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Given real numbers 81s 8gyenesd we are interested in the
\- n

classic problem of the error in computing S = } a, when the sum
n 1

| ~ * *

- 1s computed by So = ) a, where a, 1s the nearest integer to
1

| ay. We shall first study this error as a function of a A shift,

. i.e., when all numbers a, are each shifted A and then rounded;

= n

(1) S - nd =) (a; - A)

| ) N
-— — -— *| (2) s,- na = Pp) (a - A)

i=1

We will then let A become a random variable that can take on

—-

uniformly any value in the interval - 2 < Ac +o . Different
Co choices of A give rise to different rounding errors Sy = S and

the variance of the distribution of Sa - s can be used to measure

the variability of the rounding error due to the random selection of

the origin of the real numbers a, with respect to that of the

computer.

The cumulative error from (1) and (2) 1s

~ n *

3) s, - s = Ja; -8) -(a- A]‘mo i— i=1

Co Let £; be the positive fractional part of a, and let a, be the

largest integer not exceeding ar l.e.,

(4) ay = a, + fs
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| Denoting by r, the error of the ith term, we have
“.

u 1-(£,-0) if -2<A<- THE,
ae (5) ri = [(ai-A)* - (a -A)] = 1 1

-(£,-4) if -S +f AHF

| } To prove the above, we note that £,-A = (a;-2) toa, If
| it 1
= -5 2 £, -A < + 5 then (a -4) is rounded to a,. Hence a.,-A is

i rounded down 1f - : + £ < A otherwise rounded up.

Et Denoting expected value by E, we have by direct evaluation

=. (6) E(x) = [1 r, dA = (
2

Lo Assume ff, < f£., then
i - J

| Eryry) = / 1 ryryda + / 1, ryrydh + f 1 r;ryda- - f, - +f,
| 2 2 i 2 7

+d ,
= ~ + £,) + A") dA[1 (£36, = BCE; + £)) )

KE )

_. SHE,
TT + J 1 [Q-f,-£,) + 2A] dA

| )

1

a. if,
+ [00 fon) a

Co - +f,
2 i

(_—

n Performing indicated integration yields:

| (7) E(r,r,) = = |£,~f 122 |£.-£. | +
] } i] 2-173 71 ji 6
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which 1s one-half the pnd order Bernoulli Polynomial in £,-£4 1. For
fi<fy we also get (7). Note that the individual errors r, and r,

= ;

are not independent of one another.

~ It now follows that

~ (9) E(S5) = S

~ 9 n nn 1 oon
(10) E(S-8)" =8() | rr) =% 1 I. [lg,-5, 12-5, |+ <i=1-4=1 J j=1 j=1 + 3 3

N The usual value of variance, E (5-5) ° = n/12, will result if we further

= assume t£, are independently drawn from uniform distributions on

] [0 < fy < 1].

{ Theorem: If the fractional parts of all a, are equal to each other,

| - then each term of (10) 1s maximum for O <%; <1 and

— nn 2

(11) Max E(s-sf=2 7 7 & = 2 |
| 2,5. .b. 76 12
| i=1 j=1

From (10) we have an interesting inequality, namely for all £;
|

-

| nn
| 1 2 1
- (12) vf) == J VY {|f,-£.|° - |E.-f[+ =} > 0
— 2 cos i 1] 6

i=1 j=1

| ,

— This function 1s not convex even for n=2, since g(1) = | 2 0) and
Fo 2) _ (_ 1 : 0, _ ly, _ 1, 1 1 1

f 5 0) yields V(f) = V(f) = wp 1 57 = 17 but
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: gt + £2 3
: V( — 95 ) = V() = 17 ° There appears to be no obvious direct way

to establish that V(f) > 0 for all 0 < £; 2 1. Our development shows

| V(f) to be a variance and this, of course,constitutes an indirect proof.

We can replace (12) by a convex realization: Assume £, 2 fn for all

 ~ i, then the problem of finding Min V(f) can be rewritten:

- 2
2 n

(13) Find Min [V(£f)] = )) (f,-£)° + == - [(@-1)f, + (0-3)f. + (n-5)f
1] i 7] 12 1 2 3

B +. ..+ (n-2k+1) fete o=(@-1)f ]

B subject to

| : (14) £, >_f£, - .. >t

» (15) 0 < £, 2 1
 —

Formally (13), (14), (15), is a positive definite quadratic program.

Tr Fortunately, as we shall see this can be solved by classical calculus

| by ignoring inequalities (14) and (15).

F Theorem: Equally spacedf, = (n -4i)/n, (i= 1,...,n) yields
_ |

Min V(f) = 17 independent of n, 1.e., the variance of the sum in

this case 1s minimum and 1s the same as the variance of the individual

Bu terms forming the sum.
Be

_ Proof: Setting partials = 0 in (13) yields:
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a. 2(n-1)£, - 2f, «ee - 2f = (n—-1)

- - - - — (n—
2£4 + 2(n Lf, 2t = (n—-3)

x (16)

| - 2f, - 2£, . oo. 2(-1)f 1° 2 = —(n-3)

| - 2£, - 2%, 2(n-1)f_ = —(n-1)

| Adding shows the equations to be dependent. Hence we may drop the last

| equation as redundant. Moreover, we can always translate the £; SO

ye that the smallest i namely £ = 0

Re-adding yields:

2f, + 2f, to..2f 1 + 0 = (n-1) fo =0.

Adding this last equation to each of the others gives

a 2nf = (a-21+1) + (a-1) =2( - i)

(17) £, = (0 - 1)/n

= Evidently the conditions 0 < f, < 1 and f, > f£, are (by good luck)

also satisfied so that (17) yields the minimum, namely

| — 2 n

| (18) Min V(£) = I - 17 (a2 41)f, = i=,| 12 2 .t i 1 12
1=1

—
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