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In § 1 of the present work it is shown that if in a circular disk a
harmonic function u is given whose boundary values are twice continuously
differentiable (uECE(y) , where 'y is the boundary of the disk), then
the same function u need not have bounded second derivatives in the
open disk nor on any fixed line. 1In § 2 is investigated the error of the
ordinary finite difference methods of solving the Dirichlet problem for
Iaplace's equation, when at the interior nodes of the net the solution is
the arithmetic mean of the values at the four neighboring nodes, and at
the nodes near the boundary there is applied Collatz's method of linear
interpolation. In the case where the solution has second derivatives in
the closed disk which satisfy a HBlder condition with exponent A > 0 , it
is established in [1] under very weak conditions on the boundary of the
region that this method gives uniform convergence on the net with a speed
h2 (h is the mesh constant), and that the order of convergence cannot be
improved by any power of h (see [2]). 1In the present work it is assumed
that the boundary everywhere has a tangent line whose angle of turning
satisfies a Lipschitz condition (7€Cl,l) and that the boundary value has
a first derivative satisfying a Lipschitz condition (belongs to Cl’l(y) )

and there is derived a uniform estimate for the error in the finite



E‘ difference method which has the order h2 In h-r . In § 3 it is proved
- that this estimate cannot be improved under the stated conditions.
Moreover, it is established that the speed of convergence of the scheme
- being considered can be worse than h2 in a region with an arbitrarily
;_ smooth boundary, for example in a circular disk, and with more stringent
conditions on the boundary values. Indeed, for any function g(x)
o — satisfying the properties that the ratio g(x)/ln x is positive for x = 2 ,
is strictly monotonically decreasing as x increases, and takes values
- from infinity to zero, there exists a function harmonic in the circle
_ with boundary wvalues in 02(7) s for which the difference scheme considered
above gives convergence not better than hggﬂfl) . In ¢k is presented a
— special scheme for a square net which ensures uniform convergence with
speed h2 in a region with boundary 7601,1 and with boundary values in
. Cl,l(y) ) In §5 it is proved that the given requirements on the boundary
and boundary values, generally speaking, cannot be weakened in terms of
the classes Ck,h and still obtain methods with order of convergence h2 1n h_l ’
— considered in § 2, or order of convergence h2 , considered in § k.
The unimprovable error estimate for finite difference methods of order
- h2 1n h_l, as derived in § 2, is stronger for the class of regions with
_ boundaries -in Cl,l than the corresponding result in [1], since the present
result is established under weaker conditions on the solution of the Dirichlet
o problem for Iaplace's equation than in [1]. Moreover, these conditions are
-imposed in a natural manner only on the boundary of the region and the boundary
- values, and in a definite sense cannot be weakened. 1In [1] the error estimate
o of order h2 In x_1 was derived under essentially weaker conditions on the
B boundary than in the present work, but under the assumption of boundedness in
‘ L, the region of the second derivatives of the unknown solution.
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§1. On the unboundedness of the second derivatives of harmonic

functions with boundary values in C2

2 2
Let O = O {(x-1)" + y- < 1} be a disk with boundary 7 , and
let
2
v(x,y,e ) == Im { Z€ 1n Ze} ’
where Ze =x+ e +iy and € is a parameter. Obviously, for
arbitrary € > O the function v is twice continuously differenti-

able along the arcs of the boundary y . Indeed, as is shown by an

elementary calculation,

k k
sup max | V(k); =V <= k=0,1,2; (1.1)
O<eée<1l 7 s
v}(;r) (x,0,€) = — 2 1n (x + €) =k, x +e >0 . (1.2)

We consider the function

@©

. 2
W(X:Y) = Z 12 V(X:.V)e : ) (103)
n

n=1

In view of (1.1) the value of w 1s twice continuously differentiable

along Y , and also, because of Weierstrass's Theorem, the function w

is continuous on and harmonic in § . Define
2m
1 —n2
Q(x}me) = ) V(x’y:e )
n
n=1

By virtue of (1.2),



2
Qa(cy)(0,0,m) > 4m — 8 . (1.%)
Let N be an arbitrarily large but fixed natural number, N> 8. In
view of (1.4) and the continuity on Q the mixed derivative (2)(x,y,N)

at the point (XN’O) € Q, where 0 < xy < e-3/2, satisfies the relation

Q}E—i)(xN’O’N ) > 2N.

Hence, by (1.2),

2 * 2
Q,(Cy)(xN,O,N ) > Qg‘cy)(xN,O,N) > 2N, (1.5)
where * 4y
N =max ( N, 5 + 1
N
We have (cf. [3], § 3) :
2 2 " * 8 *
2 (50) = Q2,00 | ¢ By max () - Qw0
X 7
o
< Ly sy CN
N
Hence it follows from (1.5) that
2
|w}({y)(xN,0) | > w.
Because N was arbitrary,
2
sup IW}(cy)(x,O)l =@ . (1.6)
O0<x< 1
4
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It will be proved in § 2 below that

s (M2 (x,0) | - W) 0 ) <= (1.7)
O<<x< 1l X Y

Hence from (1.6) it follows that

2
s Ow = 1.8
S};P g;? ) ( )
h I

where 5/51 is the operator of differentiation along an arbitrary
fixed direction coinciding with neither the x nor y axes.

As is not difficult to show, the boundary values of the function
w are thrice continuously differentiable everywhere on yexcept
at the origin of the coordinates. Hence [4] the function w has
all its second derivatives bounded in an arbitrary subregion of the
disk  whose closure does not contain (0,0). Hence from (1.8)

it follows that for the function

W (%,y) = w(x,y) + w(’”—y‘l— £ 1, u) , (1.9)
/2 /2

which is harmonic in Q and has boundary values in C, (), the
second derivatives computed in an arbitrary direction, including those

parallel to the coordinate axes, are not bounded in the open disk Q .



$2. An upper bound for the error of the finite difference method

We consider the Dirichlet problem
HMy=0 in Q, u=¢ on 7y, (2.1)

where A = az/axe + Bg/ayg , y is the boundary of the finite region Q ,
@ is a given function. We assume that 7601,1 , that is, each point
of y has a tangent whose angle with the x-axis satisfies a Lipschitz
condition with respect to arc length s . Further, we assume that each
point of y 1is tangent to a circle-of fixed radius T lying entirely
inside Q . The function €€, ’1(7) , that is, its first derivative
with respect to s satisfies a Lipschitz condition.

As is known ([5], p.257) a solution of (2.1) that is continuous
in Q has its first derivatives uniformly bounded in Q . We investigate
the higher derivatives of the function u . We construct a circular
disk K of radius T lying in Q , whose boundary is tangent to y
at a certain fixed point M . We introduce a system of polar coordinates
ps © , with the origin at the center of the disk and the polar axis on
the line from the center to the point M . Let ny be the normal to ¥y

at the point M . Then

v=u+aMx+bMy+cM ’ (2.2)
where the constants a‘M’bM’CM are so chosen that
1) (1), _
e = By - o =0 (2.3)

and
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We represent the function v on the disk K by the Poisson

integral

14 (r2 - 2)v ) ) :
v(p:0) 3 | 0 - Py w (2.4)

2 2
- Ty - 28 p cos(w-0) + p

In view of (2.2), (2.3) and the uniform boundedness in Q of the

first derivatives of u ,
brpo)l <o’ Jof < (2.5)

where c¢' 1s a certain constant not depending on the choice of the
point Mey . By differentiating in the interior of the disk K under
the integral sign in (2.4) both with respect to 6 and to p and
applying some elementary transformations, we derive in view of (2.5) and

(2.2) the following inequalities:

¢ 2
Sc,‘l‘f‘t*‘w)dﬂ)sc*

(2)
lupz | |p=ro-‘t, 6=0

2 2 2
0 ct(w)
(2.6)
1.(1),(1) T dw (e, O
|(p ug ), llp=ro—‘b, o0 = & ojl A < i+ 1),
(x) 1 (1) &
wr | il
fo) p=r0-t, e=0 o p=ro—t, e=0
< cef J k‘}‘f < c; 2% x>z, (2.7)
0" o (w)



where u is the solution of problem (2.1), 0 <t < o and
cb,cﬁ are constants independent of t and the choice of the point M .
-1
Also, Ot(m) = w + tro .
In this manner, in particular, it is established that the second
derivative of u computed along an arbitrary normal to y , at an

arbitrary point not farther than r, from y , remains bounded by a

constant that does not depend on the choice of the normal. Consequently,

. by virtue of laplace's equation, on an arbitrary normal in a neighborhood

of the boundary, the second derivative computed in a direction perpendicular

to the normal is also bounded. Thus (1.7) holds.

Inside the region at a distance from y exceeding Ty all
derivatives of the function u with respect to the variables x and y
are bounded by constants depending on the order of the derivative;
see [3],83. Hence from (2.6), (2.7), and the fact that u is

harmonic it also follows that

(2) :
max |u | <z (1311 tl + 1) s (2.8)
O<m<2 mez-m 2
max |u(f)b_m| < @ £ 2K , k>2 , (2.9)

Q qn d{ xau .lL—l-u.

where t 1s the distance of the current point from y , and Ev are
constants not depending on t .

The estimates (2.7)-(2.9) cannot be improved in the degree of
dependence on t , since they are achieved for the function (3.1).

We construct a square net by the lines x,y = 0 , * hy,+ Zh,... .

We denote by Qh the set of nodes of the net lying in Q and having the



property that all interior points of the segments of net connecting them

with the four neighboring nodes lie in Q . All other nodes that

lie in Q are assigned to the set 7h . We introduce on Qh the

averaging operator A ,

(u(x+h, y) + u(x-h,y) + u(x,y+h) + u(x,y-h))/b

Au(x, y)

At the point P of 7y, We construct the interpolating operator I ,

Tu = ¢/ (148) + u.8/(18)

where u is the value of u at a point PlGQh U 7h 5 Cpo is the

1
value of @ at the point PO at the intersection of y with the line
passing through the point P; and the point B7, ; % is the ratio
of the lengths of the segments PoP and PPl . We assume that & > 2 ,
that the point P lies on the segment POP , that the length of the
segment PoPl does not exceed 3h , and, moreover, that the segment
POPl forms with the tangent to y at the point PO an angle larger
than a certain fixed positive value, for example K/BO , and that all
the interior points {of PoPl ? —— GEF} belong to Q .

Let U, = ® on 7.. The following system of difference equations

has a unique solution and approximates the problem (2.1):

u.h=Au.h on Q’h p uh=Iuh on 7, . (2.10)

d
Theorem 2.1. If 7€Cl,l en 1,1(7 ) , then

~- max Iuh-u| < chz(lln n| + 1) , (2.11)

Qp Uy



At

where u is the solution of (2.1), w is the solution of the system

(2.10), and ¢ 1is a constant independent of h and of the rectangular

- coordinate system used to construct the net.

Proof. Taking into account (2.8) and using the remainder term in

.
Taylor's formula in the integral form (cf. [6], §3) using the second
- derivative, we derive the inequality*
|lu-Tu| < e h2(|ln h| + 1) on 7y (2.12)
—— —_ 1 h ° .

1
Let Q’h be the subset of Qh consisting of the nodes whose
distance from vy does not exceed 3h/2 , and let O.i = Qh\Qi .

Analogous to (2.12) we can derive the inequality
|u-Au| < ¢ h2(|ln n| + 1) .
S Co on Qh . (2.13)

From (2.9) for k = 4 and Taylor% formula follows the inequality

.....

2

|u.-Au| < (:?. hh/"c2 on Qh ’

where t is the distance of the current node of the set Q,; from y

In view of the comparison theorem ([7], p. 594)

|uh-u| < Eh on Q U7y ) (2.15)
where
- -1, -2 -3
] €= tey + € s (2.16)
-1 -1 -1 -1
¢ = AE on & =Ig + |u-Tu| on 7, (2.17)
. * Here and below CP (P = 1,2,...) will denote constants not depending

on the factor standing to their right.

10



¢
b

-1 -
€ —Aei + |u-Au| on Qi ,
(2.18)
2.2 2 -2 _ =2
eh —Aeh on Qh B eh —Ieh on 7h P
3 _ - 1 23,3 2
S Aeh on Qh B eh —Aeh + |u-Au| on Qh ’
(2.19)
3 Y
n = I on 7wy
and 'e\lfl = 0 on y for v = 1,2,3 ,
In view of (2.12) and the estimates of [8],
-1 2
max € < ¢)h (|In n| + 1) . (2.20)
Gy Uy
By the method expounded in [9],p. 1074, and in [8], using
(2.13), we easily establish the following inequality:
max & < cshd’(lln n| + 1) (2.21)
and, in addition, the inequality
=5 -4
max & < cg max € 5 (2.22)
Q, Uy Qh
where
-4 -4 2 =l
§ =Aq + fudu] on @, & =0 on y U . (223



On the basis of (2.14) and a lemma from [1], §1 (see also [1],
§2, 3 and [10], §2, 3) which, as is easily shown, is applicable to the

system (2.23), we derive

_4
ma}zc g < c7h2(|ln n| + 1) : (2.24)

hy

Using the fact that the constants in inequalities (2.12)-(2.1k),
(2.20)-(2.22), and (2.24) may be chosen so as not to depend on the system
'of rectangular coordinates in which the net is built, from (2.20)-(2.22),
(2.24),(2.16), (2.15) we are led to inequality (2.11). Theorem 2.1

has been proved.

Observation. In the special case where the boundary y has a
curvature which everywhere satisfies a H8lder condition with a positive
exponent, for the derivation of inequality (2.24) we may exploit the

majorant

v=ah® In 1+ Q- efxy) - vy ah)

where p,V are the real and imaginary parts of the function which
conformally maps the region Q onto the unit circle, and aq and a,

are certain positive constants [11].

12



§3. Lower bounds for the error

We prove that the estimate (2.11) is sharp with respect to h .

2
We consider on the disk & = 9{(x-l)2 + y < 1) the harmonic function
2
u=1In {z 1In z}, (3.1)

where z = x+iy . The boundary values of this function satisfy the
conditions of Theorem 2.1. We construct a net by means of two families

of lines:

3%;1 =0, th+2h . . . . 5%;[ =0, + h, + 2h, ....

Let 0 < h < 1/50 , P = P(h//2, b//2) , P = PO(O,O) ,

Pl = Iﬁ(/? h, /2 h) . Here IEyh , PlEQh . We have at the point P
2 . 2
u-Iu = h“(In h - 2 In 2h) > 0%(|In b| + 1)/2 . (3.2)
Since
- 1 - - (-
() | = 5 (o u)lPl (w-Tw)|p,

it follows therefore, using also'(3.2), that for 0 < h < 1/50

2
h
max |u.h--u|»>—g (|ln h| + 1) (3.3)
a u U B g )

and, consequently, estimate (2.11) cannot be improved by any order of
magnitude with respect to h

We now prove that the speed of convergence of the system (2.10)
can be worse than h2 , even if the boundary values have a continuous

second derivative. Indeed, for any function g(x) such that the ratio

15



g(x)/1n x is equal to unity for x = 2 and is strictly monotonically
decreasing for increasing x (x > 0) , going to zero at infinity,

L . 2 2
there exists a function u , harmonic in the disk Qf(x-1)" + y < 1}

with boundary values in C2(7) such that on the above-considered net

max |uh—u| > c*hzg(h-l) , (3.4)

4 U7y
where Uy is the approximate value of the function u , derived from
the system (2.10), 0 <h < h* , and- * is a positive constant
- 07
independent of h . For example, we may take g(x) = 1m™% 2 1% x ;
where @ is a constant with 0 < & < 1

Let f(x) be the function g(x)/1n x , and let &(x) be its inverse

function (&(n(x)) = x , x > 2 )+ Then let

o

u(x,y) = ), 1—2- v, (%) , (3.5)

n=l n
where v_ = Im{z2 In 2z}, and
n n n’

L + 1i(y+

90 E(n™T) 90 E(n

zn(xJY) =X +

By Weierstrass, Theorem the function u of (3.5) is harmonic on the
disk Q and continuous on Q ; moreover, in view of the uniform
(with respect to n ) boundedness of the maximum of the moduli of the

second derivatives of the boundary values of the functions Vo the

boundary values of the function u are twice continuously differentiable

(uECe(‘y) , where v is the boundary of the disk Q).

14



Since for 0 < x < e'3

a® (x° 1n x)
o2

= 2Inx+ 3 < In x ,

then for 0 <h < e'3/5 at the point PEyh considered in the

- preceding example
' ne /2
T vn-Ivn>-::é-1n(2h+—_l)>o,
90 &(n"7)
- where n = 1,2,... . In particular, at the point P for
: m>m = [n—l(h-l) *1 , we have
2 2
h h -1
Vm—Ivm > —-é—ln5h > -]+—_lnh
Therefore at the point P , for 0 <h < e_3/5 , we have
2 ® 2 2
_ u-Iu >% Inh 1 Z 17 > E-h— mnt > -%1— In h—l'n(h_l)
' m= m Y
 — 2 1
=7 g(h™) . (3.6)
= Since
- (w,-0) |p = 3 (w-w)|, - (u-Tu) |
] S s et ) P’
_ where uh is the solution of the system (2.10) for boundary values
-coinciding with the boundary values of the function (3.5), and u is
§' - the function (3.5), then in view of (3.6)
2
h -1
_ max |uh—u| > 15 g(h™)
’PUPl

15
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Consequently, inequality (3.4) is satisfied, where u is the function
of (3.5), and c* = 1/12  (n* = e'3/5) . That is, for Dirichlet's
problem on the disk Q , the solution of the system (2.10) for boundary
values coinciding with those of (3.5) (uEC2(7)) , converges with a
speed not better than h2g(h_l) . On the other hand, in view of

Theorem 2.1 the estimate (2.11) holds.

Remark. By methods analogous to those of the examples considered, one

can prove there exist functions harmonic in  with boundary values
in C, l(7) and 02(7) , for which for sufficiently small h are

)
satisfied, respectively, inequality (3.3) and (3.4) for an arbitrary

choice of coordinate systems in which the net is constructed.

16
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§4. A method with accuracy O(he).

We assume that y€C .We introduce on 7h U Qi a special

3.1
interpolation operator I* of the following form. Through the point
IEyh U Q; we draw the normal to y (at the point EB ) and extend

it to the point Pl lying on some diagonal of the nearest net square
which is at a distance not less than h/2 from y (see the figure on
the next page). In a special case one of the vertices of this square
may coincide with the point P ; then the point Pl must lie on the
'diagonal not containing P . We denote by ph//2 the distance from
Pl to the center of the chosen square, and by 3 the ratio of the
length of the segment POP to the length of the segment PPl . At

the point P

o, ()%, + (1), + (1) (ugru,)
™ = — + 6 > 2
1%d L(1+3) ’

where ¢o is the value of u at the point Po and U is the wvalue
. 2 .
of u at the point numbered k (see the figure). On Qh we introduce

the averaging operator A*

A" u(x,y) = (u(xth,y) + u(x-h,y) + u(x,y+h) + u(x,y-h))/5

+ (u(xth,y+h) + u(xth,y-h) + u(x-h,y+h) + u(x-h,u-h))/20 .

We consider the following system of difference equations:

* *. ¥

u; = A*u; on Qﬁ > w =Tw ony U Qﬁ , (4.1)

which have a unique solution (cf. [7], p.594).

17
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Theorem 4.1. If 7601’1 and @601’1(7) , then

max Iu,;e1 -u| < ch? > (k.2)
G Uy
* .
where u is the solution ofwrolis thetl)s o 1 ut ion o f

the system (4.1), and ¢ 1is a constant not depending on h nor on

the choice of rectanqular coordinate system for constructing the net.

Proof. Let U be the maximum of the maximum moduli of all

3
P

possible third derivatives with respect to x and y of the harmonic
function on the closed net square containing Pl . Then the operator
I¥ is the composition of an interpolation operator at the point Pl

in terms of points 2,3, L,5 (see figure) with a local error not

exceeding in modulus the quantity CShSUPB and the operator of

1
linear interpolation at P along the normal between points PO and Pl
Hence, because of (2.6) and (2.9),
* 2 1
|u - Iu| < c9h on 7y, U Qh ) (4.3)
where the constant c9 may be chosen independently not only of h ,
but also of the position of the rectangular system of coordinates in
which the net is constructed. Moreover, by using Taylor's theorem
with a remainder term computed with the eighth derivative and by using
(2.9) with k = 8, it is easy to establish the inequality
* 8 ~ 2
lu - A™u| < c,ob /t on @ (b.k)

where clo is a constant independent of h , t , or the choice of

rectangular coordinates. Furthermore, by use of (4.3) and (4.4), and

relying on a lemma from [1], §1 and the method of [8 » we prove Theorem 4.1

19



analogously to the proof of Theorem 2.1.

Observation. The estimate (4.2) cannot be improved in its order

of magnitude with respect to h ; see the introduction to [1].

L
L
L

— c— r— — r— r—

r— r—

r«-«x

o
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$5. On the necessity of the conditions on the boundary and boundary
= values.
We prove first that in the statement of Theorems 2.1 and 4.1 the
) conditions on the boundary in terms of the classes Ck,)\ cannot be
_ removed. We consider a special finite region (Q , whose boundary
contains the piece described by the equation
= M, bls1s
- where N is a number, %< AN <1 . On the whole boundary y, except
- the point at the origin of coordinates, we assume the curvature to be
continuously differentiable. Moreover, we assume that the region Q
~ lies entirely on one side of the curve x = |y| e ' |y| <o, for
example on the right-hand side. Obviously, 7¢Cl,l , but in any case
- the angle made by the tangent to 7 with the x-axis satisfies a
_ HBlder condition with exponent N ; i.e., 7€Cl,)\. , % <AN<1
We consider the function
- u = plﬂ\ cos(lL + N)e - p cos © cog(gl;h) , (5.1)
- which is harmonic in Q , where p = |z| , ©=argz , and z = x+iy
‘[ The boundary values of the function u are twice differentiable, and
! their second derivative on 7 satisfies a HYlder condition with positive
- exponent. We have
L u(m - u(t)l > 1 (5.2)
i x ly=o y 'y=o
:
— Moreover, on

21
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r—

(5)) 4+ 1,(5) A=k
lux5 | |u 5 | < €11 P : . (5.3)
y
Construct a net with the lines %,y =0, + 1, +2, . . . . and

choose hy so that for all h (0 <h < h,) + the point
P(h(2 + [ 5011/(1-%.) ],O)EQh . By expanding the function u in the
neighborhood of the point P according to Taylor's formula with a

remainder term involving the fifth derivative, in view of (5.2) and

(5.3), we obtain the inequality

o - af > ™™, o<n<ng
P

where c*=(1-}\.)(2+[5cll/(l->\.)]))\'_3/1&8 . Hence, since
uh-u = A(uh-u)-(u—Au) on Oh , Where uh is the solution of the

corresponding system (2.10), -

ma.x |uh-u| > -02—* ™ o<n <h . (5.4)
O U

Analogously it can be established that the use of the scheme (4.1)
for the function (5.1) on the region considered above gives convergence
with a speed not better than hl+>\ .

The impossibility of weakening the requirements on the boundary
values in terms of the classes Ck,)x. in the hypotheses of Theorems 2.1
and 4.1 was already implied in the introduction to [l]. Moreover, if in
the function (5.1) one eliminates the second term, which in view of the
linearity in x and y does not affect the error of the schemes (2.10)
and (4.1), and considers u on the disk Q = Q{(X-l)2 + Ye < 1} , then
the inequality (5.4) is still satisfied. But here UEC]_,)\(V) , where

y 1s the boundary of the disk.

22
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§6. Observations

1. Theorem 2.1 can be generalized in a natural way to multiply
connected multidimensional regions with smooth boundaries in the

class Cl,l )

2. In the two-dimensional case Theorem 2.1 can be generalized
to a bounded region with N (N <o) corners with angles less
than n/2 , when the pieces 7,, j=1,..,N , conrecting adjacent vertices of the
J

corners belong to the class C and when the boundary values

1,1°
are continuous on the boundary and, moreover, belong to Cy l(7j> ’
2

j = 142,--0,1\] .

3. The method in [12] for obtaining a numerical majorant of the
error in the form of the solution of an auxiliary system of difference
equations can be applied also to the cases considered in the present
paper. For that it is necessary to develop in more detail the estimates
of the derivatives in (2.6)-(2.9), giving the numerical values of the

exhibited constants.

4. There remains the open question, whether under the hypotheses
of Theorem 2.1 it would accelerate the convergence, if in scheme (2.10)
at N the difference equations were not used with the operator I ,
but instead with the five-point difference operator approximating the
Taplace operator on a non uniform net (see [T], number 3, page 591). In
this case for the examples considered in §2 one does not succeed in
deriving an estimate from below for the maximal error that is worse than
%)

0(h On the other hand, the inequality (2.11) is satisfied.
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5. In [13] are considered regions that are rectangular
parallelepipeds, and under certain conditions on the boundary values
on the faces of the parallelepipeds that are weaker than Lipschitz
conditions, there is derived a uniform estimate of order h2 In h_1
for the error in the method of finite differences for the Dirichlet

problem for Laplace's equation, when the net is determined by planes

parallel to the faces.

Received by the editors 27 March 1968.

Translated by George E. Forsythe, October 24, 1969.
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