ON A MODEL FOR COMPUTING ROUND-OFF ERROR OF A SUM

BY
GEORGE B. DANTZIG

STAN-C S-70-156
MARCH 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY




—

r—

—

ON A MODEL FOR COMPUTING ROUND-OFF ERROR OF A SUM
BY

GEORGE B. DANTZIG

March, 1970
Technical Report No. 156

Computer Science Department
Stanford University
Stanford,California

Reproduction and research of this report was partially supported by
Office of Naval Research, Contract N00014-67-A0112-0011; U.S. Atomic
Energy Commission, Contract AT[04-3] 326 PA #18; National Science
Foundation, Grant GP 9329 and Grant GJ 320; U.S. Army Research Office,
Contract DAHC 04-67-0028; and National Institutes of Health, Grant

GM 14789-02.

Reproduction in whole or in part is permitted for any purpose of the
United States Government. This document has been approved for public
release and sale; its distribution is unlimited.



Given real numbers 315 800058 We are interested in the

n
classic problem of the error in computing S = z a; when the sum
n 1
-~ * *
is computed by S0 = 2 ay where a, is the nearest integer to
1

. We shall first study this error as a function of a A shift,
i.e., when all numbers a; are each shifted A and then rounded;
n
(1)s—nA=Z(ai-A)
i=1
~ n-
- — - *
(2) s,- na = 1 (a-n
i=1

We will then let A become a random variable that can take on

uniformly any value in the interval - L. A < + 2 . Different

2= 2
choices of A give rise to different rounding errors SA - s and
~
the variance of the distribution of S, - s can be used to measure

A

the variability of the rounding error due to the random selection of

the origin of the real numbers a.l with respect to that of the

computer.

The cumulative error from (1) and (2) is

~ n *
3 s, - s = 1l -8 -(a - 8]

3

i=1

Let fi be the positive fractional part of ay and let oy be the

largest integer not exceeding - i.e.,

(4) a, = a, + £,



Denoting by r, the error of the ith term, we have

1-(£,-8) if -3<A<- 245
(5) ri = [(ai-A)* - (ai-A)] = 1 1
—(fi—A) lf'7+fiiAf-+'2°
To prove the above, we note that fi—A = (ai-A) + o, If
- %f_ fi -A < +% then (ai-A) is rounded to a,. Hence a,
rounded down if - El + fi < A otherwise rounded up.
Denoting expected value by E, we have by direct evaluation
5
(6) E(ri) = {i r,da =0
2
Assume fi < f., then
- J
E(rirj) = ‘[l rirjdA + ££|-f rirjdA + {L'_f rirjdA
2 271 273
= - A™) dA
[L (£6, = A(E; + £ + )
2
. %+fi <
+ {l [(l—fi—fj) + 2A] da
2
——;+fj
+ [ [-£, + 2) dA
- =+f,
2 1

Performing indicated integration yields:

1 2 1
(7) E(rirj) = 51 |fj—fi| - Ifj—fil + ¢l

a,-A is



rw R

which is one-half the 279 order Bermoulli Polynomial in |fj—fi|.
fjffi we also get (7). ©Note that the individual errors r, and r,

J
are not independent of one another.

It now follows that

(9 E(S) =S

n

10) EG-5)2=85(y | rr) -1 T T 0t |21, -, |+ 4
1%y O A L S L

i=1-4=1

The usual value of variance, E(S—S)2 = n/12, will result if we further

assume fi are independently drawn from uniform distributions on

[Oifif_l].

Theorem: If the fractional parts of all a, are equal to each other,

then each term of (10) is maximum for 0 :-fi <1 and

n n 2
(11)  Max E(S—S)2=% D) (%) = -‘112— .
i=1 j=1

From (10) we have an interesting inequality, namely for all fi

n
1 1
(12)  v(f) =3 ) 2 {|f f| - [fi—fjl+g} >0
i=1 j
Thi ' - - : L _ (1
is function is not convex even for n=2, since f 7 0) and
(2)_ (.1 : 0 ..., _ 1,1 1 _ 1
£ 50 0) yields V(£) =V(f) =35 + 3, -3 =15 but



s

1 2
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to establish that V(f) > 0 for all 0 < fi < 1. Our development shows

There appears to be no obvious direct way

V(f) to be a variance and this,of course,constitutes an indirect proof.
We can replace (12) by a convex realization: Assume fi > fi+l for all

i, then the problem of finding Min V(f) can be rewritten:

2
. . 2 n
(13) Find Min [V(f)] = ]} (£,~f)° + == - [(a-1)f, + (n-3)f, + (n-5)f

I 12 1 2 3

+. ..+ (n-2k+l) fk+...—(n—l)fn]

subject to
(14) fl a_fz ... {_fn
(15) 0 f.fi.i 1

Formally (13), (14), (15), is a positive definite quadratic program.
Fortunately, as we shall see this can be solved by classical calculus

by ignoring inequalities (14) and (15).

Theorem: Equally spaced fi = (n-1i)/a, (1 = 1,...,n) yields

, 1 . . .
Min V(f) = 1p independent of n, i.e., the variance of the sum in
this case is minimum and is the same as the variance of the individual

terms forming the sum.

Proof: Setting partials = 0 in (13) yields:



r— =

2(n—l)f1 - 2f2 . e e - 2fn = (n—-1)
- 2f1 + 2(n--l)f2 - an = (n-3)
(16) <
- 2f1 - 2f2 e 2(n—l)fn 1- 2fn = —(n-3)
t - 2fl - 2f2 2(n—l)fn = -(n-1)

Adding shows the equations to be dependent. Hence we may drop the last
equation as redundant. Moreover, we can always translate the fi SO

that the smallest fi’ namely fn= 0

Re-adding yields:

2f, + 2f +...2fn 1 +0 = (n-1) ,f_ =o.

Adding this last equation to each of the others gives

2nf.l =n=-2i+1)+ (n-1) =21 - i)

(17) fi = (n - i)/n

Evidently the conditions 0 < fi <1 and f, > £ are (by good luck)

i i+l

also satisfied so that (17) yields the minimum, namely

2

n
o _ 1 - = =
(18) Min V() = I35 - 3 iz=l (n-2 +1)f, ,



