's scheduling algorithm [Johnson 1955]is generalized to solve

two of these sub-problems, and functional equation algorithms [Lawler 1969]

are used to solve the remaining two problems. Except for one case, the

algorithms are efficient. The exceptional case has been labelled the

"core" problem and the difficulties are described.

This problem has been suggested by several examples in computer

sclence.

1. N tasks exist which alternately require the use of a CHU

and some peripheral processor and for which the time required

by each processor 1s known within reasonable tolerance.

2. N tasks exist which are to be prepared (compiled) by one

machine for execution by a second machine and the output is

1

to be processed by the first machine again. The time

required for each processor 1s again known 1n advance.

The organization of the paper 1s as follows: Section II discusses

relevant results of previous researchers. Section III states the problem

of scheduling tasks with three operations on two processors and initiates

oo the discussion of the problem's solution. Sections IV, V, and VI present

three sub-problems for which efficient solutions have been found. The

"core" problem 1s discussed in Section VII. Finally, the complete

problem solution 1s outlined, and a summary of the results and an

indication of future research directions are given.

2

II. Historical Results

The major results 1n the problem are due to S. M. Johnson

[Johnson 1955]. Johnson considered the production schedule of N

tasks each of which he assumed to have two operations. The first

operation 1s performed on the first machine and the second operation 1is

performed on the second machine. There are only two machines and the

second operation may not begin before the first operation 1s completed.

Johnson obtained the following two results.

1. The order of the production sequence on the two machines may

be made the same without loss of time.

2. Let tasks i ,i=1,...,N consist of the pair of operations

a,b. where as i =1y,+e4yN, are the lengths of the

operations to be processed on the first machine and by y

| i=1...,N are the lengths of the succeeding operations

to be processed on the second machine. An optimal ordering

1s given by the following rule:

Item J precedes item j+l if

: .min (a. , by, < min(as, 4,0) |

This ordering 1s unique except for ties.

| Equivalently, result 2 may be stated in other terms for which we

require the following definitions.

Definition: The contribution of the i-th task is the difference b.-a. .

Definition: The Q:slay, , 1s the difference between the initiation

times of the two operations of a given task.

5

Intuitively, the contribution of the i-th task represents the

effect of the task's assignment on the value of the delay. A positive

contribution tends toincreasethe delay for the next task assigned;

a negative contribution tends to decrease the delay. Result 2 is

equivalent to the following.

2'. Divide the tasks into two groups according to whether

their contributions are negative or non-negative. Assign

all the non-negative contributing tasks in order of increasing

size of a's followed by the negative contributing tasks

in order of decreasing size of b's .

The proof of this assertion can be seen as follows. Let the tasks

with positive contribution be indexed for J = 1,2,«..,m . Then, if

arranged by increasing a, , these tasks satisfy

. : 2 h a. <b, for 1 < 3 < m1.
83 SelM By SP Bgl Saf fy Sn = 5

Then

j = . .) >a, for ml< J < N-1 .
min (a. ba q) a and min (as, q,0;) 28; S JS

Similarly, we obtain

min(a 0b, 1) = LYS and min (ag, 1,0) 2b

for the negative contributing tasks which again 1s Johnson's condition.

At the dividing line between the negative and non-negative contributing

tasks

a, =< b A a +1 >b iq

In

Therefore, we obtain the Johnson condition

min(e ,o ,.) < min(b_,b ..) < min(b ,a ..)

Johnson generalized his first result for N tasks, each with M

operations, M > 2 .

1'. Consider N tasks each with M operations to be processed

respectively on M machines, 1,2,...,M . That is, the

first operation of each task must be done on machine one, the

second operation on machine two, and the k-th operation on

machine k. To minimize the maximum flow time it 1s sufficient

to, consider only schedules in which the production sequence

1s the same on machines one and two, and in which the

production sequence 1s the same on machines M-1 and M .

The third Johnson result is for a special case in the N task,

5 machine problem.

3. Consider N tasks each with 3 operations a,b,

k = 1,2,...,N to be processed in order on machines 1, 2,

andJ, respectively. Assume that

min a. >max b. .
1 = J

Task 1 precedes task Jj if

min(a. +b.,c. +b.) <min(a.+b.,c.+Db,).(8; +by,c +b.) <min(a;+b,c; +b.)

In the general job shop problem for M machines and N tasks,

the only complete solution that 1s currently known for which the

computational complexity 1s algebraic rather than exponential in N

p

is for M=2 . In an extension of Johnson% results, Jackson

[Jackson 1956] showed that if

{A} 1s the set of jobs with only one operation to be performed

on machine one,

{B} 1s the set of jobs with only one operation to be performed

on machine two,

{AB} is the set of jobs which have two operations, the first to

be performed on machine one and the second on machine two,

and {BA}is the set of jobs which have two operations, the first to

be performed on machine two and the second on machine one,

then simply determine the sequence of tasks in {AB} and {BA} by

Johnson's rule 2 and, using these orderings, assign the tasks to

machine one and machine two as follows:

machine one: tasks in {AB} , followed by tasks in (A] , followed

by tasks in {BA}

machine two: tasks in {BA} , followed by tasks in (B) , followed

by tasks in {AB}

where the order of tasks in {A} and {B} does not matter.

6

|

III. The 5-stage Scheduling Problem

In computer scheduling, it 1s sometimes advantageous to queue a

group of tasks (programs) which use a common facility (compiler) which

1s serially reuseable (core resident) . In this case, i1ntermixing the

job queue with dissimilar tasks would cause set up delays of dispropor-

tionate length. Similarly, the processing (execution) of these tasks

on a second machine may also require special facilities (run time

administration) which are also serially reuseable. In addition, the

completion of the tasks may be processed by the first machine with

certain advantages of grouping.

The results of this paper concern a special case of the two

machine job shop problem for N tasks with exactly three operations

which reflects the situation stated above. The general problem 1s

restricted in the following three ways:

1. The first and third operations of each task must be performed

on one machine and the second operation must be performed on

the other machine. Hence in the notation of the previous

: section the tasks may be divided into two sets: {ABA} and

{BAB} . (Note that when fewer than three operations exist

in the cases {aA] , {Bl}, {AB}, {BA} , an arbitrary extension

to three operation tasks may be made. However, the choice

of the extension may change the resulting assignment.)

2. The form of the solution 1s restricted as follows for machine

one and machine two.

machine one: The initial operatims of the set (ABA] ,

followed by the second operations of the set

{BAB} , and followed by the third operation

of the set {ABA} .

machine two: The initial operations of the set {BAB} ,

followed by the second operations of the set

{ABA} , and followed by the third operation

of the set {BAB} .

3. No idle time is allowed.

These three conditions restrict the solution to one of the four

forms illustrated in the Gantt charts below. In these charts each

segment is labeléd by the set of tasks which may be assigned in the

segment. The underline indicates the operation which 1s to be

performed. For example {ABA} indicates that the third operations

of the tasks in the set {ABA} are processed.

machine one
| {ABA} {BAB} {ABA}

I

machine two {BAB} {ABA} {BAB}

) chi o |

machine one (ABA) (BAB) (ABA) i.
~ machine two {BAB} {ABA} {BAB}

machine one | 0 PE
{ABA} (BAB) (ABA) IIT

machine two {BAB} {ABA} {BAB}

machine one (ABA) (BAB) (ABA) i.
machine two {BAB }, {ABA} (BAB}

8

By the symmetry of machine one with respect to machine two,

Gantt Charts II and III are similar, and Gantt Charts I and IV are

similar. The discussion will be limited to forms I and II.

At the beginning of this section it was noted that the form of

our problem was chosen to reflect certain restraints found in some

computer scheduling problems. It should also be noted that the solution

to the problem as restricted by these conditions does not necessarily

give an optimal solution for the general scheduling problem. Below

are examples in which no solution of the form described in condition 1

may be found which will also satisfy conditions 2 and J.

Example 111.1.

Given the four tasks

{ABA} = (T, = (7,354) > T, = (1,8,6))

(BAB} = {T, = (%,2,1) , T) = (235)}

an assignment may be found which contains no 1dle time and 1s

completed in 23 time units.

. machine one | 7 6 L
TLm T, TL

. IIT.A

38 L 5machine two arL Ta T) Ts | 71 3

However, condition 2 may not be maintained without violating condition 3.

The best solution that satisfies condition 2 is an assignment of length 2k

as shown below.

9

machine one | 7 3 6 IT, Ty T, |] 1, I
: : mo III .B8 5

Example 111.2:

An example of a problem with the form of Gantt Chart I follows.

Given the four tasks

(aBA} = (Ty = (2,3 6) ,T, = (11,8,2) }

{BAB} = (T = (4,8,8) ’ I), = (2,%,8))

we obtain the minimal solution of length 33.

machine one bsal on |e als IIT.C

4 3

However, again condition 2 may not be maintained without violating

condition 3. The best solution that satisfies condition 2 is of length 37.

machine one |°T 1 hon 8p Or 2
1 2 L 3 1 fi

ITI.D

I i 8 8

machine two I, Is r d, I, ar), TI,

Let us now consider problems which have the form of Gantt Chart I.

This form of the problem has a very simple solution. The reason for

the ease of solution 1s that the operations are decoupled.

10

| Definition: Two successive operations 1n a set of tasks in a job shop

: are decoupled 1f all of the first operations of all the tasks in

the set can be completed before any of the successor operations of

any of the tasks in the set-may be initiated.

In an assignment of the type of Gantt Chart I, two pairs of

operations are decoupled: the first and second operations of the set

{BAB} and the second and third operations of the set {ABA) . The

order in which the first operations of the set {BAB} are performed,

therefore, is arbitrary. Likewise, the order in which the third

operations of the set {ABA} are performed is also arbitrary. The

remaining operations may be assigned using Johnson's method if a

feasible assignment 1s at all possible with this form.

The form of the problem characterized by Gantt Chart II provides

a more challenging problem, It is clear that the operations of {BAB}

may be performed without any regard to their relative order since both

pairs of successive operations are decoupled. We are then concerned

only with the assignment order of the operations of tasks in set {ABA} .

_ Figure III.E depicts the form of Gantt Chart II. To discuss this

sub-problem we make the following definitions.

Definition: A stage 1 of a given machine 1s a segment of time in

which the i-th operations, and only the i-th operations, of all

tasks are scheduled.

Definition: A delay, BD, , 1s the difference between the time a
task's j-th operation is initiated and its i-th operation is

initiated.

11

Definition: The gap is the segment of time after the first stage

terminates and the third stage initiates.

machine one stage one | a stage three
— — II1.E

| B01_— a®,3 |

machine two — jo stage two 25.0 -_
—

Figure III.E pictures the initial situation of a typical problem

to schedule tasks in the set {ABA} . Each task Ty consists of three

operations 8,505 Cy , k= 1,2,...,N corresponding to the operations

to be scheduled in stages 1, 2, and 3, respectively. The length of

each stage 1s defined by L. as follows:

x X PXL, = a L, = b L, = Cc,

= = > xk Fk

The length of the gap is designated by 6 . Al ,, A, ., A, , andJ J 7

Loy 5 designate the initial delay values.2

An important concept 1n this assignment problem is again the

contribution of a task.

12

Definition: Let X:0¥s be a palr of successive operations of a

task T; . Then the contribution C(x%,57;) of task T,

1s the difference Yi =X;

The Xess of the definition may, for example, be a,b, or

b,c. in the description of our problem. Special note should be made

of the properties of the contribution. A contribution C(x;5v;) is
called positive (+) if its value is greater than or equal to zero.

Likewise, C(x;,y,) is called negative (-) if its value is less

than zero. A positive contribution C(x;,y,) increases or leaves

unchanged the corresponding delay while a negative value of C(x,v,)
decreases the same delay.

Corresponding to Johnson's first result, the order of the operations

during each stage may be the same as at any other stage. The immediate

advantage 1s that although there are n! operation. assignment orders

at each stage and therefore (nl) > assignment orders for the complete

problem, this resultlimitsthe solution space to n! assignment orders.

The statement and proof of this result follow.

Theorem [Johnson]: Consider N tasks each with 3 operations to be

processed on the first machine, the second machine, and the third

machine, respectively. To construct a minimal-time solution 1t 1s

sufficient to consider only schedules with the property that the

operations at each stage are sequencedidentically by task number.

13

Proof

Given any minimal solution assignment, it is shown that the operations

in the first and third stages may be reordered without extending the

completion time so that operations 1n each of the three stages are

scheduled 1n the same order, by task number.

1. Inspect the first assigned operation of the first stage. If

it belongs to the same task as the first assigned operation

of the second stage, then go to step 3.

2. If 1t does not, find the first stage operation that has the

same task number as the first assigned operation of the second

stage. ~Place this operation first in stage one, delaying all

previously assigned operations by the length of this operation.

Since the initial ordering was a solution and since no displaced

operation in stage one completes before the first operation

in stage two begins, the new order is still a solution.

3. Inspect the first assigned operation of the third stage.

If 1ts task number 1s the same as that of the first assigned

operations in the first and second stages, then go to step 5.

4, If 1t 1s not, find the third stage operation. which has the

same task number and place it first in stage three. All other

operations of stage 3 either begin later than or at the same

time they did in the initial solution. The new assignment

order 1s then a solution also.

5. At this point, the first assigned operations at each stage

of the assignment solution belongs to the same task. Remove

the first assigned operation from each stage and consider the

new problem resulting by repeating steps 1 to 5 on the reduced

problem until no tasks remain.

14

.

We can now assume, without loss of generality, that the operations in

each stage are 1n the same order by task number.

Let us now construct a table which allows us to determine whether

or not a given assignment order 1s feasible between two stages.

Definition: An assignment order 1s feasible 1f no operation begins

before 1ts preceding operation 1s completed and no processor is

idle during any stage.

For each pair of successive stages we shall construct a table that

we call a feasibility table as shown in Figure III.F. Each table

consists of four columns with each row corresponding to the operations

of a specific task to be performed during the two stages in the order

of the proposed schedule. The first column 1s the length of the operation

performed in the first of the two stages. The second column 1s the

contribution of the pair of operations. The third column is the sum of

the contributions of all rows above plus the 1nitial value of the delay

between the two stages. The fourth column 1s the difference of the value

in the third column minus the first column value. Since the third

column represents the delay before the given operation 1s assigned,

column four represents the excess delay time when the operation 1s

assigned. The pair of operations may be assigned without causing idle

time on the second processor only 1f the fourth column value is non-

negative. Consequently, an assignment order between the two stages

is feasible if and only 1f all the values 1n the fourth column are

non-negative.

15

n

Feasibility Table

operation total previous
length contribution contribution excess delay

xq C(x yy) C(x, Yo) C (2 Yo) al
1 1

Xs C(%,07,) Y C (x,y) i C (%,.5 Vy) X,
k=0 k=0

| : III.F

N-1 NNxy C (xp Fy) PN C(x,57,) & Clo vy) ny

) where C(x 7p) 1s the initial value of the delay between the stages

being considered and X.5Vs refer to two successive operations of task 1 .

The feasibility table has a direct relation to the concept of

immediate assignability.

Definition: Let a partial assignment exist after some set of tasks

(possibly empty) has been assigned to the processors. A task is

immediately assignable after a partial assignment 1f at each pair

of stages the length of the first operation does not exceed the

value of the delay between the two stages.

The existence of immediate assignability for each task in an assignment

may be verified by the feasibility table. In the feasibility tables for

each pair of successive operations no fourth column value may be negative

1f all tasks were immediately assignable since the fourth column represents

the excess delay when a task 1s assigned.

The first goal is to find a canonical form of a solution of the {ABA}

problem. Consider the contributions which the pairs of successive operations 1n

each task make; that is, C (ays,) and C (b,c) , k =1,...,N .
16

IV. Case 1: Positive contributions at both stages.

Let all tasks be such that the second operation is not greater than

the third operation and that the first operation 1s not greater than the

second operation. In this case, for allk = 1,...,N , (a,b,) > 0)

and C(b,,c,) > 0 . At any instant, whatever task is immediately

assignable may be assigned. This is clear since with each new assignment,

the delay at each stage may not decrease. Therefore, once a task becomes

immediately assignable, it remains immediately assignable until it is

assigned. Only 1f all tasks may be assigned, 1s the schedule a feasible

solution. The solution 1s obtained by assigning the operations of any

immediately assignable task at each stage.

Example IV.l:

machine one Zn br 2 PIA ho Tp
4 3 3 2

IV.A

Figure IV.A describes a solution to the problem in which the

tasks are

Ty = (2,354)

T, = (5,758)

Tr, = (4,67).

Initially the delays are 2,2 = 3 and 8o.3 = 10 . Task T, 1s the

only task immediately assignable initially. After Tq 1s assigned,

Ao = L and A, = 11. Then T, may be assigned and 2 = 6 and

Bos = 12 . Finally, I, may be assigned. At each step the delays

4,2 and Bo 3 were incremented by the respective contributions

associated with each task. .

|

|

V. Case 2: Negative contributions at both stages.

Let all tasks be such that the second operation 1s not greater

than the first operation and that the third operation is not greater

than the second operation. This case 1s the opposite of the preceding

case and may be solved by "reversing time".

Definition: The mirror image problem 1s the problem obtained by the

following two transformations.

a. The precedence among the three operations of each task 1s

reversed. That 1s, if 8, precedes b, precedes Cp in

task k of the initial problem, then Cp precedes ob.

precedes 8 in task k of the mirror image problem.

b. The 1nitial delays AL, Bog Bs 2 , and fo,1 °F
the original problem become the initial delays A, , , A, , ,

Os G CyL

2,2 , and Bos s respectively.

In terms of the mirror image problem this case becomes one in

which the second operation of each task is not less than the first

operation and the third operation 1s not less than the second operation.

But the mirror image problem 1s identical to case 1. A solution to the

mirror image problem 1s found by applying the solution for case 1.

Reversing the order of the tasks scheduled in the mirror image problem

yields a minimum time solution that satisfies all precedence constraints

in case 2.

18

Example V.l:

In the original problem the tasks are defined as follows.

_ 0
T, = (a,b 5¢,) C(ayb,) <0 C(bye,) <

_ D..s C <0; In CNL C (ays by) <0 C (by x -

In the mirror image problem the tasks are:

T] = (cq,by5 aq) C(e 50) 20 C(b ray) 20

I} = (¢sb,52,) C(e,,b,) > 0 C(b,sa,) >0

19

VI. Case 3: A negative contribution followed by a positive contribution

Let all tasks be of the form in which both the first and third

operations are greater than the second operations. Note that this

problem 1s symmetric with respect to the first and third operations as

1s 1ts mirror image problem.

To facilitate the discussion let us consider that the general

problem consists of tasks whose operations may lend either positive or

negative contributions. A negative contribution in the original problem

will be a positive contribution in the mirror image problem; likewise,

a positive contribution 1n the problem will be a negative contribution

in the mirror image problem. In Figure VI.A the signs above stage

one indicate that

b, >a, b, < ag ob, < a, by, >a)

and the signs above stage two indicate that

cq < bg c3 Lb3 c, <b, c), > by

That 1s, the sign above the operation of the j-th task at each stage

_ represents the sign of the contribution of the task. The mirror image

problem in Figure VI.A is diagrammed in Figure VI.B.

20

—_———

+ - - +

- + + |

a —
+ = = +

vi.B

EE ———
- + -

Both Figure VI.A and Figure VI.B may be combined and abbreviated

as in Figure VI.C. The arrow to the right above a row of signs

indicates the contributions below are considered in the original while

an arrow to the left above a row of signs indicates the contributions

below are considered in the mirror image problem.

_— &—
+ = = + + - - Ff

- + - +

—

+ 7 = + -

21

In this new notation, Figure VI.D is a representation of the

problem of this section.

D

+ + + +|+ + + +

Ce
+ + + + + + + +

Consider that there exists a time D within the gap at which some

second operation terminates and another begins in stage two. Time D

occurs after stage one is complete but before stage three has been

initiated. This condition clearly does not have to exist 1n an optimal

solution of this form; a second operation may begin before stage one

ends and terminate after stage three begins. The condition will

: be relaxed later. If such a D does exist, however, the problem is

decoupled into two, two-stage problems in which the tasks for each problem

have not been determined. With such a condition andJohnson's solution

method, 1t 1s known that the second operations of stage two are arranged

in increasing order of size in both directions from D . In other words,

the operations of stage two are arranged in order of decreasing size

from each end up to point D . If the second operations are arranged in

a list in order of decreasing size, the task corresponding to the first

22

operation in the list must be either assigned first or last. Once this

1s decided, the problem (and the list) 1s reduced by one task and the

solution continues in the same manner.

This solution may be expressed in terms of a functional equation.

Four quantities distinguish a partial solution at any instant in the

assignment process. These quantities are:

J —— the task to be assigned next, 1< 3 <,

£, -— the total of the lengths of all the operations assigned

initially in stage two

Coz —-= the total contribution of all operations of the tasks
assigned initially 1n stage two

Cq,0 -— the total contribution of all operations of the tasks
assigned initially 1n stage one

All other quantities pertaining to the assignment may be calculated

from these quantities. The superscript ' indicates that the value 1s

calculated 1n the mirror image problem.

: fh = I Ci, VI.E

5 = Coz = 1
1-1

“i,3 (3, Clan) - C30)
3-1

Clo = -(Y C(byscy) Cp, 3)
k=1

1-1

t= Y, be Ap
£3 = 2 + Cs,3

£1 = 2 - C1,2 }

23

1 1-1 1-1

The sums Ss C (a,b) , Ss C (boc) , and 5 b are properties
k=1 k=1 k=1

of each task after they have been ordered in a list by decreasing size

of their second operations. Hence, they need to be calculated only once.

The solution proceeds by determining 1f the task 1s immediately

assignable in the original problem and 1f it 1s immediately assignable

; in the mirror image problem. If the task 1s immediately assignable in

| the original problem, it 1s tentatively assigned and the solution

recurses by continuing with the next task in order. If a TRUE value 1s

returned, a solution is found. If a FALSE value 1s returned or if the

task 1s not immediately assignable in the original problem, then if the

task 1s immediately assignable in the mirror image problem, it 1s

tentatively assigned there and the solution recurses by continuing with

the next task in order. If a value of TRUE 1s returned, a solution 1s

found. Otherwise, the value FALSE 1s returned. In such a situation a

possible solution orders exist. However, the tasks are selected 1n a

predetermined order and the value of the lL-tuple (35255C1 55Cp 5) describes
the total length and contribution assigned using the j-1 tasks. As the

iteration continues through the oN possible solutions, if a 4-tuple

identical to one previously encountered occurs, 1t 1s not necessary to

continue since the result will be the same as when the U-tuple was

encountered previously. In other words, the problem 1s reduced to a

sub-problem previously attempted, This algorithm eliminates many solution

possibilities from consideration.

The following algorithm determines 1f a solution exists.

2

1. Place the tasks in order of decreasing size of their second

operations and renumber tasks so that b, >b, > bs 2 2 hy

2 A solution exists if £(1,0,0,0) is TRUE where

i +

FALSE ir 1, Noo >L,+G

+C Ab, <A + C

(a S85, 1,2 J — 2,5 2,3 A
+ b.),C +C(b.,cC. VF(J*1, 8 5b 45C 5 Clay, 5); 2,3 (3° 2)

+4 ! + | A
(ej < 4,2%C1,0 A 2555 1703

J+ if L<J<N£(3+1, £5Cq iC =) i <J =

= + <L. +G

£(W1, £550 2Cp 3) TRUE if Iy <4, Ao <I,
= FALSE otherwise.

For simplicity, the solution presented here does not yield the

explicit assignment order. This order may be easily obtained by

modifying f to have a result of an ordered pair of values. The first

value being TRUE or FALSE as described above. The second value is null if

the first value is FALSE. Otherwise, when the first value is TRUE, the

second value 1s a list of tasks assigned in the original problem. At

each 1teration a task 1s appended to the list if 1t 1s assigned in the

original problem.

The number of calculations of ££ for a solution given the tasks

and sizes of operations initially 1s bounded by

)

25

where r(x) indicates the number of values in the range of x

| plus 5N additions to calculate the contributions and sums

indicated 1n FigureVI.E.

To relax the restriction placed on the solution by the point D ,

consider all tasks with a second operation of size greater than G+1 ;

say, there are P such tasks. The above solution method must be repeated

P times for each such task k with ¢ toy not to exceed L.-1 at2 52 1

any step and with boty pth > L, +6 at termination. P is bounded
by N-1 .

Example VI.l:

Using the above algorithm we find the solution to a simple four

task problem

Initially, we find that

= 18 = 2
8,2 53

A

2,1 = © By5 8

L, = 19 G=1

+0 =

L, G 20

26

1. £(1,0,0,0) = £(2,0,0,0) since b, =5>2+0 =2 but

c, =6<8+0 = 8 and

b, =5<8+0=28.
I

BE

Now C1,0 = —1 and C23 = 2 .

2. £(2,0,0,0) = £(3,2,-6,3) since a, = 8 <18+0 =18 and |.

b,=2<240=2.

s LL dls] 1s
4] 5

3. f£(3,2,-6,3) = £(k4,3,-7,k4) since az = 2 <18-6 =12 and

EXERRIE
BilesHy >

kh. £(4,3,-T,4) = FALSE since f+), = +18 = 21 >L, +G = 20.

27

5. Return to J and

by =1<8+2=10 :

EREni
lf 5

t — ? —

NOW Cy. = «-2 and Co,3 = 3

6. f£(k,2, -6,3) = £(4,3,-7,4) = FALSE We have the same argument as in

step 5 but we have already found

that £(4,3,-7,4) is FALSE in

step kL.

7. Return to 6 and

since Cx =2 < 8-2 -6,3) sinch - and

by = 1< 8+3 = 11.

CH SH
iE| il

8. f£(5,2,-6,3) = TRUE since Ly = 19 <Iy+4), =

2+18 = 20 <I,+G = 20 .

28

So

VII. Case 4: The "core" problem

Let all tasks be of the form in which the first operation is less

than the second operation and the second operation 1s greater than the

third operation. Note that as in the previous sub-problem, this

sub-problem has the same characteristics as 1ts corresponding mirror

image problem. In Figure VII.A the signs of the contributions are

indicated near each stage.

D E

+ ++ H+ +++ +

machine one VII.A

I

EE ———

EE J

No efficient solution has been found to this sub-problem, and hence 1it

represents the "core" of our stated problem. Certain efficiencies

may be gained on this special problem which do not readily lend themselves

well to incorporation into the general problem.

29

In reference to Figure VII.A, there exists some point D in stage

one when all remaining tasks are immediately assignable. At this

instant the problem is decoupled into a two stage problem consisting

of stages two and three with the remaining tasks. Similarly, atE the

third stage 1s decoupled from stages one and two reducing the problem

toadifferent two stage problem consisting of stage one and stage two

with the remaining tasks. When both D and E have been reached, the

problem 1s completely decoupled, and the tasks may be assigned in any

order.

A solution may theoretically be found 1n a computation using a

variation on the usually efficient functional equation method. In

this solution the number of computational steps 1s dominated by ot

where m is at most N-1 .

In the following algorithm, the value B is an ordered array of N

binary valued elements corresponding to each of the N tasks in order.

A given element B of the B array 1s 1 if the k-th task has been

assigned and 0 if it has not been assigned. The notation B V By = 1

means that the value B 1s unchanged except that the By element 1s

set to 1 « The value § means that all elements of B have the value 0 .

The algorithm is similar to the algorithm for case III. However, here

the tasks previously assigned are explicitly recorded in the B array.

30

1. Arrange the N tasks in an arbitrary order To Tos eves Ty .

2. A solution exists if £(1,0,0,0,0) 1s TRUE where

£(J5B5455Cy Cp 3) ="

FALSE if § = M1

TRUE 1f I, 20 and fs 2 E
1 f L, > E

£(5+1,B,22°°1,2°02, 3) if 8 = 1
a, < +C Ab, < AnN (J S80 1,2 J S83

_ + +C(a,,b.),C +C(b.,c.

y : _

£3 1,B,£5,Cq 5:Cp 3) if By =0

As in the previous functional equation solution, the exact order of

assignment may be found by pairing this ordering with the TRUE logical

values. The maximum number of computations 1s found by taking the number

of computations in the previous functional equation example and multiplying

. it by oN

51

VIII. The Complete Problem

The general problem may have tasks of each of the forms described

in the four sub-problems. However, since 1t 1s clear that tasks of the

first sub-problem and the tasks of the second sub-problem may be assigned

as soon as they become immediately assignable, Figure VIII.A exhibits the

canonical form of the solution for the problem which only involves tasks

of the types described in sub-problems three and four and which has a

decoupling point D . In this solution form, the tasks in stage one and

stage three are arranged so that some of the positively contributing

’ operations are grouped first, followed by all the negatively contributing

operations, followed by the remaining positively contributing operations.

In stage two, groups of the negatively contributing operations both precede

and succeed the positively contributing operations. The reason for this

canonical form 1s based on Johnson's result since the point D decouples

the problem into two, two-stage problems. Hence in Figure VIII.A, the

tasks in groups W and Y are arranged, left to right, in order of

increasing size of the respective operations. In groups X and .,

the tasks are arranged, left to right, 1n order of the decreasing size

of the respective operations.

A solution to this problem may be found by combining the solutions

: presented to the four sub-problems into one algorithm.

Ww :

— =
RE TE TER ay + 4+ + ~ = et + VIII.A

| — =- t+ ++ V+ ++ == a

LS
X Y

52

9

Ix. Conclusions

We have discussed the problem of scheduling N 5-stage tasks on

two processors, a problem that has historically resisted efficient

solution. When schedules are restricted so that operatims are

scheduled by stages, Johnson's scheduling technique and a functional

equation scheduling technique introduced here can be applied to obtain

feasible schedules with high computational efficiency. The problem

divides into several cases, all but one of which can be solved with

algorithms that grow algebraically with the size of problem. One case,

which now may be considered the "core" problem still does not have a

solution that grows algebraically although it 1s solved here by an

algorithm that grows exponentially with the size of the problem.

The analysis of the decoupling effect described here may be

extended to the similar problem with an arbitrary number of operations

which may be executed in stages. In addition, we continue to research

the problem of more than two processors.

25

Bibliography

[Conway 1967] R. Conway, W. Maxwell, L. Miller, Theory of Scheduling.

Reading, Massachusetts: Addison-Wesley Publishing Co., 1967.

[Dudek 1964] R. A. Dudek, 0. F. Teuton, "Development of M-State

Decision Rule for Scheduling n Jobs through M Machines."

Operations Research, Vol. 12, No. 3, May 196k.

[Jackson 1956] J. R. Jackson, "An Extension of Johnson's Results on

Job-Lot Scheduling." Naval Research Logistics Quarterly, Vol. 3,

No. 3, September 1956.

[Johnson 1955] S. M. Johnson, "Optimal Two-and-Three-Stage Production

Schedules with Setup Times Included." Naval Research Logistics

Quarterly, Vol. 1, No. 1, March 195k.

[Johnson 1959] S. M. Johnson, "Discussion: Sequencing n Jobs on Two

Machines with Arbitrary Time Lags." Management Science, Vol. 5,

No. 5, April 1959.

[Lawler 1969] E. L. Lawler, J. M. Moore, "A Functional Equation and

its Application to Resource Allocation and Sequencing Problems.,'

Management Science, Vol. 16, No. 1, September 1969.

[Mitten 1959] L. G. Mitten, "Sequencing n Jobs on Two Machines with

Arbitrary Time Lap." Management Science, Vol. 5, No. 3, April 1959.

3h

[a

