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In the present work we will examine estimates of the equivalent
perturbation of roundoff errors in the solution of a system of condi-
tional equations by the method of least squares (Method A) and by a
method which was proposed by D. K. Faddeev, V. N. Faddeeva, and V. N.
Kublanovskaya in a joint report at a conference on numerical methods
in Kiev in 1966 (Method B).

Let us examine the system of conditional equations:

Ax = £ (1)
with a rectangular matrix A havimg N rows and n columns, where

generally N >> n. Method A leads to the system of normal equations

ATax = aTe (2)
with a symmetric positive &finite matrix ATA of rank n. We will
assume that the solution of (2) is found by the method of square roots,

" always taking advantage of the accumulation of scalar products, independ-
ently of how one computes the elements of system (2).
Method B leads to a left orthogonal transformation of (1) into

Px = a (2')

The term "equivalent perturbation" seems to refer to inverse roundoff
analysis.



where P = QA, £ = Qf, matrix P has non-null elements only in the right

upper triangle Pofrank n. Let £ be the vector whose components are

the first n components of the vector-. Qf. The triangular system

~

Px = a (3)

is equivalent to system (2).

The total error in both methods is composed of the roundoff error
in reading in the coefficients and the right-hand terms of (2) and (3)
and the roundoff error during the solving of these systems. Since
triangular systems may be solved very exactly ([1, Chapter 4]), we can
neglect the roundoff error in the solution of (3) and in the back-
solution part of the method of square roots in the solution of (2).

Because of the equivalence of (2) and (3) it does not matter whether
one calculates the equivalent perturbation of roundoff errors of Methods
A and B in terms of (2) or (3). We will do the calculations in terms of
system (2) since this is more convenient. Everywhere below, if it is not
specifically stated, we will use the symbols adopted in [1] and the
Euclidean norm of the matrices and vectors.

1) Let us examine in the first place the errors of Method A.
Because of the roundoff in the calculation of the scalar products, the
elements of the matrix ATA and the vector ATf will be obtained with

a certain error; i.e., instead of (2) we obtain

Bx = k (%)

T

where B = ATA + A(aTa), x = ATf + a(aTr).



The norms of the error matrix A(ATA) and the error vector A(ATf)
essentially depend on the method of calculating of scalar products in
the machine.

In the carrying out of all operations in a machine with a t-digit
accuracy, the elements of A(A?A) and A(ATf), which we will designate
respectively by Abij and Aki, may be estimated on the basis of [1,

Chapter 3] as
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- if the calculations are executed with floating point (f1). Here and

later t, = t - 0.08406, and 8, is the i-th column of the matrix A.
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If the calculations are executed in fixed point (fi), we get

correspondingly
In(a%a) ]| < w2”®2, a(aTe)]) < w2 278 (6)
C -t-1 -t-1 .
Here it is assumed Hain < 1-Ne | nﬂlﬁ 1-N2 , which guarantees

the possibility of calculating in fixed point.
If the scalar products are calculated with double precision, then

the estimate under consideration is practically independent of N. In



particular, in the case of floating point (fze), according to [1,

Chapter 31,
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Assuming % w b < 0.1, we obtain

|ab, .| < ot
l —

T -t
5 (a:.L aj) + 0.11-2 “aiH HajH .

Using the relation Haf ajﬂ Slhiﬂﬂaﬂb we find

Ia(aTa) < 1.12-27% a|® . (7)

In the same way,
-t
la(aTe) 1< 111027 ] fizlf (8)
In the case of fixed point (fie), we have

IaaTa) ] < 02752, a(aTe) | < ot/ 271 (9)

-t-1 t-1

with the assumption thatl#iH < 1-2 > gl € 1-27
Let us now estimate the equivalent perturbation due to the roundoff
error in the application of the forward step in the method of square
roots, i.e., 1in the decomposition of the matrix of system (4) into the
product of two triangular matrices. It is known that the triangular

factors S and ST of the matrix B that are really obtained in the

machine are the exact factors of a certain matrix B+E, that is

T

B +E = SS. (10)



The following estimates are verifiable for the elements eih of matrix E:
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with an accuracy up to terms of 0(2_2t) in calculations with floating
point and
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in calculations with fixed point. In the latter case, jjf|bij| <
l—l.OOOO].-2-t for all i,j and if matrix B is not very badly condi-

tioned, then lsijl < 1 for all i,j.

Considering (k&) and (10), we get that the numerical decomposition

T T
is exactly the decomposition of a perturbed matrix, i.e., A™A + C = S87,

where

¢ = aaa) + E. (13)

The norm of C is indeed of interest to us as the norm of the total error
T

in the coefficients of system (2), while the norm of the vector A(A™F)

is the norm of the error in the right-hand side of the system.

From (11) in calculations with floating point, neglecting terms

of order 2_2t, we have
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we obtain ||s]| = [lAll[1 + O(N2-t)], where
-t g2 -t
Bl < 2-277 [A[°(2 + o(w2™")). (14)

As V. V. Voyevodin observed, these considerations permit us
to obtain an estimate of the equivalent perturbation for the method
of square roots which is n times better than that suggested in [2],
without the assumption of accumulation.

Actually from the above explanation. it follows that with an

accuracy up to quantities of order 0(2'2t)
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Passing from the Euclidean norm to the spectral norm, we obtain

2-2"%sp )2 max s;; < 227%(n max xf)l/z
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This estimate is n times better than the one obtained in [2], for
example. For fixed point, an estimate analogous to (14), derived from

(12) with t_ﬁe assumption that |s.. | < 1, has the form

1J

[Ell <21 + o). (15)

Using the relations (5)-(15), we obtain finally

i< *InRa + o(3)), Ia(aTe) 1l < w LAl (es)
o < 2.71-27% alf, la(aTe)) < 1.a1-27% [a) liels 5 (£4,)
e Il < w211 + o(3)), Iaale)) < ma/2 27t (£1)
el < 22781 + od)), laate)) < o2 27t (£1,)

respectively, for the calculation of the elements of ATA and ATf

in the cases of f4, ff,z, fi, fiz.



2) We will now estimate the equivalent perturbation for the errors
in Method B, which is equivalently an estimate of the errors in the elements

of the system

PTPx = PTg (16)

which were obtained because of the inaccurate calculation of P and 4.
Let us denote by AP and Af, respectively, the matrix and the vector
error. Because of these errors, instead of (16) we obtain the perturbed

system (P + AP)T(P + AP)x = (P + AP)T(E + AL). Neglecting the products

APTAP  and (AP)TAL, we obtain for the perturbations the approximate

equalities -

T

A(PTP) = Pap + (2P)TR, A(PTR) = PTAL + (o),

from which

IaTR) | < 2l2)l laell , IaeTe)ll < |I) llasl + llap| fle]

Because of the orthogonality of the matrix of transformation Q,

we have

el = lQall = [|all ana 2| = llQgl = |£]| ,
whence

la(e®) (I < 2lall lapl , a(B)I| < llall laeli + 411 lla®] | (17)

In order to obtain final results it is necessary to estimate the norms
of AP and AL. These estimates essentially depend on the actual method
of obtaining P, i.e., the method of transforming the system of simultan-

eous equations into system (2'). To obtain the matrix 'P we will eliminate




the elements a5y of matrix A for which i > j. We will perform the
elimination with the help of a matrix of rotation or reflection [3].
Moreover, we will designate by Q5050 constants, which depend on the
actual method of rounding in the machine. According to the assumptions
of [1], these constants are not more than a few units or 1-2 tens.

(1) The transformation of matrix A is accomplished with the
help of a succession of elementary rotation matrices Tlg in a cyclic
order (Method Bl). Each of these rotations eliminates the element standing
in the (i,j)-th position.

The roundoff error during the corresponding process of eliminating

the subdiagonal elements of the square matrix was investigated in [1,
Chapter 3],where elimination by columns was examined. In our case it
is more convenient and necessary to eliminate elements by rows, i.e., in
the order (2,1), (3,1), (3,2), (4,1),...,(n,n-1), (n+1,1),...,(n+1,n),...,
(N,n). It can be shown that the roundoff error in the elimination of
elements by rows and columns is the same.

Without stating the calculations, which are like those examined in
[1, Chapter 3], but which are even more cumbersome, let us write the final

result for the i-th column N of the error matrix AP:
- - 1/2 -ty (N+n-
log I < g2 bln(y-n) + 2L (nn 0) /2(146+27%) (M2=3) g | (18)

in the case of computing with floating point. In the same way an estimate,
with the substitution of “f | for Hai“, is verifiable for, the error of
transforming the column of the right-hand side. Here the calculation of

scalar products with double precision has not been assumed. This cannot



essentially change the estimate since, in the process under consideration,
we do not encounter the calculation of scalar products of a vector of
more than the second order.

In computing with fixed point.
-t -1). .
la; I < o 27 *[n(N-n) + 2@2—1] i (19)

moreover, for it to be possible to compute with fixed point it is suf-

ficient that

lagl <1 - o 27 "n(wen) + 2L

The same estimate is correct for the error of rotating the right-hand side.
The estimate obtained is exactly like that given in [1, Chapter 3],
where actually the fact that the transformed matrix is square is not used.

o 2 2,1/2 .
Considering that ||aP| = ( Z “Ai )<, we obtain from (18)

i=1
1/2 -t i -
lapll < o /2 57t |a| , el < o w2 o7t g
for floating point. 1In the same way from (19) we obtain

1/2 2-t|

lae]l < o Nn all, laell < oy Mo

for fixed point.

(2) Errors can be reduced essentially if one uses rotation matrices
with the order of elimination of the unknowns that is suggested in [4]
(Method 32).

Let us denote by M the number of cycles required for the transforma-
tion of A into triangular form. The estimate computed in [4] for our

case takes on the form

10



AL st < gt v 2 e (20)

-t
llap| < 0%2 M(1 + 6.2 2y

for floating point, and

ol < 2™ 2 /2[a(wn) + BEL2

(21)
ot < op2” M2 (n(tn) + Bazlljl/2

for fixed point.

For an estimate of the value of M let us note that the number of
cycles iszindependent of the actual realization of the process suggested
in [4] if one does not consider zero elements of the initial matrix or
any elements accidentally zeroed in one elementary transformation. For
the elimination of the m-1 elements of the matrix consisting of m
rows and one column, [loga(m-l)] + 1 cycles are required. Here the
square brackets denote the integer part.

Let the matrix have N rows and n columns. For the elimination
of all the elements of the first column except the first element, one
requires [1og2(N-l)] + 1 cycles. With these it could happen that some
of the elements of other columns are eliminated. However, even if one
disregards the last situation for the elimination of elements of the

second column,[logQ(N-2)] + 1 cycles are required, etc.

Finally, we obtain

n
< T [log,(N-k) + n < n{[log,(N-1)] + 1} .
M E og,(N-k) | n([log, )

11



This estimate is a little excessive, but not by more than 4-5 times for

N < 100000,
Using this estimate for M, we find from. (20) and (21)

lae] < a » og, w2 Al , g < a » 1og, 12"V

for floating point and

ol < @, =¥2(x 108,172, Jdl < @ nov 10, 172

for fixed point.

(3) Using a matrix of rotation (Method B3) for the elimination of the

elements of A appears most expedient in that case where the scalar

Moreover, the estimates for

products are calculated with double precision.
Let us assume here that

‘AP and A are practically independent of N.
The results obtained in

the calculation is. carried out in floating point.

[1, Chapter 3] go for rectangular matrices A and give
el < og(n-2)27¥all, 1ot < a(a-1)2 el

Having substituted the estimate received for AP and A% . into (17),
and

we obtain a final estimate of the norm of the error matrix A(P’P)

m
the-error vector A(P“4); namely,

" for method Bl:
I < a2, ()| < qmat %] i (22)
lae™e)| < apmn®2®, [la(eTal| < oéNn3/22-t ; (£i)



for method By:
Ia(eR) | < ay m 20g,m2” A, BT < cgn 20g w2 Al el

la(e™)|| < opn”(w 1og2N)l/2, la(eTe)|| < ohn3/2(N 1og2N)l/2;

for method B3:

IaeTe)| < ag(m-)2” Al IaCET)| < ag(a-1)2™ Al flel.

Comparing the obtained results, we see that the estimates of the
equivalent perturbations for the matrix of system 2 have the form
2-t¢(N,n)“KH2 and 2-t¢(N,n), respectively, for the different methods
of calculation. In the table-the order of magnitude of the functions

(N,n) and ¢(N,n) are set forth (N > n).

w Type of Computation
£ l
Method _fZQ - | .mfi ; f12
A N const nN g n
: 2 }
‘ B, | nl/2y nY/2y ioon E noN
i 2 1/2 ! 2 1/2
! | } : /
B, | 2 log,N n log,N o (v logzN) i n~ (N logeN)
i H '
E By inN n e n2Nl/2
‘ — ‘

In this table it is seen that a comparison of Methods A and B, in

the sense of majorizing the estimate, gges as a rule in favor of Method A.

Method B2 is the elimination method.

13
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Let us go now from the equivalent perturbations to the error in
the solution of the system. It is not difficult to construct an example
in which with Method Bl one obtains an order of the norm of the error in
the solution which is equal to the largest estimate of Method A without
accumulation. Let us examine, for example, the system with a matrix of

coefficients and a right-hand vector, respectively, of the form

£ 0.5 i=7, i 1/n i<
a4 = 0 i#3,1<n, £, =

i

ﬁel i > n, 10 i > n;

where € << 1, so that n(N-n)e < 1.

Let us consider that computations are carried out with fixed point,
and that the elementary matrix rotations are computed exactly. Assume
that multiplication by these matrices is equally exact. After each
multiplication by an elementary matrix of rotation, one rounds off the
elements obtained up to a t digit number with fixed point, which gives
an error of Z-t-l‘ It is possible to assume that in this situation the
elements of AP, which stand on the main diagonal and above, ' have the

“t-l, O(n(N-n) € 27%). also, the components of the vector

form (N-n)2
Af have this form with numbers which are not larger than n.

Let us designate by Ax the vector of the error of the solution.
When (; + AE)(X + AxX) = ; + A;, then, neglecting the product Aiﬁx, we
obtain Ax = ;-l(Az - AEX). Having computed 5-1 and x, we obtain

1/2

lax|| = o((N-n)*227%). The same order fbr‘)&bd\\ié obtained in:Method

A if one uses the identity Ax = (AiAJ'l(A(ATf) - Cx) and the maximum

estimates for A(ATl) and C.
1L



In conclusion, let us take note of a fact which is connected to the
practical application of the methods under consideration. The application
of Methods 32 and B3 requires storage in memory of all the elements of the
matrix A, while the application of Methods A and Bq permits a row-by-row
introduction of the information. The latter allows one a practically limit-
less way to increase the values of N. In the row-by-row introduction of
information in Method A with accumulation of scalar products, one demands
in addition n2+ n work cells for the storage of intermediate values
during the calculation of the elements of ATA and ATf. Actually, in
this case the coefficients (and the right-hand side) of system (2) can be
considered in a parallel fashion and each of these intermediate values,
written down in 2t digits, can be stored in 2 cells of memory.

The author wishes to thank V. V. Voyevodin for posing the problem

and for guidance.
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