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ABSTRACT

A flow table model is defined for parallel computer systems. In
this model, fundamental-mode flow tables are used to describe the op-
eration of system components, which may be programs or circuits. Com-
ponents communicate by changing the values on interconnecting lines
which carry binary level signals. It is assumed that there is no
bound on the time for value changes to propagate over the intercon-
necting lines. Given this delay assumption, it is necessary to specify
a mode of operation for system components such that input changes which
arrive while a component is unstable do not affect the operation of the
component. Such a mode of operation is specified. Using the flow
table model, a new control algorithm for the two-process mutual exclu-
sion problem is designed. This algorithm does not depend on the ex-
clusive execution of any primitive operations used in its implementa-

tion. A circuit implementation of the control algorithm is described.
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INTRODUCTION

A computer system can be viewed as a collection of programs, which
are sets of instructions to be executed by processors, and logic cir-
cuits, sets of logic gates and flip-flops interconnected by wires.
Much effort has been expended on the development of formal design
procedures for logic circuits resulting in the body of knowledge
known as switching theory. This theory provides procedures for cir-
cuit analysis, the determination of-what a particular circuit does,
and circuit synthesis, the design of a circuit to accomplish some
task. Unfortunately, designers of computer systems do not have sim-
ilar techniques available to them. These techniques would allow
programs and circuits to be treated in common framework and would
make it possible to analyze a system formally, without expensive
testing and debugging, to determine what the system does. They
would help a designer decide whether a circuit or program implemen-
tation is most appropriate. The ability to consider both hardware
and software implementations is particularly important in the design

of operating systems where there is often a choice between a program

or circuit implementation. In this paper, a model is proposed for
parallel computer systems which it is hoped will aid in the fulfill-
ment of these objectives. The model depends on the use of _fundamental-

mode flow tables, used previously to design sequential circuits [ 23 ],

to describe the operation of both program and circuit components.




To motivate the need for such a model and to illustrate the
difficulties involved in describing the operation of a computer sys-
tem, let us consider a well known problem which occurs in multi-pro-

cessor computer systems. This problem, called the mutual exclusion

or interlock problem, occurs when two or more processes are active

simultaneously. Such processes are called concurrent processes.

The use of the term process implies that some component in the system
is active, performing a task. The activity of the component distin-
guishes a process from a processor. A processor is an entity which
has the capability of performing a task. A further discussion of

the distinction between a process and a processor is given by Dennis
and Van Horn [ 5 ], Dijkstra [ 6 , 7 , 8 ], Saltzer [ 26 ], and
Lampson [ 19 ]. In the mutual exclusion problem, each process is
assumed to contain certain special operations in a portion of the

process known as a critical section. The processes usually represent

the execution of programs containing infinite loops in which they
enter, leave, and then re-enter their critical sections. The mutual
exclusion problem requires the specification of a control mechanism
to prevent two or more processes from entering their critical sections
simultaneously. In addition, it must be guaranteed that, if one pro-
cess wants to enter its critical section, the process cannot be
blocked by other processes entering, leaving, and then re-entering
their critical sections. Knuth [ 18 ] has shown that this latter
possibility exists in one control algorithm proposed for the mutual

exclusion problem. The exact nature or content of a critical section




is not important in the development of a solution to the problem.
Typically, critical sections modify common storage files or system
tables. A precise statement of the mutual exclusion problem for two

processes is given below.

Problem: (Mutual Exclusion)
Given two concurrent processes, each containing a critical sec-
tion, control these processes so that the following two rest-
rictions are always satisfied.

Restriction 1: At most one process is in a critical section,
at any instant.
Restriction 2: If a process wants to enter its critical

section, it is eventually allowed to do so.

This problem is slightly different from the one Dijkstra posed. He
wanted to ensure that the decision as to which process enters its cri-
tical section cannot be postponed indefinitely. While a decision must
always be made, a particular program may be blocked indefinitely.

Many solutions have been proposed to this problem [ 5, 6 , 7,,
8 , 18 , 19 ]. Most of these solutions depend on the existence of
special instructions which are executed whenever a process wants to
enter its critical section. Examples of these instructions are the
Test-and-Set instruction which- is a machine instruction for the IBM
360 series computers [ 14 ], the LOCK and UNLOCK statements for high
level languages like FORTRAN and ALGOL discussed by Dennis and Van Horn
[ 5], and the P and V operations proposed by Dijkstra [ 7 , 8 ].
Two programs using Dijkstra's P and V operations to achieve ex-
clusive access to their critical sections are shown in Table 1.

The programs are specified in a version of the ALGOL programming
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Table 1. Dijkstra's P, V Solution to the Mutual Exclusion Problem

BEGIN INTEGER S; s :=1;

PARBEGIN

PROCESS 1: BEGIN

Ll: P(S) ;
CRITICAL SECTION 1;
V({S);

REMAINDER OF PROCESS 1;

GO TO L1;
END;
PROCESS 2: BEGIN
L2:  P(S) ;

CRITICAL SECTION 2;
v(s) ;
REMAINDER OF PROCESS 2;
GO TO L2;
END
PAREND

—-END.



language. The integer variable S is called a semaphore. We will

describe the solution for two processes although it can be generaliz-
ed to handle an arbitrary number of processes. For two programs,

the semaphore variable takes on only two values, 1 and 0. When S=1,
neither process is in its critical section and when S=0, one of the
processes 1is in its critical section. The identifiers PARBEGIN and
PAREND were introduced by Dijkstra to denote that every statement
appearing between these two identifiers can be executed concurrently.
This is Dijkstra's version of the FORK and JOIN statements proposed
by Conway [ 4 ] and others. The P operation or statement is perform—
ed on a semaphore variable and has the following effect. If the value
of S is 1, S is set to 0 and the next statement is executed. If s

is 0, the process must "wait" until S becomes 1 before it may proceed.
The V operation is also performed on a semaphore variable and in-
creases the value of the variable by 1. For two processes, V(S)

is equivalent to setting the value of S to 1. There are two possible
forms of activity while a process waits for a semaphore to become 1.
The process may go into a tight loop repeatedly executing the P(S) op-
eration until S becomes 1. This form of waiting is called "busy
waiting" since a processor must be assigned to the process contin-
uously. In the other form of waiting, the process is added to a
queue associated with the semaphore where it resides until the sem-
aphore becomes 1. In this case, when a V operation is performed,

the queue for the appropriate semaphore variable must be examined

and any process which is eligible to proceed restarted. This form



of waiting allows the processor associated with the idle process
to be freed to execute other processes.

Dijkstra makes the following two assumptions about the P and

V operations.

1. The P and V operations are indivisible. That is, it is
impossible for one P or V operation to be initiated and
then for another P or V operation to be initiated before
the first is complete.

2. P and V operations may not be executed simultaneously.

Given these two assumptions, Dijkstra proceeds to analyze the
behavior of the system containing the two processes and concludes
that the mutual exclusion problem has been correctly solved although
'he does not claim that the analysis presented is formal.

Dijkstra's conclusions are hard to accept for several reasons.

First, he has not said enough about the system environment to det-

ermine if the P and V operations will work. The situation is des-
cribed in Fig. 1. Each process is able to read and change the value
of the semaphore S. Dijkstra does not say whether he intends the

system to operate in a synchronous manner under the control of a
master clock or whether the components in some way operate indepen-
dently. It is important to account for delays which may be present
in the environment. These delays may be in the lines over which ,
processes access the semaphore variables and also in the processes
themselves. It is possible in a physical system for operations to

occur simultaneously and this possibility should not be dismissed

6



Process 1

Process 2

Figure'l. System configuration for Dijkstra's mutual exclusion

problem solution.
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by simply assuming simultaneous interactions do not occur. Any
analysis procedure or model should consider all possible variations
in timing of system operations. Another objection is that Dijkstra
has solved the mutual exclusion problem for programs by presenting
another mutual exclusion problem which must be solved in the logic
circuits of the system. In order to guarantee that the assumptions
about the indivisibility of the operations and the absence of simul-
taneous P and V executions hold, another mutual exclusion problem,
nearly identical to the one presented earlier mutual exclusion

must be solved. In fact, the statement of the problem given will
suffice if we replace the words "critical section" by "P or V op-
eration”.

We do not intend to be overly critical of Dijkstra's work. Other
published solutions to the mutual exclusion problem depend on the
exclusive execution of some primitive operation. A possible excep-
tion is the work of Clark [ 3 ]; however, we are not aware of the
details of their implementation. We feel that there remain unanswer-
ed questions and a need for more work in this area. In this and
subsequent papers, we discuss a new approach to the study of parallel
systems. Methods based on the use of flow tables are presented
which allow circuits and programs to be described in a common frame-
work. These methods permit the formal analysis of the operation of
systems of the type we have just described and make it possible to
consider the effects of delays. They are applicable in the synthesis

of solutions to problems such as the mutual exclusion problem. A



mode of operation is described for parallel systems which does not
depend on synchronous operation or the exclusive execution of any

primitive operations.

PARALLEL SYSTEMS

A diagram of a portion of a possible system configuration is

, shown in Fig. 2. The square boxes represent system components.

These components may be programs or circuits. The operation of a

circuit or the execution of a program is referred to as a process
in the sense used in the introduction.. Some of the components may

act as control mechanisms which enable and disable other components.

Each interconnecting line represents a physical wire which carries
a binary level signal. Each line has associated with it a direction
of propagation for transmission of signal value changes from the
output of one component to the input of another. The direction of
propagation is indicated by arrowheads in the system diagram.

The operation of the system can be described in a general way
as follows. Whenever a process wants to perform an operation that
could affect other processes,Athe process requests permission to
perform the operation from a control mechanism. The permission has
the form of an enabling signal sent from the control mechanism to
the process. It is the responsibility of the control mechanism to
ensure that no situation arises that violates restrictions placed

on system operation. One control mechanism can seek authorization
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for an action from another control mechanism and there need be no

central control mechanism responsible for the operation of the entire

system.

The general form of a system component is shown in Fig. 3. The
component has n input lines and m output lines. Each input
line has an associated input variable Xi’ i=1,....n. The values

of the input variables define the input state of the component.
Each input variable has two possible values, 0 and 1 . Each
component produces outputs which are also binary signals. Each out-

put line has an associated output variable or excitation wvariable

Zi , 1=1,...,m . The values of the output variables define the

output state of the component. Each input and output line is con-

nected to exactly one other component.

FLOW TABLES

In any model of computer systems, 1t 1s necessary to be able
to describe precisely the operation of each system component. Many
models of parallel computations and parallel computer systems have
been proposed in which functions are used to describe component
behavior [ 1 , 2, 15 , 16 , 17 , 20 , 21 , 22 , 24 , 25 , 27 1.
These functions define mappings of component input states into output
states. This approach has the advantage of complete generality in
the types of component behavior that can be described. Any operation

that can be described by a mathematical function can be represented.

11
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There are several disadvantages associated with this approach however.
First, most of the interesting properties of the system, such as
whether or not the system ever halts or whether one system is equi-
valent to another, are undecidable. That is, there do not exist
algorithms which determine for any arbitrary system if the system
ever halts or for two arbitrary systems, if they do the same thing.
A second disadvantage is that the function does not necessarily des-
cribe the program or circuit that implements the function.

The model we propose uses flow tables rather than functions
to describe component operation. Flow tables were first introduced
by Huffman [ 13 ] and are normally used in the design of sequential
switching circuits [ 23 ]J. There is a direct correspondence between
a sequential circuit and a flow table. In another paper, we show
that flow tables can be used to describe computer programs and give
procedures for constructing the program that corresponds to a given
flow table and the flow table that corresponds to a given program.
Thus there is a direct correspondence between a program or circuit
implementation and flow table used to describe the implementation.
This correspondence is two-way. A program or circuit can be analyzed
to determine what it does and a flow table solution to a problem can
be synthesized or designed and then a program or circuit implementa-
tion produced.

A possible disadvantage of using flow tables is that only math-
ematical functions which require finite internal storage can be des-

cribed. For example, given a component with two inputs x1 and Xy it

13




is impossible to use a flow table to determine if an arbitrary number
1-0-1 transitions on the X, input is always followed by exactly the
same number of 1-0-1 input transitions on the X, input. We are
interested in the study of interactions among components rather than
the types of problems that can be solved using these systems. We
feel these interactions are best studied in a model which requires
finite storage and will show that problems which arise in intercon-
necting components can be solved using finite techniques. We view
a system as a finite collection of components which have a finite
number of interconnections and therefore mathematical properties
such as termination and equivalence are decidable.

Associated with each component, as shown in Fig. 3, is a flow
table of the form shown in Table 2. This table has 2" columns,

one column for each possible input state and r rows where each

row represents an internal state of the component. Each internal

state is designated by a unique integer number (1,2,...,r). The
table entry designated by an internal-state input-state pair specif-
ies the next internal state of the component. If the next-state
entry is the same as the present internal state, the entry is called

a stable entry and the component (flow table) is said to be in a

stable state or stable. If the next-state entry is not the same

as the present internal state, the entry is called an unstable

entry and the component (flow table) is said to be in an unstable

state or unstable. An output state is associated with each internal

state. While it is possible for the output state to depend on the

14
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Table 2. General Form of a Flow Table

Input State

X X, « « « X
2 n
1 Output State

00...1 11...1 I
ZIZZ Zm

Internal
State

S (next state)
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input state as well as the internal state [ 23 ], this will not

be done in this paper. A flow table must satisfy the following rest-
riction. Every unstable entry must specify a next internal state
entry which is stable. Thus the table in Table 3a is a flow table
but the table of Table 3b is not. To be precise, the following def-

inition of a flow table is given.

-Definition 1:

A flow table is a table with 2n columns, one for each
input state, and r rows, one for each internal state.
Associated with each row is an output state. Each unstable

entry must specify a next internal state which is stable.

As a consequence of the fact that the output state is associat-
ed with an internal state and since each unstable entry leads dir-

ectly to a stable entry, it follows that each output variable may

change value at most once during any internal state transition.

In order to describe situations such as in Table 3b, we define a

state table.

Definition 2:
A state table is a table which is identical to a flow
table except that it is not required that every unstable

entry specify a next internal state that is stable.

16



Table 3. a) Flow Table Example b) Table Which is Not a Flow Table

a) b)

17



Of course every flow table is also a state table. The distinction
between flow tables and state tables has been made previously [ 23 ].
Others do not make this distinction; state tables are not introduced

and the term normal flow table is used to describe the case where

every transition leads directly to a stable state and each output
variable changes at most once during each internal state transition

[ 10, 11 , 28 1.

DELAY ASSUMPTIONS

The following assumptions are made about physical delays present

in a parallel system.

Assumption 1:
The time for a wvalue change to propagate from a component output

to a component input (the line delay) is finite and unbounded.

Assumption 2:

Within a component, the delays are finite and bounded.

The intent of Assumption 1 is that line delays cannot be controlled. If
a "pulse" or short 1 value is produced at a component output, it is not
assumed that this value necessarily must propagate to a component input.
The consequences of these assumptions are explored in this and sub-
sequent papers. It should be noted that if all delays are assumed

to be bounded, a "synchronous" solution to the mutual exclusion pro-
blem can be obtained in which the maximum delay time is used to det-

ermine the basic cycle time for the system. Our line delay assump-

18




is different from that made in other models where line delays are
either assumed to be bounded or zero [ 1, 15, 16, 17, 20, 21, 22, 24,

25, 27 1.

A FLOW TABLE SOLUTION FOR THE TWO-PROCESS MUTUAL EXCLUSION PROBLEM

We now return to the two-process mutual exclusion problem dis-
cussed in the introduction and use flow table methods to design a
solution or control algorithm for this problem. The system config-
uration is shown in Fig. 4. The variables shown are the input vari-
ables for each component. The interpretation of the variable values

is given in Table 4. Suppose X, and z, both have the' value 0. When

1

process 1 wants to enter its critical section (CS1), it sets the

value of its output variable X1 to 1. The 1 value eventually reaches

the control mechanism input. The control mechanism sets the value

of z, to 1. This value propagates to the input of process 1, enabling

the process to enter its critical section. The sequence of actions

on the part of process 1, just described in words, can be described

by a flow table. Such a flow table is shown in Table 5a. The process

is initially in internal state 1 with input state z1=0. Internal-

state input-state combination will be denoted by a pair of states

separated by a dash (-), in this case, 1-0. The 1-0 entry in Table

5a is 2 indicating that eventually this process enters internal state
The output state for internal state 2 is X1=1. The 2-0 entry is

2
(é), a stable entry. The process remains in this stable state until

the input transition zlz()>1 occurs. We assume that a process does

19
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Figure 4. System configuration for the two-process mutual exclusion
problem.



Table 4.

Interpretation of Variable Values for Fig.

x =1 ":
1

x =0 :
1

z, =1
1

Z = 0

process 1 wants to enter critical
section i (CSi) or process i is
in CSi

process 1 does not want to enter
CSi and process i1 is not in CSi

process 1 may enter CSi

process 1 may not enter CSi

21
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Table 5. Design of a Flow Table for Process 1.

0 zll X 0 1
1 2 0 1 2 @
2 .__@___J 1 2 @
S S
(a) (b)

Table 6. Flow Table for Process 2

22



not remain in its critical section indefinitely. Therefore the 2-1
entry must be unstable and should be 1 indicating that the process
eventually return to internal state 1 where X1 is set to 0. The
unstable transition does not necessarily occur in a short time and,
in general, a substantial portion of the operating time of a component
may be spent in unstable transitions. The 1-1 entry in the flow
table must be(}:) This is necessary to ensure that the control
mechanism recognizes that process 1 has left its critical section.
The control does this by setting Zi to 0 which eventually enables
process 1 to start its cycle again. The complete flow table for
process 1 is given in Table 5b. The corresponding flow table for
process 2 is given in Table 6.

If the 1-1 entry in Table 5b were 2, the table of Table 7 would
be obtained. This table is a state table and not a flow table since

the 2-1 entry does not specify a stable state. If this table des-

cribed the behavior of process 1, it would be possible for both re-

strictions on the mutual exclusion problem to be violated. First,
the xl; 1» 0 » 1 transition could be so short that the 0 value

never 1is recognized by the control. Thus, 1f process 2 desires to
enter its critical section, the control would never realize that
process 1 was finished and process 2 would never be enabled violating
Restriction 2. On the other hand, if process 2 desires to enter

its critical section but is not enabled (x2 = 1 and z2 = 0) and the

0 value for xl1 appears momentarily and is recognized by the control,

the control may disable process 1 (Zlh—O) and enable process 2 (Zzl—l).

23



Table 7. An Improper State Table
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But process 1 can re-enter its critical section before Zl becomes 0.
In this case, both processes would be in their critical sections
simultaneously violating Restriction 1. This informal analysis is
not intended to replace more formal analysis procedures to be pre-
sented in a later paper. However, it does point out the advantages
of the flow table in making the designer consider all possible state
transitions, allowing him to detect and eliminate many potential
errors during the synthesis procedure.

Tables 5b and 6 describe the behavior of the two components of
the system which contain critical sections. We are now ready to
design the control mechanism. The control mechanism has two input

variables x. and x, and four possible input states; therefore,

1 2
there are four columns in the associated flow table. We require
that if neither process is enabled to enter its critical section
and if process requests arrive at the control simultaneously, access
is given to the process that was not enabled last. Because of this
requirement, the control mechanism must "remember" which process
was enabled last. Two internal states are required for this purpose.
Two more internal states are required, one to produce the enabling
signal for process 1 and the other to produce the signal for process
2. Thus a minimum of four internal states are required for the con-
trol mechanism.

The usual techniques of flow table synthesis produce first a

primitive flow table which has one stable entry in each row. Simpli-

fication procedures are then used to eliminate unnecessary internal

25



states [ 23 ]. To simplify this discussion a flow table with four
internal states will be obtained directly. To see how the design
proceeds, suppose that neither process 1is requesting access to its
critical section, ﬁ_f = 00, and process 2 was in its critical section
last. Let the corresponding table entry 1-00 be as shown in Table 8a.
The output state is Z1Z2 = (00, and the control is stable waiting

for an input transition. If the transition X %t 00 » 01 occurs,

the control must enter a new internal state where process 2 is enabled,
as shown in Table 8b. From 1-00, the transition X Xpt 00 » 10

may also occur and process 1 must be enabled, say by internal state 3.
If the x1x2: 00» 11 transition occurs while in 1-00, that is,
simultaneous requests, state 3 is entered and process 1 is enabled
since process 2 was enabled last. Internal state 4 is used to re-
member that process 1 was enabled last. From 4-00, transitions
analogous to those from 1-00 can occur'. The table as specified

thus far is shown in Table 8c. Consider the 2-01 entry. In this
state, process 2 1is requesting access to its critical section and

is enabled, x, = 1 and Z2 = 1. There are three possible input tran-

2

sitions, X X5t 01 » 11 or 01 » 00 or 01 » 10. The first indicates
that process 1 also desires to enter its critical section and the 2-11
entry is 2 indicating that the control must wait until process 2
leaves its critical section before enabling process 1. Notice that,
as defined by the flow table in Table 5b, once X, becomes 1, it

does not change to 0 until after Zl’ is set to 1. The X Ko 01> 00

transition indicates that process 2 has left its critical section.

26




Table 8.

(2 last)

(2 last)

(2 gets)

(1 gets)

(1 last)

Exclusion Problem

%1%
00 01 11 10 %7,
® &
S
(a)
Xlxz
00 01 11 10 %7,
(:} B 3 00
@@ |«
®®|x
(:) 2 2 3 |00
S
(c)
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12
'11 10

s
(b)
*1%2
00 01 11 10
@] ||
ele]:

(d)

Design of the Control Flow Table'for the Two-Process Mutual

%129

00

01

ZlZZ

00

01

10

00



In this case, the control return to internal state 1, remembering that
process 2 was in its critical section last. The final possibili-

ty »X x2: 01 » 10 accounts for the simultaneous occurrence of both

1
of the first two transitions. In this case, the control enters
internal state 3 and enables process 1. These transitions are in-

cluded in Table 8d. From the 2-11 entry, the only possible transi-
tion 1is xlgz: 11 » 10, which takes the control to internal state 3.
The transitions from the 3-10 and 3-11 entries are analogous to those
from 2-01 and 2-11. The complete control flow table and process flow
tables are shown in Table 9. These flow tables describe all possible
interactions of the components in this system. The next step in the
design process 1s to produce the actual programs and circuits that
implement this system. Before this can be done, it is necessary to

discuss in more detail the mode of operation used for system compo-

nents.

BASIC COMFONENT STRUCTURE

We assume that there is no bound on the time for value changes
to propagate in lines (Assumption 1); therefore, no global timing
constraints can be made on a system and master clocks, which are

commonly used to synchronize the operation of digital systems, cannot

be relied upon. One approach to the elimination of master clocks
utilizes propagation-limited logic [ 12 ]. Extra connections are
provided between components. Each component has special inputs which

28



Table 9. Flow Tables for the Two-Process Mutual Exclusion Problem

1 2

X, 0 1 x,
1 0 1| 2 @ 0
2 1 2 (5) 1 |

(a) Process 1 (b) Process 2

00 01 11 10  =z.z

(2 last) 1 @ 2 3 3 00
(2 gets) 2 1 <:>

(1 gets)

(1 last) 4 @ 2 2 3 00

(c) Control

e
[V

10

OliC,
O,

29



determine when the component output wvalues may be changed. Special
component outputs are also provided so that a component can notify
other components when it is ready to accept new input information.

We propose a structure for components which does not require
extra connections such as are used in propagation-limited logic. Extra
control connections complicate formal analysis of a system and in the
case of the mutual exclusion problem are unnecessary. However, extra
circuitry is required to isolate a component from input changes which
may occur while the component is responding to an earlier input change.
Consider the operation of a fundamental-mode sequential circuit in an
environment where line delays are unbounded. Fundamental-mode op-

eration is defined as follows [ 23 ]:

Definition 3:
A sequential circuit is said to be operating in

fundamental-mode if and only if all input changes occur

when the circuit is stable.

A general form for a sequential circuit with level inputs and level
outputs for fundamental-mode operation-is shown in Fig. 5. Set-Reset
flip-flops* are used to store the internal state of the circuit and

the output values depend only on the internal state. The internal

¥ A Set-Reset (S-R) flip-flop has two inputs, S and R, and two |
outputs, y and y'. When S=0 and R=1, y=0 and y'=1l. When S=1 and R=0,
y=1 and y'=0. When S8=0 and R=0, the output of the flip-flop is det-
ermined by the most recent 1 value for S or R. If S and R have 1
values simultaneously, the values of y and y' are arbitrary.
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logic and output logic boxes contain combinational circuits, circuits

with no loops in the direction of signal propagation.

Fundamental-mode operation is usually attained by requiring that
there be an interval between input value transitions of sufficient
duration to allow the circuit to become stable. In our model, if a
circuit or component has more than one input, it is possible for the
circuitry to be responding to a change on one input line when a change
on another input line occurs. Thus, it is not reasonable to assume
fundamental-mode operation. To illustrate-the difficulties if a circ-
uit in the form of Fig. 5 is not operated in fundamental mode, consid-
er the flow table shown in Table 10. Suppose the present table entry
is 1-00 and the input value sequence x £t 00 » 01 » 11 occurs.

One possible internal transition sequence is shown in Fig. 6a and
another in Fig. 6b. In the first case, the duration of the 01 input
state is sufficient to cause the 2-01 table entry to be entered.
This is not the case in Fig. 6b. As a result, seemingly identical
input sequences can produce different internal state transitions

and as a consquence different output states. Such behavior is not
desirable. Discussions of these difficulties are concerned with
hazards in flow tables and circuits which undergo multiple-input
transitions and are beyond the scope of this paper [ 9 , 10 ]. In-

stead, we define a mode of operation which guarantees that every in-

put transition results in a unique internal-state transition and a

unique output-state transition. Before presenting our mode of opera-

tion, another mode of operation commonly used with sequential circuits
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Table 10. Flow Table Example

X1%2
00 01 11 10
1 (::) 2| 3| 3
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oo
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Figure 6. Possible transitions for flow table of Table 9 given input
sequence x.%x,: 00 = 01 = 11
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must be discussed. This mode of operation is called pulse mode and

may be used with clocked sequential circuits [ 23 ].

Pulse Mode and Clocked Circuits

For our purposes, a clocked sequential circuit is a sequential

circuit with level inputs and level outputs, such as shown in Fig. 5,
but with one extra input called a clock input. If the clock input
has the characteristic that it has a 1 value for a much shorter time
that it has the 0 value, the clock-input is said to be a pulse type

input or pulse input instead of a level input. For a pulse input,

the 1 value for the clock input is called the clock pulse. Clocked
sequential circuits can be designed to operate in fundamental mode
as well as in pulse mode [ 23 1. If a clocked sequential circuit is
operated in pulse mode, the following assumptions are made about the
width of the input pulse.

Assumption 3:

The pulse input is of sufficient duration to cause the appropri-
ate flip-flops to change state.
Assumption 4:

The duration of the pulse-input is short enough that it is no
longer present at the circuits which generate the flip-flop input sign-
als when the change in flip-flop outputs has propagated to the input
circuitry.

The actual definition of pulse mode operation for a sequential

circuit is as follows.
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Definition 4:

A sequential circuit is said to be operating
in pulse mode if and only if the following conditions
are satisfied:

1. At least one input is of pulse type.

2. Changes in internal state occur only in response
to the occurrence of a pulse at one of the pulse
inputs.

3. Each input pulse causes only one change in

internal state.

In clocked sequential circuits designed for pulse-mode operation,

clocked Set-Reset flip-flops are often used. These flip-flops have

an extra input for the clock signal and change state only when the

clock pulse is present. In order to insure that Assumption 4 holds,

double-rank or master—-slave flip-flops can be used. These flip-flops

change their outputs after the clock pulse has disappeared, preventing
feedback signals from changing while the clock pulse is present. In
Fig. 7, three basic flip-flop-designs are shown, the S-R flip-flop,

the clocked S-R flip-flop, and the clocked, master-slave S-R flip-flop.
The flip-flop of Fig. 7¢ operates in the following manner. When c is
0, changes in the S and R inputs are isolated from the master flip-
flop and the outputs of the master flip-flop determine the outputs

of the slave flip-flop. When c becomes 1, the clock input to gates

3 and 4 must become 0 isolating the slave flip-flop before any changes
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appear in the master flip-flop outputs. While ¢ = 1, the master
flip-flop records the new input conditions. When c¢ becomes 0 again,
the clock inputs to gates 1 and 2 must become 0 isolating the
master flip-flop before any changes in the slave flip-flop outputs
propagate to the S and R inputs of gates 1 and 2. As long as the
gate delays in this flip-flop are greater than the line delay from
the clock to the inputs of gates 1 and 2, this latter condition

will be satisfied.

A general form for a clocked sequential circuit using clocked
S-R flip-flops is shown in Fig. 8. In general, there may be multi-
ple-input changes in the circuitry which determines the flip-flop in-

puts. Therefore, static and dynamic hazards may exist in the flip-flop

inputs which cannot be eliminated by adding logic gates [ 9 ]. These
hazards can result in spurious inputs to the flip-flops which could
cause an internal-state flip-flop to be set or reset incorrectly if
the inputs change while the clock pulse is present. One way to eli-
minate the effect of hazard pulses is to assume that the circuit
inputs do not change while the clock pulse is present. However,
if we made this assumption and went on to design a solution to the
mutual exclusion problem, we would have solved one mutual exclusion
problem by posing another one, just as Dijkstra did. This is so
because we would have assumed the presence of the clock pulse and
input changes are mutually exclusive. To eliminate the possibility

of hazard pulses which can adversely affect component operation,
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we define the following mode of operation for the components in

*
parallel system.

Component Operation

While most of this discussion is concerned with circuits, we
intend that these techniques be used with components which are cap-
able of executing programs as well. The basic form of a component
circuit is shown in Fig. 9. This circuit has two ranks of clocked
S-R flip-flops. These ranks are called the input rank and the output
rank. The output rank corresponds to the flip-flops for clocked
sequential circuits as shown in Fig. 8. Master-slave type flip-flops
can be used in the output rank to isolate internal variable changes
from the internal logic. The input rank of flip-flops serves the
sole function of recording the values on the input lines. These
flip-flops may be the simple clocked type shown in Fig. 7b. The

component inputs x ’Xn may change at any time. When the response

1”.0
to an input change is complete, a new input state is determined by

applying a clock pulse on the cl line. The cl pulse must be of

sufficient duration to allow the input rank to become stable. When

the cl pulse is removed, the effect of new input state must completely

propagate to the inputs of the flip-flops in the output rank before

the ¢, signal is set to 1. The 1 value for ¢, causes the effect of

* Friedman and Menon [ 9 ] have discussed the design of sequential
circuits with multiple-input changes assuming the maximum time between
successive input changes is bounded. This assumption cannot be made
if line delays are unbounded.
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the input state to be recorded in the output rank. It is necessary
to have bounds on the delays in the component circuitry to realize
this mode of operation (Assumption 2).

With this mode of operation, the only possible transient effect
caused by the occurence of multiple-input changes is the following.
When cl has the value 1, there may be 1 values on both the Set and
Reset inputs of one or more input rank flip-flops. When cl becomes
0, these flip-flops will record the input wvalue either just prior to
the transient condition or just after. In either case, the next
phase of component operation proceeds properly.

The design of component circuitry, exclusive of the input rank,
is the same as the design of a clocked sequential circuit under the
assumption, which is wvalid because of the presence of the input rank,

that the circuit inputs x ,...,xn do not change when the clock (02)

1
input is present. The clocked sequential circuit may be designed for
pulse-mode or fundamental-mode operation.

The flow tables used to describe the operation of a clocked
sequential circuit have extra columns to account for the presence and
absence of the clock (02) input. Fig. 10a shows a flow table designed
without consideration of a clock input. The internal-state transitions
are indicated by arrows. This same flow table with a clock input
added is shown in Fig. 10b. When the clock signal is absent, the
table is always stable in a particular internal state. For this

reason, these flow tables are usually drawn in the form shown in Fig.

10c with only a single column to describe the operation when the
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clock input is 0. For pulse-mode operation, the internal state tran-
sitions are diagonal transitions as shown in Fig. 10c. This is be-
cause of Assumption 4.

Since the clock connections are specified and the non-clock
inputs and outputs are level signals, the design of the internal logic
circuits in Fig. 9 can proceed, ignoring the clock input, using flow
tables in the form shown in Table 2. It is understood that these
flow tables specify the operation of the component when c2 has the
value 1 and that when c, is 0, the component is in the stable state

specified during the previous interval when Cy had the value 1.

If pulse-mode operation is used, critical races and essential

hazards cannot affect the operation of the clocked sequential circuit.
Critical races may occur in a fundamental-mode circuit if two or more
internal variables are unstable simultaneously. If the final internal
state depends on the order in which the internal variables change
value, a critical race exists [ 23 1. In pulse mode, Assumptions 3
and 4 guarantee that the next internal state is unique. Essential
hazards may occur in a fundamental-mode circuit if an internal var-
iable changes before the propagation of an input change is complete.
As with a critical race, the effect of the essential hazard is such
that the next internal state is not uniquely specified. For pulse
mode, Assumption 4 eliminates the possibility of adverse effects

from any essential hazards.
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Using the basic component structure just described, if each com-

ponent input changes value at intervals greater than the component
cycle time (successive 0-1-0 transitions for <, and 02), every input

transition will result in a unique internal state transition. It

is possible for an input variable to change value more than once

during the basic component cycle time. If this happens, input tran-
sitions will not be recognized by the component. General considera-
tion of such input changes will be given in a later paper. In the

case of the solution to the two-process mutual exclusion problem,
all input transitions must be recognized. This is so because when
each component changes one of its output values, it does not change
the output value again until it recognizes an input transition which
is produced in recognition of its own output value change. For ex-—
ample, when access to critical section 1 is requested, X1 is set to
1. This wvalue is not changed until the x1: 0 » 1 input transition

is recognized by the control and the control sets 7z, to 1 allowing

1
the critical section to be entered.

The mode of operation we have described can be used by a processor
in a multi-processor computer system. When the processor is executing
instructions which have no effect on the rest of the system, the
internal clock signals ¢y and ¢, both have the value 0. Output values,
which are inputs to other components, may be changed at any time. When
a processor reaches a point where further action depends on the values
of inputs from other parts of the system, the present input state is

recorded by applying the c1 pulse. After the input state is deter-

mined, the 1 value for c, initiates the appropriate processor action.
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The use of an input rank of flip-flops to record the input state
should be used by all components for which it is possible to have moe
than one input change at any instant. If a component has only a single
input, a fundamental-mode implementation can be obtained without wusing
clock signals. Belay elements may be necessary in feedback paths
to eliminate essential hazards [ 23 , 28 1.

In a later paper, we show how a sequential program can be prod-

uced to implement a given flow table specification. In the next
section, a control circuit for the two-process mutual exclusion pro-

blem is designed.

A CONTROL CIRCUIT FOR THE TWO-PROCESS MUTUAL EXCLUSION PROBLEM

The flow table specification of the control mechanism was given
in Table 9. Let us assume the Cqy input is a pulse-type input and the
circuit is operated in pulse mode. The steps in this design process
are discussed in detail by McCluskey [ 23 ]. The design of the cir-
cuit will be sketched only briefly.

Since the control flow table has-four internal states, two
.internal variables, Yy and Yg» are required. An internal state
assignment, an assignment of internal variable values for each of the
internal states in the flow table, is given in Table 11. Such a table

is called a transition table. This table has exactly the same form

as a flow table except that each table entry specifies the next
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Table 11.

Transition Table for the Control Circuit
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values or excitation values of the internal variables, Since the

internal states are realized with Set-Reset flip-flops, the next

step is to produce the excitation table for the Set and Reset input

lines to the flip-flops corresponding to the internal variables yl
and Yo This table is shown in Table 12. The entries in this table
can be determined from the corresponding entries in the transition
table using standard techniques [ 23 ]. From the excitation table,
the excitation functions for the two flip-flops are obtained using
techniques for combinational network synthesis [ 23 ]. These excita-
tion functions specify the combinational network used in the internal
logic portion of the circuit. The excitation functions are given

below.
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The output excitation functions determine the combinational network
for the output logic circuit. These functions depend only on the
internal variable; ' and Yo and can be determined from Table 11.
They are given below.

Zy =YYy
A

1
2 = Y172
The complete control circuit diagram including the input rank and
clock inputs is shown in Fig. 11. This completes the synthesis of

the control circuit.



Table 12. Excitation Table for the Control Circuit

X1%9

y1y2 00 01 11 10

00 od, Od Od,ll 10,0d| 10,0d

01 0d,01 |0d,dO | 0d,dO| 10,01

11 d0,do0 | 01,d0 |01,d0 | 01,d0

10 do0,10 01,10 HO,0d |dO,0d

S]_R1 ’ SZRZ
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It is interesting to observe that the clocked sequential circuit
portion of the control circuit in Fig. 11 also realizes the control

flow table of Table 9 when ¢, is a level signal and the circuit is

operated in fundamental mode if the time for all flip-flops in the

output rank to become stable is less than the minimum delay in pro-
pagation of flip-flop outputs to flip-flop inputs. The latter con-
dition is sufficient to eliminate the effects of essential hazards.
The control circuit contains no critical races because, in the 00 and
11 columns of Table 11, only one internal variable changes at a time.
The reason both pulse mode and fundamental mode result in proper
operation of the circuit is because of the form of the control flow
table, in which every unstable entry specifies a stable entry [ 23a ].
The next internal state is unique even if <y retains the value 1
until the circuit becomes stable.

As we have defined a parallel system, every flow table must have
the form specified by Definition 2. Therefore, any circuit obtained
in the manner described in this section can be operated in pulse

mode or fundamental mode with respect to the c2 clock input. The
question which remains to be answered is the following-. Must it always
be possible to describe component operation by a flow table? We
answer this question affirmatively with the following argument.

Suppose the component (program or circuit) that produces an
input value transition for a variable intends that the variable return

to its original value before the component which recognizes the input
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transition enters its next internal state. This type of operation
should not be used because the line delays between components cannot
be controlled (Assumption 1). Next suppose the input value remains
constant. Either the component which recognizes the input value
eventually becomes stable or it does not. A state table which never
becomes stable for some fixed input state is said to contain a cycle.
Consider such a table. During a cycle either some output changes value
or no output changes value. If an output value changes and it changes
more than once, the intermediate values may or may not be recognized
because of the line delay assumption. Therefore cycles with multiple
transitions for a single output should not be used. On the other
hand, a cycle with at most one change for each output variable can
always be replaced by a transition to single stable state without
affecting the external behavior of the component. The output state
for the final stable state is specified by the final value for each
output variable. We will assume that this is always done and that

any state table used to describe the operation of a component is
cycle-free. If a state table is cycle-free and the input value re-
mains constant, the table (component) must eventually enter a stable
entry. The stable entry may be entered after a sequence of unstable
transitions. During this sequence, consider what can happen to the
value of each output variable. Either the value does not change or it
changes exactly once or it changes more than once. Multiple value
changes must not be used for the same reason that ruled out multiple

transitions during a cycle, the intermediate output values may not be
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recognized. In the cases where the output value does not change or
changes exactly once, the entire sequence of unstable transitions can
be replaced by a single transition directly to the final stable entry
without affecting the external behavior of the component (the line
delay assumption (Assumption 1) makes it impossible to control the
order in which output values actually propagate to component inputs).
We conclude that the tables used to describe meaningful component
operation can always be put in a form which is cycle-free and which is
such that every unstable entry specifies a stable entry. That is,

they can be represented as flow tables.
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CONCLUSIONS

The flow table model has been shown to be valuable in the design
of a control algorithm for the two-process mutual exclusion problem.
From a flow table, sequential circuit implementations can be designed.
In a later paper, it will be shown that flow tables can be used for
the analysis and synthesis of sequential programs. As a result,
our model provides a common basis for the treatment of program and

circuit implementations of control algorithms.
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