ALGORITHMS FOR MATRIX MULTIPLICATION

BY

R. P. BRENT

STAN-CS-70-157
MARCH 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

ALGORITHMS FOR MATRIX MULTIPLICATION

BY

R. P. Brent

= March 1970

Reproduction in whole or in part is permitted

for any purpose of the United States Government.

The preparation of this manuscript was supported in part by the Office
of Naval Research (NR OhL 211), the National Science Foundation (GJ T798),
and the Atomic Energy Commission (Stanford PA #18).

kA
]

5/

6/

7/

8/

Contents

Introduction

Known results

Error analysis

Implementation

Strassen-like methods

Search for new methods

Conclusion

References

9/ Appendix: ALGOLW procedures

ii

— o T

— r— r— r

r—

!

r——

~

—

—

1.1

1. Introduction

If A = (aij) is an m x n matrix, and B = (bbk) is an n x p matrix,

then the matrix product C = A.B is the m x p matrix (cﬂg defined by

cik = ;Z; aij'bjk

for 1<i<m 1<k<D.

Matrix multiplication and its special cases occur very frequently
in numerical analysis. For example: the inner-product of two vectors
(the case m = p = 1), matrix times vector multiplication (the case p = 1),
back substitution when solving linear systems, iterative refinement (per-
haps with several right hand sides at once), the power method for eigen-
values, 1in least squares problems, and many more. Hence, it 1is interesting
to investigate algorithms for matrix multiplication, and in particular to
see in what circumstances it is possible to do better than the straight-

forward implementation of the definition (1.01).

It is clear that advantage may often be taken of special properties
of A, B or C, e.g. sparseness or symmetry, if such properties are known
a priori. We shall only consider the general case where no such helpful
properties are known. For practical applications, we need only consider
matrices over the rational, real and complex fields, although the definition
above makes sense for matrices over any ring. The algorithms described will
all be applicable to the problem of multiplication of matrices over an
arbitrary commutative ring, and it will later be important that, for some

of the algorithms, the ring need not even be commutative.

(1.01)

If the algorithms are to be implemented on a digital computer,
then simply counting arithmetic operations can be rather misleading,
for loads, stores and address computations are also important. The
best test is to implement the algorithms and see how fast they actually
run, and even then the conclusion may depend on the programmer, compiler
and machine used. Also, from a practical point of view, storage re-
quirements and roundoff errors may be vitally important. Hence, after
describing several different algorithms in Sec. 2, I shall discuss
their numerical properties in Sec. 3; and describe some experimental
results in Sec. 4. In Sections 5 and 6 an attempt to find some new
algorithms is described, and in Sec. 7 the results are summarized and
some conclusions drawn. The notation of the definition (1.01) will be

used in Secs. 2 to k.

1.

2

2.1

2. Known Results

2.1 The Normal Method

To evaluate the inner-product in the definition (1.01) takes n
multiplications and n - 1 additions. Hence, the m.p elements ¢,y can
be found in mnp multiplications and m(n - 1)p additions, and about the

same number of loads, stores and address computations.

If we count only multiplications then this straightforward method
is known to be optimal in some important special cases. Tf m = p=1
then we have the case of a vector inner-product, and a simple dimensionality
argument shows that, in general, n multiplications are necessary. If p = 1
then we have the case of matrix times vector multiplication, znd mn mul-
tiplications are necessary in general (Winograd, see [1]). 1In the general
case, however, less than mnp multiplications are necessary: gStrassen's ,
method shows this even when m = n = p = 2. Dimensionality arguments give

the lower bound max (mn, np, pm), but usually this is too low, and the

best possible result is not known. For more details, gee Secs.5 and 6.

2.2 Winograd's Method

Winograd [7] has given a method based on the following identity:

2. |n/2) In/2)

r
a. .b. = 1= - &4 - (=
5=1 13°35k g=1 (g pmy * Bosrd{aging * Bosmyay

/2| In/2)

a, P . - .
J.gl i,25-1"1,2j J.g'l P23-1,5°25,%

Here |x) means the greatest integer y < x, and analogously [x] means

the least integer y > x .

(2.21)

e

e

— — -

1] rw‘

— r— r r f

2.2

If n is even, the left side of (2.21) is just cik’ but if n is odd,

the term ainbnk must be added to give c The point of Winograd's method

K
is that the last two sums in (2.21) can be precomputed and, once this has
been done, roughly half the usual number of multiplications are required

to compute each cs using (2.21).

k

Supposing for simplicity that n is even, let us calculate the number
of multiplications and additions involved in the computation of C by

Winograd's method. We shall never distinguish between additions and sub-

tractions. To compute n/2 -
X, = s s .
i E 31,23—131,23‘ (2.22)
j=1
requires n/2 multiplications and (n/2 - 1) additions, and similarly for
n/2
N = 2 b.. b,.
k j:l 2J-l’k EJ’k . (2.23)
Hence, to precompute Xy Koy oo o X and N ERTEREN v, takes (m + p)n/2

multiplications and (m + p)(n/2 - 1) additions*

Given xi and yk, to compute Ci using (2.21) takes n/2 multiplications

k
and (3n/2 + 1) additions. Thus the computation of the entire matrix pro-
duct C takes (mp + m + p)n/2 multiplications and (%mp + m + p)n/2 + mp - m - p
additions. From Sec. 2.1, we have saved (mp - m - p)n/2 multiplications at

the expense of (mp + m + p)n/2 + 2mp - m - p additions, in comparison with

the normal method.

Since mp -m - p = (m-1)(p-1) -1, there is no gain at a.ll if
m=1or p=1, so the remarks above on the minimal number of multiplications

required for matrix times vector multiplication are not contradicted.

2.3

Supposing for simplicity that m = n = p > 1, Winograd's method saves
(n - 2)n2/2 multiplications, at the expense of (n2 +6n - 4)n/2 additions.
Hence, there is a. saving in the number of multiplications if n >4 (recall
that we assumed that n was even, but it may easily be verified that there

is no saving for n = 1 or 3). If n is large then about n5/2 multiplications

have been traded for additions. If a multiplication takes w times as long
as an addition, we see that Winograd time w+ 3 -1
= + 0(n)
Normal time 2(wl)

so the most we can expect is a gain of nearly 50% if w and n are large.
Since (2.24) neglects loads, stores etc. the gain will probably be rather
less than this. Typically we might have w = 2 (say real multiplication)
or w = I (say complex multiplication), giving savings of up to 17% and
50% respectively. In Sec. L} we shall discuss how large n has to be for
any gain in practice, and the important question of roundoff error will

be discussed in Sec. 3.

(2.24)

—

—

—

f

— r— r—

r—

—

2.4

2.3 Strassen's Method

Suppose there is an algorithm for the multiplication of Ny X 0,

matrices, for a certain fixed 1y > 1, taking M multiplications and A
additions. Suppose further that this algorithm is applicable for ma-

trices over an arbitrary ring. 1In particular, we are not allowed to

assume the commutative law for multiplication, so, for example, Winograd's

method is excluded.

Let v(k) and w(k) be the number of multiplications and additions,
. , , k
respectively, required to multiply n, X ng matrices, for k =0, 1, 2 .

We have v(0) =1, w(0) =0,

(2.31)

V(l) S_ M, W(l) < A.

k+1

. +
Now consider Ny, X nk 1 matrices partitioned into ng blocks, each

0

k k .
block an nj x ny matrix. Our matrices may be regarded as n, X 1, matrices

with elements in the (noncommutative) ring of ng X ng matrices, so our

algorithm is applicable. Applying it will take M multiplications, and A

additions, of ng X ng matrices.

Hence v(k + 1) < M.v(k)

o (2.32)

and w(k + 1) < M.w(k) + A.n'O' .

From (2.31) and (2.32) it follows by induction on k that

v(k) <M

(2.33)

2k
and w(k) < (ang)(Mk - ny)

, 2
for any k> 0 (provided that M # Dy but M < ng is impossible for

Iy > 1 anyway) .

2.5

Now, in order to multiply n x n matrices for any n > 1, just take

k = ﬁpgniﬂ and embed the n x n matrices in niix ngcmatrices with the
J.J.O A3 Av4
k
last nO - n rows and columns zero, and use the above method. From.(2.55),

the number of arithmetic operations required is
o % ") = o(n*%n) asns e . (2.34)

For example, the normal method with any ny > 1 has M = ng, logn M= 3,
0

.)
giving o(n") operations, which is no surprise.

From (2.34), square matrix multiplication can be done in OOP)

) . (It is interesting

operations, where B = logn M = (log ND/(log nO
0
to note that B is independent of A.) Clearly there is a constant
By = inf {8| OUP) operations suffice } . (2.35)

The normal method, and Winograd's method, both show that BO <3, while
the results discussed in Sec. 2.1 show that BO > 2. The actual value of
BO is not known. While it might be considered "intuitively obvious" that

Bo = 3, this is false: as Strassen [5] has shown,

By < 1og27-f_‘— 2.8 . (2.36)

Strassen's idea is to give an algorithm for the multiplication of 2 x 2
matrices over an arbitrary ring, with the algorithm involving 7 multipli-
cations (instead of the usual 8) and 18 additions (instead of the usual 4).

Putting n, = 2, M=7and A = 18 in the above, his result follows.

Strassen's algorithm

if cll

21

then

and

where

and

€12 %11
€o0 8o1
‘n = 4-
‘12 = N
€01 - 9 *
Cop = "9 T 9
q.l = (all -
o - (o
q5 =

q), =

&b = (a)y
A (a9
q7 ("12

is based on the following identities:

%10 11 Pio

850 21 22

(15'(15 + q7,

ql,

q_5’

+ 95 + 95
STLIO
"22)b11’

apo(byy * Byy)

ap (b, +b,))

+ 2pp)(Pgy = Dy9) 5

+ a21)(b11 4 b1
e By beg))

Strassen in [5] gives no hint of how the identities (2.37) were

discovered,
a "graphical" method which makes the ideas clearer,

one to rediscover the identities (2.37) in a few minutes if they are not

at hand.

and they are certainly not immediately obvious.

We want the four sums of products

®ix

& ailblktl- a12b2k (i, k=1, 2).

This might be represented diagrammatically thus:

bzl 21 11 where we want the four
b22 X 22 12 sums of products which
bll 21 11 v correspond to similarly
b12 29 12 labelled squares.

a1 %11 %22 fio

and which enables

2.6

?(e.m

I shall give

2.7

A product (a21 ta; (bll t b,) might be represented as:

b21 (the signs of the
b terms are not
22 represented in the
b diagram)
11 — T
b12 R
1 1 a2 P12
Now consider the representations of the seven products ql, . . . QT
of (2.37). For example,
.]
4 and g 1
|
|

It is immediately obvious from the diagrams that we can combine 9 and q

linearly to give terms involving the products allblz’ alQbPP_’ and allb22°

It is conceivable that for a suitable combination the alleP term will

drop out and leave c If the reader now draws the representations of

12°
QG .o Oy and sees how they combine according to (2.37) to give

c he will see that one could reconstruct the identities

ll’ « o e 2 C22’
(2.37) from the easily remembered graphical representations, apart from
ambiguities in sign. A little thought and juggling of signs will then give

a set of identities equivalent to Strassen's (there may be a trivial

permutation of the suffices).

It is interesting to experiment with other graphical representations
and convince oneself that it is impossible to multiply 2 x 2 matrices in

less than seven multiplications. Winograd [8] claims to have proved this.

r——

—-

In Sec. 4 we shall discuss how to implement Strassen's method for
rectangular matrices, and how to avoid any wasteful "bordering" with

zeros. The question of roundoff errors will be discussed in Sec. 3.

10

2.8

s

e

3. Error Analysis

The most important case in practice is that of real matrices and

limited-precision floating-point computation. I shall use Wilkinson's

notation [6], and assume all arithmetic operations are done in t-digit

*
rounded binary arithmetic , except that some operations may be especially

noted to be done in double-precision (2t-digit). Wilkinson's assumptions

concerning the method of rounding or truncating will be made. Some of

these assumptions, e.g. binary arithmetic, do not hold for the IBM 360,

and this will be discussed later. For simplicity,

assumed to be square (n x n).

It will be convenient to use the norm

X, = max x|
M 1<i,jen

(note that HXYHM < HXHM.HYHM is generally false). This norm will usually

be written just as HXH . The results obtained may be expressed in terms of

all matrices will be

more usual matrix norms by using the attainable bounds

Py < g < ne Iy

where q stands for 1, 2, o , or E.

Wilkinson [6] defines numbers &

Wherever tl or t2 appear there is the implicit assumption that n.2 = <

which is no restriction in practical cases.

*¥ The analysis 1s similar with any base B > 2, and in most cases the same

bounds will hold with 2 ¢ replaced by %Bl_t

grad's method, and some further applications of (2.21), with base g > 2,

see [12] .
11

and t2 which are slightly less than t.

t

-

For a discussion of Wino-

(50 0

(3.02)

3.1 The Normal Method

Wilkinson [6] shows that if
C = fl(A.B)+= A.B + E
then lelg <2 o n* el
He notes that if HABHE << HAHE.HBHE then the relative

error in C may be high. On the other hand, if the inner-products are

accumulated in double-precision,

' t 3n -2t,
then Izl <2 daf g+ 52 Aallg- 1Bl »

and hence the relative error in C will be low unless there is so much

cancellation that ||all t

I . [IBllg §

Ik

B1M

To get a bound in terms of the norm ”'HM’ consider a typical term

in the product C. Such a term will be an inner-product

n)1}
fl(gxiyi) = Zixiyi + e say.

If the sum is accumulated in the natural order, we have

R G N Y oy B N A N P I C S D PR
+ ce. + 2.|xn|.|yh|),

1 (n2 + 3n - 2)
- ' 2

. maxlxil.maxlyi|

As the xi are elements of A, the yi elements of B, (3.15) and the
definition (3.01) give

-t 2
1 -2
Il <2 & 223mo2) s,
(3.12) and (3.16) are of the same form

-t
Il <2 *. £(n) . |jall.|lB]

and a bound of this form, with some reasonable f(n), is the best we can

expect for any single-precision method.

12

3.2

(3.11)
(3.12)

(3.13)

(3.14)

(3.15)

(3.16)

(3.17)

T

3.3

For double-precision accumulation of inner-products, the bound

corresponding to (3.13) is
-2t
. -t 2 2
I8l < 27 laslly + 2 . (n% + 30 -2).2 2 |lall,. Bl (3.18)
Again, unless there is exceptional cancellation, the relative error in

C will be low.

3.2 Winograd's Method

First consider a simple inner-product
p=1fl(y - (E+7))
n/2
= +
where Y £1() (x23-1'+ ng)(xgj ygj_l)) ’

) G
£ = f1(é xgj_lxgj) p

n/2
d =

computed by Winograd's method (n even).

A simple example illustrates what can happen when limited-precision

arithmetic is used. Suppose we are using G-decimal floating arithmetic, n = 2,

x, =% = 1.000'+3, Vg =V, = 1.000'-3

1 2
Then g = 1.000'+6
and M = 1.000'-6 (both exactly correct),
but 7 = 1.000'+6 (instead of the exact
1.000002000001'+6),
50 p = 0.000 instead of 2.000 . The difficulty is in

forming f’l(xgj_l + yéj) etc. when the elements of x may differ widely in
magnitude from the elements of y . This conclusion will also follow from

the rigorous error analysis below.

13

Let a = max |Xi| and b = max[yi| ,
n/2
- x. te.
and let E zl: %55.1%23 + eg etc

From (3.15) with n replaced by n/2 we get

-t
2
|eg| <2 l.az.(n + 6n - 8)/8 ,
and similarly -tl > o
|Eﬂ| <2 ~.b.n + 6n-28)/8.
If fl(x+ y) = x + y + € by (x any x;, v any y,)
-t
then |€x+y| <2 (x| + lyvD
< 27" (a+b)
Thus FL(x+y) (x'+y")) = (1 + e d(x + v + e)(x' + ¥ + €
=\ +y)(x' 4 y')+e, say,
-t -t
where |eJ <2 and.|el|,|62| <2 %(a + b)".

By expanding (3.25) it follows that
-t5 5
|e3| <2 “.3.(a+b),

where t5 is defined by
“ts -t -2t -3t
2 =2 + 2 + 2 s

(so in practice t3 ~t).

-t
Hence iey‘ <2 5.(5n/2).(a + b)2 +

-t -t
2 L ((n® + 20 - 8)/8)(a+b)(143.2) .

In all practical cases

-t

-t
(3n/2 + 3.2 Y((n° + 2n -8)/8)).2

-t
> S(Bn/é) o 2 ! ’

and with this assumption we get

-t
) <2 L((n° + 1in - 8)/8).(a + B)°.

14

3.4

(3.22)

(3.23)

(3.24)
(3.25)

(3.26)

(3.27)

From (3.23) and (3.27), the error € in p is bounded by

-t
<2t [((m2 +1kn - 8)/8)(a + B)2 + ((2° + 6n - 8)/8)(a° + b

+ br-g-n+ lgl + Inﬂ
(terms of order 2_2t have been neglected, but they may be dealt with as
above (see [12])).
Now |7 - € - M| < nab + O(E-t) , [E] < g a® 4 |e§|,lﬂ| < g b° +|en‘

2
and a4 b2 < (a+ b)),

-t

S0 |€| <2 2 .

2
1n_+ 12n -8 . (a + b)
By considering (3.29) with n replaced by n - 1 and a term added for
the error in computing and adding Xy, it may be shown that (3.29)

holds whether n is even or odd, and bounds the error in computing an

inner-product by Winograd's method. From (3.29) we obtain the bound

e <2 T Eten o8 (),)2

for matrix multiplication by Winograd's method. (A slightly stronger

result than (3.29) can be obtained if a = b, see [12].)

suppose ||All / ||Bll = k. (Assuming k #0 or =)
Then

Clall + B2 L e 2 a/) Al |Isll,

which shows thet (3.210) will be much worse than (3.16)
when k is very small or very large, and this is verified

by the example above.

Scaling

Ignoring the cases HAH = 0 and HBH = 0, it is always possible to
2Mla
find an integer A such that 1/2 Sngﬁg% < 2. Hence a practical

15

3.5

(3.28)

(3.29)

(3.210)

———

scheme would be to compute HAH and HBH (in O(ng) operations), find A s

A

and then apply Winograd's method to 2AA and 2" "8 rather than to A

and B. If this is done, then since

max (k+ 2 + 1/k) =9/2,
1/2<k<2

we get, in place of (3.210), the bound
-t
1
[Ell<2 3. + 120 - 8) Jall . |I8],

which is of the form (3.17) and is not much worse than (3.16).

This shows that Winograd's method is feasible provided some form of
scaling is used to make ||| ~ ||B| . Without scaling, the results may
easily lose all significance. This does not seem to have been mentioned
by anyone recommending the use of Winograd's method: e.g. blindly fol-

lowing the procedure recommended in [2] could lead to disaster.

A more sophisticated form of scaling could be used, but it is im-
portant to keep the time for scaling to a minimum, or Winograd's method
becomes slower than the normal method. The extra time taken by scaling

will be considered in Sec. k.

If it is easy to accumulate inner-products in double-precision then

this may as well be done. The error bound will still be like (3.211)

though, unless the terms + bgj and a, of (2.21)

a. . +
i,23-1 Lk ,25 TP25-1, x

are computed in double-precision. Then we get a bound
-t -2t
leli<e il +2 2O puosn-g 0 s,

provided that the terms x, and y, of (2.22), (2.23) are kept in

double-precision, and assuming scaling as above. (3,212) is very similar

to (3.18) and the same remarks apply.

16

(3.211)

(3.212)

—-

5.3 Strassen's Method

Assuming a bound |IE|| gedhﬂm.wu ¢ (Bl
for n x n matrices, it is possible to deduce a similar expression for
2n x 2n matrices, if the multiplication of these matrices is reduced to
the multiplication and addition of n x n matrices using Strassen's
identities (2.37). This gives f(2n) in terms of f(n), and as (3.31)
is certainly true when n = 1 (with f(1) = 1), we can find f(n) for n
an integral power of 2. If the "bordering" method is used for general
n then the zeros will have no effect on the error, 5o the bound for the

next power of two may be used.

To express f(2n) in terms of f{n), let A, B, and C be 2n x 2n
matrices (deviating slightly from our usual notation), and regard A, B,
and C as 2 x 2 matrices with n x n blocks. cConsider forming C =
f1(A.B) using the identities (2.37). Terms of order 2 2 yill be
ignored, for although they may be dealt with by replacing t by t'art

as we replaced t by t,, t. and t in Sec. 3.2, this complicates the

1 2 3

argument, and the results are not significantly different. For brevity
tet a = |hll, b = I8l -

The error in computing g, of (2.37) will be denoted by g ., so for
qi

example f1((a)) - 8))0y) = (ay; =ap)byp + B | (vhere a,,, a,,
1922 and qu are n x n matrices). Similarly, the error in computing
¢ 5 of (2.37) will be denoted by Eib. Thus
E.. ' E
C = f1(A.B) = A.B + E, where E = E;}%v 12
21 22

17

3.7

(3.31)

(3.32)

r——

-

3.8
Since g = fl((all"alz)'bee) , where the n x n matrix
multiplication is done by Strassen's method with the error bound (3.31),
and the matrix addition is done in the usual way, we have
-t
lEgall < 27 (o £ Yyl + g 10 Tl
so \lquH < 2 2ab.(n + £(m)) , (3.33)
and similarly for qu, Eq5, and th . For i = 5, 6 and 7
we get the bound
HEqu <2 bhab.(20+ £(n)) (3.34)
in the same way.
Now it follows from (2.37), neglecting terms in 2_2t, that
-t
Iz oll < gyl + Byl + 278 flayl + flay) (3.35)
but
2nab for i =1, 2, 3, 4
lla;ll <) (3.36)
bnab for i =5, 6, 7 ,
so from (3.33), (3.35) and (3.36) we obtain
Bl < 2% hab.(2n + £(n)), (3.37)
and clearly the same bound holds for E,- Similarly we have
el < gyl + el + m gl + im) +
-t
2"l | + 3llagll + 2lag] + llaglh (3.38)
(assuming ps q5, q5 and q7 are added in this order),
so [Byll < 2 % ab.(bn + 128(n)) (5.39)
and similarly for E22.
From (3.37) and (3.39) we see that
8] < 27" (bbn + 128(n)) .|ja|l.|8] , (5.310)
so (3.31) will hold if f satisfies f(1) = 1 and f(2n) =4kn + 12f(n) .
(3.311)

1R

-

3.9
By induction on k, it follows from (5.511) that
f(Ek) = %(27.12k - 22.2k) , (3.312)
o £7(25) < —251.12]" = %.(2}‘)1%212 . (5 0)

Hence, for general n, taking k such that n < Ek <2n ,

|13l } (5.51)

we have |l < 2_t.65nc.

]

where c = log2 12 ~ 3.58

(3.314) gives a bound for the error in matrix multiplication by
Strassen's method, as described in Sec. 2.3. The bound is of the form
(3.17), although the function 54115'58 increases rather more rapidly
than we would like. On the other hand, all the error estimates obtained
here are rather pessimistic, for the individual rounding errors are un-
likely to be correlated in the worst possible way. If our bound is
2-tf(n) HAHHBH then the actual error is probably about Z-t m HAHHB”

(see Sec. L.6).

The analysis above assumes that a "pure" form of Strassen's method
is used. In practice it turns out that Strassen's identities will be
applied until the matrices to be multiplied are of order ~ 100 or less,
and then the normal method will be-used (see Sec. %.3). Supposing we

k . oy .
have matrices of order 2 .n., and apply Strassen's identities k times,

0
multiplying the matrices of order . by the normal method. Then (3.311)

holds with

f(no) = (ng + 3no - 2) /2 (from 3.16) ,

so, assuming n, > 6, we have

0
£(2"n.) <16%a° . (3.315)
Thus, for n x n matrices, the bound becomes ||E||< 27t 52, |2]-1i8ll - (3.316)

19

3.10

Since k will be very small in practice, the bound (3.316) is not
too bad. Comparing it with (3.16), it appears that we may lose up to
two bits of accuracy, compared to that of the normal method, each time

Strassen's identities are applied recursively.

In using Strassen's method there does not seem to be much point in
doing some of the arithmetic in double-precision, unless it can all be done
in double-precision, when the above bounds hold with t replaced by 2t
(and a factor of 3/2 with Wilkinson's assumptions about the method of

rounding or truncating).

It is interesting to note that with Strassen's method there is no
point in scaling the matrices so that HAHNHBH. This is because, unlike
Winograd's identity, Strassen's identities never involve the addition of

an element of A to an element of B.

3.4 Complex Arithmetic

The above analysis is based on the assumptions that fl(x + y) =
x(1 + el) + y(1 + 62) and fl(xy) = xy(1 + 65) where |€i| < E-t,
i=1, 2, 5*. These assumptions will be valid for complex arithmetic too,
provided that t is decreased by a small amount (2 or 3) depending on how
the arithmetic is done. Hence, with this small change in t, the above
bounds will hold for complex matrix multiplication. Similar remarks
apply to real arithmetic done on a decimal or hexadecimal machine (e.g.

the IBM 360). A curious anomaly which appeared when Winograd's method

was being tested on an IBM 360/67 computer is described in Sec. 4.6.

* A stronger assumption about addition, used in Section 3.2, was not
really necessary (see [12]).

20

——

L. Implementation

In order to compare the normal, Winograd's and Strassen's methods
in practice, they were all implemented in ALGOLW [10] on an IBM 360/67
computer. Doubtless all three methods would run faster if coded in,
say, FORTRAN-H or assembly language, but their relative speeds would
probably be about the same. While it would be easy enough to code
the normal method and Winograd's method in FORTRAN or assembly language,
for Strassen's method it is very convenient to have a language which
allows recursive procedure calls. The simplest way to code Strassen's
method in a language like FORTRAN would be to limit the depth of re-
cursion and duplicate any subroutines which would naturally be called
recursively. The three methods were tested on both real and complex

matrices, with results which will be summarized below.

All three methods were coded in the form of a pure procedure,
with calling sequence
name (A, B, C, M, N, P)
to form C := A.B , where A is an M x N matrix (dimensioned (1 :: M,
1 :: N)), B is NxP, and Cis M x P, Calls such as name (A, A,
A, N, N, N) are valid, and correct results should be returned for any

M, N and P > 1, provided enough temporary storage is available.

At first the procedures were coded so that the"inner loops"involved
references to doubly-subscripted array elements. In ALGOLW such re-
ferences take considerably longer than references to singly-subscripted
array elements [1l], and it was found that all the procedures could be
speeded up by passing cross-sections of two-dimensional arrays as para-

meters to procedures which then operated on them as one-dimensional

21

h.1

o

-

arrays. (This is not allowed in ALGOL-60.) For example, instead of:
For T := 1 until M do
for J := 1 until N do A(I,J) := B(IJ);

we use:
For I := 1 until M do assign (A(I,*),B(I,*),N);

where we have defined

Procedure assign (real array A, B(*); integer value N);

for J := 1 until N do A(J) := B(J);
The second form will execute faster provided N > 10 . As this device
speeded up the normal method rather more than Strassen's method, it is
clear that a comparison of the three methods depends on the language

and the programming techniques used to implement them.

The implemention of each method will now be described in more detail.
The procedure for the real and complex cases are very similar, and list-

ings for the real case are given in the Appendix.

4.1 The Normal Method

(Procedure MATMULT, see Appendix, lines 288-311.) There are no

particular difficulties in the implementation of this method. Because

of the possibility that C is the same as A or B in the call, the product

is formed in a temporary array Q and then transferred to C. Thus M.P

words of temporary storage are used. Inner-products are accumulated in
double-precision, for in ALGOLW this is very nearly as fast as accumu-

lation in single-precision. Hence the error bounds (3.13) and (3.18)

are applicable (with the alteration noted in Sec. 3.l4), and in most cases each

c.lj will be the correctly rounded result, although this can not be guaranteed.

22

k.3

4.2 Winoarad's Method

(Procedure WINOGRAD, see Appendix, lines 219-285.) Again the
implementation is fairly straight-forward. The matrices A and B
are scaled as described in Sec. 3.2, and the scaled matrices are
stored temporarily in arrays D and E. Strictly speaking, scaling
should be done to the nearest power of 16 rather than 2, for scaling
by powers of 2 could introduce roundoff errors on the 360,and these
errors have not been taken into account in the error analysis (Sec. 3.2).

Taking account of these errors gives the error bound

-t
Il < 2 il Bl (4.21)

where K is a small constant, instead of (3.211). 1In the complex case,
|R(x) | + |I(x) | rather then |x| was used to save time. This increases

the error bound by a factor of at most 1.15

The inner-products X and Vie of (2.22), (2.23) are computed and
stored in the arrays X and Y. As stated above, it is not significantly
harder to compute and save the X, and Vi in double-precision, so this

is done.

In all, (n + 2)(m + p) words of temporary storage are used, which
is about twice as much as for the normal method if m = n = p. The sums

b and (a + b) of (2.21) are computed in

(85, 05-1 * Poy, %) i,25 7 Pej-1,k

single-precision, and then the inner-product involving them is computed,

as usual, in double-precision. If n is odd then the necessary correction

is made, and the final result f1(C) is formed. It is interesting to note
' +

that if the sums (ai,Ej-l bej,k)

puted in double-precision, we would be using double-precision throughout,

and (a were com-

1,25 " Pojo1,¥

25

r— rc r—— rr—

r

r— r—

e

r——

L.h

and the bound (3.212) would apply. Unfortunately,the extra time taken to
do this slows the procedure down so that it is never faster than the
normal method, so the sums could only be computed in single-precision,

and the best error bound we can get is of the form of (4.21).

4.3 Strassen's Method

(Procedure STRASSEN, see Appendix, lines 6-216.) The method im-
plemented is the following: First, if m, n and p are sufficiently small,
normal matrix multiplication is used (see below for the precise criterion).
Otherwise, m 1is replaced by 2@/@1 , n by 21n/9, and p by 2Lp/a .

A 1is partitioned into four m/2 by n/2 matrices and B into four n/2 by

p/2 matrices, ignoring the last row and/or column if necessary. The
block 2 by 2 matrices are multiplied using Strassen's identities (2.37),
which involves seven recursive calls to STRASSEN to compute the m/2 by
p/2 products Qs - - - % (actually C is used in place of Q7 to save
storage) . Finally, the result is corrected if the original m, n or p
were odd. This avoids wasting space and time by filling up the arrays
with zeros as described in Sec. 2.3 . 1In case C coincides with A or B,

some values needed for the correction step have been saved in arrays Sl

and S2.

Actually implementing the identities (2.37) is tedious but straight-
forward. The fast, general-purpose procedure OP is used to take advantage
of-the facility, noted above, for passing cross-sections of arrays as
parameters to procedures. In forming 1 and c22, the terms ql Coee Gy
are added before q5 oo q7, for otherwise the error bound would be in-

creased slightly. All arithmetic is done in single-precision except

24

k.5

for the accumulation of inner-products when normal matrix multiplication

is used, so the error bound (3.316) is applicable. Because of the double-
o . . k 2, .

precision accumulation of inner-products, the term 4 n” in this bound may

be replaced by 5.12knO .

Procedure IDENTITIES uses the temporary arrays T, U, Ql, Q2, .*a , Qo ,
taking (mn + np + bpm)/4 words. Since the procedure is called recursively,

at any one time we may need < (mn + np + 6pm)(1#-l P2y o)

(mn + np + 6pm) /3 words of temporary storage. (4.31)
The arrays S1 and S2, and the stack space required for recursive proce-

dure calls, will be negligible if m, n and p are reasonably large. The

space for the array Q, used when normal matrix multiplication is invoked,

may be absorbed into (4.31). Hence the temporary storage used is rough-

ly bounded by (4.31), and if m = n = p this is 8n2/5 words, or slightly

more than that required by Winograd's method and 8/3 times that required

by the normal method. For all three methods, the temporary storage re-

quirements can be reduced if C is not allowed to overlap A or B.

4.4 Comparison of the Three Methods

The three procedures described above were run under the same con-
ditions (idle with "nocheck" option) for various test matrices A and B.
Some running times for the case of square matrices are given in Table 1.
In each case the depth of recursion in procedure STRASSEN was kept at

exactly one.

25

Table 1 Running Times (in 1/60 sec.)

m=n-==5p Real case Complex case
Normal Winograd Strasseﬁ* Normal Winograd Strassen*

20 28 3k Lo 53 53 66

30 83 88 107 167 150 187

Lo 184 184 221 384 330 Lo1

50 3T 336 392 731 615 42

60 584 557 636

*Strassen's method with exactly one recursion. Run times varied

slightly, but were constant to + 1%.

By counting operations it is clear that the running time of each
method should be a cubic in n, and for Strassen's method the coefficients
will depend on the depth of recursion. It turns out that the constant
term is negligible, and the times in Table 1 are given to + 1% by cubics

3

T(n) = an” + bn2 + cn with the following coefficients:

Table 2 Cubic Coefficients, T = an3 + bn2 + cn, in y sec.
a b c
Normal ko . 270 2000
Real Winograd 37 200 9500
Strassen. 36 650 8000
Normal 90 320 2000
Complex Winograd 13 220 11500
Strassen* 80 790 8000

26

4.6

r-

L.7

Some interesting conclusions may be drawn from Tables 1 and 2.

Comparing the normal method with Winograd's method, we see that

3 4 2000° + 9500 < kon® + 270n° + 2000,

3 3

Winograd's will be faster if 37n

i.e. if n > 40 in the real case,and if 73n” + 220n2 + 11500 < 90n~ +

320n2 + 2000, i.e. if n > 21 in the complex case, which may be verified
by inspection of Table 1. As n + » , Winograd's method will run in
37/40 = 92% of the normal time in the real case, and in 73/90 = 81%

of the normal time in the complex case. The gains are significant

for reasonably small n: e.g. for n= 100 Winograd's method will save
7% (real) or 18% (complex). Hence, for moderately large matrices,

Winograd's method leads to significant, though not spectacular, savings,

and 1s worthwhile especially in the complex case.

It is worth noting here that it does not pay to reduce the multi-
plication of two complex n by n matrices to three multiplications of

real n by n matrices (plus some additions) by using (A + Bi)(C + Di) = (.41
A1
(E - F)+ (G - E - F)i, where E = AC, F = BD, and G = (A + B)(C + D), -

for complex matrix multiplication takes less than three times as long

as real matrix multiplication (using any of the three methods).

It follows from Table 2 that Strassen's method will be faster
than the normal method if n > 110 in the real case, and if n > 60 in
the complex case. Hence procedure STRASSEN should check to see if

n<n. (withn, set at 110 or 60), and if so use the normal method.

0] 0

If n>n. then Strassen's identities should be used to reduce n to n/2,

0

and the same test applied recursively. This is what the procedure ac-

tually does, except that n. is not compared just with n, but also with m

0

and p in case the matrices are rectangular. It can be seen by counting

operations that the appropriate test is if 3mmp < n

O(mn + np + pm) rather

27

r— r 1 r—

r—

—

ro r— r— r—— — r— r— r/— -7 o

r—

4.8
than if n < Dy The times given in Table 1 were obtained with Dy reduced
so that Strassen's identities would be used exactly once.
By counting operations, it can easily be seen that the time Tshﬂ
for multiplication of n by n matrices using Strassen's method should be
given by 3 >
an” + bn + en + d if n < n,
Tqn) = TT4(n/2) + a'n® + b'n + ' if p > . (4.42)
From (4.42) it follows that, if
k = max(0, Llogz(n/non + 1), ~
then
k k k
_ 1 3 7 ba ! 7 1.2
() = () ar’ + () b + P - Dan
k k
2
(D e+ 2D - (k.43)
2 5\
k 1,k
+(Ta + FT° - 1)))

The constants a, b, ¢ and d should be those given for the normal method
in Table 2 (d is negligible). The constants a', b' and c¢' determined to fit

the data in Table 1 are:

Table 3 Constants in (4.42) (p sec.)
Real case a' = 190 b' = 4000 c' = 120000
Complex case 220 4000 120000

The constants in Tables 2 and 3 are not very well determined by the
data (especially c and c'), and are not exactly consistent. For example,
from (4.42) and (4.43) we should.have, in Table 2, a.S = 7aN/8, while the

Table gives ag = 36 and ay = 4L0. The consistency is about as good as can be

expected though.

From (4.42) and (4.43) it follows that T.(n) = O(nlogéﬁ as n 4+ o,

28

S

v e

k.9

so for sufficiently large matrices Strassen's method is arbitrarily faster
than the normal method or Winograd's method. 1In practical cases, say for
n < 200, the normal method or Winograd's method appears to be faster.

By the above formulae we can estimate that Strassen's method will be
faster than Winograd's only if n > 270 (real case) or n > 280 (complex
case). On the other hand, these changeover points are very sensitive

to changes in programming techniques etc., so it is conceivable that
Strassen's method would be the fastest, in some language on some machine,
for matrices of order ~150. 1In most practical cases, Winograd's method
will be the fastest, except that the normal method will be faster for

sufficiently small matrices.

4.5 Paged Machines

Some machines (e.g. the Burroughs B5500) have a fairly small physical
memory but a large "virtual" memory. The user's program and data is divid-
ed into "pages", some of which may be held in fast core memory, and the
others on a device such as a disc or drum. When reference is made to a
page which is not in memory, a hardware interrupt occurs, «nd the required
page is read into memory from the external device (to make room for it, a.
page may have to be saved on the device). We say that a "page fault" has
occurred. As a relatively slow external device is involved, page faults
are very time-consuming and should be avoided as much as possible. (For
a discussion of the concepts of virtual memory, paging, segmentation etc.

see Randell and Kuehner [9].)

Mc Kellar and Coffman [4] have considered the number of page faults
which will occur when certain matrix operations, including multiplication,

are performed on large matrices using a machine with paging like that

29

described above. They conclude that, for a slight modification of the
normal method of matrix multiplication, it is better to store a large
matrix by submatrices, with each submatrix fitting into a small number
of pages, than by rows or columns. Even then, the number of page faults
will increase like n3 for sufficiently large n. Similar arguments would

apply to Winograd's method, again suitably modified.

Unlike the normal method or Winograd's method, Strassen's method
would perform well, with eventually O(n2'8) page faults, even when

simple row or column storage is used. This is because the only matrix

operations on matrices with n > n, are assignment and addition operations,

and these can be performed as efficiently when row or column storage is
used as for any other method of'storage. A few modifications to the
procedure STRASSEN in the Appendix should be made. n. should be de-

0

creased if necessary so that Dy by n. matrices can be multiplied in

0

core (without any page faults). Also, inner loops should involve oOpera-
tions on one row rather than on one column, if row storage is used.

Thus we should change double loops like

For J :

1l until Ndo for I := 1 until M do ...

to For I

1 until M do for J := 1 until N do ...

i

This also applies to the "implicit" loops when procedure OP is called:
e.g. lines 138 -139 should be changed to

For I := 1 until M2 do

0P(T(I,*),A(I,*),A(L,*),M2,0,N2,-1);
Hence Strassen's method might be competitive with the other methods for

smaller values of n on a paged machine than on a machine without paging.

30

k.10

—

r

4.6 Rounding Errors

The procedures were tested using matrices with elements uniformly
distributed in (-1/2, +1/2), or with real and imaginary parts having
this distribution. HEHE and HEHM were computed, assuming that the normal
method gave exact results, which is reasonable considering the error
bounds (3.13) and (3.18). As expected, the error bounds (3.211) and
(3.316) of the form ||E|| < e-tf(n) l|all . ||Bl| were too pessimistic, and the

actual ||E|| was more like 2k JE(n) ||A]l-|IB]| : See Table 4.

-t [~
Table Rl / (27 V(n) Ll Bl
n Real Strassen Complex Strassen Complex Winograd
30 0.27 \ 0.28 0.28
Lo 0.20 0.83 0.24

(taking f(n) ={%(n2 + 12n-8) for Winograd,
hkng for Strassen, and t = 21)

A surprising result occurred with Winograd's method in the real case.
The single-precision results agreed exactly with those given by the normal
method! This might be expected if the error bound (3.212), rather than
(3.211), were applicable‘' The anomaly is apparently caused by the special
nature of the test matrices and the characteristics of floating-point
arithmetic on the 360/67. As the elements of A and B were uniformly
distributed in (-1/2, +1/2), about 7/8 of them would have absolute values
in (1/16,1/2) . Since the 360 is a hexadecimal machine, any two such
numbers will be added exactly. This means that at least 49/6h of the sums

(X2j-l [=] QQJO 0 e (x2j+ Yoj l) of (3.21) will be formed exactly. As

31

h.11

£

e

4,12

remarked in Sec. 3.2, this means that we are effectively using at least
double-precision most of the time. Presumably the few errors made in
computing the above sums were not enough to affect the rounded single-
precision results, although it seems strange that all the elements of

a 50 x 50 product should agree, even to the last bit, when computed by
two such different methods. 1In the complex case this anomaly disappears,
for a rounding error will usually be made in adding either the real or

the imaginary parts of the above sums.

32

Y

’ r r—

T r— r

— o = o

5.1

5. Strassen-like Methods

For 2 x 2 matrix multiplication, both the normal method and Strassen's
method may be described as follows: given the %J' and bkL,'we form prod-
uctsqi,. coer O of the form

a, = (L0) (LB b)) o (5.01)
and then the Cpom 2T€ linear combinations of the qp, i.e. there are

constants 7mnp such that T
v = .
tho glymnpqp . (5.02)
p:

Substituting (5.01) in (5.02), equating coefficients, and using

the definition of matrix multiplication, gives the set of equations

T

o, . -5 .58
=1 *15pPKLp” mnp ni jk'Lm , (5.03)

where © is Kronecker's delta. (The subscripts on the Coq Were reversed

to increase the symmetry of (5.03).) For the multiplication of M x N
matrices by N x P matrices, (5.03) gives (MVP) 2equations as i, j, k,

L, m, and n range over the integers 1< i,n <V, 1< 3,k<N, 1L<ILm<P.
For example, in the 2 x 2 case with T = 7, we have 64 equations in 84un-
knowns, and Strassen's identities show that there is a solution. Strassen's

solution has the nice property that all the aijp’ BkLp and 7mnp are 0 or

+1 . Note that, if a solution of (5.03) exists, it will certainly not

be unique.

Strassen's method applied to 4 x 4 matrices shows that the
equations (5.03) have an (integral) solution when M = N = P = 4,
T = 49 (there are 4096 equations in 2352 unknowns). In general Strassen's

method shows that there is a solution with T = 7k when M = N = P = 2k

33

If there is a real solution with M = N = P and a certain T, then

. Lo . log T . . .
matrices of order n can be multiplied in O(n gN) arithmetic operations
by a simple extension of the method described at the beginning of Sec. 2.3.
While an integral or rational solution is desirable, in theory a real or

even a complex solution would suffice.

The problem leading to equation (5.03) can be generalized in the

following way: suppose a a_ and bl’ e ey bJ are non-commut-

12 o 3y

ing variables, o.

15k is a given three-dimensional array of real or complex

numbers, and we want 'to compute the K sums of products q = Z:oijkaibj

(k=1,. . .. K) in as few multiplications as possible. Then we want

the least possible T and scalars aiV B such that from the T

it Ykt
products

by = (§o2)(G850) , 1<t<T,

we can form the q as linear combinations of the Py s

T

Combining (5.04) and (5.05) and equating coefficients gives

Q.. B.. o..
it %T: 7kt ijk

i
-
LA

for 1<i<I, 1<j<Jd, 1<k<K,

and clearly (5.03) is a special case of (5.06).

To sharpen the upper bound (2.36) for the constant BO defined by
(2.35), we could look for solutions of (5.03) with M = N = P and
logNT < log27 . For example, we would like to find solutions with N = 2,
T=6or N=23, T=21orN-=1%,4 T =2L408.As (5.03) is a special case of
(5.06), and as it is convenient to avoid triple subscripts wherever possible,

we shall first consider (5.06),
3h

(5.2)

(5.04)

(5.05)

(5.06)

r——

e

o

In the case I = 1 it is not difficult to show that the minimal T

for which a solution of (5.06) exists is the rank of the J x K matrix

unity then there does not seem to be any such simple theorem,- and

examples with I = J = K = 2 show that the minimal T may depend on

whether the Qs 49 Bjt and Vit are allowed to be rational, real, or

complex. This is so even if all the {jk are integral. Hence we

are led to try numerical methods for solving special cases of (5.06).

If these methods find a real solution, then it is worthwhile to try
to find an integral solution, but if no real solution exists there

is no point in looking for an ‘integral solution.

35

and similarly if J or K = 1, If I, J and K are greater than

— r—

SR e r— r—

—

r——

5.k

5.1 Least Squares Approach

Because of the large number of equations (4096 for N = k),
conventional numerical methods like Newton's method are impractical
for finding a solution of (5.06). The problem may be regarded as one
of function minimization: we want to minimize the sum of squares of
residuals of the set of equations (5.06)., If B and y are fixed , then
(5.06) is a set of linear equations in the a, , Hence we could find a
least-squares solution of this (overdetermined) system, then fix y ,
¢ and find a least squares solution for B, then for), and repeat the
cycle. The sum of squares of residuals will converge to some non-
negative number, and hopefully this will be zero. Even this method

would be impractical, except that the coefficient of a, in the system

t
of linear equations happens to be independent of i. In other words,
the matrix of coefficients has I identical T x T blocks along the main

diagonal, and zeros elsewhere, so each least-squares problem splits up

into a number of smaller ones.

Writing x, for Ospy WE want the least squares solution of Ax =

o’

t t’ J

where A = (B, 0 (5.1)

) .
gkt (3,K),t.

The solution-is given by x = (ATA)_lATE (in the real case) , (5.12)

and we have

a8 = (5858, 00T neeed)t (5.13)
J k ’

T
and A'D = j(k L Bt x5kt - (5.14)
b

As noted above, (5.13) is independent of i, but (5.14) depends on i.

36

5.5

5.2 Acceleration of Convergence

It is not clear how one should make a good initial guess at a
solution of (5&%), but in any case, with randomly chosen @, B, and 2,
the initial rate of convergence is rapid. Unfortunately the convergence
soon slows down. One possible difficulty may be illustrated by a two-
dimensional example: suppose we try to minimize s(aB) by fixing B,
minimizing s with respect to a, fixing ¢ and minimizing s with respect
to B, etc. If the contour lines of s are ellipses as illustrated in

the diagram below, there will be a slow 'zigzag' approach to the

minimum.

B A

In the case illustrated, the following algorithm will speed up

convergence:

1/ i := 0; Guess BO

2/ Find 8% to minimize s(ai + éa,Bi).
3/ Find 68 to minimize s(oci + oO;Bi + SB).
4/ Find w to minimize S(aﬂi’s i+1),

_ o _ B
where @i = @y + w8 ,B = Bi + w8" .

1
5/ i:=1i+1.

i+l

6/ Go back to 2/ .
37

r— r " DR e

r—

r-—

—

r—

r—

—

e

In the simple case of a quadratic function s(o,B), this algorithm

will find the minimum in one cycle.

The same idea can be used in our more general problem. If s(g s B Z)

. . . a Ca Q
is the sum of squares of residuals, we find ® to minimize s(g_’+§_ ’§1l) '

then 6B to minimize s(a + &_alﬁ + GB,Z) ,

then g to minimize s(o + _6_a,§_ + _6_5,_7_ + 27) ,

then w to minimize s(g_',g',l') where a'= o + wéa etc.
Since
2
' ' t , o B AR
S((X)B Y) = . Z z (ait + Wéit)(BJ‘t + Wsjt)(ykt + kat)})
i,Jj, kLt
we can express s as a sixth degree polynomial in w, and then w can be

chosen to minimize this polynomial (globally).

38

5.6

(5.21)

6. Search for New Algorithms by the Least Squares Method

A program was written to try to find a solution of (5.03) using
the least-squares approach described in Sec. 5. Although it would be
interesting to look for complex solutions, only the real case was

considered.

The positive definite symmetric matrix ATA is found from (5.13)

and ATE is found from (5.14%), taking advantage of the identity.

Z B ¥) = ZB.')‘.
k,T;m,n kLu'mnu ni jk Lm I qu Liu

6.1 Calculation of s(g,8,7)

We shall use two or three subscripts on the a, B and y as con-

venient. The sum of squares of residuals of (5.06) is
- 2

S(a, E} 7) = Z Z aitB -tyk.t - 0. -
e L L& ijk| ?
L,k Lt J > J.

; % Byt Y

S0 S(OC,B,’)’)

i,3,k L
- 2 ji: o.. zz:cx. B..”
1,5k ijk T it Jjt 'kt
D N
. S ijk
i, j,k J

The straightforward evaluation of (6.11) for matrix multiplication with
. 6 . . | o . |
M=DN=P takes ~2N T operations (just counting multiplications). Using

(6.12) instead, the last two terms give no problems, in fact

2 Z . 2

Z O . (6,.6..86)" = M.N.P
. = ijk A 1 kL mn

i, Ik J i,3,k,L,myn !

39

(6.01)

(6.11)

(6.12)

(6.13)

- and Z o.. Z Q.. B..y
. 1,3,% ijk " it jt 'kt
) = X @ By 6 .8 8
1,3,%,L,mn,t ijt kLt 'mnt ni” jk Lm
= = z “iththYLit ' (6.14)

i’ j) L’ t
and the evaluation of (6.14) requires only N21\T5T operations. The first

term in (6.12) 1is

2
. Z (z B .7.) = Z[(Za.a.)(gﬁ.,ﬁ,)gy 7&1, (6.15)
1,3,k t it" jt'kt t,ul 1 it iu jJ't Jju kt 'k
and the right side of (6.15) involves ~5N2T2/2 operations (50% are
sgved by symmetry). Since we are interested in values of T~N2‘8, s can

be found from (6.12) -(6.15) inv5N7'6/2 operations instead of ~2N8'8

using (6.11) . Hence it is much faster to use (6.12) - (6.15), although

—, M r

this involves some loss of accuracy.

~ 6 .2 Quadratic Approximation

At first the coefficients of w in the sixth degree polynomial p(w)
of (5.21) were calculated using @, B, 7, Qa, _6_8 and §7, and the global
minimum of p(w) was found. Evaluation of the coefficients of p(w) was
rather time-consuming, and it was noticed that the minimum usually occurred
for 1 < w < 2, and in this range p(w) was approximated very well by the

quadratic fitting p(0), p(l) and p(2).

Since p(0) = s(e,B57) is already known,

and both P(1) s(g+§a,§+§5, 71'5_7)

and P (2) =s(g+2§a,§+2_§_a,z+2§_7) may be found by the method of Sec. 6.1,
the program was speeded up considerably by using the quadratic approximation,

and the rate of convergence was not noticeably diminished.

40

I
\
i
-

rooor

6.3

As a precaution, necessary for the first few iterations anyway, w
was constrained to lie in [1, 3] . Once w was chosen, s(g&wﬁ% gﬁwﬁﬁ,
waiﬁ was computed (using previously calculated inner-products like

chuaiQ, and a check made that it was less than p(l) and p(2)
After the first few iterations these precautions usually turned out to

Al (04 .
. = .+ . . + .
be unnecessary Note that, once sX § (alu xbng (a1v xélv) is

found for x = 0, 1 and 2, we can find any SX from

1,,.2 2 2 ~
s.= (¥ - y)sy + (2-2y7)s) + (¥" + ¥)sy), wherey =x-1

This device was also used to save some-time. There is a danger of
, , . 2
numerical instability unless \%(Y” - y)| <1, i.e. unless 0 <x< 3,

which is one reason why w was constrained to lie in [1, 3]

I fM=N= P, the number of operations (just counting multiplications)
. 2 2 , 2 N5
per complete cycle is ~ (15N +T)T°/2 . Since N” < T < for the cases of
interest, this grows very rapidly with N. On the other hand, we are trying
6
to solve N nonlinear equations in BNQT unknowns, so it would be surprising

if any other method could do much better.

6.3 Summary of Results

The attempt to lower the bound (2.36) was unsuccessful, but some
interesting negative results were obtained. For 2 x 2 matrices, many
solutions were found with T = 7, but s never fell below 1 for T = 6,
strongly indicating that Strassen's method gives the minimal number of
multiplications for 2 x 2 matrices (at least for real Q, B and Z)' With
T = 7 each iteration took about 0.2 sec. and convergence was fairly fast,

and appeared to be linear.

41

r— r —— r—

—

r— r—

r

—

r—

r —

—

6.k

Trying T =1, 2, . . . T for 2 x 2 matrices, it was found that

7if T =5, 6 or 7

inf(s) + T=(8 if T

1, 2or 3

7.59 if T =4 .

]

Thus the minimal sum of squares of residuals is usually integral, but

appears to be nonintegral for T = k.

3 x 3 matrices may be multiplied in 26 multiplications by using

Strassen's method on a 2 x 2 submatrix-. It appears that there is also

a solution with T = 25: the program (taking 3 sec./iteration) reduced

s to 0.18% in 33 iterations, and s was still slowly decreasing. Knuth

has found a solution, involving 'cube roots of unity, with T = 24%. How-
ever, log52h > log27, and in fact 1og521 < log27 < log522, so a solution
with T < 21 is necessary to improve the bound (2.36). When the program was
run with T = 21, s appeared to be tending to 2 rather than to zero. If

the rule inf(s(T)) + T > %ﬂn , which was observed for the 2 x 2 case,

holds generally, this would indicate that for 3 x3 matrices Tmin < 23

For 4 x 4 matrices the program was run with T = 48, to try to improve
on Strassen's 49. Unfbrtunately, each iteration took 18 sec., and con-
vergence was slow, so lack of computer time forced a return to smaller

problems.

- Various cases of small rectangular matrices were investigated. For
example, the program was run with M = P = 2, N = 4 and with M = P = 4,
N =2 . In these cases the smallest T for which s appeared to be tending

to zero was exactly the T to be expected by partitioning the matrices and

4o

—

applying Strassen's method. Convergence often slowed as s approached 1,
and speeded up again once s < 1, and there was no case in which s <1
was attained, but for which s failed to tend to zero. Perhaps 5(9 s By Z)

has some local minima or saddle points, but they all have s > 1.

To summarize the results: although nothing has been rigorously
proved, it appears likely that, to improve on the bound (2.36), matrices
of size at least 4 x 4 must be investigated. It is plausible that there
are no (real) methods better than Strassen's for the 2 x 2 or 3 x 3

case, and if this is so it is unlikely that any new method could be of

much practical use, although it would certainly be of theoretical interest.

A practical method needs to have rational Q, B and), and to be fast for
reasonably small matrices most of the components of & B and y should

vanish.

k3

6.5

[

7.1

7. Conclusion
While the normal method takes O(nj) operations to multiply n x n
2.8 . ,
matrices, Strassen's method shows that O(n) suffice. In practice,

though, the normal method is faster for n < 100 . Winograd's method,
while still taking O(n3) operations, trades multiplications for
additions and is definitely faster than the normal method for moderate
and large n, with a. gain of up to about 10% for real matrices and up to
about 20% for complex matrices. The gain would be greater for double

or multiple-precision arithmetic.

Floating-point error bounds can be given for Strassen's and Winograd's
methods, and the bounds are comparable to those for the normal method if
the same precision arithmetic is used. With Winograd's method the necessity

for prescaling can not be emphasized too strongly (see also [12]).

Provided scaling is used, Winograd's method can be recommended, es-
pecially in the complex case, unless very high accuracy is essential. It
is much easier to code than Strassen's method. Possibly Strassen's method

would be preferable when working with large matrices on a paged machine.

Attempts to lower the constant logET = 2.8... given by Strassen's
method were unsuccessful. A completely new approach seems necessary in
order to bring the upper and lower bounds on the computational complexity
of matrix multiplication much closer together. For matrices of reasonable
size, though, it seems unlikely that any new method could be very much

faster than the known methods on a. serial computer.

Ll

8.1

Acknowledgement

I would like to thank R. Floyd and J. Herriot for their helpful advice,

and CSIRO (Australia) for its generous financial support.

References

1. Floyd, R. W. Unpublished notes.

2. Fox, B. L. "Accelerating LP Algorithms", CACM 12, 7 (July 1969),
384 - 385.

3. Knuth, D. E. "The Art of Computer Programming", Vol. II,
"Seminumerical Algorithms", Addison Wesley, 1969.

b, Mc Kellar, A. C. & Coffman, E. G. "Organizing Matrices and Matrix
Operations for Paged Memory Systems", CACM 12, 3 (March 1969)
153 - 165. ,

5. Strassen, V. "Gaussian Elimination is Not Optimal", Numer. Math. 13,

354 - 356 (1969).

6. Wilkinson, J. H. "Rounding Errors in Algebraic Processes", H.M.S.O.,
1963.
7. Winograd, S. "A New Algorithm for Inner-product", IEEE Trans. C-17

(1968), 693 - 69k,
8. Winograd, S. Unpublished communication.

9. Randell, B. & Kuehner, J. '"Dynamic Storage Allocation Systems",
CACM 11, 5 (May 1968), 297 - 306.

10. Wirth, N. & Hoare, C. "A Contribution to the Development of ALGOL",
CACM 9, 6 (June 1966),413-L431.

11. Bauer, H. & Becker, S. & Graham, S. "ALGOLW Implementation™,
Tech. Report No. (898, Computer Science Department, Stanford Uni.,
(May 1968) .

12. Brent, R. P. "Error Analysis of Algorithms for Matrix Multiplication

and Triangular Decomposition Using Winograd's Identity', to appear.

45

APPEND-IX

ALGOLW procedures and test program

L6

r’"'s'“‘.‘,‘f

- 0001 1- BEG | N COMMENT:
; 0002 —- TEST PROGRAM FOR PROCEDURE STRASSEN, WI NOGRAD& M ATMU LT,
3 0003 == FILE ISBRENT.TESTSTRASSEN ON SYS09;
0004 --
- 0005 =--
0006 =-- PROCEDURE STRASSEN (REAL ARRAY A, B, c(*,*);
0007 =~ INTEGER VALUE M, N,P);
0008 2~ BEG | N COMMENT :
- 0009 == IF A IS ANM X N MATRX, AND B IS AN N X P MATRIX,
0010 =-- THEN THEM X P PRODUCTMATRIX A. B | S RETURNED | N C.
0011 == A MODIFIED FORM OF STRASSEN’S METHOD IS USED WHEN
0n 12 == M, N, AND P ARE SUFF | Cl ENTLY LARGE. IT IS BASE@ ON THE
0013 == FOLLOWING IDENTITIES WHICHHOLD IN THE 2X2 CASE:
JO14 --
0015 -~ Cl1 = Q1 -Q3-05 + Q7,
0016 == €12 = Q4 - Q1,
— 0017 == c21= Q2+ Q3, AND
] 0018 -- Cc22 =05+ Q6 =-0N2-0b, WHERE
0019 -- Q1 = (All - Al12).822,
0020 =--. Q2 =(A21 - A22).B11,
— 0021 == Q3 =A22.(B11 + B21),
0022 == Qs = Al11.(B12 + B22),
0023 -~ N5 = (A1l + A22).(B22-B11),
0024 -- N6 = (All + A21).(B1l1 + B12),AND
L-. 0025 -- N7 =(A12 +A22).(B21 + B22)
0026 --
0N27 == A,BRAND/ORC MAY BEIDFNTICAL OR OVERLAPPING IN THE
(1028 «- CALL TO STRASSEN. IN THE CASE M=N=PTHE INTERMENIATE
— 0122 -- STORAGE REQUIRED IS ABOUT 8N*%2/3 REAL WORNDS, THIS
0no30 -- COULNRFE REDUCED TON*#*2 (ORMORF GENERALLY
0031 ~-= (MM + NP +PM)/3)RY BUILDING UP THE PRODUCT AFTER
0032 -- FACHCALL TO STRASSEN INEVENMULT, BUT THEN C COULD
- 0033 =-- NOT OVERLAP A OR R, AND THE PROCEDURE WOULD BE
0034 -- RATHER SLOWER.
0035 =-~-
0036 -- IF 3MMP/ (MN+NP+PM)<=NO THEN NORMAL MATRIX MULTI PLICATION
— 0037 -- | SUSFP, THIS ISBECAUSE STRASSEN’S IDENTITIES SAVE
0038 == TIME ONLY IF A MULTIPLICATION TAKES LONGER THAN 14
0033 -- ADDITIONS, WHICH IS CERTAINLY FALSE FOR MATRICES SMALLER
oo -- THAN 14 X 14, OR A LITTLE LARGER. THE NUMBER NO
- 0041 == | SMACHI NE ANDCOMPI LER-DEPENDENT, RUT 100 | SABOUT
0042 -~ OPTIMAL FORALGOLW ON THE 360/67 (WITH NO ARRAY BOUNDS
0043 =-- CHECKING).
0044 ==
— 0045 == THE TIME FOR PROCEDURE STRASSEN IS ABOUT THE SAMEA S
0046 == FOR THE NORMAL METHOD FOR SMALL M, N AND P, BUT FOR
0047 == LARGEM,NAND P THE TIME MULTIPLIES BY 7 (RATHER
0048 =-- THANS)EACHTIMEM, N AND P ARE DOUBLED. ACCURACY
- 0049 == IS NOT MUCH WORSE THAN FOR MATRIX MULTIPLICATION BY
0050 == THE USUAL METHODWITH ALL OPERATIONS DONE IN SINGLE
0051 == PRECISION.
0052 ==~
- 0053 =~- R RRFNT, JULY 1969;
0054 ==
0055 == REAL PROCEDURE IP(RFAL ARRAY A, B(#*); INTEGER VALUEN);
0056 3~ BEG | N COMMFENT :
. 0057 == RETURNS THE INNER PRODUCT OF THE N-VECTORS A ANNB;
0058 ==
0059 == LONG REAL S;
0060 == S := 0L;
-- 0061 == FOR I =1 UNTL N NO S:= S + AC1)*B(1);
0062 == ROUNDTOREAL(S)
0063 =3 END IP;
- 0664 ==
— 0065 == PROCEDUR EOP(REAL ARRAY A, B,C(#*#); INTEGER VALUE MI,6 M2,M3,F);
0066 3- BEGIN COMMENT: a7

EFFECTIVELY DOES:

FORI! := 1 UNTILM1 DO

ACl) := B(1 + M2) + F+C(| + M3)

WHERE F = 0, +1O0R-1.

NOTE THAT IN ALGOLW 1-D ARRAY ACCESSES ARE MUCH
FASTER THAN 2-D ACCESSES;

IF F> 0 THEN
BEGIN IFM2=0 THEN
BEGIN IF M3=0 THEN
BEGIN FOR | ¢= 1 UNTIL MI DOA(I):=B(1)+C(1)
END
ELSE FOR I := 1 UNTL M DO A(1):=B(1) + C(1 4+ M3)
END
ELSE
BEGIN IFM3=0THEN
BEGIN FOR | := 1 UNTIL M1 DO A(1):=B(1+ M2).C(I)
END
ELSE FOR | := 1 UNTILM1 DO A(l) :=B(| + M2) + C(1 + M3)
END
END
ELSE IF F ¢ 0 THEN
BEGIN IF M2=0 THEN
BEGIN IFM3=0 THEN -
BEGIN FORI := 1 UNTILM1 DO A(l):=B(1)-C(1l)

END
ELSE FOR I = 1 UNTIL M1 DO A(1):=B(1)-C(l + M3)
END
ELSE
BEGINIFM3=0 THEN
BEGIN FOR | := 1 UNTIL M DO A(1):=8B(14+M2)-C(I)
END
ELSE FOR I = 1 UNTIL M1 DO A(I):=B(1 + M2)=C(] + M3)
END
END
ELSE

BEGIN IF M2=0 THEN
BEGINFOR | := 1 UNTILM1 DOACt):=B(1)
FND
ELSE FOR | := 1 UNTL M1 DOACE):=R(1 + M2)
END

END OP;

COMMFNT : IF M, N,ORP|SHALL USE NORMAL MATRIX MULTIPLICATION.
THE CONSTANT NO MENTIONED ABOVE IS REDUCED TO 29 FOR
CHECK | NG PURPOSES;

| F(3%MaN#P) <= (29%(M*N + -N*P + P*M))T H E N

BEGIN COMMENT: WEUSE A TEMPNRARY ARRAYOQIN CASE C=A OR B;
REAL ARRAYQ (1 : : M, 1 : : P);

FOR | := 1 UNTL MDO FOR J:= 1 UNTL P DO

adl,d) := |P(A(|,*), R(x,J), N);

FORI t= 1 UNTILMD oQP(C(l,*),n(),*),Q(t,*),P, 0, 0,0)
END

ELSE
BEG | N COMMFNT: USE STRASSEN’S METHOD;

PROCEDURE |IDENTITIES;
BEGI N COMMENT:
THE IDENTITIES ARE PUT HERE TO AVOID SEGMENT
OVERFLOW;

48

0133 --
- 0134 -- REAL ARRAY T(1 :: M2, 1 :: N2);
0135 -- REAL ARRAY U (1 :: N2, 1 :: P2V:
0136 -- REAL ARRAY Q1, 02, 03, a4, 05, Q6 (1 :: M2, 1 . .p2);
0137 --
— 0138 -- FORJ := 1 UNTIL N2DO
0139 —- OP (T(x,d), AC, J),A(x, 4 + N2),M2, 0, 0, =1);
0140 —- FOR | := 1 UNTIL N2DO
0141 -~ oP (UCK,*),B(1 + N2, *),BCL#Y, P2 P2, o, 0);
= 0142 —- STRASSEN(T,U,Q1, M2,N2 P2);
0143 —- FOR | := 1 UNTIL M2 DO
0144 —- OP (T(1,*), AL + M2 *),All + M2 *),N2, 5, o, -1);
0145 —- STRASSENI(T,B, Q2,M2,N2,P2);
o 0l46 —- FOR | := 1 UNTILM2DO
0147 -~ OP (T(i1,*),A(1 + M2, *),A(l,*), N2, N2, 0, 0):
0148 —- FOR l:= 1 UNTIL N2 DO
. 0149 —- OP (UK, *),B(1,*), B+ N2.,*), P2, o, o, 1);
0150 -- STRASSEN(T,u,03,M2,N2,P2);
0151 —- FOR J := { UNTIL P2 DO
0152 —- OP (U(w,d),B(», J + P2),B(*, J +P2), N2, 0, N2, 1);
L 0153 —- STRASSEN (A, U, 44,M2,N2,P2);
0154 —— FOR | := 1 UNTIL M2 DO
0155 -- oP (TCL, %), ACL, *), ACL+ M2 *), N2, o, N2, 1);
0156 —- FOR | := 1 UNTIL N2 DO
L 0157 —- OP (U(l,*), BCI+ N2 .*)l B‘('ll*)l P2, P2, 0, -1);
0158 —- STRASSEN(T,U,Nn5,M2,N2,P2);
0159 —- FOR | := 1 UNTILM2DO
L 0160 —— oP (T(1,*), A1, *),All+ M2 *), N2, 0, 0, 1);
0161 —- FORJ := 1 UNTIL P2 DO
0162 —— oP (U(x, J), B(w, J), B(x, J +P2) N2 ,0 ,0 1)
] 0163 -- STRASSEN (T, u 06,M2,N2,P2); *
0164 — FOR J := 1 UNTIL N2 DO
L 0165 —- 0P (T(w, d), Als, J + N2), AC, J +N2), M2, (, M2, 1);
0166 == FOR | := 1 UNTIL N2 DO
N 0167 —- OP (U1, *),B(E + N2 *),,3(1+ N2 *), p2, 0 P2 1);
: 0168 -- STRASSEN(T,U,C, K M2,N2,P2);
L 0169 --
0170 -- FOR l:= {1 UNTIL M2 DO FOR J := 1 UNTL P2 DO
R 0171 5- BEGIN
0172 -- c (1,d) = 01(1,d) = 03 (1,d)+ ¢C (1,d) -0Q5(C1,d);
k 0173 -- C (1,0 + P2) = Q4(1,d) - Q1(1,d);
0174 —- c (I +M2,4) :=Q2(1,4) + Q3(t,d);
' 0175 -- c (1+M2,0+P2) :='05(1,J) + Q6C1,J) - (02(1,y) + Q41 J))
0176 -5 END
0177 -4 END IDENTITIES;
0178 -- .
0179 —- REAL ARRAY S1(1l:: P);
0180 — — REAL ARRAYS2(1::M);
0181 — — INTEGER M2,N2,P2;
0182 -=- M2 :=MDIVY 2, N2 := NDIV 25 P2 := P DIV 2,
0183 — —
0184 — — COMMENT: THIS PARTHUST BE DONE NOW IN CASE C=A OR B;
0185 — —
0186 —— I F(2%142) ¢ M THEN
0187 4= BEGIN FOR J := 1 UNTIL 2#P2D0
0188 — — S1(J) := IP(A(M, %), B(=*, J), N)
0189 - 4 END;
0190 —-
0191 —- | F(2*P2)< P THEN
0192 4= BEGIN FOR | := 1 UNTILM DO
0193 —- S2(1) = IP(A(I,*), B(=*,P), N)
0194 -4 END;
0195 —-
0196 == IDENTITIES;
0197 --
0198 —- f12 = 2*M2; N2 :=2#N2; P2 :=2+P2:

49

=

0199 --
0200 -- COMMENT : IFM,N, OR P WAS ODD WE HAVE TO FI X UP THE BORDERS;
0201 —-

0202 —- IF N2 < N THEN

0203 4= BEGIN

0204 —- FOR I := 1 UNTIL M2 DO FOR J := 1 UNTIL P2 DO

0205 —- c(i,J) = ¢c(1,d) + ACI,N)*B(N,J)

0206 -4 END;

0207 —--

0208 -- IF M2 <M THEN

0209 4= BEGINF O RJ:= 1 UNTIL P2 DOC(M,J):= S1(J)

0210 -4 END;

0211 —-

0212 —- IF P2 < P THEN

0213 4~ BEGIN FOR | := 1 UNTILMD OC(I,P):=S52(1)

0214 -4 END

0215 -3 FEND

0216 -2 END STRASSEN;

0217 --

0218 ——

0219 == PROCEDURE WINOGRAN(RFALARRAY A,B,C(%,%*); INTEGER VALUE M, N, P);
0220 2= BEGIN COMMENT:

0221 —- IF A IS AN M X N MATRIX AND B AN N X P MATRIX, THEN
0222 -- THEIR PRODUCT A.B IS RETURNED IN C. WINOGRAD'S METHOD
0223 -- ISUSENWITHPRESCALING TO ENSURE GOOD ACCURACY;
0224 —-

0225 —- REALPROCENDUREWP(REAL ARRAY A,B(#*); LONG REAL VALUE X, Y);

0226 3- BEG! N COMMENT:

0227 —- RETURNS THE INNER PRODUCT OF THE N-VECTORS A AND B,
0228 —- USINGPRECOMPUTED X AND Y. NIS GLOBAL;

0229 —-

0230 —- LONG REAL S;

0231 —- S = -(X+Y);

0232 —- COMMENT: IF THE NEXT STATEMENT IS REPLACED BY:

0233 - FOR | := 2 STEP 2 UNTIL2*(NNDIV2)D O

0234 —- S :== S+ (LONG(A(I=1)) + LONG(B(I1)))*(LONG(A(!)) + LONG(B(1-1))).,
0235 —- THEN THE CORRECT]Y. REUNREN oS WGLE-PRECISION RESULT IS USUALLY
0236 —-— RETURNED (ASSUMINGPRESCALING). UNFORTUNATELY TH | S SLOWSDOWN
0237 - THE ALGORITHM SD THAT ITISNO LONGER FASTER THAN THE USUAL ONE;
0238 —- FOR | :=2 STEP 2 UNTIL2#(NDIV2)D O

0239 —- S = S +(A(1 - 1) + BCI))=CACL) + B(1 - 1));

0240 -- IF (N REM 2)> 0 THEN S := S +A(N)*B(N);

0241 —- ROUNDTOREAL(S)

0242 -3 END WP;

0243 —-

0244 —- LONG REAL PROCEDURE XI(REAL ARRAY A(*));

0245 3- BEG! N COMMENT: .

0246 —- USED TOPRFCOMPUTE THE FUNCTIONS OF AREQUIRFDB Y WP;
0247 —-

0248 —— LONG REAL S;

0249 —— S := 0L;

0250 -- FOR Il (= 1 STEP 2 UNTIL N = 1 DO S := S +A(1)*A(1+1);

0251 —- S

0252 -3 END XI;

0253 —-

0254 —- PROCEDURE MAX (REAL ARRAY A(*); REAL VALUE RESULTBD);

0255 —- FOR | = 1 UNTIL N DO IF BD<ABS(A(I))THENBD:=ABS(A(1));

025G —-

0257 —- PROCEDURE MUL(REAL ARRAY A,B(*); REAL VALUEM);

0258 —- FOR | := 1 UNTIL NDOA(I):=M*B(1);

0259 —-

0260 —— REAL AMAX, BMAX, MULT;

0261 —- COMMENT: THE ARRAYS D ANDE ARE USED AS TEMPORARY STORAGE IN CASE
0262 —— SOMEOF A,BANDCCOINCIDF;

0263 —— REAL ARRAY D(1:M 1 :: N);

0264 —— REAL ARRAY F(1 :: N 1 :: P);

50

0265 —— LONG REAL ARRAY X(1 :: M);

0266 —- LONG REAL ARRAY Y(1 :: P);

0267 —-—

0268 —- COMMENT: A AND B ARE SCALED BY SUITABLE POWERS OF TWO TO 61 VE GOOD
0269 —— NUMERICAL PROPERTIES, AND THE SCALED MATRICES STORED IN
0270 —- N AND E;

0271 — AVMAX :=BMAX: = 0.0 ;

0272 —- FOR 1 t= 1 UNTILMDOMAX(A(I],*),6AMAX);

0273 —- FORK 2= 1 UNTIL P DOMAX(B(=*,K),BMAX);

0274 -- MULT := IF (AMAX>0) AND (BMAX>0) THEN

0275 —- 2%+ (TRUNCATE((LNG(BMAX) - LOG(AMAX))/LOG(L4) 4 200.5) = 200)
0276 —— ELSE 1.0;

0277 —- FOR Il := 1 UNTIL MDOMUL(D(CL,=*),ACl,*),MULT);

0278 —- FOR K := 1 UNTIL P DOMUL(FE(*,K),B(*,K), MULT);

0279 -- COMMENT: NOW SOME CONSTANTS ARE PRECOMPUTED AND SAVED IN X AND Y;
0280 —— FOR | 1 UNTILMD OX{(I1):=XI1(D(1,*));

0281 —- FOR K = 1 UNTIL P DOY(K):=XI(E(*,K));

0282 -- COMMENT : NOWTHE INNER PRODUCTS ARE FOUND;

0283 —- FOR | := 1 UNTIL MDO FOR J:= 1 UNTL P DO

0284 —-- c(1,Jd) :=UupP(nCl,*), E(*,J), X(1), Y(J))

0285 -2 END WINOGRAD:;

0286 —-—

0287 —-

0288 —-- PROCEDURE MATMULT (REAL ARRAY A,B,C(=*,*);

0289 -- INTEGER VALUE M, N, P);

0290 2- BEGI N COMMFENT :

0291 -- FORMS C := A.B IN THE USUAL WAY;

0292 ——

0293 -- REAL PROCEDURE IP(REAL ARRAY A,B(#*); INTEGER VALUEN);
0294 3- BEGI N COMMENT:

0295 —- RETURNS THE INNER PRODUCT OF THE N-VECTORS A AND B;
0296 —-

0297 -- LONG REAL S;

0298 —- s : =01;

0299 —-- FOR |1 := 1 UNTL N DO S :=S4 A(1)*B(I);

0300 -- ROUNDTOREAL(S)

0301 -3 END IP;

0302 —-

0303 —-- PROCEDURE ASSIGN(RFALARRAY A,B(*);INTEFGERVALUEN);
0304 —- FORI1 :=1 UNTILND OA(I):=B(1);

0305 —-

0306 —- COMMENT : Q ISUSENDIN CASE C COINCIDES WITH A OR 3;
0307 —-— REAL ARRAYQ(1 : : M, 1 : : P);

0308 —-- FOR I := 1 UNTIL MDO FORJ:= 1 UNTL P DO

0309 —- QCl,Jd) := 1PCACL,*), B(*,J), N);

0310 -- FOR I := 1 UNTIL M DO ASSIGN(C(l,*),0(l,*),P)

0311 -2 END MATMULT;

0312 —-

0313 —-

0314 —- INTEGERRAN1,RAN2,RAN3, RAN4;

0315 -- INTEGER ARRAY RAN5 (0 :: 255);

0316 —-

0317 —- PROCEDURE RANINIT (INTEGERVALUER1);

0318 2= BEG! N COMMENT :

0319 -- MUSTBF CALLED WITH ANY INTEGERR 1

0320 -- TOIN | T I AL | ZE PROCEDURE RANDOM;

0321 —--

0322 —- INTOVFL :=NULL; COMMENT: MASKS OFF INTEGER OVERFLOW;
0323 —- RAN1:=1 ; RAN2 :=2*ABS(R1) 4 1 ;

0324 —-- FOR I =0 UNTIL 255DORANS5(I):=RAN2:=RAN2*65539
0325 -2 END RANINIT;

0326 ——

0327 -- REAL PROCEDURE RANNOM;

0328 2- S3EGI N COMMENT:

0329 — USESTUNSIMPLFLEHMFR GENERATORS OF THE FORM
0330 -- X(N+1) = X(N)*A (MOD T) WITH

51

-

——

- r—— r— r

r— — r~

t

0331
0332
0333
0334
0335
0336
0337
0338
0339
0340
0341
0342
0343
0344
0345
0346
0347
0348
0349
0350
0351
0352
0353
0354
0355
0356
0357
0358
0359
0360
0361
0362
0363
0364
0365
0366
0367
0368
0369
0370
0371

0372 =~
0373 =

0374
0375
0376
0377
0378
0379
0380
0381
0382
0383
0384
0385
0386
0387
0388
0389
0390
0391
0392
0393
0-394

Al 11**11 (MOD T1) =6435, T1=2*+13-1= 8191,
A2 2%%x16+3 =65539, T2 =2%*31=2147483643.
THE FIRST GENERATOR JUST POINTS TO THE TABLE OF
ENTRIES FOR THE SECOND GENERATOR, SO GOOD RANDOM
NMUMBERSWITH A CYCLE LENGTH AT LEAST 2.10#%12 ARE
PRODUCED.

THE IDEA IS DUE TO MACLAREN AND MARSAGLIA, SEE
KNUTH, VOL 2, PG 30, ALGORITHM M.

REALOUTPUT UNIFORM IN(0,1).

NOTE THAT INTEGER RAN1, RAN2, RAN3, RANA AND
INTEGER ARRAY RAN5 (0::255) MUST BE DECLARED
GLOBALLY ANDRANINIT MUST BE CALLED FOR
INITIALIZATION;

RAN1 := (RAN1#*6435) REM 8191;

RAN3 := RAN1 REM 256;

RAN4 := RAN5S (RAN3);

RAN2 := RAN5 (RAN3) := RAN2 * 65539;

RANMd * 0.465661287"'.9
END RANDOM

PROCEDURERANSFT(RFAL ARRAY A(*,*); INT Ecer VALUE M, N);
FOR | =1 UNTILMDO FOR J := 1 UNTIL N NO
AC1,J) : =RANPOM =0 .5 :

COMMENT : CALLING PRORRAM;

INTEGER R, M,N, P, T; REAL S, MAX, DEL, SW MAXW;
READ(R);
WHILE R "= 0 DO
B E G| NREAPON(M,N,P); RANINIT(R); WRITE(" "); WRITE(" ");

WRITEC"R", R " M, M, W N", N,
" P', P);
BEGIN
REAL aRrRRay A(1:M, 1 =:: N);
REAL ARRAY B(1 : N, 1 HI P);
REAL ARRAY ¢, D, E(1l:: M, 1 :: P);

RANSET (A , M, N);
RANSET (B, N, P);
T := TIME(1):
MATMULT(A, B .D M, n, P);
WRITE ("MATMULT TIMF ", TIME(1l) - T);
T := TIME(1);
STRASSEN (A,B,C,M,N,P);
WRITE("STRASSEN TIME",. TIME(1)=-T); T:=TIME(1);
WINOGRAD(A,B,E , E I ,N,P);
HRITE("WINOGRAD TIME", TIME(1) - T);
S := MAX :=SW:=MAXW:= O
FOR | := 1 UNTL MDO FOR J:= 1 UNTIL P DO
BEGINDFL : =ABS(C(1,d)-0D(1,4));
IF MAX < DEL THEN MAX := DEL;
S 1= s +DFEL*DEL;
DEL := ABS(D(1,d) - E(I1,d));
IF MAXW<DEL THENMAX\:=DEL;

SW : =SW + DEL*DEL
END;
WRITE("S ", s , " MAX", MAX);
WR I TE('"SW",sw," MAXW", MAXW);
READ(R)
END
END
END.

52

