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L 1.1

i 1. Introduction

| If A = (a; 5) 1s an m Xx n matrix, and B = o. | 1s an n x p matrix,
- then the matrix product C = A.B is the m x p matrix (ey) defined by
¢

n

> c., = a. ..b, (1.01)
ik ij Jk

: J=

L for 1<i<m 1<k<p.

L © Matrix multiplication and 1ts special cases occur very frequently

in numerical analysis. For example: the inner-product of two vectors

— (the case m = p = 1), matrix times vector multiplication (the case p = 1),

L back substitution when solving linear systems, iterative refinement (per-
haps with several right hand sides at once), the power method for eigen-

L values, in least squares problems, and many more. Hence, 1t 1s interesting
to investigate algorithms for matrix multiplication, and in particular to

- see 1n what circumstances 1t 1s possible to do better than the straight-

| forward implementation of the definition (1.01).
It 1s clear that advantage may often be taken of special properties

L of A, B or C, e.g. sparseness or symmetry, 1f such properties are known

i a priori. We shall only consider the general case where no such helpful
properties are known. For practical applications, we need only consider

(

( matrices over the rational, real and complex fields, although the definition

| above makes sense for matrices over any ring. The algorithms described will
= all be applicable to the problem of multiplication of matrices over an

i arbitrary commutative ring, and it will later be important that, for some
of the algorithms, the ring need not even be commutative.

4 ]
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2 If the algorithms are to be implemented on a digital computer,

| E then simply counting arithmetic operations can be rather misleading,
for loads, stores and address computations are also important. The

oT best test 1s to implement the algorithms and see how fast they actually

_ run, and even then the conclusion may depend on the programmer, compller

| and machine used. Also, from a practical point of view, storage re-

| ~ quirements and roundoff errors may be vitally important. Hence, after
describing several different algorithms in Sec. 2, I shall discuss

B their numerical properties in Sec. 3, and describe some experimental

| results in Sec. 4. In Sections 5 and 6 an attempt to find some new
—

| algorithms 1s described, and in Sec. 7 the results are summarized and— some conclusions drawn. The notation of the definition (1.01) will be

| used in Sees. 2 to 4.
Co



3 2. Known Results

2.1 The Normal Method

To evaluate the inner-product in the definition (1.01) takes n

multiplications and n - 1 additions. Hence, the m.p elements Cp CAD
be found in mnp multiplications and m(n - 1)p additions, and about the

same number of loads, stores and address computations.

] If we count only multiplications then this straightforward method

| 1s known to be optimal in some important special cases. Tf mq = p =1
| then we have the case of a vector inner-product, and a simple dimensionality

1 argument shows that, in general, n multiplications are necessary. If p = 1
then we have the case of matrix times vector multiplication, znd mn mul-

L tiplications are necessary in general (Winograd, see [1]). In the general
case, however, less than mnp multiplications are necessary: Stragsen's |,

- '

method shows this even when m = n = p = 2. Dimensionality arguments give

| the lower bound max (mn, np, pm), but usually this 1s too low, and the

best possible result is not known. For more details, gee Secs.5 and 6.

2.2 Winograd's Method

Winograd [7] has given a method based on the following identity:

2,|n/9 jn/2]
3

a. .b . = ] — . | + . ( =L - 1j Jk J=1 (ass: 1 bos (8500; ¥ Dos 1K

R/2] [0/2]
) 8s 5a 12; 5 - y Dy. b..
j=1 sedi 1,2] j=1 J-1,k 23,k

(2.21)

Here |x] means the greatest integer y < x, and analogously [x] means

the least integer y > x .
3



2.2

L
If n 1s even, the left side of (2.21) is just Ca? but if n is odd,

i the term a, 0 must be added to give Cite The point of Winograd's method
1s that the last two sums 1n (2.21) can be precomputed and, once this has

L been done, roughly half the usual number of multiplications are required
to compute each Cap using (2.21).

-

Supposing for simplicity that n 1s even, let us calculate the number

L of multiplications and additions involved 1n the computation of C by

Winograd's method. We shall never distinguish between additions and sub-

- tractions. To compute n/2 -
| 10 0 4, 05-1%,03 (2.22)Jj=1

| requires n/2 multiplications and (n/2 - 1) additions, and similarly for
n/o

| Yo = Lz Po3-1,%%23,k (2.25)

| Hence, to precompute X15 Xpy oo op Xo and Yio Yps eens vy, takes (m + p)n/2
multiplications and (m + p)(n/2 - 1) additions*

|
Given X, and Vis to compute Cap using (2.21) takes n/2 multiplications

i and (3n/2 + 1) additions. Thus the computation of the entire matrix pro-
duct C takes (mp + m + p)n/2 multiplications and (3mp + m + p)n/2 + mp - m - p

| additions. From Sec. 2.1, we have saved (mp - m - p)n/2 multiplications at
the expense of (mp + m + p)n/2 + 2mp - m - p additions, in comparison with

L the normal method.

L Since mp -m -p = (m -1)(p- 1) -1, there is no gain at a.ll if

i m=1 or p= 1, so the remarks above on the minimal number of multiplications
required for matrix times vector multiplication are not contradicted.

4



2.3

Supposing for simplicity that m = n = p > 1, Winograd's method saves

| (n - 2)n°/e multiplications, at the expense of (n° +6n - 4)n/2 additions.
| Hence, there is a. saving in the number of multiplications if n > 4 (recall

that we assumed that n was even, but it may easily be verified that there

is no saving for n = 1 or 3). If n is large then about 2 multiplications

have been traded for additions. If a multiplication takes w times as long

as an addition, we see that Winograd time _ w+3 + o(n"1) (2.24)
| Normal time 2( wl)

so the most we can expect is a gain of nearly 50% if w and n are large.

Since (2.24) neglects loads, stores etc. the gain will probably be rather

less than this. Typically we might have w = 2 (say real multiplication)

or w = 4 (say complex multiplication), giving savings of up to 17% and

30% respectively. In Sec. } we shall discuss how large n has to be for

any gain in practice, and the important question of roundoff error will

be discussed in Sec. 3.



2.4

2.3 Strassen's Method

L

| Suppose there is an algorithm for the multiplication of n, Xn,
- matrices, for a certain fixed n, > 1, taking M multiplications and A

| additions. Suppose further that this algorithm is applicable for ma-
f
~~

trices over an arbitrary ring. In particular, we are not allowed to

| assume the commutative law for multiplication, so, for example, Winograd's

| method 1s excluded.
-

Let v(k) and w(k) be the number of multiplications and additions,

i respectively, required to multiply ny X n’ matrices, for k =0, 1, 2 . . . .

| We have v(0) = 1, w(0) = 0, (2.31)
v(1l) <M, w(l) < A.

k+1 +[ Now consider ny xX ng 1 matrices partitioned into ne blocks, each
k k

| block an ny x ny matrix. Our matrices may be regarded as ny X n, matrices
- with elements in the (noncommutative) ring of nf X nf matrices, so our
i algorithm 1s applicable. Applying it will take M multiplications, and A

CL k k

additions, of Dg X on matrices.

L Hence vik + 1) < M.v(k)
ox (2.32)

| and w(k + 1) < M.w(k) + A. .— 0
\

| From (2.31) and (2.32) it follows by induction on k that
k

vik) <M

i - (2.33)
and wk) < —2— (MF - 1 )

i 0 2

for any k> 0 (provided that M # ny but M < ne is impossible for

L ny > 1 anyway).

| 6



2.5

Now, 1n order to multiply n x n matrices for any n > 1, just take

k = [log nl and embed the n x n matrices in nx n “matrices with the
0 nS WA

k

last ny - n rows and columns zero, and use the above method. From (2.33),
the number of arithmetic operations required 1s

on™) = o(n0 ) as nsw (2.34)

For example, the normal method with any ny > 1 has M = 0, log, M = 3,
0

A

giving O(n") operations, which is no surprise.

From (2.34%), square matrix multiplication can be done in 0(r)

operations, where B = log, M = (log M) /(1og n J . (It 1s interesting
0

to note that B 1s independent of A.) Clearly there is a constant

By = inf { B | (xP) operations suffice } . (2.35)

~ The normal method, and Winograd's method, both show that Bo <3, while

the results discussed in Sec. 2.1 show that By > 2. The actual value of

Bo 1s not known. While it might be considered "intuitively obvious" that

Bg = 3, this is false: as Strassen [5] has shown,

By < log, 7£= 2.8 . (2.36)

Strassen's 1dea 1s to give an algorithm for the multiplication of 2 x 2

matrices over an arbitrary ring, with the algorithm involving 7 multipli-

cations (instead of the usual 8) and 18 additions (instead of the usual 4).

Putting ny = 2, M = 7 and A = 18 in the above, his result follows.



2.6

Strassen's algorithm is based on the following identities:

b

on Ce) | [fm fre 11 Pio
“p1 “20 821 Zoo Pop Pop

then Clq = Gy - 13 - 9 + YL ’
‘12 = WT ho

Co = Ao * 13 ¢

. and Cop = Td TY + 95 + Ug

a, = (apy apply (2.37)
y a5 = agp(byy * by) |

_ +a, = apy(b, Fb),
| ai; = (egg 4 2g)(by, by) |
} = )(b.. , b,)IE ALFE PUR

and ar = (agg yp pp) (byy Bp)

Strassen in [5] gives no hint of how the identities (2.37) were

discovered, and they are certainly not immediately obvious. I shall give

a "graphical" method which makes the ideas clearer, and which enables

one to rediscover the identities (2.37) in a few minutes if they are not

at hand. We want the four sums of products

Ci = 8:90 F CEPA (1, k =1, 2).

This might be represented diagrammatically thus:

L. 0. REE 11 where we want the four
[Pv ERE 12 sums of products which
bq 21 aly | correspond to similarly
bis 29 nl labelled squares.

41 %11 foo fio



2.7

_ A product (ayy + a; 1) (by + by) might be represented as:

| by (the signs of the
To Db terms are not

ee represented in the
| diagram)
3 by g

£15
n a a a21 11 22 12

Now consider the representations of the seven products gl, . . . %
of (2.37). For example,

NEES NEN
_ 4 -» and q

—CT Cl

It is immediately obvious from the diagrams that we can combine 9 and q,

linearly to give terms 1nvolving the products 811007 8150509 and 811000

It 1s conceivable that for a suitable combination the 811055 term will

drop out and leave Cin If the reader now draws the representations of

ar pr «2 Oy and sees how they combine according to (2.37) to give
Cy12 «» «2 Cops he will see that one could reconstruct the identities

(2.37) from the easily remembered graphical representations, apart from

ambiguities in sign. A little thought and juggling of signs will then give

a set of 1dentities equivalent to Strassen's (there may be a trivial

_ permutation of the suffices). |

It 1s interesting to experiment with other graphical representations

and convince oneself that it 1s impossible to multiply 2 x 2 matrices in

less than seven multiplications. Winograd [8] claims to have proved this.

9



2.8

i
In Sec. 4 we shall discuss how to implement Strassen's method for

L rectangular matrices, and how to avoid any wasteful "bordering" with

zeros. The question of roundoff errors will be discussed in Sec. 3.

L

{

|
L

{

g

| | 10
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5.1

3. Error Analysis

The most important case 1n practice 1s that of real matrices and

limited-precision floating-point computation. I shall use Wilkinson's

notation [6], and assume all arithmetic operations are done in t-digit
*

rounded binary arithmetic , except that some operations may be especially

noted to be done in double-precision (2t-digit). Wilkinson's assumptions

concerning the method of rounding or truncating will be made. Some of

these assumptions, e.g. binary arithmetic, do not hold for the IBM 360,

and this will be discussed later. For simplicity, all matrices will be

assumed to be square (n x nj.

] It will be convenient to use the norm

| 1<i, j<n

(note that [jxy[, < ll, «Il, 1s generally false). This norm will usually
be written just as 11%] . The results obtained may be expressed in terms of

| more usual matrix norms by using the attainable bounds
L

| 1X S il, < ne flxl, (3.02)

where gq stands for 1, 2, » , or E.

| |

Wilkinson [6] defines numbers 2) and ts which are slightly less than t.
CL -t

Wherever ty or t, appear there is the implicit assumption that n.2 < 0.1,

which 1s no restriction 1n practical cases.

*¥ The analysis 1s similar with any base B > 2, and in most cases the same
_ 1 _

bounds will hold with 2 t replaced by 281 t . For a discussion of Wino-
_ grad's method, and some further applications of (2.21), with base B > 2,

see [12] .

| 11
-



3.1 The Normal Method

Wilkinson [6] shows that if

Cc = fl(A.B) = A.B + E (3.11)
-t,

then lel;< (27) o n* llallg lB; (3.12)

He notes that if |B]. << all 113]; then the relative

error in C may be high. On the other hand, if the inner-products are

accumulated in double-precision,

-t 3n -2t,
then Ely <2 dabg +52 "lal liBllg (3.12) |
and hence the relative error in C will be low unless there 1s so much

) cancellation that all Bll; § ot |
| n

hak

To get a bound in terms of the norm I {ly consider a typical term
in the product C. Such a term will be an inner-product

n Il

fil x;;) = JESS + e say.
If the sum 1s accumulated in the natural order, we have

-t5
le] < 2 (nex | {yy + n. jx, |. |v] + (n-1) «x, | - |v]

toes 20x [ly Ds (3.14)
-t 2

SO |e] < 2 1 {n+ 2n-2) max|x. |.max|y, | (3.15)

As the X. are elements of A, the Vs elements of B, (3.15) and the
definition (3.01) give ~t P

1 (n + - 2

ll, <2 % 23m-2) pay gel (5.16)
} (3.12) and (3.16) are of the same form

“ty
Ell <2 =. £(n) [lal |B] , (3.17)

and a bound of this form, with some reasonable f(n), 1s the best we can

expect for any single-precision method.

12



3
3.3

For double-precision accumulation of inner-products, the bound

corresponding to (3.13) 1s

-2t
: -t 3 2 2

If <2" llaBlly +g. (0® + 30 -2).2 © |lall. Bll, (3.18)

Again, unless there 1s exceptional cancellation, the relative error in

C will be low.

3.2 Winograd's Method

First consider a simple inner-product

p=1fly - (E+1)) >» |
n/2

here = + . , T .whe y = f1( (x55 1 Yp3) (Xp; Ypi.1)) ’
uo

0/5 (3.21)

E = £1( X,s 1%p3) ’

and = f1( ; ) odn= Yo3925-17 2

computed by Winograd's method (n even).

A simple example illustrates what can happen when limited-precision

arithmetic 1s used. Suppose we are using G-decimal floating arithmetic, n = 2,

— = . O iE = = '- .x, =X, 1.000"+3, Yq Yo 1.000'-3

Then £ = 1.000'+6

and Nn = 1.000'-6 (both exactly correct),

but 7 = 1.000'+6 (instead of the exact
1.000002000001+6),

3g SO p = 0.000 instead of 2.000 . The difficulty is in

forming 1x55 + Yas) etc. when the elements of x may differ widely in
magnitude from the elements of y . This conclusion will also follow from

the rigorous error analysis below.

13
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5.h

Let a = max |x, | and b = max|y, | , (3.22)

. n/2
and let = X.. Xx... te etc.

| 5 & 2J-1 2] g
) From (3.15) with n replaced by n/2 we get

-t
2 , 2

eel <2 La%.(n" + 6n -8)/8,
(3.23)

and similarly -t, 5 5
|&q <2 ~.5.n" + 6n-8)/8.

If fli(x+y) = x+y +e, (xan x,y any y)
~t .

then | ey] <2 (|x| + yD
-t

. <2 .(atb) . (3.24)

| Thus FL((x+y) (x'+y")) = (1 + ed(x + v + €)(x + yv' + €)) (3.25)

= x1 +y)(x' 4 y') +e, say,

where le < - and |e | |e | < > Ya + Db)!: of = IRL

By expanding (3.25) 1t follows that

. “ts 5
| Je | <2 “.3.a +b) , (3.26)

~ where tz 1s defined by
ts -t -2t -5%

2 = 2 + 2 + 2 ,

(so in practice tq ~t),

. -t, ,
Hence le] <2 “.(3n/2).(a + b)” +

-t _t
C 2

2 1. ((n° + 2n - 8)/8) (a+b) (143.2 2) |

_ In all practical cases

-t ll? -tl1,, 2 5
(3n/2 + 3.2 “((n° + 2n -8)/8)).2 ° <(3n/2) eo 2 1,

and with this assumption we get

<2 L((n% + hn - 8)/8).(a + D)°le] < An n - .{ a . (3.27)

14



From (3.23) and (3.27), the error € in p is bounded by

5 -t
3 2 2 2 2 2

ue le] < 2 1 (© + ln - 8)/8)(a + b)” + ((n” + 6n - 8)/8)(a” + Db")
+ lr-g-1n] + [gl + nl (3.28)

| (terms of order yt have been neglected, but they may be dealt with as

: above (see [12])).
= -t n 2 n.2

| Now |y - € - M| < nab + 0(2 7) , lg] < 5 a °F eel, In| < 5p + eq]
2

2B and a” + pe < (a+b),
4, 2

] + - 8 2

so Jel ce TAFEID (a +b)” (3.29)

By considering (3.29) with n replaced by n - 1 and a term added for

FE the error in computing and adding xy, it may be shown that (3.29)
: | holds whether n 1s even or odd, and bounds the error in computing an

| inner-product by Winograd's method. From (3.29) we obtain the bound

E-
CT 1 1 n+ 12n - 8 2

| [el <2 *. =——F=—— - (lial + lial) (3.210)

for matrix multiplication by Winograd's method. (A slightly stronger

| result than (3.29) can be obtained if a = b, see [12].)

Suppose |All / ||Bll = k. (Assuming k #0 or =)

Then

Call+ IBD =. (= 2 2/%) Yall. |B],

which shows thot (3.210) will be much worse than (3.16)
[

| when k 1s very small or very large, and this 1s verified
by the example above.

Scaling

| RB Ignoring the cases 1A] = 0 and |B = 0, 1t 1s always possible to
oo 2M (a

B find an integer A such that 1/2 SF 15] < 2. Hence a practical



scheme would be to compute all and ||B|| (in O(n”) operations), find A ,
and then apply Winograd's method to Aa and o"Ag rather than to A

and B. If this is done, then since

max (k+ 2 + 1/k) =9/2,
1/2<k<2

we get, in place of (3.210), the bound

tig 2
- [El< 2 “.%.(n" + 12n - 8) .|la]| [8] , (3.211)
[

which is of the form (3.17) and is not much worse than (3.16).

This shows that Winograd's method 1s feasible provided some form of

q scaling 1s used to make ||A|| ~ |B] . Without scaling, the results may
easily lose all significance. This does not seem to have been mentioned

by anyone recommending the use of Winograd's method: e.g. blindly fol-

lowing the procedure recommended in [2] could lead to disaster.

A more sophisticated form of scaling could be used, but it is im-

” portant to keep the time for scaling to a minimum, or Winograd's method

| becomes slower than the normal method. The extra time taken by scaling
will be considered in Sec. kL.

If it 1s easy to accumulate inner-products in double-precision then

this may as well be done. The error bound will still be like (3.211)

though, unless the terms a. _.. + i ) .i. i,25-1 T Peg,x 89 85,05 TPoy1, i OF (2.21)

are computed in double-precision. Then we get a bound

-t -2t
2elle idl +2 2O pein. g 0 pl, (3.212)

provided that the terms Xs and y, of (2.22), (2.23) are kept in

double-precision, and assuming scaling as above. (3,212) is very similar

to (3.18) and the same remarks apply.

16



3 5.5 Strassen's Method

| -t
Assuming a bound Ell <2 2(n).[la] o |B (3.31)

for n x n matrices, it is possible to deduce a similar expression for

2n x 2n matrices, if the multiplication of these matrices is reduced to

the multiplication and addition of n x n matrices using Strassen's

identities (2.37). This gives f(2n) in terms of f(n), and as (3.31)

is certainly true when n = 1 (with f(1) = 1), we can find f(n) for n

an integral power of 2. If the "bordering" method is used for general

n then the zeros will have no effect on the error, so the bound for the

i next power of two may be used.

| To express f(2n) in terms of f{n), let A, B, and C be 2n x 2n
matrices (deviating slightly from our usual notation), and regard A, B,

and C as 2 x 2 matrices with n x n blocks. (Consider forming C =

f1(A.B) using the identities (2.37). Terms of order gt will be

| ignored, for although they may be dealt with by replacing t by t'art

as we replaced t by ts t, and ts in Sec. 3.2, this complicates the
” argument, and the results are not significantly different. por brevity

let a = pf, © =|], - (3.32)

The error in computing q; of (2.37) will be denoted by Bis so for
example £1( (ay) = 8)p)bo)) = (ay; ~2p)byp + BE | (where apy, a,
bos and Ea are n x n matrices). Similarly, the error in computing
c.. of (2.37) will be denoted by E... Thus
i] 1J

E.,  E

C = f1(A.B) = A.B + E, where E = ER
21 22

17



= 3.08

Since a4 = f1((a 4 - a5) b,,) , where the n x n matrix

L multiplication is done by Strassen's method with the error bound (3.31),

and the matrix addition 1s done in the usual way, we have

-t

oat < 27 (a + £00) YC flagyl + lay JID. lio,
-t

so [Bll < 27 .2abi(n + £()) , (3.33)

and similarly for E 40? E 3° and 2 | For i = 5, 6 and 7

we get the bound

~ IE; < 27% hab.(en+ £(n)) (3.34)
C in the same way.

] Now it follows from (2.37), neglecting terms in ) 7% that
-t

Boll < [El + Ell + 27° Cllay| + Hla, (3.35)

\. but .2nab for i = 1, 2, 5,

la;ll < ( } 6+ bnab for i =5, 6, 7 ,

so from (3.33), (3.35) and (3.36) we obtain
\

IE,ll < 27" kab.(2n + £(n)), (3.37)
C and clearly the same bound holds for E,;- Similarly we have

leg < Tell + Tell + Egg + [El +
-t

277 (3llayll + 3llagll + 2llagll + lasl) (5.38)

(assuming 45 930 95 and gq, are added in this order),

L so |[B qf] < 27% ab.(kn + 12£(n)) , (3.39)
and similarly for Eo

L

From (3.37) and (3.39) we see that

_ -t ,

LC I|IEl| < 277. (4kn + 12f(n)) ial -1iBl (3.310)

so (3.31) will hold if f satisfies f(1) = 1 and f(2n) =44n + 12f(n) .

(3.311)

1R
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By induction on k, it follows from (3.311) that

- k 1 k
£27) = =(27.12% - 22.27) , (3.312)

- k
Jo £( 2) < 210° = 21 (py toeyt? 3 0 313)

, p p

. Hence, for general n, taking k such that n < of <?2n ,
-t

we have [Ell< 27 .65n°". ja]. |B]
: (3.314)
> where Cc = log, 12 ~ 3.58

- (3.314) gives a bound for the error in matrix multiplication by

| Strassen's method, as described in Sec. 2.3. The bound 1s of the form
= 3.58

(3.17), although the function Sin increases rather more rapidly

than we would like. On the other hand, all the error estimates obtained

| here are rather pessimistic, for the individual rounding errors are un-
!

{ likely to be correlated in the worst possible way. If our bound 1s

-t | -

2" "f(n) ||a|].||B]] then the actual error is probably about 2 t J£(n) {all |B]
C

(see Sec. 4.6).

- The analysis above assumes that a "pure" form of Strassen's method

is used. In practice it turns out that Strassen's identities will be

applied until the matrices to be multiplied are of order ~ 100 or less,

and then the normal method will be-used (see Sec. 4.3). Supposing we

have matrices of order 2 Tos and apply Strassen's 1dentities k times,

“ multiplying the matrices of order n, by the normal method. Then (3.311)

| holds with
. 2

(ng) = (ng + 3n, - 2) /° (from 3.16) ,
{

j so, assuming n, > 6 , we havew

k k

| £(2"n,) <16 ne (3.315)
C Thus, for n x n matrices, the bound becomes [E||< AT [P13] (3.316)
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Since k will be very small in practice, the bound (3.316) is not

N too bad. Comparing it with (3.16), it appears that we may lose up to

two bits of accuracy, compared to that of the normal method, each time

Strassen's 1dentities are applied recursively.

In using Strassen's method there does not seem to be much point in

doing some of the arithmetic in double-precision, unless 1t can all be done

- in double-precision, when the above bounds hold with t replaced by 2t

(and a factor of 3/2 with Wilkinson's assumptions about the method of

rounding or truncating).

~ It 1s interesting to note that with Strassen's method there 1s no

| point in scaling the matrices so that lallv|Bl- This 1s because, unlike
| Winograd's identity, Strassen's identities never involve the addition of

an element of A to an element of B.

3.4 Complex Arithmetic

The above analysis is based on the assumptions that fl(x+ y) =

x(1 + €;) + y(1 + €,) and fl(xy) = xy(1 + e;) where |e,| <2",
. 1 =1, 2, 3", These assumptions will be valid for complex arithmetic too,

provided that t 1s decreased by a small amount (2 or 3) depending on how

.. the arithmetic 1s done. Hence, with this small change in t, the above

bounds will hold for complex matrix multiplication. Similar remarks

apply to real arithmetic done on a decimal or hexadecimal machine (e.g.

| the IBM 360). A curious anomaly which appeared when Winograd's method
was being tested on an IBM 360/67 computer is described in Sec. 4.6.

*¥ A stronger assumption about addition, used in Section 3.2, was not

| : - really necessary (see [12]).
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- L. Implementation

~ In order to compare the normal, Winograd's and Strassen's methods

in practice, they were all implemented in ALGOLW [10] on an IBM 360/67

computer. Doubtless all three methods would run faster 1f coded 1in,

say, FORTRAN-H or assembly language, but their relative speeds would

probably be about the same. While it would be easy enough to code

the normal method and Winograd's method in FORTRAN or assembly language,

for Strassen's method it 1s very convenient to have a language which

allows recursive procedure calls. The simplest way to code Strassen's

C method in a language like FORTRAN would be to limit the depth of re-

cursion and duplicate any subroutines which would naturally be called

L recursively. The three methods were tested on both real and complex

matrices, with results which will be summarized below.

All three methods were coded in the form of a pure procedure,

with calling sequence

name (A, B, C, M, N, P)

to form C := A.B, where A 1s an M x N matrix (dimensioned (1 :: MV,

1 :: N)), B is N xP, and C is Mx P. Calls such as name (A, A,

A, N, N, N) are valid, and correct results should be returned for any

M, N and P > 1, provided enough temporary storage 1s available.

At first the procedures were coded so that the"inner loops"involved

references to doubly-subscripted array elements. In ALGOLW such re-

i ferences take considerably longer than references to singly-subscripted
array elements [ll], and it was found that all the procedures could be

speededup by passing cross-sections of two-dimensional arrays as para-

- - meters to procedures which then operated on them as one-dimensional

| 21
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Ihe arrays. (This 1s not allowed in ALGOL-60.) For example, instead of:
| For I := 1 until M do
-

for J := 1 until N do A(I,J) := B(I,J);

_ we use:

For IT := 1 until M do assign (A(I,*),B(I,*),N);

- where we have defined

Procedure assign (real array A, B(*); integer value N);

” for J := 1 until N do A (J) := B(J);

. The second form will execute faster provided N > 10 . As this device

speeded up the normal method rather more than Strassen's method, it is

-. clear that a comparison of the three methods depends on the language

and the programming techniques used to implement them.

w

The implemention of each method will now be described in more detail.

~ The procedure for the real and complex cases are very similar, and list-

ings for the real case are given 1n the Appendix.

4.1 The Normal Method

w

(Procedure MATMULT, see Appendix, lines 288-311.) There are no

hb particular difficulties in the implementation of this method. Because

of the possibility that C 1s the same as A or B in the call, the product

} 1s formed in a temporary array Q and then transferred to C. Thus M.P

_ words of temporary storage are used. Inner-products are accumulated in

| double-precision, for in ALGOLW this is very nearly as fast as accumu-

L lation in single-precision. Hence the error bounds (3.13) and (3.18)

are applicable (with the alteration noted in Sec. 3.4), and in most cases each

- Cs will be the correctly rounded result, although this can not be guaranteed.
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TT 4.2 Winoarad's Method

: - (Procedure WINOGRAD, see Appendix, lines 219-285.) Again the

implementation 1s fairly straight-forward. The matrices A and B

RB are scaled as described in Sec. 3.2, and the scaled matrices are

| . stored temporarily in arrays D and E. Strictly speaking, scaling
| should be done to the nearest power of 16 rather than 2, for scaling

Co - by powers of 2 could introduce roundoff errors on the 360, and these

3 errors have not been taken into account in the error analysis (Sec. 3.2).

| ) Taking account of these errors gives the error bound

: El <2 ted IAI 113], (4.21)
where K is a small constant, instead of(3.211). In the complex case,

| |R(x)| + |I(x)| rather then |x| was used to save time. This increases
|

) the error bound by a factor of at most 1.15 .

|
. The inner-products Xs and Vie of (2.22), (2.23) are computed and

| stored in the arrays X and Y. As stated above, it 1s not significantly

: . harder to compute and save the X, and Vie in double-precision, so this
| is done.

In all, (n + 2)(m+ p) words of temporary storage are used, which

1s about twice as much as for the normal method if m = n = p. The sums

(85 p51 thos x) and (3; 0; + Bosal, x) of (2.21) are computed in
single-precision, and then the inner-product involving them 1s computed,

as usual, in double-precision. If n is odd then the necessary correction

is made, and the final result f1(C) is formed. It is interesting to note

that if the sums @; 03-1 + bos, x) and (a5 po; thoy gy) were com-
puted in double-precision, we would be using double-precision throughout,
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and the bound (3.212) would apply. Unfortunately,the extra time taken to

3 do this slows the procedure down so that 1t is never faster than the
normal method, so the sums could only be computed in single-precision,

C and the best error bound we can get is of the form of (4.21).

. 4.3 Strassen's Method

a (Procedure STRASSEN, see Appendix, lines 6-216.) The method im-
plemented 1s the following: First, if m, n and p are sufficiently small,

— normal matrix multiplication 1s used (see below for the precise criterion).

| Otherwise, m is replaced by 2m/2, n by 2in/2, and p by 2[p/9 .
: A is partitioned into four m/2 by n/2 matrices and B into four n/2 by

i p/2 matrices, ignoring the last row and/or column if necessary. Ther

block 2 by 2 matrices are multiplied using Strassen's identities (2.37),

3 which involves seven recursive calls to STRASSENto compute the m/2 by

p/2 products Gps +. % (actually C is used in place of Q7 to save
~ storage). Finally, the result is corrected if the original m, n or p

| were odd. This avoids wasting space and time by filling up the arrays
with zeros as described in Sec. 2.3 . In case C coincides with A or B,

. some values needed for the correction step have been saved in arrays Sl

and S2.

C

Actually implementing the identities (2.37) is tedious but straight-

L forward. The fast, general-purpose procedure OP 1s used to take advantage

of-the facility, noted above, for passing cross-sections of arrays as

- parameters to procedures. In forming c,4 and Crs the terms 9 cee Gy
A are added before Is cas Grp for otherwise the error bound would be in-

creased slightly. All arithmetic 1s done 1n single-precision except

- oly

1
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-

for the accumulation of inner-products when normal matrix multiplication

- is used, so the error bound (3.316) is applicable. Because of the double-

precision accumulation of inner-products, the term 45% in this bound may

— be replaced by 5.12%,

- Procedure IDENTITIES uses the temporary arrays T, U, Ql, 02, .*a , Q,

taking (mn + np + 6pm)/% words. Since the procedure is called recursively,

= at any one time we may need < (mn + np + bom) (471 + 47° + y~ + 0.)

= (mn + np + 6pm)/3 words of temporary storage. (L.31)
—

The arrays S1 and S2, and the stack space required for recursive proce-

- dure calls, will be negligible if m, n and p are reasonably large. The

space for the array Q, used when normal matrix multiplication 1s invoked,

~ may be absorbed into (4.31). Hence the temporary storage used 1s rough-

ly bounded by (4.31), and if m = n = p this is Bn” /3 words, or slightly
-

more than that required by Winograd's method and 8/3 times that required

by the normal method. For all three methods, the temporary storage re-

quirements can be reduced if C is not allowed to overlap A or B.

4.4 Comparison of the Three Methods

The three procedures described above were run under the same con-

C ditions (idle with "nocheck" option) for various test matrices A and B.

Some running times for the case of square matrices are given 1n Table 1.

~ In each case the depth of recursion in procedure STRASSEN was kept at

| exactly one.
-

-
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Table 1 Running Times (in 1/60 sec.)

ms=n=~7,p Real case Complex case

; Normal Winograd Strassen Normal Winograd Strassen*

| 20 28 34 42 53 53 66

| 30 83 88 107 167 150 187

| 40 18 184 221 38k 330 hol
| 50 347 336 392 731 615 Tho

60 584 557 636

| *Strassen's method with exactly one recursion. Run times varied
| slightly, but were constant to +1%.

! By counting operations it 1s clear that the running time of each

| method should be a cubic in n, and for Strassen's method the coefficients

will depend on the depth of recursion. It turns out that the constant

term is negligible, and the times in Table 1 are given to + 1% by cubics

T(n) = an” + bn° + cn with the following coefficients:

Table 2 Cubic Coefficients, T = an” + n° + cn, 1n py sec.

| a b C

Normal ko 270 2000

a Real Winograd 57 200 9500
Strassen 36 650 8000

|
1 Normal 90 320 2000

Complex Winograd IF. 220 11500

Strassen* 80 790 8000

26
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Some interesting conclusions may be drawn from Tables 1 and 2.

LC Comparing the normal method with Winograd's method, we see that

Winograd's will be faster if 37° + 2000" + 9500 < hon” + 2700" + 2000,

i.e. if n > Lo in the real case,and if 730° + oon” + 11500 < 90n° +

500n° + 2000, 1.e. 1f n > 21 in the complex case, which may be verified

by inspection of Table 1. As n + « , Winograd's method will run 1in

37/40 = 92% of the normal time in the real case, and in 73/90 = 81%

of the normal time in the complex case. The gains are significant

for reasonably small n: e.g. for n= 100 Winograd's method will save

7% (real) or 18% (complex). Hence, for moderately large matrices,

s Winograd's method leads to significant, though not spectacular, savings,

g and 1s worthwhile especially in the complex case.

It 1s worth noting here that it does not pay to reduce the multi-

plication of two complex n by n matrices to three multiplications of

real n by n matrices (plus some additions) by using (A + Bi) (C + Di) = (4.41)
(E - F)+ (G@ - E - F)i, where E = AC, F = BD, and G = (A + B)(C + D) ,

for complex matrix multiplication takes less than three times as long

as real matrix multiplication (using any of the three methods).

It follows from Table 2 that Strassen's method will be faster

than the normal method if n > 110 in the real case, and if n > 60 in

the complex case. Hence procedure STRASSEN should check to see 1if

n < ng (with n, set at 110 or 60), and if so use the normal method.

If n> mn, then Strassen's identities should be used to reduce n to n/2,
and the same test applied recursively. This 1s what the procedure ac-

tually does, except that Dy 1s not compared just with n, but also with m

and p in case the matrices are rectangular. It can be seen by counting

operations that the appropriate test is if 3mnp < ny (mn + np + pm) rather

2f
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than 1f n < ny The times given 1n Table 1 were obtained with n, reduced

i so that Strassen's identities would be used exactly once.

i By counting operations, it can easily be seen that the time Io(n)
for multiplication of n by n matrices using Strassen's method should be

given by

= an” + bn® + en +d 1f n < n,
| Tq(n) B 7T4(n/2) + a'n° + b'n + c' 1f n > 3 (h.42)
-

From (4.42) it follows that, if
[

L k= max(0, |Log (n/n) + 1),
then

k k k .

C _ Jd 5 ! bor 71 =
To(n) = (5) an” + ((f) b + =(() - 1)a')n

k k
2 :| (DD e+ AD - vem (4.43)2 52

k 1, k

+ (77a + 2(7° - De’)
L

The constants a, b, c¢ and d should be those given for the normal method

- in Table 2 (d is negligible). The constants a', b' and c¢' determined to fit

| the data in Table 1 are:
“

Table 3 Constants in (4.42) (uw sec.)

. Real case a' = 190 b' = 4000 c' = 120000

i Complex case 220 4000 120000
-

The constants in Tables 2 and 3 are not very well determined by the
!
-

data (especially c and c'), and are not exactly consistent. For example,

L from (4.42) and (4.43) we should.have, in Table 2, aq = Ta, /8 while the
Table gives ag = 26 and a = 40. The consistency is aboutas good as can be

L expected though.

_ bh Lz) i log. 71L From (4.42) and (4.43) it follows that IT (n) = O(n 2") as n + » ,
28
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] so for sufficiently large matrices Strassen's method 1s arbitrarily faster

| than the normal method or Winograd's method. In practical cases, say for

n < 200, the normal method or Winograd's method appears to be faster.

| By the above formulae we can estimate that Strassen's method will be
faster than Winograd's only 1f n > 270 (real case) or n > 280 (complex

: case). On the other hand, these changeover points are very sensitive

to changes in programming techniques etc., so it 1s conceivable that

| Strassen's method would be the fastest, in some language on some machine,
| for matrices of order ~150. In most practical cases, Winograd's method

will be the fastest, except that the normal method will be faster for

sufficiently small matrices.

: . 4.5 Paged Machines

Some machines (e.g. the Burroughs B5500) have a fairly small physical

i memory but a large "virtual" memory. The user's program and data 1s divid-
- ed into "pages", some of which may be held in fast core memory, and the

others on a device such as a disc or drum. When reference 1s made to a

oo page which is not in memory, a hardware interrupt occurs, «nd the required

| page 1s read into memory from the external device (to make room for it, a.

| page may have to be saved on the device). We say that a "page fault" has
| : occurred. As a relatively slow external device 1s involved, page faults

are very time-consuming and should be avoided as much as possible. (For

a discussion of the concepts of virtual memory, paging, segmentation etc.

| see Randell and Kuehner [9].)

Mc Kellar and Coffman [4] have considered the number of page faults

| | which will occur when certain matrix operations, including multiplication,
: are performed on large matrices using a machine with paging like that

| 29
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= described above. They conclude that, for a slight modification of the
normal method of matrix multiplication, 1t 1s better to store a large

matrix by submatrices, with each submatrix fitting into a small number

_ of pages, than by rows or columns. Even then, the number of page faults

will increase like wo for sufficiently large n. Similar arguments would

apply to Winograd's method, again suitably modified.

Unlike the normal method or Winograd's method, Strassen's method

| would perform well, with eventually 0(n?+8 page faults, even when
- simple row or column storage 1s used. This is because the only matrix

| operations on matrices with n > n, are assignment and addition operations,
and these can be performed as efficiently when row or column storage 1s

| used as for any other method of'storage. A few modifications to the

| procedure STRASSEN 1n the Appendix should be made. ny should be de-
creased 1f necessary so that ny by n, matrices can be multiplied in

) core (without any page faults). Also, inner loops should involve opera-
A tions on one row rather than on one column, 1f row storage 1s used.

Thus we should change double loops like

| For J := 1 until N do for I := 1 until M do ...

to For I := 1 until Mdo for J :=1 until Ndo ... -

This also applies to the "implicit" loops when procedure OP is called:

e.g. lines 138 -139 should be changed to

For I := 1 until M2 do

OP(T(I,*),A(I,%),A(I,*),M2,0,N2,-1); -

Hence Strassen's method might be competitive with the other methods for

smaller values of n on a paged machine than on a machine without paging.
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- 4.6 Rounding Errors

— The procedures were tested using matrices with elements uniformly

distributed in (-1/2, +1/2), or with real and imaginary parts having

this distribution. Ell; and Elly, were computed, assuming that the normal
_ method gave exact results, which 1s reasonable considering the error

bounds (3.13) and (3.18). As expected, the error bounds (3.211) and

. (3.316) of the form |E|| < 2" e(n) |All .||Bl| were too pessimistic, and the

| actual ||E|| was more like )° JE(n) |All .||B]] : See Table kL.
~- -

Table 4 El, / (27° (xn) all, Bl)
-

nn Real Strassen Complex Strassen Complex Winograd

50 0.27 | 0.28 0.28

Lo 0.20 0.83 0.24

~ (taking f(n) {3 + 12n-8) for Winograd,En2 for Strassen, and t = 21)

~ A surprising result occurred with Winograd's method in the real case.
The single-precision results agreed exactly with those given by the normal

— method! This might be expected if the error bound (3.212), rather than

(3.211), were applicable‘ The anomaly is apparently caused by the special

o nature of the test matrices and the characteristics of floating-point

| arithmetic on the 360/67. As the elements of A and B were uniformly
distributed in (-1/2, +1/2), about 7/8 of them would have absolute values

- in (1/16,1/2) . Since the 360 is a hexadecimal machine, any two such

numbers will be added exactly. This means that at least 49/64 of the sums

: (%31.9 B oN and (x54 + Vos 1) of (3.21) will be formed exactly. As
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remarked in Sec. 3.2, this means that we are effectively using at least

| double-precision most of the time. Presumably the few errors made in
—

| computing the above sums were not enough to affect the rounded single-

“ precision results, although it seems strange that all the elements of

a 50 x 50 product should agree, even to the last bit, when computed by

" two such different methods. In the complex case this anomaly disappears,

for a rounding error will usually be made in adding either the real or
—

the imaginary parts of the above sums.

| .

oo

L
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L 5. Strassen-like Methods

_ For 2 x 2 matrix multiplication, both the normal method and Strassen's
method may be described as follows: given the Bey and Dy 1s we form prod-

ucts Qs + + +r Gp of the form

] a, = (Loy;8) (DByr ber) (5.01)
: and then the Com are linear combinations of the 4, l1.e. there are

L. constants 7 np such that . Ty (5.02)
p=1

-

| Substituting (5.01) in (5.02), equating coefficients, and using
the definition of matrix multiplication, gives the set of equations

T

2, %; 50PKLp map B ®ni° 3k Lm , (5.03)

i where © is Kronecker's delta. (The subscripts on the Cp, Were reversed
to increase the symmetry of (5.03).) For the multiplication of M x N

L matrices by N x P matrices, (5.03) gives (MNP) equations as i, J, k,

| L, m, and n range over the integers I< i,n<M, 1<3j,k<N, 1<UL,m<P.
] For example, in the 2 x 2 case with T = 7, we have 64 equations in 84 un-

3 knowns, and Strassen's identities show that there 1s a solution. Strassen's

i solution has the nice property that all the % 5? Byrn and 7 mp are 0 or+1 . Note that, if a solution of (5.03) exists, it will certainly not

| | be unique.

| Strassen's method applied to 4 x 4 matrices shows that the
equations (5.03) have an (integral) solution when M = N =P = 4,

| T = 49 (there are 4096 equations in 2352 unknowns). In general Strassen's
method shows that there 1s a solution with T = 7K when M = N = P = 2

33
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5 (5.2) |

Le If there 1s a real solution with M = N = P and a certain T, then

a log, T| matrices of order n can be multiplied in O(n ) arithmetic operations
-

by a simple extension of the method described at the beginning of Sec. 2.3.

. While an integral or rational solution 1s desirable, in theory a real or

even a complex solution would suffice.

-

The problem leading to equation (5.03) can be generalized in the

. following way: suppose dys + oo ey a and by ce ey b; are non-commut-

ing variables, Of 3k 1s a given three-dimensional array of real or complex

numbers, and we want 'to compute the K sums of products q = L 055250
| (k=1,. . . . K) in as few multiplications as possible. Then we want

the least possible T and scalars Gr Psy ier such that from the T
3

products |

we can form the q, as linear combinations of the Py

. -
Qe = IX "kt P+ » L< kK. (5.05)

t=1

_ Combining (5.04) and (5.05) and equating coefficients gives

3 x. B..x = O..

for 1<1<I, 1<j<J, 1<k<K,

and clearly (5.03) is a special case of (5.06),

“ To sharpen the upper bound (2.36) for the constant Bo defined by

(2.35), we could look for solutions of (5.03) with M = N = P and

w

log, T < Log,1 . For example, we would like to find solutions with N = 2,

T=6o0or N=3, T=21or N=%.4 T =48. As ( 5.03) is a special case of

(5.00), and as it is convenient to avoid triple subscripts wherever possible,

_ we shall first consider (5.06),

3h



— In the case I = 1 it 1s not difficult to show that the minimal T

for which a solution of (5.06) exists 1s the rank of the J x K matrix
—

(01 53)» and similarly if J or K = 1, If I, J and K are greater than
« unity then there does not seem to be any such simple theorem,- and

examples with I = J = K = 2 show that the minimal T may depend on

\ whether the Qs 4.9 Bt and Viet are allowed to be rational, real, or
complex. This 1s so even 1f all the {jk are integral. Hence we

> (5.06)
are led to try numerical methods for solving special cases of ’ y

. If these methods find a real solution, then 1t 1s worthwhile to try

to find an integral solution, but 1f no real solution exists there

— 1s no point in looking for an ‘integral solution.

|
!
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5.1 Least Squares Approach

(

L Because of the large number of equations ( 4096 for N = Ly,

conventional numerical methods like Newton's method are impractical

. for finding a solution of (5.06). The problem may be regarded as one

] of function minimization: we want to minimize the sum of squares of
residuals of the set of equations (5.06). If B and y are fixed , then

L (5.06) is a set of linear equations in the Tp. Hence we could find a

| least-squares solution of this (overdetermined) system, then fix y ,
~ ¢ and find a least squares solution for B, then for jy, and repeat the

C cycle. The sum of squares of residuals will converge to some non-

negative number, and hopefully this will be zero. Even this method

| would be impractical, except that the coefficient of Os y in the system
of linear equations happens to be independent of 1. In other words,

- the matrix of coefficients has I identical T x T blocks along the main

diagonal, and zeros elsewhere, so each least-squares problem splits up

| into a number of smaller ones.
L

Writing Xy for Css 5 we want the least squares solution of Ax = b,

. where A = (Bo. In (3,5),t 0 (5.1)

3 The solution-is given by x = (ata) aly (in the real case) , (5.12)
and we have

| WTA = ((28,8, 00D neared) (5.15)
J k ?

aan = (LB ) (5.14)
L ana Alb = ik jtxt%i3k’t 2

As noted above, (5.13) is independent of i, but (5.14) depends on i.
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5.2 Acceleration of Convergence

- It 1s not clear how one should make a good initial guess at a

solution of (5.06), but in any case, with randomly chosen a, By, and 7,
-

the initial rate of convergence is rapid. Unfortunately the convergence

_ soon slows down. One possible difficulty may be illustrated by a two-

dimensional example: suppose we try to minimize s(o,B) by fixing B,

— minimizing s with respect to a, fixing 0 and minimizing s with respect

to B, etc. If the contour lines of s are ellipses as illustrated in

LN

the diagram below, there will be a slow 'zigzag' approach to the

minimum. ——3F3 \s=4
~- B

=2 \

-

— .

N—

(£,, B)
|

da

In the case 1llustrated, the following algorithm will speed up

o convergence:

1/ 1 := 0; Guess Cys By .
. x Co go)
- 2/ Find§ to minimize s(a; + 8 »B;)

3/ Find s° to minimize s(ay + 07,8. + 5°) .
L/ Find w to minimize sf 0; pr B +1) ,

where « = + ws, B = B + usbi+l i IT I+] 1 :

~ 6/ Go back to 2/ .
bY
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In the simple case of a quadratic function s{o,B), this algorithm

i will find the minimum in one cycle.

The same idea can be used in our more general problem. If s(a » Bs 7)

~ Xe! Co Q
1s the sum of squares of residuals, we find 8 to minimize s(a+ 8 B57) ,

B _ Se p
. then 8° to minimize s(a +8 ,8 +8 5),

then 4 to minimize s(qg + 57,8 " #7 + 8) ,

then w to minimize s(a',8',7") where a'= a + ws etc.

{ Since
{ 2
~ a B 7t t t J

| 1, J, kK =
) we can express s as a sixth degree polynomial in w, and then w can be

. chosen to minimize this polynomial (globally).

|
—

L

|

-

L

|
.
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6. Search for New Algorithms by the Least Squares Method

— A program was written to try to find a solution of (5.03) using

i the least-squares approach described in Sec. 5. Although it would be

i interesting to look for complex solutions, only the real case was

| considered.

= The positive definite symmetric matrix Ata is found from (5.13)

and Alp is found from (5.14), taking advantage of the identity.

) B 04 6 .6.. 98 = ) 6. Yor
— k,Lm,n kIu'mnu ni jk Lm T Jiu’ Liu (6.01)

=u 6.1 Calculation of s(g,8,2)

xe

: We shall use two or three subscripts on the a, B and y as con-

FL — venient. The sum of squares of residuals of (5.06) 1is
| )

i,J,k {UT -
= 2

pe SO s(ayB,7) = ) ) a, BL, Y
| iL,5k | T it Jt kt

EL - 2 3 oO. . ) a, B..7”Tk | ijk ry 1t7 jt .
| + ) ie c- © ijk 12| 1,J,k ! ( )

| The straightforward evaluation of (6.11) for matrix multiplication with
: - 6
| M=N=P takes ~2N T operations (just counting multiplications). Using

(6.12) instead, the last two terms give no problems, in fact

| 2 ) 2( ) O:ap = (6,.8,.86 )° = M.N.P (6.13). ijk .. 1J kL mn
i, j,k J i,J,k,L,myn J



1 - and 3 c.. ). a. ,B..Y
3 i,3,k 1jk : it jt kt

u } 1) a. B _.y .§ 5.8. ijt kLt 173
i,3,k;L,myn,t J mnt ni jk Lm

— = ) ro 8 . Y. '

and the evaluation of (6.14) requires only ~ONT operations. The first

term in (6.12) is

“ L(g UB 57x) “- T [o 005) (LBA ) (2 re) ’ (6.15)i,j,k t t,ull i 3 J Ju

] and the right side of (6.15) involves INST Jo operations (50% are
sgved by symmetry). Since we are interested in values of py: Ss can

| £15) 7.6 8.8| be found from (6.12) ~(6.15) inA3N /2 operations instead of ~ oN

| using (6.11) . Hence it is much faster to use (6.12) - (6.15), although
this involves some loss of accuracy.

~ 6.2 Quadratic Approximation

. At first the coefficients of w in the sixth degree polynomial p(w)

| of (5.21) were calculated using @, B, 7, 5%, 8° and 8’, and the global
| minimum of p(w) was found. Evaluation of the coefficients of p(w) was

rather time-consuming, and it was noticed that the minimum usually occurred

for 1 < w< 2, and 1n this range p(w) was approximated very well by the

quadratic fitting p(0), p(1l) and p(2).

Since p(0) = s(@B;7) is already known,

and both P(l) = s(ars%, p45, 7+8 ”)

and P (2) —s(+28%,g+2s®, yo) may be found by the method of Sec. 6.1,
the program was speeded up considerably by using the quadratic approximation,

and the rate of convergence was not noticeably diminished.
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= As a precaution, necessary for the first few iterations anyway, w

| was constrained to lie in [1, 3] . Once w was chosen, s( ows”, B+",
—

yu’) was computed (using previously calculated 1nner-products like

u Lo a), and a check made that it was less than p(l) and p(2) .
After the first few iterations these precautions usually turned out to

— be unnecessary. Note that, once 5. = 1 (a, + x8}. ) (a. 4 + x8. ) is
3 found for x = 0, 1 and 2, we can find any 5. from

sr HF = sy + (2-259) + (5° + ¥)sy), where y =x. 1.
-

This device was also used to save some-time. There 1s a danger of

_ numerical instability unless 15(v* - y)| <1, i.e. unless 0 <x< 3,
: which is one reason why w was constrained to lie in [1, 3] .
1] |

I fM=N= P, the number of operations (just counting multiplications)

— per complete cycle is ~ (15N°4T) TI /2 . Since N° <T< NE for the cases of
interest, this grows very rapidly with N. On the other hand, we are trying

- to solve N° nonlinear equations 1n NOT unknowns, so 1t would be surprising

gS 1f any other method could do much better.

6.3 Summary of Results
—

The attempt to lower the bound (2.36) was unsuccessful, but some

= interesting negative results were obtained. For 2 x 2 matrices, many

solutions were found with T = 7, but s never fell below 1 for T = 6,
-

strongly indicating that Strassen's method gives the minimal number of

Lo multiplications for 2 x 2 matrices (at least for real Q, B and 7). With |

T = 7 each iteration took about 0.2 sec. and convergence was fairly fast, |

= and appeared to be linear.

- | 41
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3
Trying T=1, 2, . . . 7 for 2 x 2 matrices, 1t was found that

| Tif T =5, 6 or 7

inf(s) + ok if T=1, 2 or y“ 7.50 if T = 4 .

| Thus the minimal sum of squares of residuals 1s usually integral, but
~ appears to be nonintegral for T = k.
|
-

3 x 3 matrices may be multiplied in 26 multiplications by using

= Strassen's method on a 2 x 2 submatrix-. It appears that there is also

3 a solution with T = 25: the program (taking 3 sec./iteration) reduced
s to 0.18% in 33 iterations, and s was still slowly decreasing. Knuth

— has found a solution, involving 'cube roots of unity, with T = 24. How-

3 ever, Log; 2h > log,1, and 1n fact log, 21 < log, 1 < log, 22, so a solution
with T < 21 1s necessary to improve the bound (2.36). When the program was

L run with T = 21, s appeared to be tending to 2 rather than to zero. If

the rule inf (s(T)) + T>T., , which was observed for the 2 x 2 case,

s holds generally, this would indicate that for 3 x3 matrices Tin < 2%
1. For 4 x 4 matrices the program was run with T = 48,to try to improve

on Strassen's 49. Unfortunately, each iteration took 18 sec., and con-
{

L vergence was slow, so lack of computer time forced a return to smaller

problems.
-

i - Various cases of small rectangular matrices were investigated. For
example, the program was run with M = P = 2, N = 4 and with M = P = 4,

| N =2 . In these cases the smallest T for which s appeared to be tending
to zero was exactly the T to be expected by partitioning the matrices and

~ Lo



6.5

— applying Strassen's method. Convergence often slowed as s approached 1,

and speeded up again once s < 1, and there was no case in which s <1

was attained, but for which s failed to tend to zero. Perhaps s(a » B5 7)

. has some local minima or saddle points, but they all have s > 1.

| To summarize the results: although nothing has been rigorously
So

proved, 1t appears likely that, to improve on the bound (2.36), matrices

- of size at least 4 x I must be investigated. It is plausible that there

| are no (real) methods better than Strassen's for the 2 x 2 or 3 x 3

ha case, and if this is so it is unlikely that any new method could be of

| much practical use, although it would certainly be of theoretical interest.
—_

A practical method needs to have rational Q, 8 and 7, and to be fast for

- reasonably small matrices most of the components of Q, B and y should

vanish.

_
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ue T.1

T 7. Conclusion

| ~ While the normal method takes O(n”) operations to multiply n x n
matrices, Strassen's method shows that O(n ) suffice. In practice,

though, the normal method 1s faster for n < 100 . Winograd's method,

| | while still taking O (n°) operations, trades multiplications for

additions and 1s definitely faster than the normal method for moderate

— and large n, with a. gain of up to about 10% for real matrices and up to

about 20% for complex matrices. The gain would be greater for double

or multiple-precision arithmetic.

ET Floating-point error bounds can be given for Strassen's and Winograd's

BE methods, and the bounds are comparable to those for the normal method if

the same precision arithmetic is used. With Winograd's method the necessity

_ for prescaling can not be emphasized too strongly (see also [12]).

Provided scaling is used, Winograd's method can be recommended, es-

| pecially in the complex case, unless very high accuracy 1s essential. It

- 1s much easier to code than Strassen's method. Possibly Strassen's method

would be preferable when working with large matrices on a paged machine.

Attempts to lower the constant log,7 = 2.8... given by Strassen's
— method were unsuccessful. A completely new approach seems necessary in

order to bring the upper and lower bounds on the computational complexity

of matrix multiplication much closer together. For matrices of reasonable

size, though, it seems unlikely that any new method could be very much
“

faster than the known methods on a. serial computer.

Lh
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APPEND-IX

; - ALGOLW procedures and test program
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FE 0001 1- BEG | N COMMENT:
0002 ~~ TEST PROGRAM FOR PROCEDURE STRASSEN, WI NOGRAD& M ATMU LT,

: 0003 =~ FILE |ISBRENT.TESTSTRASSEN ON SYS09;
3 0004 --
A. 0005 ==

] 0006 -~- PROCEDURE STRASSEN (REAL ARRAY A, B, C(*,*);
; 0007 =~ INTEGER VALUE M,N, P);

0008 2~ BEG | N COMMENT :

a. 0009 =~ IF AIS AN M X N MATRIX, AND B IS AN N X P MATRIX
| 0010 =-- THEN THEMX P PRODUCTMATRIX A. B 1 S RETURNED | N C.

1 0011 == A MODIFIED FORM OF STRASSEN’S METHOD IS USED WHEN

| nn 12 == M, N, AND P ARE SUFF | Cl ENTLY LARGE. IT IS BASE@ ON THE
013 == FOLLOWING IDENTITIES WHICHHOLD IN THE 2X2 CASE:

JO14 =--

0015 =-- Cll = Ql1 -Q3~-0Q5 + Q7,
i 0016 == Cl2 = Q4 - Ql,
lL 0017 == c21=N2+ Q3, AND

] 0018 =-- c22 =Q5+ QQ =-02-04, WHERE
0019 -- Ql = (All - Al12).822,

1 0020 =--. Q2 =(A21 - A22).Bl1l1,
 — 0021 == Q3 = A22,(B11 + B21),
1 0022 == Qk = Al11,(B1l2 + B22),
; 0023 -- ns = (All + A22).(B22-B11),

0024 == n6e = (All + A21).(B11 + B12),AND

| L- 0025 -- N7 =(A12 +A22).(B21 + B22)
0026 --

0027 == A,BAND/ORC MAY BEIDFNTICAL OR OVERLAPPING IN THE
(1028 «= CALL TO STRASSEN. IN THE CASE M=N=P THE INTERMENIATE

| — 0122 =-- STORAGE REQUIRED IS ABOUT 8N**2/3 REAL WORNS, THIS
030 -- COULNDRE REDUCED TON#*2 (ORMORF GENERALLY

| NN3]1 =-- (MM+ NP +PM)/3)RY BUILDING UP THE PRODUCT AFTER

0032 =-- FACH CALL TO STRASSEN INEVENMULT, BUT THEN C COULD
Eo 0033 == NOT OVFRLAP A OR R, AND THE PROCEDURE WOULNBE

0034 =-- RATHER SLOWER.

0035 ==

0036 =-- IF 3MMP/ (MN+NP+PM)<=NO THEN NORMAL MATRIX MULTIPLICATION

a. 0037 -- | SUSFN, THIS ISBECAUSE STRASSEN’S IDENTITIES SAVE
| 0038 == TIME ONLY IF A MULTIPLICATION TAKES LONGER THAN 14

1 0033 =-- ADDITIONS, WHICH IS CERTAINLY FALSE FOR MATRICES SMALLER
| JOLQ == THAN 14 X14, OR A LITTLE LARGER. THE NUMBER NO
a. 0041 =-- | S MACH! NE ANDCOMPI| LER-DEPENDENT, RUT 100 |ISABQUT

0042 -- OPTIMAL FORALGOLWON THE 360/67 (WITH NO ARRAY BOUNDS

| 0043 ~-- CHECKING).
0044 =--

 — 0045 == THE TIME FOR PROCEDURE STRASSEN 1S ABOUT THE SAMEA S

0046 == FOR THE NORMAL METHOD FOR SMALL M, N AND P, BUT FOR

0047 == LARGEM,NAND P THE TIME MULTIPLIES BY 7 (RATHER
: 0048 =- THANS)EACHTIMEM,N AND P ARE DOUBLED. ACCURACY
EF 0049 == IS NOT MUCH WORSE THAN FOR MATRIX MULTIPLICATION BY

0050 == THE USUAL METHODWITH ALL OPERATIONS DONE IN SINGLE

0051 == PRECISION.
1 0052 on -

SN 0053 ~~ R RRFNT, JULY 1969;

] 0054 =--
| 0055 == REAL PROCEDURE IP(RFAL ARRAY A,R(*); INTEGER VALUEN);
| N56 3- BEG | N COMMENT:

b . 0057 =-- RETURNS THE INNER PRODUCT OF THE N-VECTORS A ANN B;
0058 ==

0059 == LONG REAL S:

0060 == Ss := QL;
-- 0061 == FOR! :=1 UNTIL N NO S:=8S + A(1)*B(1);

0062 == ROUNDTOREAL(S)

0063 =3 END IP;
- 0664 ==

0065 == PROCENUR EOP(REAL ARRAY A, B,C(#*#); INTEGER VALUE MI,h6 M2,M3,F);
0066 3- BEGIN COMMENT:
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0067 == EFFECTIVELY DOES:

0068 == FOR! := 1 UNTILM1 DO

0069 =- ACl) := B(! «+ M2) + F*C(l + M3)

0070 == WHEREF = 0, +1O0OR-1.
0071 == NOTE THAT IN ALGOLW 1-D ARRAY ACCESSES ARE MUCH

I 0072 == FASTER THAN 2-D ACCESSES:0073 ==

0074 =~ IF F > 0 THEN

0075 4- BEGIN IFM2=0 THEN

0076 5- BEGINIF M3=0 THEN

0077 6=- BEGIN FOR| ¢= 1 UNTIL MI DOA(I):=B(1)+C(1)
0078 -6 END

0079 =-- ELSE FOR| t= 1 UNTIL M DO A(1):=B(!)+ C(] + M3)

| 0080 -5 END0081 == ELSE
0082 5=- BEGIN IFM3=0THEN

0083 G- BEGIN FOR| := 1 UNTIL M1 DO A(1):=B(1+ M2) C(I)

| 0084 -G END0085 =-- ELSE FOR| := 1 UNTILM1 DO A(l) :=B( | + M2)+ C(1 + M3)
0086 =5 END

0087 =u END

I 0088 == ELSE IF F ¢ 0 THEN0089 b= BEGINIF M2=0 THEN
0090 5- BEGIN IFM3=0 THEN -

0091 G- BEGIN FORI := 1 UNTILM1 DO A(l):=B(t1)-C(1)

I 0092 -6 END0093 == ELSE FORI := 1 UNTIL M1 DO A(1):=B(1l)-C(l+ M3)

0094 -5 END

0095 «== ELSE

| 0096 5- BEGINI FM3=0 THEN0097 6- BEGIN FOR| := 1 UNTIL MI DO A(!1):=B(14+M2)-C(l)
0098 =06 END

0099 == ELSE FOR | = 1 UNTIL M1 DO A(I1):=B(I + M2)-C(] + M3)

I 0100 -5 END0101 -4 END

0102" == ELSE

0103 U4-=- BEGINIF M2=0 THEN

| 0104 5- RAEGINFOR| := 1 UNTILM1 DOAC1):=B(1)0105 -5 END

0106 =-- ELSE FOR| := 1 UNTIL M1 NOA(I):=R(1+ M2)

0107 -4 END

[ 0108 -3 END OP;0109 ==

0110 =-- |
0111 =-- COMMFNT: IF M,N,ORP SMALL USE NORMAL MATRIX MULTIPLICATION.

I 0112 == THE CONSTANT NO MENTIONED ABOVE IS REDUCED TO 29 FOR0113 =- CHECK | N6& PURPOSES:
0114 ==

0115 ==

I 0116 == | F(3#Ma2N2P)<= (29% (M*N + -N*P + P*M))T H E N0117 ==

0118 3~ BEGIN COMMENT: WEF USE ATEMPNRARY ARRAYQIN CASE C=A OR B;

0119 -- REAL ARRAYQ (1 : : M, 1 : : P);

I 0120 == FOR| $= 1 UNTL M DO FOR J:= 1 UNTIL P DO0121 -- QCl,d) = IP(ACI,*), R{(x,J), N);
0122 =-- FORI $= 1 UNTILMD OO0OP(C(t,=), ql, *),QCt, *),P, 0, 0,0)
0123 -— 3 END

L 0124 ==0125 == ELSE

0126 ==

0127 3- BEG | N COMMFNT: USE STRASSEN’'S METHOD;
0128 ==

[, 0129 == PROCEDURE IDENTITIES;
0130 L- BEGIN COMMENT:

0131 =-- THE IDENTITIES ARE PUT HERE TO AVOID SEGMENT

I 0132 -- OVERFLOW:43



: 0133 --

Sa 0134 -- REAL ARRAY T(1 :: M2, 1 :: N2);
0135 -- REAL ARRAY U (1 :: N2, 1 :: P2Y:

0136 -- REAL ARRAY Q1, 02, 03, a4, Q5, Q6 (1 :: M2, 1 . .p2);
| 0137 --

ET 0138 -- FORJ := 1 UNTIL N2DO

0139 —- OP  (T(x,d), A, J),A(», J + N2),M2, 0, 0, =1);
0140 —- FOR| := 1 UNTIL N2DO

: 0141 ~~ oP (UCH,*),B(1 + N2 *),BCL#*Y, P2  P2, (, 0);
CT 0142 —- STRASSEN(T,U,Q1, M2,N2 P2);

0143 —— FOR | := 1 UNTIL M2 DO

0144 —- OP (T(1,*),ACL + M2 *),A(l + M2 *),N2,  , ob, -1);
0145 —- STRASSENI(T,B, Q2,M2,N2,P2);

oT 0l46 —- FORI t= 1 UNTILM2DO

0147 —- OP (TCL, *),A(1 + M2 »),A(1,*), N2, N2, 0, 0);
| 0148 —-— FOR l:= 1 UNTIL N2 DO

_ 0149 —- OP (uct, =), B01, *),B(l+ Na_*), P2, go, o, 1);
0150 —- STRASSEN(T,U,Q3,M2,N2,P2);
0151 —- FOR J := 1 UNTIL P2 DO

0152 —- OP (U(%,d),B(*, J + P2),B(+, J +P2), No, 0, N2, 1);
Lo 0153 —- STRASSEN (A, U, 44,M2,N2,P2);

0154 —- FOR | := 1 UNTIL M2 DO

0155 —-— OP (TC, *), ACL, *»), ACL+ M2, *),N2, o, N2, 1);
0156 —-— FOR | := 1 UNTIL N2 DO

| 0157 —- OP (U(r, *=),BCI+ No, »),BllLx), P2, p2, 0, =1);
0158 —- STRASSEN(T,U,N5,M2,N2,P2);
0159 —- FOR | := 1 UNTILM2DO

| 0160 —- oP (TCI, *),ACl,*), ACl+ M2, *), N2, 0, 0, 1);0161 —- FORJ := 1 UNTIL P2 DO

0162 —- oP (U(*, J), B(*,J), B(*, J +P2) N2 ,0 ,0 1):
0163 —- STRASSEN (tT, uU 06,H12,N2,P2); ~*~ ~~
0164 —— FOR J := 1 UNTIL N2 DO

| 0165 —- OP (T(=+,J), A(x, J + N2), AC, J +N2) m2, 0, M2, 1);
0166 == FOR | := 1 UNTIL N2 DO

N 0167 -—- OP (U(r,>»), BI + N2, *),,8(1+ N2, *), P2, 0 P2 1);
; | 0168 —- STRASSEN(T,Uu,C,6 M2,N2,P2);
o 0169 --

0170 —-— FOR l:= 1 UNTIL M2 DO FOR J := 1 UNTIL P2 NO

A 0171 5- BEGIN
i 0172 —- c (1,J) := 01(1,d)=~ 3 (1,d)+ Cc (I,J) -0Q5(1,4);
\ 0173 —- Cc (1,d + P2) =:= 04(i1,d) -~ 01(1,d);

0174 —- c (1 + M2,d4) := Q2(1,4) + Q3(1,d);
0175 -- GC (1+M2,4+P2) :='05(1,d) + Q6C1,d) = (02(1,y) + Qu(I J))
0176 -5 END

0177 -4 END IDENTITIES:

0178 --

0179 —- REAL ARRAY S1(1l:: P); ]
0180 — — REAL ARRAYS2(1::M);
0181 — — INTEGER M2,N2,P2;

0182 == M2 :=MDIY 22 N2 := N DIV 22 P2 := P D}V 2,
0183— —

0184 — — COMMENT: THIS PARTMUST BE DONE NOW IN CASE C=A OR B;
0185— —

0186 —— | F(2#142) < M THEN

0187 b= BEGIN FOR J := 1 UNTIL 2#P2DO

0188 — — S1(J) := I1P(A(M,=*), B(=, J), N)
0189- 4 END:
0190 —-

0191 -- | F(2*P2)< P THEN

0192 §4=- BEGIN FOR | := 1 UNTILM DO

0193 —- S2(1) := IP(A(I,*), B(=,pP), N)
0194 -4 END:
0195 -—-

0196 == IDENTITIES:
0197 —--

0198 —- f12 t= 2*M2; N2 = 2#%N2; P2 :=2*P2:
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. 0199 --

3 0200 —-- COMMENT : IFM,N,OR P WAS ODD WE HAVE TO FI X UP THE BORDERS;
0201 —-

0202 —- IF N2 < N THEN

bo 0203 f= BEGIN

0204 —- FOR| := 1 UNTIL M2 DO FOR J := 1 UNTIL P2 DO

FE 0205 —- C(i,J) = ¢Cc(1,d) + ACI,N)*B(N,J)
EE 0206 —4 END;
EF 0207 —-

0208 —- IF M2 <M THEN

- 0209 u- BEGINF O RJ:= 1 UNTIL P2 DOC(M,J):= S1(J)
| 0210 -4 END;

EL 0211 —-

J 0212 —— IF P2 < P THEN

FE 0213 4- BEGIN FOR| := 1 UNTILMD oOC(I,P):=S82(1)
| 0214 -4 END

. 0215 -3 END
0216 -2 END STRASSEN:;
0217 ——

| 0218 ——
—_ 0219 == PROCEDURE WINOGRAN(RFAL ARRAY A, B,C(%x,*): INTEGER VALUE M, N, P);

0220 2=- BEGIN COMMENT:

| 0221 —- IF A IS AN M X N MATRIX AND B AN N X P MATRIX, THEN
0222 —-— THEIR PRODUCT A.B IS RETURNED IN C. WINNGRAD'S METHOD

n- 0223 —- ISUSENWITHPRESCALING TO ENSURE GOOD ACCURACY;
| 0224 —-

0225 —- REALPROCENDURFWP(REAL ARRAY A,B(*): LONG REAL VALUE X,Y);
0226 3- BEG! N COMMENT:

— 0227 —- RETURNS THE INNER PRODUCT OF THE N-VECTORS A AND B,
0228 —- USING PRECOMPUTED X AND Y. NIS GLOBAL:

| 0229 —-
F 0230 —- LONG REAL S;

— 0231 —- S = -(X+Y):

0232 —- COMMENT: IF THE NEXT STATEMENT IS REPLACED BY:
0233 —-— FOR I := 2 STEP 2 UNTIL2*(NDIV2)D O

0234 —- S :== S+(LONG(A(I=1)) + LONG(B(1)))*(LONG(A(I)) + LONG(B(1-1))).,
~— 0235 —- THEN THE CORRFECTIY. REUINREN GTIWNGLE-PRECISION RESULT IS USUALLY

0236 —-— RETURNED (ASSUMINGPRESCALING), UNFORTUNATELY TH I S SLOWSDOWN
0237 —- THE ALGORITHM SD THAT ITIS NO LONGER FASTER THAN THE USUAL ONE;
0238 —- FOR | :=2 STEP 2 UNTIL2«(NDIV2)DO

— 0239 —- S = S + (A(] =~ 1) + B{OI)Y)=CA(CL)+ B(1 - 1));
0240 —- IF (N REM 2)> 0 THEN S := S +A(N)*B(N):
0241 —- ROUNDTOREAL(S)

0242 -3 END WP;
~— 0243 —-

0244 —- LONG REAL PROCEDURE XI (REAL ARRAY A(*));
0245 3- BEG! N COMMENT: .

0246 —- USED TOPRECOMPUTE THE FUNCTIONS OF AREQUIRFDB Y WP;
— 0247 —-

0248 —— LONG REAL S;
0249 —- Ss := 0L;
0250 —- FOR| := 1 STEP 2 UNTIL N = 1 DO S = S +A(1)=A(1+1);

— 0251 —- S

0252 -3 END XI;
\ 0253 ——

0254 —-— PROCEDUREMAX (REAL ARRAY A(*); REAL VALUE RESULTBD);
- 0255 —- FOR | = 1 UNTIL N DO IF BDXKABS(A(I))THENBD:=ABS(A(1));

025G —-

| 0257 —- PROCEDURE MUL(REAL ARRAY A,B{(*); REAL VALUEM);
0258 —— FOR | ¢= 1 UNTIL N DOA(I):=M*B(1);

— 0259 —-

0260 —-— REAL AMAX, BMAX, MULT;
0261 —-— COMMENT: THE ARRAYS D ANDE ARE USED AS TEMPORARY STORAGE IN CASE

- 0262 —— SOME OF A,BANDCCOINCIDF;

— 0263 —-— REAL ARRAY D(1:M 1 :: N);
0264 —— REAL ARRAY F(1 :: N 1 :: P);
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| 0265 —-— LONG REAL ARRAY X(1 :: M);
0266 —-— LONG REAL ARRAY Y(1 :: PJ);

E 0267 ——

0268 —- COMMENT: A AND B ARE SCALED BY SUITABLE POWERS OF TWO TO Gl VE GOOD

| 0269 —-— NUMERICAL PROPERTIES, AND THE SCALED MATRICES STORED IN
0270 —- ND AND E;

: 0271 -- AMAX :=BMAX:= 0.0;
0272 —- FORI := 1 UNTILMDOMAX(A(I,>), AMAX);
0273 —-— FORK t= 1 UNTIL P DOMAX(B(=*,K), BMAX);

| 0274 —- MULT := IF (AMAX>0) AND (BMAX>0) THEN

| 0275 —— 2** (TRUNCATE((LOG(BMAX) - LOG(AMAX))/LOG(4) 2 200.5) = 200)
| 0276 —- ELSE 1.0;

0277 —- FORI t= 1 UNTIL MmDOMUL(D(CI,*), ACl,*), MULT);
0278 —- FOR K t= 1 UNTIL P DOMUL(F(*,K),B(*,K), MULT);
0279 —-— COMMENT: NOW SOME CONSTANTS ARE PRECOMPUTED AND SAVED IN X AND VY;
0280 —- FOR | :=1 UNTILMD OX(I):=XI1(D(1,*));
0281 —-— FOR K = 1 UNTIL P DOY(K):=XI1(E(*,K));

| 0282 —- COMMENT : NOWTHE INNER PRODUCTS ARE FOUND;
0283 —-— FORI := 1 UNTIL M DO FORJ := 1 UNTIL P DO

0284 —-— c(1,Jd) :=up(nCit,=), E(x,J), X(1), Y(J))
0285 -2 END WINOGRAD:
0286 ——

0287 —-

| 0288 —-— PROCEDURE MATMULT (REAL ARRAY A,B,C(*,x);
0289 —-— INTEGER VALUE M, N, P);
0290 2- BEG!N COMMENT :

0291 —- FORMS C := A.B IN THE USUAL WAY;
0292 —

0293 —- REAL PROCEDURE IP(REAL ARRAY A,B(*); INTEGER VALUEN);
0294 3=- BEG!N COMMENT:

i 0295 —-— RETURNS THE INNER PRODUCT OF THE N-VECTORS A AND B;
0296 ——

| 0297 —- LONG REAL S:
0298 —- Ss : =0L;

0299 —- FORI t= 1 UNTIL N DO S :=S4 A(1)*B(1);
| 0300 —— ROUNDTOREAL(S)

0301 -3 END IP;
0302 —-—

0303 —- PROCEDURE ASSIGN{(RFALARRAY A,B(*);INTFGERVALUEN); |
0304 —- FORI| :=1 UNTILND OA(I):=B(1);

| 0305 —-

0306 —-— COMMENT: Q ISUSEN IN CASE C COINCIDES WITH A OR ‘3;
0307 —- REAL ARRAYQ(1 : : M, 1 =: : P);
0308 —- FOR | $= 1 UNTIL MDO FOR J := 1 UNTIL P DO

0309 —- QCI,Jd) = IPCACL, =x), B(x, J), N);
| 0310 —- FOR 1 := 1 UNTIL M DO ASSIGN(C(I,*), (1, >), P)

0311 -2 END MATMULT;
0312 ——

0313 —-

0314 —- INTEGERRAN1,RAN2,RAN3,RAN4;
0315 —- INTEGER ARRAY RAN5(0 :: 255);
0316 ——

| 0317 —- PROCEDURE RANINIT (INTEGERVALUER1);
0318 2- BEG!N COMMENT »

| 0319 —- MUST BF CALLED WITH ANY INTEGERR 1

0320 —- TOINI TI AL | ZE PROCEDURE RANDOM;
0321 ——

0322 —- INTOVFL := NULL; COMMENT: MASKS OFF INTEGER OVERFLOW:
0323 —- RAN] :=1 RAN2 :=2+*ABS(R1) 4 1 ;

| 0324 —- FORI :=0 UNTIL 255DORANS5(I):=RA N2:=RAN2*65539

0325 -2 END RANINIT;
0326 ——

| 0327 —- REAL PROCEDURE RANDOM;
0328 2~- BEGIN COMMENT:

| 0329 —— USEST'NSIMPLFLFHMER GENERATORS OF THE FORM
0330 —— X(MN+1) = X(N)*A (MOD T) WITH
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— 0331 == Al = 11%*%11 (MOD Tl) =6435, T1=2%%13-1= 8191,
0332 == A2 = 2%%x16+3 =65539, T2 =2%*31=2147483643.

4 0333 == THE FIRST GENERATOR JUST POINTS TO THE TABLE OF
0334 == ENTRIES FOR THE SECOND GENERATOR, SO GOOD RANDOM

~~ 0335 -- NUMBERSWITHA CYCLE LENGTH AT LEAST 2.,10*%*%*12 ARE
0336 =-- PRODUCED.

0337 == THE IDEA IS DUE TO MACLAREN AND MARSAGLIA, SEE

C 0338 == KNUTH, VOL 2, PG 30, ALGORITHM M.
0339 == REALOUTPUT UNIFORM IN(O0,1).
0340 == NOTE THAT INTEGER RAN1, RAN2, RAN3, RAM AND
0341 == INTEGER ARRAY RAN5 (0::255) MUST BE DECLARED

. 0342 == GLOBALLY AND RANINIT MUST BE CALLED FOR
0343 == INITIALIZATION:
0344 =--

0345 == RAN1 := (RAN1#6435)REM 8191;
0346 == RAN3 := RAN1 REM 256;

= 0347 == RANA := RAN5S (RAN3);
0348 == RAN2 := RAN5S (RAN3) := RAN2 * 65539;
0349 =-- RAM * (0.465661287"'.9

C 0350 =2- END RANDOM
0351 ==

0352 ==

| 0353 == PROCEDURE RANSFT(RFAL ARRAY A(*,*); INT Ecer VALUE M, N);Lo 0354 == FOR | := 1 UNTILMDO FOR J := 1 UNTIL N NO
0355 =~- ACI,J) : =RANDOM= . 5;
0356 =--

| 0357 =--0358 =- COMMENT: CALLING PRONRRAM;
0359 ==

0360 =-- INTEGER R, M,N, P, T; REAL S,MAX, DEL, SW MAXW;

0361 == READ(R);

C 0362 -- WHILE R "= 0 DO
0363 2- BEGI NREANON(M,N,P); RANINIT(R); WRITE(" "); WRITE(" ");
0364 == WRITE("R", R MY, 1, " NY, N,
0365 == 1 P', P);

C 0366 3- BEGIN
0367 == REAL ARRAY ACI :M, 1 :: NJ);
0368 =- REAL ARRAY B(1:N 1 :: P);
0369 =-- REAL ARRAY ¢, D, E(1:: M, 1 =:: P);

L 0370 =-- RANSET( A M,N);
0371 =- RANSET (B, N, P);
0372 == T := TIME(1):

| 0373 == MATMULT(A, BR .D NM, nN, P);
i 0374 == WRITE ("MATMULT TIME ", TIME(1) - T);

0375 == T := TIME(1);

0376 =- STRASSEN (A,B,C,M,N,P);
0377 == WRITE("STRASSEN TIME",. TIME(1)=T); T:=TIME(1);

L 0378 == WINOGRAD(A,B,E, EI ,N,P);
0379 == HRITE("VINOGRAD TIMEY, TIME(1) - T);
0380 =-- S := MAX :=SW:=MAXW:= ©
0381 == FOR | := 1 UNTL M DO FORJ := 1 UNTIL P DO

— 0382 b= BEGINDFL : =ABS(C(1,J)=0nC1,d));
0383 =-~- IF MAX< DEL THEN MAX := DEL:

0384 == S := s +DEL=DEL;

0385 == DEL := ABS(D(1,J) - E(1,J));
L 0386 == IF MAXW<DEL THENMAXW:=DEL:

0387 == SW : =SW+ DFEL*DEL

0388 -4 END:

| 0389 == WRITE("S", 5 , " MAX", MAX );
a 0390 == WRI TE("SW", sw," MAXU'", MAXW);

0391 == READ (R)
0392 -3 END

©0393 -2 END
- 0-394 -1 END.
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