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Abstract

Approximate rules for evaluating linear functionals are often

obtained by requiring that the rule shall give exact value for a certain

linear class of functions. The parameters of the rule appear hence as

the solution of a system cof equations. This can generally not be solved

exactly but only "numerically". Sometimes large errors occur in the

parameters defining the rule, but the resu tant error in the computed

value of the functicnal is small. In the present paper we shall develop

efficient methods of computing a strict bound for this error in the case

when the parameters of the rule are determined from a linear system
of equations.
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1. Introduction

In this paper we shall analyze mechanical quadrature rules and

interpolation formulae which have been determined numerically by means

of solving a linear system of equations. This process can often not be

carried out exactly and we want to study the errors in the computed value

of the functional which hereby arise.

In section 2 we give a general formulation of rules which can be

found by using the method of undetermined coefficients and outline a

computational process which delivers a strict error bound in an economical

manner.

In the last section we treat so-called Newtonian feasible rules

(See [7]), a class of formulae which contains the Lagrangian and Hermitian

rules as special cases. These rules have the pleasant property that they

can be computed by a small number of multiplications and divisions. We

give a general theoretical result on error bounds for such rules and

illustrate with examples that it is possible to solve problems in

integration and summation cf series in an efficient fashion by using the

algorithms in [7].
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2. A general class of linear rules

We introduce some notations which will be used in this sectioen.

Let [e,b] be a closed bounded intervel snd let £3; Tis fo5 seen

be n+ 1 given functions on [a,b] . Further, let UL; Li» Lys veep I

be n+ 1 given linear functionals such that L{1), L,(f), L(t) are
all defined for 1 =1, 2, see, Nn, T = 1, 2, veey 0 &

Put y= L(f ) re=1, 2, .... n and let these numbers be known.

Sometimes we chall call EE Yor cee y. moments with respect to L

and the system of functions £1 Fos seey f . This terminology is

motivated by the fact that a wide class of lineer functionals have the

representation

b

L(t) = [ £(t) da(t)
a

and hence

b

We want to approximate L by LL, a linear combination of

L,» Ly, oe. 3 L in such a manner that Lr) = L(t) 3s I' = 1, 2, esey N
Thus

n

(2.1) L(f) = mL, (f)
= ii

=1

2



where

n

=]

We must require that the lineer system (2.2) has @ solution. The formulation

(2.1), (2.2) applies for many familiar problems. We give some examples.

Example 2:1 A Lagrangian integration rule: ILet X)s Xpp eves Xo be

n distinct numbers snd define L,(f) = £(x,) y i=1, 2, «ce, n and put.

b

L(f) = [ f(t) at
8

Introduce further £ (t) = tL » r=1,2, «vs, n . Then

: b

y, = f £771 at
8

Example 2:2 An Hermitian quadrature rule: Let now n be an even number

and put n = 2k . Select k distinct numbers X19 Xp sees Xp and put

Define L, f_ (and y.) as in the preceding example.

Exsmple 2:3 A Lagrangian derivation rule: Let x be a fixed number. Define

L; and f 8s in exemple 2:1, but put L(f) = £'(x) . Then y, = 1
and yp = (r-1)x""2 , r>1,

3



It is possible to obtain general rules by appropriate selection of the

function system fs fo ceey £ . An obvious generslizetion is to replace
the interval [a,b] by other types of sets. Therefore one can extend

(2.1), (2.2) to the rules treated, e.g. in [2] and [9].

If the coefficient matrix of (2.2) is regular we can replace

(2.1), (2.2) with an algebraicslly equivalent problem. Let namely A

be a regular metrix, n by n and b, ¢, x and u n-dimensional column

vectors. Then (2.1), (2.2) is a special case of the task: Evaluate

Y . avy when Ax = b . However, we find immediately that we can also

write y= blu when Aly = c¢c . Using this observation we can replace

(2.1), (2.2) with the slternstive formulation

n

(2.3) L(f) = pILER

when

n

(2.4) L c L(t) = L,(£) , 1 =1, 2, «aap n

In anelcgy to the usege in the theory of linear programming we shall call

(2.1), (2.2) & primal problem, (2.3) and (2.4) its dusl.

We establish easily that the dusls of the tasks in examples 2.1,

2.2 and 2.3 consist of the determination of certain interpolating polynomials.

We now want to derive general error bounds by using the dusl problems

introduced sbove. Assume that (2.2) has been solved numerically yielding

the approximation m, for LP i=1l) 2, «oey  « Define Am, by

m, =m, + 4m, and let AL be the error in L(f) caused by using m,

4



instead of m, , i=1,2, ..., n . Introduce also the residuals

n -—

Hence

n

(2.5) AL = Ny om, L,(f)

when

n

The dual of this problem reads:

n

(2.7) AL = L ctrs

when

n

(2.8) Py cL(f) =L(f),i=12, ..., n.rs

The formulation (2.5), (2.6) can be used only if the residusls are known

with good relative accuracy. This often requires that they are evaluated

by means of arithmetic operations in a higher precision than that which

was used during the solution of (2.2). This drawback can be eliminated

if one uses (2.7), (2.8) instead. From (2.7) we get the error bound

5



(2.9) aL] < ¢ + T where > max]e_| , [= 3. le |r=

In order to use (2.9) we need only bounds on le | and [| . The

latter quantity will later be referred to as the error jacter. In the next

section we will give a theorem which expresses [| in terms of the higher

derivatives of f if the rule defined by (2.1), (2.2) belongs to a

certain class.

Generally the error factor is most easily found by solving (2.8)

which can be done without too much effort. We observe namely that the

coefficient matrix of (2.8) is the transpose of that of (2.2). Therefore

if we solve the latter system by means of Gaussian elimination with

pivoting we obtain a partition of its coefficient matrix which cen be

utilized for the subsequent solution of (2.8). Hence this system can be

solved by means of about nc operations. (We use the word "operation"

for a multiplication or a division.) Since the residuals can be evaluated

by means of n> operations the total number of operations to obtain a

rule of the type (2.1), (2.2) and an error bound can be written

(1 + 6/n)(n?/3 + 0°)

The error enalysis cen be carried out in an inalogour w.ner for the case

when (2.3), (2.4) are used instead of (2.1), (2.2).
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3. Newtonian feasible rules

In this section we shall treat the case when £. is defined by

£ (t) =tTr, r=1, 2, ..., n

Then the solution of (2.2) is the coefficients of a polynomial Q of

degree less than n . We shall also require that we can associate with

(2.1), (2.2) n arguments (not necessarily distinct) in such a manner

that Q can be expressed by means of Newton's formula with divided

differences with respect to these arguments. A rule meeting these ccnditions

will be termed a Newtonian feasible rule (this definition is equivalent

with that in [7]).

Example

-— = t ”" ] "n==6 L(f) m, £(0) + mf (0) + m, f (0) + m, £(1) + mf (1) + mf (1)

This is a Newtonian feasible rule since we can introduce the six arguments:

0, Oy 0, 1, 1, 1 . If f has two continuous derivatives we can express

these in the form of confluent divided differences.

Counter-exsmple

n =2 L(f) = m, £(0) + m, (1)

7



This is not a Newtonian feasible rule since we need the three arguments

0, 1, 1 to express f(0) and f'(l) in the form of divided differences

but n is only 2. Still (2.2) has in this case the unique solution

m,= 1, m, = l . We now prove the gener:l theorem:

Let f have n continuous derivatives on [a,b] and let (2.1),

(2.2) define a Newtonian feasible rule. Let further the arguments associated

with the rule be Xys Rpy eeny Xo Define d;» d voy d_ by

-1a = max |fT) (e-)), r= 1, 2, en,
To Otel

where I is the smallest intervsl containing X13 Xp eeey Xo If

Cys Cp ees C 1s the solution of (2.4) then

Ii n r-1

(3.1) 3 le <¥ an (1+ x, 1) .
r=1  r=l j=1

Proof: Define Q by

n

at) = 3 grr
Irs

Since the rule is Newtonian feasible we can write Q under the form

n r-l

Qt) = L > n (+ - x5)r= J=1

where D_ is 8 divided difference with the r arguments Xi Xpp seep Xoo

Since f has n continuous derivatives there is a number § in I

such thet

8



(r-1)

Therefore the sum of the absolute values of the coefficients of @q is

less than the sum of coefficients in Q defined by

_ n r-1

Qt) = 2 mo (t+ |x)) J
r= j=1

But the sum of coefficients of Q is Q(1) . Hence the assertion follows.

We observe that equali*y holds in (3.1) e.g. if

- - (r-1) |

We conclude our analysis by discussing a few numerical examples.

All of these were run on Stanford's IBM 360/67. Its Algol W compiler

represents floating numbers in the form

} x"
Cz =x" 16

where x' 1s allotted 24 bits in single precision, 56 bits in double.

Furthermore x" is (if possible) so selected that 1/16< |x'| <1.

In all of our examples we work with Newtonian feasible rules. If

one has to evaluate an expression in order to get input data such as

abscissae and moments this is done in double precision. These data are

afterwards truncated to single precision. This procedure was adopted in

order to insure that the abscissae and moments were represented in full single

precision, independently of the manner in which they were obtained.

9 .



The quadrature rules appearing in the examples were computed ty means

of the algorithms given in (7). The error bounds were estimated according

to (2.9).

The residuals were computed by means of double precision arithmetic.

Thus they were obtained in full relative precision.

The sccumulations to form the scalar products which give the coinputed

value of the functiongl were done in double precision. During this

computation the fact was utilized that the product of two single-precision

numbers is delivered in double precision by this particular mechine and

compiler.

It goes without saying thet a more efficient (but more difficult

to report) use could heve been done of the available resources. The

formula

| n

AL < L le €rr

derived directly from (2.7) would presumsbly give smaller but still

strict error bounés. The computed value of the error factor |

indicate that the totsl error is bourded by a rather moderate multiple

of the largest residual. This could be brought down most efficiently by

using double-precision arithmetic during the evaluation of the weights

of the pertinent quadrature rule.

Example 3:1. The integral

Lan
OC 1+ ¢t

was evaluated by means of Lagrangian quadrature rules with abscissae

10



Xy {=1,2, ..., n, located in the zeros of the function g defired

by g(t) = T (at +1) where T, is the Cebytev orthogonal polynomial
of degree n . That is

x, = = [2 + cos (A=L-20: n)]n

The integrand f is given by £(t) = a. and hence the moments Ye
l+¢

1 oral
Vp = [ tat =1/r

C

In this case the exact values of the weights can be computed by means

of the formulae in [8], page 127. We report the following results.

Absolute

value of

Absolute differences

value of + between Absolute

observed 7/4 and value of Estimated
Number of maximum error computed largest Error#* error
moments in weight result residual factor bound*
rt

3 1.2.1077 9.2:10™ 1.3207 1.55 1.941672

6 3.31070 4.71070 2.4107 3.2k 2.9107"

x
In this and following examples "error" refers to the error in the
computed value of the functional caused by the fact that the weights
of the rule are determined numerically, not exactly.

11 ‘



The example illustrates the fact that although the weights are not very

well determined the bound for the contribution tc the error in the computed

value caused by this may de rather smail. The circumstance that for

three maments the observed difference between the computed integral and

n/4 is larger than the bound must be ascribed to the influence of the

truncation error.

5

1 RITE tin 1/t) .Example 3:2 Compute J e ~~ in(Uft a+
0 l+¢

This example illustrates how a suitable choice of a weight function can

result in accurate quadrature rules. These latter are computed with

the algorithms described in [7]. In this case we take the integrand f

defined by |

1 —

“£(t) - cisin t

Hence the moments Yi» Yor cs ¥, Aare

1 +" lin(1/t)y=
C 1-t

They are obtained by the recurrence relation

2 2

Lagrangian rules with abscissae as in example 3:1 were used. We give the

results

12



Absolute

Computed value of °
Number of value of largest Error Error
moments integral residual factor bound

————————————————————————————————————————————

; 8 -8
2 4 1.04370 6.210 1.34 8.3410

8 8
3 1.04362 5.3410" 1.39 7.4.10"

-3 | 8

We observe that the error which can be caused by inaccurate weights is

neglible in comparison to the working precision.

- -}

-1

Example 3:3 Evaluate 5 = 3 (-1)F EY 5]r=1 (xr +1)

This series belongs to the general class of series of the form

[-

y (-1)"a_
r=]

where a, admits a representation

1 r-1
a, = [ £77 alt) ,r=1,2, ..

0

and the integrator a 1s of bounded variation over [0,1]. «o is act

dependent on r . This fact can sometimes be verified by means of a table

of Laplace transforms after making the substitution t =e © . Thus

example 3:3 takes the form

13



1
1

Compute J Tet do(t)

when

1

[47 alt) = ——"—pry
0 (n + 1)

We use again Lagrangian rules with abscissae allocated as in example 1.

We report the results

Absolute

value of

Number of Computed largest Error Error
moments sum residual factor bound

» 0.4785 58 1.2.107° La 1.7.10

L 0.4819 880 5.0.10"0 2.83 9.1:10°0

6 0.4821 010 5.71070 h.24 2.4.1077

8 0.4821 032 6.0-1070 5.65 3.4.10"
- «7

10 0.4821 032  1.3-10°( 6.88 9.5.10"

. -

Example 3:4 Evaluate s = 3 (<1) "Ler
r=1

This series belongs to the subset of the general class discussed in the

preceding example where the numbers a. introduced there are the

moments of an nondecreasing integration ao . That is we can write

1
1

8 = J +t da(t)

1h



when

1 .

) £771 an(t) = eT ,r=1,2, ...
0

and in addition af .

As shown in [1] the integral is bounded between the values which result

if certain quadrature rules of Gaussian type are applied to the integral

for s . These rules can be computed by algorithms given in (5), [3],

[4], and [6]. One must, however, solve a non-linear system of equations

which is unique for each series. This is avoided in the following way:

Since the derivatives of the function f defined by

| £(t) = (+t)

do not change sign we can by means of Hermite-interpolation construct

two polynomials P, and P, such that

P(t) 2(¢) P(t)

let n be the number of moments needed in the quadrature rules and let

x; and t, be distinct points in (0,1). The conditions defining P,

and P, must be of the form:
n = 2k+l

P,(1) = £(1) P,(0) = £(0)

v - | ’ an

Pit) = £'(¢,) PA(x;) = £'(x,)

15



n=2kK

P,(t,) = f(v,) P(x) = f(x)
pr(t,) = £'(t,) Pi(x,) = £'(x,)

P,(0) = £(0)

P,(1) = £(1)

Thus we only have to solve linear systems of equations {which can be done

with n° operations). Since Py and FP, do not depend on the moment

sequence the same Py and P, applies to all series of the class
discussed here. In example 3:3 we computed upper and lower bounds by

Vv Vv
allocating the interior touching pcints in the zeros of Cebhysev

v v

7, (2x+1) where T, is a Cebysev polynomial with degree equal to the
number of such points. We give the results

Estimated Estimated Difference
Difference error in error in between

Number of between upper lower computed bounds
moments bounds bound bound Gaussian rules®

3 5.7.10 1.3:107 1.11077 2.5:107°
6 b.0.10" 8.0.10 3.2:107 9.9-10°°

- -6 - -9 3.0.10 1.7°10 ~ ©.9-10 7 4,0-10 8

JSR

*

For this computation double precision was used throughout.

16
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