
| | STAN-CS= /0- /©0
SU-SEL- 70-014

| A Model For Parallel C‘omputer Systems

| by

| T. H. Bredt

| E. J. McCluskey

Technical Report No. 5 /
April 1970

This work was supported in part by
the Joint Services Electronic Programs

U. S. Army, U. S. Navy, and U. S. Air Force
| under Contract N-00014-67-A-0112-0044 and
| by the National Aeronautics and Space

Administration under Grant 05-020-337.

DIGITAL SYSTEMS LABORATORY

STANFORD ELEITRONILS LABORATORIES

STANFORD UNIVERSITY . STANFORD, CALIFORNIA



:

|



STAN-CS-70-160 SEL -70-014

A MODEL FOR PARALLEL COMPUTER SYSTEMS

T. H. Bredt

E. J. McCluskey

April 1970

: Technical Report No. 5

DIGITAL SYSTEMS LABORATORY

Stanford Electronics Laboratories Computer Science Department

Stanford University

Stanford, California

This work was supported in part by the Joint Services Electronic

3 Programs U. S. Army, U. S. Navy, and U. S. Air Force under Contract
N-00014-67-A-0112-0044 and by the National Aeronautics and Space

Administration under Grant 05-020-337.



ery
[or
en

[A

v

u

[

[

he:
7

oe

¥

43

.

v

t

bE

3]

-

8

\

£

i

i
4

¥

E

4

2

Jr

¢

"

s

ft

;



-

Technical Report No. 9 April 1970

A MODEL FOR PARALLEL COMPUTER SYSTEMS

T. H. Bredt

E. J. McCluskey

Digital Systems Laboratory
Stanford Electronics Laboratories

Stanford University, Stanford, California

ABSTRACT

A flow table model 1s defined for parallel computer systems. In

this model, fundamental-mode flow tables are used to describe the op-

eration of system components, which may be programs or circuits. Com-

ponents communicate by changing the values on interconnecting lines

which carry binary level signals. It 1s assumed that there is no

bound on the time for value changes to propagate over the 1intercon-

necting lines. Given this delay assumption, 1t 1s necessary to specify

a mode of operation for system components such that input changes which

arrive while a component 1s unstable do not affect the operation of the

component. Such a mode of operation is specified. Using the flow

table model, a new control algorithm for the two-process mutual exclu-

sion problem 1s designed. This algorithm does not depend on the ex-

clusive execution of any primitive operations used 1n its implementa-

tion. A circuit implementation of the control algorithm is described.
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INTRODUCTION

A computer system can be viewed as a collection of programs, which

are sets of instructions to be executed by processors, and logic cir-

cuits, sets of logic gates and flip-flops interconnected by wires.

Much effort has been expended on the development of formal design

procedures for logic circuits resulting in the body of knowledge

known as switching theory. This theory provides procedures for cir-

cuit analysis, the determination of-what a particular circuit does,

and circuit synthesis, the design of a circuit to accomplish some

task. Unfortunately, designers of computer systems do not have sim-

ilar techniques available to them. These techniques would allow

programs and circuits to be treated in common framework and would

make 1t possible to analyze a system formally, without expensive

testing and debugging, to determine what the system does. They

would help a designer decide whether a circult or program 1implemen-

tation is most appropriate. The ability to consider both hardware

and software implementations 1s particularly important in the design

of operating systems where there is often a choice between a program

or circuit implementation. In this paper, a model is proposed for

parallel computer systems which it 1s hoped will aid in the fulfill-

ment of these objectives. The model depends on the use of _fundamental-

mode flow tables, used previously to design sequential circuits[ 23 ],

to describe the operation of both program and circuit components.

1



To motivate the need for such a model and to illustrate the

difficulties involved in describing the operation of a computer sys-

tem, let us consider a well known problem which occurs in multi-pro-

cessor computer systems. This problem, called the mutual exclusion

or interlock problem, occurs when two or more processes are active

simultaneously. Such processes are called concurrent processes.

The use of the term process implies that some component 1n the system

is active, performing a task. The activity of the component distin-

gulishes a process from a processor. A processor is an entity which

has the capability of performing a task. A further discussion of

the distinction between a process and a processor 1s given by Dennis

and Van Horn [ 5 ], Dijkstra [ 6 , 7 , 8 ], Saltzer[ 26 ], and

Lampson [ 19 |]. In the mutual exclusion problem, each process is

assumed to contain certain special operations 1n a portion of the

process known as a critical section. The processes usually represent

the execution of programs containing infinite loops 1n which they

enter, leave, and then re-enter their critical sections. The mutual

exclusion problem requires the specification of a control mechanism

to prevent two or more processes from entering their critical sections

simultaneously. In addition, it must be guaranteed that, if one pro-

cess wants to enter its critical section, the process cannot be

blocked by other processes entering, leaving, and then re-entering

their critical sections. Knuth [ 18 ] has shown that this latter

possibility exists in one control algorithm proposed for the mutual

exclusion problem. The exact nature or content of a critical section

2
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1s not important in the development of a solution to the problem.

Typically, critical sections modify common storage files or system

tables. A precise statement of the mutual exclusion problem for two

processes 1s given below.

Problem: (Mutual Exclusion)

Given two concurrent processes, each containing a critical sec-

tion, control these processes so that the following two rest-

rictions are always satisfied.

Restriction 1: At most one process is in a critical section,

at any instant.

Restriction 2: If a process wants to enter its critical

section, 1t 1s eventually allowed to do so.

This problem is slightly different from the one Dijkstra posed. He

wanted to ensure that the decision as to which process enters its cri-

tical section cannot be postponed indefinitely. While a decision must

always be made, a particular program may be blocked indefinitely.

Many solutions have been proposed to this problem [ 5, 6 , 7,,

8 , 18 , 19]. Most of these solutions depend on the existence of

special instructions which are executed whenever a process wants to

enter its critical section. Examples of these instructions are the

Test—-and-Set instruction which- 1s a machine instruction for the IBM

360 series computers [ 14], the LOCK and UNLOCK statements for high

level languages like FORTRAN and ALGOL discussed by Dennis and Van Horn

[ 5 1], and the P and V operations proposed by Dijkstra [ 7 , 8 1.

. Two programs using Dijkstra's P and V operations to achieve ex-

clusive access to their critical sections are shown in Table 1.

The programs are specified in a version of the ALGOL programming

3



Table 1. Dijkstra's P, V Solution to the Mutual Exclusion Problem

| BEGIN INTEGER Sj; s 1=1;

| PARBEGIN
| PROCESS 1: BEGIN
| Ll: P(S) ;

| CRITICAL SECTION 1;

| V(S);

| REMAINDER OF PROCESS 1;

| GO TO Ll;
END;

| PROCESS 2: BEGIN
L2: PS) ;

| CRITICAL SECTION 2;
v(s) ;

| REMAINDER OF PROCESS 2;

GO TO LZ;

| ND

| PAREND

| i.

So -



language. The integer variable S 1s called a semaphore. We will

describe the solution for two processes although 1t can be generaliz-

ed to handle an arbitrary number of processes. For two programs,

the semaphore variable takes on only two values, 1 and 0. When S=1,

neither process 1s in 1ts critical section and when S=0, one of the

processes 1s in its critical section. The 1dentifiers PARBEGIN and

PAREND were introduced by Dijkstra to denote that every statement

appearing between these two identifiers can be executed concurrently.

This 1s Dijkstra's version of the FORK and JOIN statements proposed

by Conway [ 4 ] and others. The P operation or statement is perform-

ed on a semaphore variable and has the following effect. If the value

of S is 1, S 1s set to 0 and the next statement 1s executed. If s

is 0, the process must "wait" until S becomes 1 before 1t may proceed.

The V operation 1s also performed on a semaphore variable and in-

creases the value of the variable by 1. For two processes, V(S)

is equivalent to setting the value of S to 1. There are two possible

forms of activity while a process waits for a semaphore to become 1.

The process may go into a tight loop repeatedly executing the P(S) op-

eration until S becomes 1. This form of waiting 1s called "busy

waiting" since a processor must be assigned to the process contin-

uously. In the other form of waiting, the process is added to a

queue associated with the semaphore where it resides until the sem-

aphore becomes 1. In this case, when a V operation 1s performed,

the queue for the appropriate semaphore variable must be examined

and any process which is eligible to proceed restarted. This form

5



of waiting allows the processor associated with the idle process

to be freed to execute other processes.

Dijkstra makes the following two assumptions about the P and

| V operations.
1. The P and V operations are indivisible. That 1s, 1t is

impossible for one P or V operation to be initiated and

| then for another P or V operation to be initiated before

| the first 1s complete.
2. P and V operations may not be executed simultaneously.

Given these two assumptions, Dijkstra proceeds to analyze the

| behavior of the system containing the two processes and concludes
| that the mutual exclusion problem has been correctly solved although

'he does not claim that the analysis presented 1s formal.

| Dijkstra's conclusions are hard to accept for several reasons.

First, he has not said enough about the system environment to det-

| ermine if the P and V operations will work. The situation is des-
| cribed in Fig. 1. Each process 1s able to read and change the value

of the semaphore S. Dijkstra does not say whether he intends the

| system to operate in a synchronous manner under the control of a
| master clock or whether the components in some way operate indepen-

dently. It 1s important to account for delays which may be present

| in the environment. These delays may be in the lines over which ,
processes access the semaphore variables and also in the processes

| themselves. It 1s possible in a physical system for operations to
occur simultaneously and this possibility should not be dismissed |



| a

Figure'l. System configuration for Dijkstra's mutual exclusion

problem solution.
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by simply assuming simultaneous interactions do not occur. Any

| analysis procedure or model should consider all possible variations
in timing of system operations. Another objection 1s that Dijkstra

| has solved the mutual exclusion problem for programs by presenting

another mutual exclusion problem which must be solved in the logic

circuits of the system. In order to guarantee that the assumptions

about the indivisibility of the operations and the absence of simul-

taneous P and V executions hold, another mutual exclusion problem,

nearly identical to the one presented earlier mutual exclusion

must be solved. In fact, the statement of the problem given will

suffice if we replace the words "critical section" by "P or V op-

eration".

We do not intend to be overly critical of Dijkstra's work. Other

published solutions to the mutual exclusion problem depend on the

exclusive execution of some primitive operation. A possible excep-

tion is the work of Clark [ 3 1; however, we are not aware of the

details of their implementation. We feel that there remain unanswer-

ed questions and a need for more work in this area. In this and

subsequent papers, we discuss a new approach to the study of parallel

systems. Methods based on the use of flow tables are presented

which allow circuits and programs to be described in a common frame-

work. These methods permit the formal analysis of the operation of

systems of the type we have just described and make it possible to

consider the effects of delays. They are applicable in the synthesis

of solutions to problems such as the mutual exclusion problem. A
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mode of operation 1s described for parallel systems which does not

depend on synchronous operation or the exclusive execution of any

primitive operations.

PARALLEL SYSTEMS

A diagram of a portion of a possible system configuration 1s

, shown in Fig. 2. The square boxes represent system components.

These components may be programs or circuits. The operation of a

circult or the execution of a program is referred to as a process

in the sense used in the introduction.. Some of the components may

act as control mechanisms which enable and disable other components.

Each interconnecting line represents a physical wire which carries

a binary level signal. Each line has associated with ita direction

of propagation for transmission of signal value changes from the

output of one component to the input of another. The direction of

propagation 1s indicated by arrowheads 1n the system diagram.

The operation of the system can be described in a general way

as follows. Whenever a process wants to perform an operation that

could affect other processes, the process requests permission to

perform the operation from a control mechanism. The permission has

the form of an enabling signal sent from the control mechanism to

the process. It 1s the responsibility of the control mechanism to

ensure that no situation arises that violates restrictions placed

on system operation. One control mechanism can seek authorization

9
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Figure 2. Typical parallel system configuration.

| - 10



for an action from another control mechanism and there need be no

central control mechanism responsible for the operation of the entire

system.

The general form of a system component is shown in Fig. 3. The

component has n input lines and m output lines. Each input

line has an associated input variable Xo i =1, ....n . The values

of the input variables define the input state of the component.

, Each input variable has two possible values, 0 and 1 . Each

component produces outputs which are also binary signals. Each out-

put line has an associated output variable or excitation variable

Z; , 1 =1,...,m . The values of the output variables define the

output state of the component. Each input and output line 1s con-

nected to exactly one other component.

FLOW TABLES

In any model of computer systems, 1t 1s necessary to be able

to describe precisely the operation of each system component. Many

models of parallel computations and parallel computer systems have

been proposed 1n which functions are used to describe component

behavior[ 1 , 2, 15 , 16 , 17 , 20 , 21 , 22 , 24 , 25 , 27 J].

These functions define mappings of component 1nput states into output

states. This approach has the advantage of complete generality in

the types of component behavior that can be described. Any operation

that can be described by a mathematical function can be represented.

11
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Figure 3. General form of a component.
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There are several disadvantages associated with this approach however.

First, most of the interesting properties of the system, such as

whether or not the system ever halts or whether one system 1s equi-

valent to another, are undecidable. That is, there do not exist

algorithms which determine for any arbitrary system 1f the system

ever halts or for two arbitrary systems, 1f they do the same thing.

A second disadvantage 1s that the function does not necessarily des-

cribe the program or circuit that implements the function.

The model we propose uses flow tables rather than functions

to describe component operation. Flow tables were first introduced

by Huffman[ 13 ] and are normally used in the design of sequential

switching circuits [ 23 ]. There is a direct correspondence between

a sequential circuit and a flow table. In another paper, we show

that flow tables can be used to describe computer programs and give

procedures for constructing the program that corresponds to a given

flow table and the flow table that corresponds to a given program.

Thus there 1s a direct correspondence between a program or circuit

implementation and flow table used to describe the implementation.

This correspondence is two-way. A program or circuit can be analyzed

to determine what 1t does and a flow table solution to a problem can

be synthesized or designed and then a program or circuit 1implementa-

tion produced.

A possible disadvantage of using flow tables 1s that only math-

ematical functions which require finite internal storage can be des-

cribed. For example, gilven a component with two inputs xX) and X, it

13



1s impossible to use a flow table to determine 1f an arbitrary number of

| 1-0-1 transitions on the xX input 1s always followed by exactly the

| same number of 1-0-1 input transitions on the X input. We are

interested in the study of interactions among components rather than

the types of problems that can be solved using these systems. We

feel these interactions are best studied in a model which requires

finite storage and will show that problems which arise 1n intercon-

necting components can be solved using finite techniques. We view

a system as a finite collection of components which have a finite

| number of interconnections and therefore mathematical properties

such as termination and equivalence are decidable.

Associated with each component, as shown in Fig. 3, 1s a flow

table of the form shown in Table 2. This table has 2" columns,

one column for each possible input state and r rOws where each

row represents an internal state of the component. Each internal

state is designated by a unique integer number (1,2,...,r). The

table entry designated by an internal-state 1nput-state pair specif-

ies the next internal state of the component. If the next-state

entry 1s the same as the present internal state, the entry 1s called

a stable entry and the component (flow table) 1s said to be 1n a

stable state or stable. If the next-state entry 1s not the same

as the present internal state, the entry is called an unstable

entry and the component (flow table) is said to be in an unstable

state or unstable. An output state 1s assoclated with each internal

state. While it 1s possible for the output state to depend on the

14



Table 2. General Form of a Flow Table

Input State

Output State

00...1 11...1 «ood
241%, m

Internal CL]
or BEER

S (next state)

15



input state as well as the internal state [ 23], this will not

be done in this paper. A flow table must satisfy the following rest-

riction. Every unstable entry must specify a next internal state

entry which 1s stable. Thus the table in Table 3a is a flow table

but the table of Table 3b is not. To be precise, the following def-

inition of a flow table is given.

-Definition 1:

A flow table is a table with of columns, one for each

input state, and r rows, one for each internal state.

Associated with each row 1s an output state. Each unstable

entry must specify a next internal state which 1s stable.

As a consequence of the fact that the output state 1s associlat-

ed with an internal state and since each unstable entry leads dir-

ectly to a stable entry, 1t follows that each output variable may

change value at most once during any internal state transition.

In order to describe situations such as in Table 3b, we define a

state table.

Definition 2:

A state table 1s a table which 1s identical to a flow

table except that it 1s not required that every unstable

entry specify a next internal state that is stable.

16



Table 3. a) Flow Table Example b) Table Which is Not a Flow Table

X X

0 1 7 0 1 7

a) b)

17



Of course every flow table is also a state table. The distinction

| between flow tables and state tables has been made previously [ 23 ].

Others do not make this distinction; state tables are not introduced

and the term normal flow table 1s used to describe the case where

every transition leads directly to a stable state and each output

variable changes at most once during each internal state transition

| [10 , 11, 28 1.

| DELAY ASSUMPTIONS

The following assumptions are made about physical delays present

in a parallel system.

Assumption 1:

| The time for a value change to propagate from a component output

to a component input (the line delay) is finite and unbounded.

Assumption 2:

| Within a component, the delays are finite and bounded.

The intent of Assumption 1 is that line delays cannot be controlled. If

a "pulse" or short 1 value 1s produced at a component output, it 1s not

assumed that this value necessarily must propagate to a component input.

The consequences of these assumptions are explored in this and sub-

sequent papers. It should be noted that 1f all delays are assumed

: to be bounded, a "synchronous" solution to the mutual exclusion pro-

blem can be obtained in which the maximum delay time 1s used to det-

| ermine the basic cycle time for the system. Our line delay assump-

| 18
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is different from that made in other models where line delays are

either assumed to be bounded or zero [ 1, 15, 16, 17, 20, 21, 22, 24,

25, 27 1].

A FLOW TABLE SOLUTION FOR THE TWO-PROCESS MUTUAL EXCLUSION PROBLEM

We now return to the two-process mutual exclusion problem dis-

cussed 1n the introduction and use flow table methods to design a

solution or control algorithm for this problem. The system config-

uration is shown in Fig. 4. The variables shown are the input vari-

ables for each component. The interpretation of the variable values

is given in Table 4. Suppose Xy and z, both have the' value 0. When

process 1 wants to enter its critical section (CS1), it sets the

value of its output variable X, to 1. The 1 value eventually reaches

the control mechanism input. The control mechanism sets the value

of Z4 to 1. This value propagates to the input of process 1, enabling

the process to enter its critical section. The sequence of actions

on the part of process 1, just described in words, can be described

by a flow table. Such a flow table is shown in Table 5a. The process

1s initially in internal state 1 with input state z,=0. Internal-

state input-state combination will be denoted by a pair of states

separated by a dash (=), in this case, 1-0. The 1-0 entry 1n Table

9a 1s 2 indicating that eventually this process enters internal state

2. The output state for internal state 2 is X=I. The 2-0 entry is

(2), a stable entry. The process remains 1n this stable state until
the input transition z : 0>1 occurs. We assume that a process does

19
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x Control
2 Mechanism 2, Z9

Process

Figure 4. System configuration for the two-process mutual exclusion
problem.

20



Table 4. Interpretation of Variable Values for Fig. 4 (i=1,2)

%, = 1: process i wants to enter critical
section 1 (CSi) or process 1 1s
in CSi

xX, = 0 : process 1 does not want to enter
CSi and process 1 is not 1n CSi

z, = 1: process 1 may enter CSi

z, = O . process i may not enter CSi

21



Table 5. Design of a Flow Table for Process 1.

“1 1 0 1 10 Xy X

©] | : @]

S S
(a) (b)

Table 6. Flow Table for Process 2

%2

0 1 X,

eo):
@ [|

S

22



not remaln in 1ts critical section indefinitely. Therefore the 2-1

entry must be unstable and should be 1 indicating that the process

eventually return to internal state 1 where X, is set to 0. The

unstable transition does not necessarily occur 1n a short time and,

in general, a substantial portion of the operating time of a component

may be spent in unstable transitions. The 1-1 entry in the flow

table must be (1) This is necessary to ensure that the control
mechanism recognizes that process 1 has left its critical section.

The control does this by setting Z, to 0 which eventually enables

process 1 to start its cycle again. The complete flow table for

process 1 1s given in Table 5b. The corresponding flow table for

process 2 1s given 1n Table 6.

If the 1-1 entry in Table Sb were 2, the table of Table 7 would

be obtained. This table is a state table and not a flow table since

the 2-1 entry does not specify a stable state. If this table des-

cribed the behavior of process 1, it would be possible for both re-

strictions on the mutual exclusion problem to be violated. First,

the Xt 1» 0 »1]1 transition could be so short that the 0 value

never 1s recognized by the control. Thus, if process 2 desires to

enter its critical section, the control would never realize that

process 1 was finished and process 2 would never be enabled violating

Restriction 2. On the other hand, if process 2 desires to enter

its critical section but is not enabled (x, = 1 and Z, = 0) and the

0 value for x1 appears momentarily and 1s recognized by the control,

the control may disable process 1 (z;>0) and enable process 2 (Zz, =1).

23



Table 7. An Improper State Table

21

0 1 Xq

i |

S

24



But process 1 can re-enter its critical section before z, becomes 0.

| In this case, both processes would be in their critical sections

simultaneously violating Restriction 1. This informal analysis is

not intended to replace more formal analysis procedures to be pre-

sented in a later paper. However, it does point out the advantages

| of the flow table 1n making the designer consider all possible state

| transitions, allowing him to detect and eliminate many potential
errors during the synthesis procedure.

Tables 5b and 6 describe the behavior of the two components of

| the system which contain critical sections. We are now ready to
| design the control mechanism. The control mechanism has two input

| variables x and X, and four possible input states; therefore,

| there are four columns in the associated flow table. We require

that 1f neither process 1s enabled to enter its critical section

| and 1f process requests arrive at the control simultaneously, access

| 1s given to the process that was not enabled last. Because of this

requirement, the control mechanism must "remember" which process

was enabled last. Two internal states are required for this purpose.

| Two more internal states are required, one to produce the enabling

signal for process 1 and the other to produce the signal for process

2. Thus a minimum of four internal states are required for the con-

trol mechanism.

The usual techniques of flow table synthesis produce first a

primitive flow table which has one stable entry in each row. Simpli-

fication procedures are then used to eliminate unnecessary internal

25



states [ 23 J]. To simplify this discussion a flow table with four

| internal states will be obtained directly. To see how the design
| proceeds, suppose that neither process 1s requesting access to its

| critical section, X= 00, and process 2 was 1n 1ts critical section
| last. Let the corresponding table entry 1-00 be as shown in Table 8a.

The output state 1s 2124 = 00, and the control 1s stable waiting

| for an input transition. If the transition X Xgt 00 »01 occurs,
the control must enter a new internal state where process 2 1s enabled,

| as shown in Table 8b. From 1-00, the transition X (Xo! 00 » 10
; may also occur and process 1 must be enabled, say by internal state 3.

If the XX, OO» 11 transition occurs while in 1-00, that is,

simultaneous requests, state 3 1s entered and process 1 1s enabled

| since process 2 was enabled last. Internal state 4 1s used to re-

| member that process 1 was enabled last. From 4-00, transitions
| analogous to those from 1-00 can occur'. The table as specified

thus far is shown in Table 8c. Consider the 2-01 entry. In this

| state, process 2 1s requesting access to 1ts critical section and

| is enabled, X, = 1 and Z, = 1. There are three possible 1nput tran-

sitions, XX, 01 » 11 or 01 » 00 or 01 » 10. The first indicates

that process 1 also desires to enter its critical section and the 2-11

entry 1s 2 indicating that the control must wait until process 2

leaves its critical section before enabling process 1. Notice that,

as defined by the flow table in Table 5b, once X, becomes 1, it

does not change to 0 until after Zs is set to 1. The X Ko 01» 00

transition indicates that process 2 has left its critical section.

26



Table 8. Design of the Control Flow Table'for the Two-Process Mutual

Exclusion Problem

*1%2 *1%2

00 Ol 11 10 2,2, 00 01 11 10 2,2,

S S

(a) (b)

XX, X1%,

00 01 11 10 2,2, 00 01 11 10 212,

S S

(c) (d)
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In this case, the control return to internal state 1, remembering that

process 2 was in its critical section last. The final possibili-

ty XK Xo 01» 10 accounts for the simultaneous occurrence of both

of the first two transitions. In this case, the control enters

internal state 3 and enables process 1. These transitions are in-

cluded in Table 8d. From the 2-11 entry, the only possible transi-

tion 1s X Xo 11 =» 10, which takes the control to internal state 3.

The transitions from the 3-10 and 3-11 entries are analogous to those

from 2-01 and 2-11. The complete control flow table and process flow

tables are shown in Table 9. These flow tables describe all possible

interactions of the components in this system. The next step in the

design process 1s to produce the actual programs and circuits that

implement this system. Before this can be done, it 1s necessary to

discuss 1n more detail the mode of operation used for system compo-

nents.

BASIC COMFONENT STRUCTURE

We assume that there 1s no bound on the time for value changes

to propagate in lines (Assumption 1); therefore, no global timing

constraints can be made on a system and master clocks, which are

commonly used to synchronize the operation of digital systems, cannot

be relied upon. One approach to the elimination of master clocks

utilizes propagation—-limited logic [ 12 ]. Extra connections are

provided between components. Each component has special inputs which

- 28



Table 9. Flow Tables for the Two-Process Mutual Exclusion Problem

Zz, z,,

0 1 Xy 0 1 X,

(a) Process 1 (b) Process 2

%1%2

00 01 11 10 Z,2,

(1 last) 4 (9) 2 2 3 00

(c) Control
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determine when the component output values may be changed. Special

component outputs are also provided so that a component can notify

other components when 1t 1s ready to accept new input information.

We propose a structure for components which does not require

extra connections such as are used in propagation-limited logic. Extra

control connections complicate formal analysis of a system and in the

case of the mutual exclusion problem are unnecessary. However, extra

circuitry 1s required to isolate a component from input changes which

may occur while the component 1s responding to an earlier input change.

Consider the operation of a fundamental-mode sequential circuit in an

environment where line delays are unbounded. Fundamental-mode op-

eration is defined as follows [ 23 IE

Definition 3:

A sequential circuit 1s said to be operating in

fundamental-mode if and only if all input changes occur

when the circuit is stable.

A general form for a sequential circuit with level inputs and level

outputs for fundamental-mode operation-is shown in Fig. 5. Set-Reset

flip—-flops* are used to store the internal state of the circuit and

the output values depend only on the internal state. The internal

¥ A Set—-Reset (S-R) flip-flop has two inputs, S and R, and two |
outputs, y and y'. When S=0 and R=1, y=0 and y'=1l. When S=1 and R=0,

y=1 and y'=0. When S=0 and R=0, the output of the flip-flop is det-

ermined by the most recent 1 value for S or R. If S and R have 1

values simultaneously, the values of y and y' are arbitrary.
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3 logic and output logic boxes contain combinational circuits, circuits

| with no loops in the direction of signal propagation.
| Fundamental-mode operation 1s usually attained by requiring that

| there be an interval between input value transitions of sufficient
| duration to allow the circuit to become stable. In our model, if a

| circuit or component has more than one input, 1t 1s possible for the

circuitry to be responding to a change on one input line when a change

on another input line occurs. Thus, 1t 1s not reasonable to assume

| fundamental-mode operation. To 1llustrate-the difficulties 1f a circ-

uit in the form of Fig. 5 1s not operated in fundamental mode, consid-

| er the flow table shown in Table 10. Suppose the present table entry

| is 1-00 and the input value sequence x £5 00» 01 » 11 occurs.
One possible internal transition sequence 1s shown in Fig. 6a and

| another in Fig. 6b. In the first case, the duration of the 01 input
state 1s sufficient to cause the 2-01 table entry to be entered.

| This 1s not the case in Fig. 6b. As a result, seemingly identical
| input sequences can produce different internal state transitions

and as a consquence different output states. Such behavior is not

desirable. Discussions of these difficulties are concerned with

| hazards in flow tables and circuits which undergo multiple-input

| transitions and are beyond the scope of this paper [ 9 , 10 ]. In-
| stead, we define a mode of operation which guarantees that every in-

put transition results 1n a unique internal-state transition and a

unique output-state transition. Before presenting our mode of opera-

| tion, another mode of operation commonly used with sequential circuits
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Table 10. Flow Table Example

*1%2

0
00 01 11 1 2,2,
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X,%q

0 11 1000 1 Z,2,

I

2 1 (2) 3 01

(a)

XX,

0
00 01 11 1 Z,Z,

(b)

Figure 6. Possible transitions for flow table of Table 9 given input

sequence XX, 00 =» 01 —> 11 .
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must be discussed. This mode of operation is called pulse mode and

| may be used with clocked sequential circuits [ 23 ].

| Pulse Mode and Clocked Circuits

| For our purposes, a clocked sequential circuit 1s a sequential

| circuit with level inputs and level outputs, such as shown in Fig. 5,

but with one extra input called a clock input. If the clock input

| has the characteristic that it has a 1 value for a much shorter time

| that 1t has the 0 value, the clock-input is said to be a pulse type

| input or pulse input instead of a level input. For a pulse input,

the 1 value for the clock input is called the clock pulse. Clocked

sequential circuits can be designed to operate 1n fundamental mode

as well as in pulse mode [ 23 ]. If a clocked sequential circuit is

: operated in pulse mode, the following assumptions are made about the

| width of the input pulse.
Assumption 3:

| The pulse input 1s of sufficient duration to cause the appropri-

| ate flip-flops to change state.

| Assumption 4:

| The duration of the pulse-input 1s short enough that it is no

| longer present at the circuits which generate the flip-flop input sign-

als when the change 1n flip-flop outputs has propagated to the input

circuitry.

The actual definition of pulse mode operation for a sequential

circuit 1s as follows.

35



Definition 4:

A sequential circuit 1s said to be operating

in pulse mode if and only if the following conditions

are satisfied:

1. At least one input 1s of pulse type.

2. Changes 1n internal state occur only in response

to the occurrence of a pulse at one of the pulse

inputs.

3. Each input pulse causes only one change in

internal state.

In clocked sequential circults designed for pulse-mode operation,

clocked Set-Reset flip-flops are often used. These flip-flops have

an extra input for the clock signal and change state only when the

clock pulse is present. In order to insure that Assumption 4 holds,

double-rank or master-slave flip-flops can be used. These flip-flops

change their outputs after the clock pulse has disappeared, preventing

feedback signals from changing while the clock pulse 1s present. In

Fig. 7, three basic flip-flop-designs are shown, the S-R flip-flop,

the clocked S-R flip-flop, and the clocked, master-slave S-R flip-flop.

The flip-flop of Fig. 7¢ operates in the following manner. When c is

0, changes 1n the S and R inputs are isolated from the master flip-

flop and the outputs of the master flip-flop determine the outputs

of the slave flip-flop. When c becomes 1, the clock input to gates

3 and 4 must become 0 isolating the slave flip-flop kefore any changes
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appear 1n the master flip-flop outputs. While ¢c = 1, the master

flip-flop records the new input conditions. When c¢ becomes 0 again,

the clock inputs to gates 1 and 2 must become 0 isolating the

master flip-flop before any changes in the slave flip-flop outputs

propagate to the S and R inputs of gates 1 and 2. As long as the

gate delays in this flip-flop are greater than the line delay from

the clock to the inputs of gates 1 and 2, this latter condition

will be satisfied.

A general form for a clocked sequential circuit using clocked

S-R flip-flops 1s shown in Fig. 8. In general, there may be multi-

ple—-input changes in the circuitry which determines the flip-flop in-

puts. Therefore, static and dynamic hazards may exist 1n the flip-flop

inputs which cannot be eliminated by adding logic gates [ 9 ]. These

hazards can result in spurious inputs to the flip-flops which could

cause an 1internal-state flip-flop to be set or reset incorrectly if

the inputs change while the clock pulse is present. One way to eli-

minate the effect of hazard pulses 1s to assume that the circuit

inputs do not change while the clock pulse is present. However,

if we made this assumption and went on to design a solution to the

mutual exclusion problem, we would have solved one mutual exclusion

problem by posing another one, just as Dijkstra did. This is so

because we would have assumed the presence of the clock pulse and

input changes are mutually exclusive. To eliminate the possibility

of hazard pulses which can adversely affect component operation,
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we define the following mode of operation for the components in

parallel system. *

Component Operation

While most of this discussion 1s concerned with circuits, we

intend that these techniques be used with components which are cap-

able of executing programs as well. The basic form of a component

circuit 1s shown in Fig. 9. This circuit has two ranks of clocked

S—-R flip-flops. These ranks are called the input rank and the output

rank. The output rank corresponds to the flip-flops for clocked

sequential circuits as shown in Fig. 8. Master-slave type flip-flops

can be used in the output rank to isolate internal variable changes

from the internal logic. The input rank of flip-flops serves the

sole function of recording the values on the input lines. These

flip-flops may be the simple clocked type shown in Fig. 7b. The

component inputs SERRE may change at any time. When the response

to an input change is complete, a new input state is determined by

applying a clock pulse on the cl line. The cl pulse must be of

sufficient duration to allow the input rank to become stable. When

the cl pulse is removed, the effect of new input state must completely

propagate to the inputs of the flip-flops in the output rank before

the c, signal 1s set to 1. The 1 value for Cc, causes the effect of

% Friedman and Menon [ 9 ] have discussed the design of sequential
circuits with multiple-input changes assuming the maximum time between

successive input changes 1s bounded. This assumption cannot be made

if line delays are unbounded.
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the input state to be recorded in the output rank. It 1s necessary

to have bounds on the delays in the component circuitry to realize

this mode of operation (Assumption 2).

With this mode of operation, the only possible transient effect

caused by the occurence of multiple-input changes 1s the following.

When cl has the value 1, there may be 1 values on both the Set and

Reset inputs of one or more input rank flip-flops. When cl becomes

0, these flip-flops will record the input value either just prior to

the transient condition or Just after. In either case, the next

phase of component operation proceeds properly.

The design of component circuitry, exclusive of the input rank,

1s the same as the design of a clocked sequential circuit under the

assumption, which 1s valid because of the presence of the input rank,

that the circuit inputs Xpree osX do not change when the clock (c,)

input is present. The clocked sequential circuit may be designed for

pulse-mode or fundamental-mode operation.

The flow tables used to describe the operation of a clocked

sequential circuit have extra columns to account for the presence and

absence of the clock (c,) input. Fig. 10a shows a flow table designed

without consideration of a clock input. The internal-state transitions

are indicated by arrows. This same flow table with a clock input

added is shown in Fig. 10b. When the clock signal is absent, the

table is always stable in a particular internal state. For this

reason, these flow tables are usually drawn in the form shown in Fig.

10c with only a single column to describe the operation when the
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| clock input 1s 0. For pulse-mode operation, the internal state tran-
sitions are diagonal transitions as shown in Fig. 10c. This 1s be-

cause of Assumption 4.

| Since the clock connections are specified and the non-clock

| inputs and outputs are level signals, the design of the internal logic

circults in Fig. 9 can proceed, ignoring the clock input, using flow

tables in the form shown in Table 2. It 1s understood that these

| flow tables specify the operation of the component when c, has the
| value 1 and that when c, is 0, the component is in the stable state
| specified during the previous interval when Coq had the value 1.

If pulse-mode operation 1s used, critical races and essential

| hazards cannot affect the operation of the clocked sequential circuit.

| Critical races may occur in a fundamental-mode circuit if two or more

internal variables are unstable simultaneously. If the final internal

| state depends on the order in which the internal variables change

value, a critical race exists [ 23 ]. In pulse mode, Assumptions 3

| and 4 guarantee that the next internal state is unique. Essential

hazards may occur in a fundamental-mode circuit 1f an internal var-

| iable changes before the propagation of an input change 1s complete.

As with a critical race, the effect of the essential hazard 1s such

that the next internal state is not uniquely specified. For pulse

mode, Assumption 4 eliminates the possibility of adverse effects

from any essential hazards.
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Using the basic component structure just described, 1f each com-

ponent input changes value at intervals greater than the component

cycle time (successive 0-1-0 transitions for C and C5) every input

transition will result in a unique internal state transition. It

1s possible for an input variable to change value more than once

during the basic component cycle time. If this happens, input tran-

sitions will not be recognized by the component. General considera-

tion of such input changes will be given in a later paper. In the

case of the solution to the two-process mutual exclusion problem,

all input transitions must be recognized. This 1s so because when

each component changes one of its output values, it does not change

the output value again until it recognizes an input transition which

is produced 1n recognition of its own output value change. For ex-

ample, when access to critical section 1 is requested, Xl 1s set to

1. This value 1s not changed until the xl: 0 »1 input transition

1s recognized by the control and the control sets Z, to 1 allowing

the critical section to be entered.

The mode of operation we have described can be used by a processor

in a multi-processor computer system. When the processor 1s executing

instructions which have no effect on the rest of the system, the

internal clock signals Cy and C, both have the value 0. Output values,

which are inputs to other components, may be changed at any time. When

a processor reaches a point where further action depends on the values

of inputs from other parts of the system, the present input state is

recorded by applying the cl pulse. After the input state 1s deter-

mined, the 1 value for C, initiates the appropriate processor action.
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The use of an input rank of flip-flops to record the input state

should be used by all components for which 1t 1s possible to have moe

than one input change at any instant. If a component has only a single

input, a fundamental-mode implementation can be obtained without using

clock signals. Belay elements may be necessary in feedback paths

to eliminate essential hazards [ 23 , 28 ].

In a later paper, we show how a sequential program can be prod-

uced to implement a given flow table specification. In the next

section, a control circuit for the two-process mutual exclusion pro-

blem is designed.

A CONTROL CIRCUIT FOR THE TWO-PROCESS MUTUAL EXCLUSION PROBLEM

The flow table specification of the control mechanism was given

in Table 9. Let us assume the C, input 1s a pulse-type input and the

circuit is operated in pulse mode. The steps in this design process

are discussed in detail by McCluskey [ 23]. The design of the cir-

cuit will be sketched only briefly.

Since the control flow table has-four internal states, two

internal variables, V4 and Yor are required. An internal state

assignment, an assignment of internal variable values for each of the

internal states in the flow table, is given in Table 11. Such a table

is called a transition table. This table has exactly the same form

as a flow table except that each table entry specifies the next
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Table 11. Transition Table for the Control Circuit

X,%,

Y1Yo 00 01 11 10 2,2,

(2 last) O00 01 10 10 00

Y1Ys
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values or excitation values of the internal variables, Since the

internal states are realized with Set-Reset flip-flops, the next

step 1s to produce the excitation table for the Set and Reset input

lines to the flip-flops corresponding to the internal variables yl

and Yo This table is shown in Table 12. The entries in this table

can be determined from the corresponding entries in the transition

table using standard techniques [ 23]. From the excitation table,

the excitation functions for the two flip-flops are obtained using

techniques for combinational network synthesis [ 23 ]. These excita-

tion functions specify the combinational network used in the internal

logic portion of the circuit. The excitation functions are given

below.

S, = x, (x, + Vo!)

Rl = xy (x, + Yo)

S, = x," (X53 + ¥,)

R, = x," (xy + yi")

The output excitation functions determine the combinational network

for the output logic circuit. These functions depend only on the

internal variables Yq and Yq and can be determined from Table 11.

They are given below.

Zy = Vy

Zg = YY,

The complete control circuit diagram including the input rank and

clock inputs is shown in Fig. 11. This completes the synthesis of

the control circuit.
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Table 12. Excitation Table for the Control Circuit

X,%,

YY 00 01 11 10

01 0d,01 (Od, dO | 0d,do| 10,01

11 d0,d0 |01,d0 |01,d0 | 01,d0

10 d0,10 01,10 0.04 |a0,00
SiR SR,
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It 1s interesting to observe that the clocked sequential circuit

portion of the control circuit 1n Fig. 11 also realizes the control

flow table of Table 9 when ¢, is a level signal and the circuit is

operated in fundamental mode if the time for all flip-flops in the

output rank to become stable is less than the minimum delay in pro-

pagation of flip-flop outputs to flip-flop inputs. The latter con-

dition 1s sufficient to eliminate the effects of essential hazards.

The control circuit contains no critical races because, 1n the 00 and

11 columns of Table 11, only one internal variable changes at a time.

The reason both pulse mode and fundamental mode result in proper

operation of the circuit 1s because of the form of the control flow

table, in which every unstable entry specifies a stable entry [ 23a |.

The next internal state 1s unique even if c, retains the value 1

until the circuit becomes stable.

As we have defined a parallel system, every flow table must have

the form specified by Definition 2. Therefore, any circuit obtained

in the manner described in this section can be operated in pulse

mode or fundamental mode with respect to the Cc, clock input. The

question which remains to be answered is the following-. Must it always

be possible to describe component operation by a flow table? We

answer this question affirmatively with the following argument.

Suppose the component (program or circuit) that produces an

input value transition for a variable intends that the variable return

to 1ts original value before the component which recognizes the input
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transition enters its next internal state. This type of operation

should not be used because the line delays between components cannot

be controlled (Assumption 1). Next suppose the input value remains

constant. Either the component which recognizes the input value

eventually becomes stable or it does not. A state table which never

becomes stable for some fixed input state is said to contain a cycle.

Consider such a table. During a cycle either some output changes value

or no output changes value. If an output value changes and it changes

more than once, the intermediate values may or may not be recognized

because of the line delay assumption. Therefore cycles with multiple

transitions for a single output should not be used. On the other

hand, a cycle with at most one change for each output variable can

always be replaced by a transition to single stable state without

affecting the external behavior of the component. The output state

for the final stable state 1s specified by the final value for each

output variable. We will assume that this is always done and that

any state table used to describe the operation of a component 1s

cycle-free. If a state table 1s cycle-free and the input value re-

mains constant, the table (component) must eventually enter a stable

entry. The stable entry may be entered after a sequence of unstable

transitions. During this sequence, consider what can happen to the

value of each output variable. Either the value does not change or it

changes exactly once or it changes more than once. Multiple value

changes must not be used for the same reason that ruled out multiple

transitions during a cycle, the intermediate output values may not be |
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recognized. In the cases where the output value does not change or

changes exactly once, the entire sequence of unstable transitions can

be replaced by a single transition directly to the final stable entry

without affecting the external behavior of the component (the line

delay assumption (Assumption 1) makes 1t impossible to control the

order in which output values actually propagate to component inputs).

We conclude that the tables used to describe meaningful component

operation can always be put in a form which 1s cycle-free and which 1s

such that every unstable entry specifies a stable entry. That is,

they can be represented as flow tables.
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CONCLUSIONS

The flow table model has been shown to be valuable in the design

of a control algorithm for the two-process mutual exclusion problem.

From a flow table, sequential circuit implementations can be designed.

In a later paper, 1t will be shown that flow tables can be used for

the analysis and synthesis of sequential programs. As a result,

our model provides a common basis for the treatment of program and

circult implementations of control algorithms.

54



REFERENCES

[1] Adams, D. A. A computation model with data flow sequencing.
CS-117 (Thesis), Computer Science Department, Stanford University,

Stanford, California (Dec. 1968).

[2] Ashcroft, E. and Manna, Z. Formalization of properties of par-
allel programs. Memo No. AIM-110, Stanford Artificial Intelli-

gence Project, Stanford University, Stanford, California (Feb

1970).

[3] Clark, W. A. Macromodular computer systems. Proc. SJCC (1967),
335-336.

[4] Conway, M. E. A multi-processor svstem desien. Proc. FJCC
(1963).

[5] Dennis, J. B. and Van Horn, E. C. Programming semantics for
multi-programmed computations. Comm. ACM, 9 (March 1966),
143-155.

[6] Dijkstra, E. W. Solution of a problem in concurrent programming
control. Comm. ACM, 8 (Sept 1965), 5609.

[7] Dijkstra, E. W. Co-operating sequential processes. in Program-
ming Languages, Genuys, F. (Ed.), Academic Press, New York (1968).

[8] Dijkstra, E. W. The structure of the "THE" multiprogramming
system. Comm. ACM, 11 (May 1968), 341-346.

[9] Eichelberger, E. B. Hazard detection in combinational and
sequential switching circuits. IBM Research Journal (March 19635),
90-99.

[10] Eichelberger, E. B. Sequential circuit synthesis using hazards
and delays. Ph.D. Thesis. Department of Electrical Engineering,

Princeton University, Princeton, New Jersey (1963).

[11] Friedman, A. D. and Menon,P. R. Synthesis of asynchronous
sequential circuits with multiple-input changes. IEEE Trans.

on Computers, C-17 (June 1968), 559-566.

- [12] Goldberg, J. and Stone, H. S. Asynchronous propogation-limited

logic. IEEE Conference Record of the 7th Annual Symposium on
Switching and Automata Theory (1966), 215-226.

55



n

[13] Huffman, D. A. The synthesis of sequential switching circuits.
in Sequential Machines: Selected Papers, E. F. Moore (ed.),

Addison-Wesley Publishing Co., Inc. (1964), 3-62.

[14] IBM System 360 Principles of Operation. File No. 8360-01, Form
A22-6821-4, IBM corporation (1966).

[15] Karp, R. M. and Miller, R. E. Properties of a model for parallel
computations: determinacy, termination, queueing. SIAM J. Appl.

Math., 14 (Nov 1966), 1390-1411.

[16] Karp, R. M. and Miller, R. E. Parallel program schemata: a math-
ematical model for parallel computation. IEEE Conference Record

of the 8th Annual Symposium on Switching and Automata Theory

(Oct 1967), 55-61.

[17] Karp, R. M. and Miller, R. E. Parallel program schemata. J. of
Computer and System Sciences 3, 2 (May 1969), 147-195.

[18] Knuth, D. E. Additional comments on a problem in concurrent
programming control. Comm. ACM, 9 (May 1966), 321-322.

[19] Lampson, B. W. A scheduling philosophy for multiprocessing
systems. Comm. ACM, 11 (May 1968), 347-360.

[20] Luconi, F. L. Completely functional asynchronous computational
structures. IEEE Conference Record of the 8th Annual Symposium
on Switching and Automata Theory (Oct 1967), 62-70.

[21] Luconi, F. L. Asynchronous computational structures. MAC-TR-49
(Thesis), Massachusetts Institute of Technology, Cambridge,

Massachusetts (Feb 1968).

[22] ‘Luconi, F. L. Output functional computational structures. _IEEE
Conference Record of the 9th Annual Symposium on Switching and

Automata Theory (Oct 1968), 76-84.

[23] McCluskey, E. J. Introduction to the Theory of Switching Cir-
cuits. McGraw-Hill Book Co., New York, N. Y. (19695).

[23a] McCluskey, E.J. Fundamental mode and pulse mode sequential
circuits. Proc. IFIP Congress, Munich, Germany (1962), 725-730.

[24 ] Muller, D.E. and Bartky, W.S. A theory of asynchronous cir-
cuits. Proc. of an International Symposium on the Theory of

Switching, The Annals of the Computation Laboratory of Harvara univer-
sity, Vol. 29, Part 1, Harvard University Press (1959), 204-243.

56



[25] Rodriguez, J. E. A graph model for parallel computations. Ph.D.
Thesis, MIT, Department of Electrical Engineering, Cambridge,

Massachusetts (Sept 1967).

[26] saltzer, J. H. Traffic control in a multiplexed computer system.
MAC-TR-30 (Thesis), MIT, Cambridge, Massachusetts (July 1966).

[27] Slutz, D. R. The flow graph schemata model of parallel computa-
tion. MAC-TR-51 (Thesis), MIT, Cambridge, Massachusetts (Sept-

ember 1968).

[28] Unger, S. H. Hazards and delays in asynchronous sequential swit-
ching circuits. IRE Transactions on Circuit Theory, CT-6

(March 1959), 12-25.

57




