e e f.',".’)
}

THE USE .O'F D IRECT METHODS FOR THE SOLUTION OF THE
DISCRETE POISSON EQUATION ON NON-RECTANGULAR REGIONS

(oo

BY
J. ALAN GEORGE

STAN-CS-70-159
JUNE 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

THE USE OF DIRECT METHODS FOR THE SOLUTION OF THE
DISCRETE POISSON EQUATION ON NON-RECTANGULAR REGIONS*

by
J. Alan George

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

#*
* The title of this report was originally announced as:

"An Imbedding Approach to the Solution of Poisson's
Equation on an Arbitrary Bounded Region".

The preparation of this report was sponsored by the
Office of Naval Research under grant number NOO13-67-A-
0112-0029, the National Science Foundation under grant
number NSF GJ 408 and the Atomic Energy Commission under
grant number AT (04=3) 326,PA 30.

THE USE OF DIRECT METHODS FOR THE SOLUTION OF THE

DISCRETE POISSON EQUATION ON NON-RFXTANGULAR REGIONS*

J. Alan George

1. Introduction

In recent years several special direct methods have been developed
for solving the discrete Poisson equation on rectangular domains. These
methods take advantage of the regular block structure of the coefficient
matrix, and some of them require an amount of computation which is close
to being directly proportional to the number of grid points (equations)
in the discretized problem. Dorr [4] presents an excellent survey of
these methods. A considerable number of these algorithms suffer from
numerical instability and are not suitable for large problems. An analysis
of stability of several methods appears in [10].

In this paper we describe ways in which these direct methods can be
used to solve non-rectangular Poisson problems. We will not concern our-
selves with which of the direct methods is to be utilized; we merely observe
that a number of satisfactory ones are available. Notable among them are

Buneman's version of the method of odd/even reduction [1,2], and methods

based on Fourier analysis [7,8].

*
This work was supported in part by the Office 6f Naval Research under
grant NOOL13-67-A-00112-0029, the Atomic Energy Commission under grant

AT(04-3)326, PA30, and an IBM Graduate Fellowship.

The basic procedure is as follows. The domain R of the given problem
is enclosed in a rectangle over which a uniform mesh is placed. The usual
five-point Poisson difference operator is applied over the entire rectangle,
yielding a block tri-diagonal system of equations. The given problem, how-
ever, determines only those elements of the right-hand side which lie in R;
the remaining elements can be treated as parameters. Furthermore, the
"solution" of the enclosing rectangular "problem" which we have generated
will have certain constraints imposed upon it by the presence within the
rectangle of the boundary S of the given (or imbedded) problem. Dirichlet
boundary conditions will require the solution on the rectangle to have
specified values at grid points which lie on S; other types of boundary
conditions will require specific relations to hold between values at grid
points lying on and/or adjacent to S.

We now summarize our situation. We have a fast, efficient method for
solving a specific system of equations, and we cannot delete or modify
equations of the system because the method depends upon the structure of the
coefficient matrix. We generate a system of equations which has this ap-
propriate form, but for which some of the right-hand sides are unspecified,
where the solution must satisfy certain constraints. This paper describes

methods for solving this problem.

and

2. Notation and a Representative Problem

For definiteness, we consider the following problem:

(2.1) Au = f in R Q T S

u=g on SUT

We superimpose a uniform grid on the rectangle S, and for simplicity
we assume that T lies on grid points and on lines adjoining adjacent
grid points. Approximating the differential operator with the usual

five-point difference operator, and writing out an equation for every

grid point in S, we obtain an N x N system of equations
(2.2) Av = h,

where the vectors v and h are defined on the grid, and N is the total
number of grid points in the rectangle. For expository purposes only, we

write (2.2) in the following partitioned form:

A A2 VR g
(2.3) Aoy Boo Bo3) | Ve| = [Pr ’
| A2 A3l Yol %
where the vector partitions with subscripts Q, R, and T contain elements
corresponding to grid points lying in Q, R, and on T, respectively.
We will denote the number of elements in these partitions by MQ,Nh, and
NT. We emphasize that this reordering cannot be done in practice because

the special direct methods depend upon A having the regqgular block structure

3

which occurs only if the grid points are numbered row by row or column

by column.

It should be clear that if h_ and h are assigned values so that

T Q
the solution to (2.3) satisfies the boundary conditions (i.e., if Vip has
the correct values), then vR will be the correct discrete solution to our

given problem. In Section 3 a method is presented for finding the values

to be assigned to hT and hQ so that the above is achieved.

3. Direct Solution: Method 1

This method has been described by Hockney [7], and is closely connected
to the discrete Green's function [6]. Formally, we can invert the parti-

tioned matrix in (2.3) to obtain

YR\ Bi1 Bio Byg
(3.1) vo| = [Ba Bap By ol
"Q B By Byl (R

and solving for B22 hT , we have

(3.2) Byy By _ Vp - By by - 323 hQ.

Since B22 is non-singular (it is positive definite), we have set h. to

Q

zero. We have an efficient method for solving (3.1) (in a reordered form)

SO we can easily obtain B21 hR as Znp from the solution of the system

A1 App Zg bg
(3.3) Ay, By A23 Zq = 0
A32 A33 zQ 0

The vector hT is then obtained by solving

(3.4) By Bp = Vg —= Zp-

Thus, we need B22, which means that we need the NT corresponding columns
of the inverse of the coefficient matrix A. This method, therefore,

requires solving NT + 2 systems of the form (2.2), and the solution of

the NT linear equations (3.4). If we assume that the number of arithmetic

operations required to solve (2.2) is kN,- thenl/ the total number of
operations is about kNT (N + % Ng). Since Np will typically be o(YN),
the amount of work will be roughly proportional to NT.If we suppose S
is a square with g =N = 104 grid points in it, and that NT is 2n

(it could easily be this large for typical regions), then the number of
arithmetic operations required is O(N3). This is not likely to compare
favourably with solving for VR using SOR, especially when we consider how
little programming overhead there is for the SOR process. Note, however,
that the matrix %2 depends only on the-geometry of the problem. Thus,
if we wish to solve a time-dependent problem, one with a non-linear right-
hand side, or many problems with the same geometry, then this procedure may

very well be the best one to use. It will almost certainly be the best if

N, and N are small relative to NR.

T Q

l -
Y The factor k is actually a very slowly increasing function of N,

of the form £ log, VN, 14 a constant.

4, Direct Solution: Method II

An alternate approach which is more general than that of the method

of section 3 is the following: We replace equations A?lvR + A22VT +

A23VQ = hT in (2.3) with the equations OVR + IVT + OVQ = Vn by adding

a suitable correction to A. Obviously, theresulting solution v will have
the correct vR, regardless of the value of hQ. Defining F and G by

T

An1
T

'A22 + I 5]
T

-A23

(4.1) F = , G

O HO

and denoting the coefficient matrix of (2.3) by A, we can write the

equation
Ayp A O R By
(%.2) o I 0 vo | = |vp
0 Ay Ag A 0
as
(4.3) (A + FGT)v = h.

It can be shown [9] that
(L4.1) @ + Fe)™t = At ARz + ¢Tate)eTal

Thus, the procedure 1is
a) solve AW = G;
b) solve Ayl = h;
¢) compute Y, = GTyl and Y = T + WF;

d) solve Yy3 = Y3

e) solve Ay, = Fy3,

f) compute v = yp - ¥y

Note that this method is very flexible. It allows us to replace any
equation by another at the expense of one solution of (2.2).

The amount of computation and storage required is virtually the same
as for method I. However, since method II is somewhat more complicated,
method I seems preferable unless the increased generality provided by

method II 1is necessary.

5. Iterative Solution Based on Method I

We now turn to potentially more efficient ways to utilize direct
methods to solve non-rectangular Poisson problems. Our basic problem
is to find a solution to (3.4), and the major expense in the algorithm
results from the generation of B22. Hence, we would like to arrive at
an iterative scheme which generates an (approximate) solution hgk) with-

out actually requiring B First note that for an arbitrary vector

22"
h&k), (3.1) implies
(k) _ (k)
(5.1) Vp ' = Zp 4+ Bpp By
or
(k) _ (k) __ _ (k)
(5.2) By, by 0 =V o zp =W+
where
and
(k) _ (k)
(5.4) r = Vo = Vi
Here r(k) is the residual of the linear system (3.4) and is the difference

(k)

between the solution on T generated by hT and the required values V.

T

Our problem is equivalent to minimizing the quadratic function

1.7 - .T
(5.5) 5 hT B22 hT - hT W,

" where we do not know B22 but can compute the gradient of ¢. We are obviously
free to use any of the many iterative methods for solving a system of

linear equations or minimizing a quadratic function that is bounded from below.

However, because the residual (gradient) calculation is expensive

it is natural to use a relatively powerful function minimizer or linear
equation solver. For example, we could use the conjugate gradient method,
or one of the several variable metric algorithms which have been developed
[3,5]. In section 8 we compare sor to two of these iterative forms of
method I, making use of the conjugate gradient method in one and the
Davidon-Fletcher-Powell algorithm [5] in the other. We shall refer to

this class of methods as iterative imbedding algorithms.

10

6. Iterative Solution Based on Method II

Using equation (4.3) as a basis, we consider the following iterative

scheme-]i/ :

At oF A, Ay v}(?1s+1) b
(6.1) |8y Aot O Ay vgﬂl) - | e,
A3l A32 A33+ oL Vék+l) 0
ol 0 o | vék)
| Aar At (aB)I A, V;k) | , @ and B real
. . . o Vék) positive constants.

Denoting the coefficient matrix by Aa, and expressing the matrix on the

right-hand side of (6.1)by (FGT + o), where

T
0 A21
(6.2) F = I and G = T
0 Bop - BL
T
“23
we obtain the error equation immediately as
(k+1) (k)
eR eR
-1,_.T
JlEHl) | = A, (FG™ + ar) (k)
: e
T i T
(k+1) ()
Q Q

A&l{(FGT ; dI)A&l}k (FeT+ az)el©),

Y/

We assume that the fast direct methods applicable to solving Av = h

can also be used to solve (A + al)v=nh, a > 0.

11

Now the matrix in the braces is

oI 0 0 By By By
Ay Agpt (0-B)T Ayg By Bop Bpg
0 0 of By By Bag
“d
)
A
04
@B, QB o B,
= =B
-B B 271 (I -B B) -8 B 23 Qa,B .
Q B3l (04 B32 (04 B33

Hence, we have

(k#l) _ A&l 1& t3(FG + ar)el?),

The rate of convergence obviously depends critically on HBa ﬁ”’ and
)
there appears to be no easy way to determine optimal @& and B. For

o!= 0, it is easy to show that B should be set to 2/(A___+ A .) where

max min
kmax and Kmin are the largest and smallest eigenvalues of B22' BO,B then
has as its largest (in magnitude) eigenvalue p = (}‘max-)/()"max"' A),

and the iteration then converges. The problem is, of course, the difficulty
in determining estimates of }"max and)“min' Numerical experiments and

further analysis of #this method are currently being pursued.

r————,—

7. Error Bounds and Convergence Criteria

One of the most difficult problems in the application of an iterative
process 1is the determination of a safe and meaningful convergence criterion.
For a short and very good account of this problem with SOR see [8].

Briefly, the problem is as follows: Since we do not know the true (discrete)
solution, the error at each stage of the iteration must be estimated on the

basis of such measurable quantities as the size of the residuals or the size

of the last correction vector. Unfortunately, small residuals or small
changes 1in successive iterates do not guarantee correspondingly small errors
in the computed solution. For rather ordinary problems the error can be
several orders of magnitude larger.

The iterative imbedding algorithms seem particularly attractive with

regard to the above problem, as the following theorem demonstrates.

Theorem 1. Let v be the true discrete solution on the enclosing

rectangle, and let v* be the computed solution, where V% satisfies

the (Dirichlet) boundary condition to within some value €, i.e.,

(7.1) g vl < e
Then
(7.2) llvg- vEll < e

Proof: Let L be the discrete Laplacian operator. Then the following

equations are satisfied:
- . LV' =
(7.3) by,

R
(7.4) Lvk = hp.

13

Denoting the error in the computed solution by e, we have from (7.1),

(7.3), and (7.4) that

(7_5) LeR =0
and
(7.6) el < e

Since -L is an operator of "positive type," we can apply the well-known
maximum principle to conclude from (7.5) and (7.6) that HeRHw=HvR-v§H < e.
Thus, we can determine when to stop the iteration simply by examining
the largest element of leTl. Since it is difficult to imagine an iterative
scheme which would not make use of e, (it is the residual of (3.4)), the

T
cost of determining “e,I,Hoo should be negligible.

14

8. Numerical Experiments

We now present some numerical experiments for a problem of the type
(2.1), where 8 is covered with a square mesh having< m rows, n columns,
and mesh width h, and where Q 1is a Kh x fh rectangle. The "southwest"
corners of S and Q are at grid positions (0,0) and.(jl,je) respectively.

The implementation of the SOR algorithm provides for an initial ap-
proximate solution on a coarse grid (with mesh width 2h) which is then used
to furnish a starting solution on the fine net by using linear interpola-
tion. Thirty iterations were carried out on the coarse mesh to obtain the
initial solution, and these iterations and the time required for them are
not included in the tables below. An acceleration parameter w of 1.8
was used on the coarse mesh for the first 25 iterations, followed by 5
iterations with w = 1 to estimate the optimal w = w¥ for the coarse mesh.
The value w* + .55 (2-M) was found to be near optimal, for the fine mesh.

The number of iterations reported for the iterative imbedding methods
requires some:discussien. Obviously each iteration requires substantially
more work than an SOR iteration. The ratio will depend on the size of the
mesh since the computation required for the direct methods is not quite
directly proportional to' mn. Also, the relative sizes of N, and

R
NR + N, + N. will affect the ratio because the SOR iterations will (at

T Q
least ideally) only involve grid points in R. A factor of about 10 seems
reasonable for typical problems having fewer than 20,000 points.

The time required to compute the right-hand sides of the equations
is not included in the tables. All times are for execution of ALGOL W

programs on an IBM 360/67.

15

(2-100 y2) cos (10x)

Case I: f =
2
u=g=y cos (10x)
h =0.0125, m =149, n =127

('jl"j2) = (6)4')32): k =4=10

Case II: Same as Case I except (31332) = (20,40) and k = £ = 20.

Method Iterations Maximum Time
Error (Seconds)
SOR 70 4.7xlo'LL 42
Imbedding I 5 | 2x107* 24.0
Case I o bedding II 5 2x10 ™" 23.7
Direct A 2x107 9.6°
SOR 70 h.2x10" " 41
Imbedding T 6 2x107* 28.6
Case I Iibedding 11 6 2x107* 28.5
Direct N.A. ox10™" 9.6

Imbedding I - method of Section 5 using the Davidon-Fletcher-Powell
algorithm [5].

Imbedding II - method of Section 5 using the conjugate gradient algorithm.
Direct - method of Section 3.

The maximum errors for the direct method and the imbedding methods
are all the same because the error is due entirely to the truncation errar
of the difference operator. The error in the discrete solution for these

methods is below that level.

*
Does not include the time required (approximately 3 minutes and 6

minutes, respectively, for Cases I and II) to generate and decompose

B22 (see Section 3). L6

9. Remarks and Conclusions

The reported timesat first do not appear particularly impressive,
although the times required for the imbedding methods are substantially
less than for the SOR process. It is important to keep in mind, however,
that during the calculation using the methods of Section 5, we have precise
information concerning how close our computed solution is to the true
discrete solution. This is obviously highly important in a practical
situation where the solution to our problem is not known. As we mentioned
in Section 7, it is extremely difficult when applying SOR to ascertain
how close the computed solution is to the true discrete solution. (For
example, the maximum change for the last step of SOR in Case I above was
8.1x107°.)

As one might expect, the rate of convergence of the iterative imbed-
ding algorithms depends on NT. However, quite extensive experiments seem
to suggest that the number of iterations does not increase very rapidly with
NT,

also do not appear to greatly affect the rate of convergence.

and «NT iterations are usually sufficient.* Problems with singularities

When N, and N, are relatively large, and R can be subdivided

Q T
into a number of rectangular blocks (R might be H- or L-shaped, for
example), a direct method described in [2] may be more efficient than the
method described in Section 3. It is not obvious if or when its iterative
analog converges and, even if it does, no a posteriori bounds are available

because the "parameters" are grid values lying in R rather than on a

boundary.

17

We have not discussed the direct method used to solve our rectang-
ular problems. As we mentioned earlier, many of the methods discussed
by Dorr [4] suffer from numerical instability and are not suitable for
large problems. We have used a method due to Buneman [1] which appears
to be stable even for very large problems. For a qualitative discussion
explaining this stability, see [2]. Hockney's algorithm POT I [7] could
in theory reduce the times for the imbedding algorithms and the direct
method by a factor of two, although in practice program overhead would
reduce some of the advantage of the lower operation count.

. Note that no use has been made of the particular geometry of the
problem we have discussed other than it is enclosed by a rectangle. The
methods we have described are applicable to arbitrary domains, and their

efficiency will depend upon the subjective factors discussed at the end

of Section 3.

18

10. Acknowledgments

I am pleased to acknowledge the generous assistance of Professor
George E. Forsythe in the preparation of this report. Appreciation is
also extended to Dr. Fred W. Dorr and Professor Gene H. Golub for their
helpful suggestions and encouragement, and to Mr. M. A. Saunders for

providing and modifying his SOR program to run the numerical experiments.

19

(1]

(2]

(3]

[4]

[5]

(6]

(7]

REFERENCES

Buneman, 0., "A Compact Non-Iterative Poisson Solver," SUIPR Report
No. 294, Institute of Plasma Research, Stanford University, April 1969.

Buzbee, B. L., G. H. Golub, and C. W. Nielson, "On Direct Methods for
Solving Poisson's Equations," to appear in SIAM J. on Numer. Anal.

Davidon, W. C., "Variance Algorithm for Minimization," Comput. J.,
vol. 10, 1968, pp. 406-10. -

Dorr, F. W., "The Direct Solution of the Discrete Poisson Equation
on a Rectangle," SIAM Rev., Vol. 12, No.*-2, 1970, pp. 2u48-263.
Fletcher, R., and M. J. D. Powell, "A Rapidly Convergent Descent Method

for Minimization, Comput. J., Vol. 6,1963, pp. 163-68.

Forsythe, G. E., and W. R. Wasow, Finite Difference Methods for Partial
Differential Equations< John Wiley and Sons, Inc., 1960, pp. 314-18.

Hockney, R. W., "The Potential Calculation," Langley Working, Paper
No. 673, Langley Station, Hampton, Va., September 1968.

[8] Hockney, R. W. in Methods of Computational Physics (B. Adler, S. Fernbach,
and M. Rotenberg, eds.), Vol. 9, Academic Press, New York and London 1969.

[9] Householder, A. S., Principles of Numerical Analysis, McGraw-Hill, 1953,
pp. 79-83.

[10] Rosser, J. B., "The Direct Solution of Difference Analogs of Poisson's

Equation, " MRC Tech. Report No. 797, Mathematics Research Center,
University of Wisconsin, October 1967.

20

