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THE USE OF DIRECT METHODS FOR THE SOLUTION OF THE

DISCRETE POISSON EQUATION ON NON-REXTANGULAR REGIONS*

J. Alan George

1. Introduction

In recent years several special direct methods have been developed

for solving the discrete Poisson equation on rectangular domains. These

methods take advantage of the regular block structure of the coefficient

matrix, and some of them require an amount of computation which 1s close

to being directly proportional to the number of grid points (equations)

in the discretized problem. Dorr [4] presents an excellent survey of

these methods. A considerable number of these algorithms suffer from

numerical instability and are not suitable for large problems. An analysis

of stability of several methods appears in [10].

In this paper we describe ways 1n which these direct methods can be

used to solve non-rectangular Poisson problems. We will not concern our-

selves with which of the direct methods 1s to be utilized; we merely observe

that a number of satisfactory ones are available. Notable among them are

Buneman's version of the method of odd/even reduction [1,2], and methods

based on Fourier analysis [7,8].

* This work was supported 1n part by the Office 6f Naval Research under

grant NOO13-67-A-00112-0029, the Atomic Energy Commission under grant

AT(04-3)326, PA30, and an IBM Graduate Fellowship.



The basic procedure 1s as follows. The domain R of the given problem

1s enclosed in a rectangle over which a uniform mesh 1s placed. The usual

| five-point Poisson difference operator 1s applied over the entire rectangle,
yielding a block tri-diagonal system of equations. The given problem, how-

ever, determines only those elements of the right-hand side which lie in R;

the remaining elements can be treated as parameters. Furthermore, the

"solution" of the enclosing rectangular "problem" which we have generated

| will have certain constraints imposed upon it by the presence within the
;

rectangle of the boundary S of the given (or imbedded) problem. Dirichlet

boundary conditions will require the solution on the rectangle to have

| specified values at grid points which lie on S; other types of boundary

| conditions will require specific relations to hold between values at grid

| points lying on and/or adjacent to S.

We now summarize our situation. We have a fast, efficient method for

solving a specific system of equations, and we cannot delete or modify

equations of the system because the method depends upon the structure of the

coefficient matrix. We generate a system of equations which has this ap-

propriate form, but for which some of the right-hand sides are unspecified, and

where the solution must satisfy certain constraints. This paper describes

methods for solving this problem.
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2. Notation and a Representative Problem

For definiteness, we consider the following problem:

(2.1) Au = f in R o [ofr g
u=g on SUT | |

We superimpose a uniform grid on the rectangle S, and for simplicity

we assume that T lies on grid points and on lines adjoining adjacent

grid points. Approximating the differential operator with the usual

five-point difference operator, and writing out an equation for every

grid point in S, we obtain an N x N system of equations

(2.2) Av = h,

where the vectors v and h are defined on the grid, and N 1s the total

number of grid points in the rectangle. For expository purposes only, we

write (2.2) in the following partitioned form:

Ai Mo | VR Bp |
| (2.3) fo1 Pop Baz] | Vr = | Po , |

. Ay Agq va By | - oo

where the vector partitions with subscripts Q, R, and T contain elements

corresponding to grid points lying in Q, R, and on T, respectively.

We will denote the number of elements in these partitions by Ny» Ng) and

Nop We emphasize that this reordering cannot be done in practice because

the special direct methods depend upon A having the regular block structure
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which occurs only 1f the grid points are numbered row by row or column

by column.

Tt should be clear that if he, and ny are assigned values so that

the solution to (2.3) satisfies the boundary conditions (i.e., 1f Vi has

the correct values), then Ve will be the correct discrete solution to our

given problem. In Section 3 a method is presented for finding the values

to be assigned to hn, and ny so that the above 1s achieved.
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3. Direct Solution: Method 1

This method has been described by Hockney [ 7 ], and is closely connected

to the discrete Green's function [ 6]. Formally, we can invert the parti-

tioned matrix in (2.3) to obtain

Rl B11 Bia Bis fg

(3.1) vol = [Bar Ban Bog nl
\s B B BQ 31 "32 733 ® |

and solving for Bos Hn, , we have

(3.2) Byp Bp _ Vp = Byy Bp - Boy Bo»

Since Bos 1s non-singular (it 1s positive definite), we have set ha to
zero. We have an efficient method for solving (3.1) (in a reordered form)

SO we can easily obtain Bye hp as 2m from the solution of the system

An Ap ZR bg

(3.3) Ary As Ass | Zp = 0 .
A A Z 0)
32 33 Q

The vector Be, 1s then obtained by solving

(3.4) Bog Be = Vp == Zg-

Thus, we need Bios which means that we need the No. corresponding columns

of the inverse of the coefficient matrix A. This method, therefore,

requires solving Np + 2 systems of the form (2.2), and the solution of

the Nop linear equations (3.4). If we assume that the number of arithmetic
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operations required to solve (2.2) 1s kN,- thenl/ the total number of

operations 1s about kN, (N + 5 XG). Since Nop will typically be O(N),
the amount of work will be roughly proportional to Nope If we suppose S

1s a square with £ = N = 10° grid points in 1t, and that Np 1s 2n
(1t could easily be this large for typical regions), then the number of

arithmetic operations required 1s o(x3). This 1s not likely to compare

favourably with solving for Vg using SOR, especially when we consider how

little programming overhead there 1s for the SOR process. Note, however,

that the matrix By depends only on the—-geometry of the problem. Thus,

1f we wish to solve a time-dependent problem, one with a non-linear right-

hand side, or many problems with the same geometry, then this procedure may

very well be the best one to use. It will almost certainly be the best if

Nip and Ng are small relative to Ng.

L The factor k is actually a very slowly increasing function of |,
of the form 4 log, VN, 4 a constant.

0



4. Direct Solution: Method II

An alternate approach which 1s more general than that of the method

of section 3 is the following: We replace equations Ay Vg + Ayovo +

= | | | Ov =Ay3g he, in (2.3) with the equations R + Iv + a Vip by adding
a suitable correction to A. Obviously, theresulting solution v will have

the correct VR? regardless of the value of Bye Defining F and G by
T

| oN “Any

(4.1) F (5) » G = -AL, + I) ,O

AL
23

and denoting the coefficient matrix of (2.3) by A, we can write the

equation

fy Ap 0 Rr \ PR |

0 A A 0
32 733 al |

as | |

T
(4.3) (A + FG")v = h.

It can be shown [ 9 ] that

(4.4) (A + Fel) = a" ATIR(T + ata™tr)"teTat.

Thus, the procedure 1s

a) solve AW = G;

b) solve Ay, = h;

¢) compute Yo = G'y, and Y = I + Ww 'F;

d) solve vy, = Yi

|



e) solve Ay), = FY,

f) compute Vv = Yi - Vy, .

Note that this method is very flexible. It allows us to replace any

equation by another at the expense of one solution of (2.2).

The amount of computation and storage required 1s virtually the same

as for method I. However, since method II 1s somewhat more complicated,

method I seems preferable unless the increased generality provided by

method II 1s necessary.
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| 5. Iterative Solution Based on Method I

We now turn to potentially more efficient ways to utilize direct

methods to solve non-rectangular Poisson problems. Our basic problem

is to find a solution to (3.4), and the major expense in the algorithm

results from the generation of Bos Hence, we would like to arrive at
k

an iterative scheme which generates an (approximate) solution n ) with-
out actually requiring Bose First note that for an arbitrary vector

nl), (3.1) implies
| (k) _ (k)

(5.1) Vo | = Zo, By Bg

or

(x) _ (x) __ _ (k)
(5.2) Boo Bp © SV oo Zo = WHT

where

- (5.3) Wo= Vo o= 2
and

i (k) _ _(k)
(5.4) r = Vo l= Vo

| Here Lk) is the residual of the linear system (3.4) and is the difference

between the solution onT generated by AQ and the required values Vip
Our problem 1s equivalent to minimizing the quadratic function

1.7 - TT

| (5-5) 5 Bp Bop Bp = Bp Vs

" where we do not know Bos but can compute the gradient of ¢. We are obviously

: free to use any of the many iterative methods for solving a system of

linear equations or minimizing a quadratic function that 1s bounded from below.

9



However, because the residual (gradient) calculation 1s expensive

it 1s natural to use a relatively powerful function minimizer or linear

equation solver. For example, we could use the conjugate gradient method,

or one of the several variable metric algorithms which have been developed

[3,5]. In section 8 we compare sor to two of these iterative forms of

method I, making use of the conjugate gradient method in one and the

Davidon-Fletcher-Powell algorithm [5] in the other. We shall refer to

this class of methods as iterative imbedding algorithms.

10



0. Iterative Solution Based on Method II

Using equation (4.3) as a basis, we consider the following iterative

scheme? :

(k+1)
| Apt 4 App Ais VR Bp

(k+1)
(6.1) Ay A+ of Ans Vin = BV.

k+1)A A A
31 32 33t 4 ‘a :

0 (QL 0 | Vo
CL

* Bop Boot (a-p)I Bag Vp | , @ and B real
0 | 0 | of SE) | positive constants.

Q

Denoting the coefficient matrix by A and expressing the matrix on the

right-hand side of (6.1) by (FG! + ol), where
T

0 Boy
(6.2) F = I and G = T

0 Bop = BI
T

Ag

we obtain the error equation immediately as

(k+1) (k)
°R €n

-1,_.T

| (E41) | =A (FG” + oI) (kx)| al e
T i T

\ (k+l) (Kk)
. Q Q

-1 -

= A” {zc + oI)A as (F6T+ ox )el®).x

1/
We assume that the fast direct methods applicable to solving Av = h

can also be used to solve (A+ al)v=nh, a> 0.

oC 11



Now the matrix in the braces is

ol 0 0 B.4 B.s Bi

Arp Apt (0-B)T Ag Bop Bop Bos
0 0 ol B B B

31 "32 733

EE ——

At
0

0 B.1 a B., x B13
—1 - - - = BR

B By (I-B By) -B By, PB
a B a B a B

31 32 33

Hence, we have

(k+1) -1 _k T + (0)
e = A, By, p(FC + ol)e* ’.

The rate of convergence obviously depends critically on IB, all andy P

there appears to be no easy way to determine optimal & and B. For

o!= 0, it is easy to show that PB should be set to 2/(A___+ A. ) wheremax min

Max and Mpin are the largest and smallest eigenvalues of Boo Bo, then

has as its largest (in magnitude) eigenvalue pu = (Ney Moin) (Mpa Nyt)?
and the iteration then converges. The problem is, of course, the difficulty

in determining estimates of Max and As Numerical experiments and

further analysis of #this method are currently being pursued.
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oo 7. Error Bounds and Convergence Criteria

One of the most difficult problems in the application of an iterative

process 1s the determination of a safe and meaningful convergence criterion.

For a short and very good account of this problem with SOR see [8 ].

Briefly, the problem is as follows: Since we do not know the true (discrete)

solution, the error at each stage of the iteration must be estimated on the

basis of such measurable quantities as the size of the residuals or the size

| of the last correction vector. Unfortunately, small residuals or small

changes in successive iterates do not guarantee correspondingly small errors

in the computed solution.For rather ordinary problems the error can be

several orders of magnitude larger.

The iterative imbedding algorithms seem particularly attractive with

regard to the above problem, as the following theorem demonstrates.

Theorem 1. Let v be the true discrete solution on the enclosing

rectangle, and let v* be the computed solution, where Vj satisfies

the (Dirichlet) boundary condition to within some value €, 1.e.,

. - vi < €.(7-1) Ivo VE, <
Then

. - v¥li < €.(7.2) v= vill <

Proof: Let L be the discrete Laplacian operator. Then the following

equations are satisfied:

(7.3) vg = hp

(7.4) Lv = hp.

Co - 13



Denoting the error in the computed solution by e, we have from (7.1),

(7.3), and (7.4) that

(7-5) ley = 0
and

(7.6) lel,< e-

Since -L is an operator of "positive type," we can apply the well-known

maximum principle to conclude from (7.5) and (7.6) that legll =llve-v2 < e.
Thus, we can determine when to stop the iteration simply by examining

the largest element of lel - Since 1t 1s difficult to imagine an iterative

scheme which would not make use of ey (it is the residual of (3.4)), the

cost of determining lel, should be negligible.
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8. Numerical Experiments

We now present some numerical experiments for a problem of the type

(2.1), where 8 is covered with a square mesh having< m rows, n columns,

and mesh width h, and where Q 1s a Kh x fh rectangle. The "southwest"

corners of S and Q are at grid positions (0,0) and (J;,d,) respectively.
The implementation of the SOR algorithm provides for an initial ap-

proximate solution on a coarse grid (with mesh width 2h) which 1s then used

to furnish a starting solution on the fine net by using linear interpola-

tion. Thirty iterations were carried out on the coarse mesh to obtain the

initial solution, and these iterations and the time required for them are

not included in the tables below. An acceleration parameter w of 1.8

was used on the coarse mesh for the first 25 iterations, followed by 5

iterations with w = 1 to estimate the optimal w = w¥ for the coarse mesh.

The value w* + .55 (2-M) was found to be near optimal,for the fine mesh.

The number of iterations reported for the iterative imbedding methods

requires some discussion. Obviously each iteration requires substantially

more work than an SOR iteration. The ratio will depend on the size of the

mesh since the computation required for the direct methods 1s not quite

directly proportional to' mn. Also, the relative sizes of Np and

Np + Np + Ny will affect the ratio because the SOR iterations will (at

least ideally) only involve grid points in R. A factor of about 10 seems

reasonable for typical problems having fewer than 20,000 points.

The time required to compute the right-hand sides of the equations

is not included in the tables. All times are for execution of ALGOL W

programs on an IBM 360/67.

Co 15



Case I: f = (2-100 2) cos (10x)
2

u=g=y cos (10x)

h = 0.0125, m=49, n= 127

Case II: Same as Case I except (3545) = (20,40) and k = £ = 20.

Method Iterations Maximum Time

Error (Seconds)

SOR 70 1, 75107" 42
Imbedding I 5 | 2x10” 24.0

Case I —

Imbedding II 5 2x10 : 23.7
_ *

Direct N.A.' 2x10 : 9.6

SOR 70 h.2x10™ 41

Imbedding I 6 2x10" 28.6
C II i _
35€ 11 Imbedding 11 6 2x10” 28.5

Direct N.A. 2x10” 9.6" :

Imbedding I - method of Section 5 using the Davidon-Fletcher-Powell

algorithm [ 5 J.

Imbedding II - method of Section 5 using the conjugate gradient algorithm.

Direct - method of Section 3.

The maximum errors for the direct method and the 1imbedding methods

are all the same because the error 1s due entirely to the truncation errar

of the difference operator. The error in the discrete solution for these

methods 1s below that level.

* ] ] ] ] ]
Does not include the time required (approximately 3 minutes and ©

minutes, respectively, for Cases I and II) to generate and decompose

Bos (see Section 3). Le
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9. Remarks and Conclusions

The reported timesat first do not appear particularly impressive,

although the times required for the imbedding methods are substantially

less than for the SOR process. It 1s important to keep in mind, however,

that during the calculation using the methods of Section 5, we have precise

information concerning how close our computed solution 1s to the true

discrete solution. This 1s obviously highly important in a practical

situation where the solution to our problem is not known. As we mentioned

in Section 7, it is extremely difficult when applying SOR to ascertain

how close the computed solution 1s to the true discrete solution. (For

example, the maximum change for the last step of SOR 1n Case I above was

8.1x107°.)

As one might expect, the rate of convergence of the iterative imbed-

ding algorithms depends on Np However, quite extensive experiments seem

to suggest that the number of iterations does not increase very rapidly with

Nps and VN, iterations are usually sufficient.* Problems with singularities
also do not appear to greatly affect the rate of convergence.

When Ny and Nop are relatively large, and R can be subdivided

into a number of rectangular blocks (R might be H- or L-shaped, for

example), a direct method described in [ 2 ] may be more efficient than the

method described in Section 3. It is not obvious if or when its iterative

analog converges and, even 1f it does, no a posteriori bounds are available

because the "parameters" are grid values lying in R rather than on a

boundary.
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We have not discussed the direct method used to solve our rectang-

ular problems. As we mentioned earlier, many of the methods discussed

by Dorr [4] suffer from numerical instability and are not suitable for

large problems. We have used a method due to Buneman [1] which appears

to be stable even for very large problems. For a qualitative discussion

explaining this stability, see [2]. Hockney's algorithm POT I [7] could

in theory reduce the times for the imbedding algorithms and the direct

method by a factor of two, although in practice program overhead would

reduce some of the advantage of the lower operation count.

. Note that no use has been made of the particular geometry of the

problem we have discussed other than it 1s enclosed by a rectangle. The

methods we have described are applicable to arbitrary domains, and their

efficiency will depend upon the subjective factors discussed at the end

of Section 3.

18
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