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ON THE PROPERTIES OF THE DERIVATIVES OF THE SOLUTIONS OF

— LAPLACE'S EQUATION AND THE ERRORS OF THE METHOD OF FINITE DIFFERENCES

_ FOR BOUNDARY VALUES IN Cs AND cl 1

a E. A. VOLKOV (Moscow)
Zh. Vychislitel. Matem. i Matem. Fiziki, vol. 9, No. 3

_ May - June 1969, pp. 573-584

— In§ 1 of the present work it is shown that if in a circular disk a

' harmonic functionu 1s given whose boundary values are twice continuously

- differentiable (uec (7) , where vy is the boundary of the disk), then
4 the same function u need not have bounded second derivatives in the

open disk nor on any fixed line. In § 2 is investigated the error of the

— ordinary finite difference methods of solving the Dirichlet problem for

Laplace's equation, when at the interior nodes of the net the solution 1s

= . the arithmetic mean of the values at the four neighboring nodes, and at

C the nodes near the boundary there is applied Collatz's method of linear

interpolation. In the case where the solution has second derivatives in

— the closed disk which satisfy a H8lder condition with exponent A > 0 , it

is established in [1] under very weak conditions on the boundary of the

- region that this method gives uniform convergence on the net with a speed

_ n° (h 1s the mesh constant), and that the order of convergence cannot be
improved by any power ofh (see [2]). In the present work it is assumed

— that the boundary everywhere has a tangent line whose angle of turning

satisfies a Lipschitz condition (recy 1) and that the boundary value has

= a first derivative satisfying a Lipschitz condition (belongs to Cy, 1(7) )s
and there 1s derived a uniform estimate for the error in the finite

—
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2 difference method which has the order n° In nt . In§ % it is proved

| - that this estimate cannot be improved under the stated conditions.
; | Moreover, 1t 1s established that the speed of convergence of the scheme
] - being considered can be worse than he in a region with an arbitrarily

| _ smooth boundary, for example in a circular disk, and with more stringent
| conditions on the boundary values. Indeed, for any function g(x)

— satisfying the properties that the ratio g(x)/In x is positive for x = 2,

1s strictly monotonically decreasing as xX increases, and takes values

=u from infinity to zero, there exists a function harmonic in the circle

g with boundary values in Co (7) 5 for which the difference scheme considered

3 above gives convergence not better than 2g(hn) . Ind 4 is presented a

_ special scheme for a square net which ensures uniform convergence with

| speed h® in a region with boundary 7€Cy 1 and with boundary values in
| ” Cq,1(7) In §5 it is proved that the given requirements on the boundary
| | and boundary values, generally speaking, cannot be weakened in terms of

3 the classes Cron and still obtain methods with order of convergence n° In nt ,
— considered in § 2, or order of convergence he , considered in § 4.

| The unimprovable error estimate for finite difference methods of order

o n° In nt as derived in § 2, 1s stronger for the class of regions with

| 3 boundaries -in C11 than the corresponding result in [1], since the present
| result 1s established under weaker conditions on the solution of the Dirichlet

— problem for Laplace's equation than in [1]. Moreover, these conditions are

| —-imposed 1n a natural manner only on the boundary of the region and the boundary
| — values, and in a definite sense cannot be weakened. In [1] the error estimate

- of order h° In x1 was derived under essentially weaker conditions on the

| N boundary than in the present work, but under the assumption of boundedness in
| . the region of the second derivatives of the unknown solution.
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81. On the unboundedness of the second derivatives of harmonic

; functions with boundary values in Co

2 2
| Let Q = Q {(x-1)" + y. < 1} be a disk with boundary 7? , and

let

| where z. =X +e +iy and ¢€ 1s a parameter. Obviously, for
arbitrary € > 0 the function v 1s twice continuously differenti-

| able along the arcs of the boundary y . Indeed, as is shown by an

elementary calculation,

k k

sup max | a =V <<» k= 0,1,2; (1.1)
! Oe 7 S

v2) (x,0,e) == 2 In (x + €) —k, Xx +e > 0. (1.2)
We consider the function

: | Kk I
g w(x,y) = — 5 v(x,y,e ) (1.3)
4 n

: n=1

In view of (1.1) the value of w 1s twice continuously differentiable

along Y , and also, because of Welerstrass's Theorem, the function w

| is continuous on § and harmonic in  . Define

2m

1 —n’
Q(x,y,m) = 2) v(x,y,e ) .

n=1 "

By virtue of (1.2),



:
-

2

02) (0,0,m) > 4m — 8 (1.4)
~ Let N be an arbitrarily large but fixed natural number, N> 8. In

5 view of (1.4) and the continuity on {) the mixed derivative ot) (x,7,)
at the point (xy,0) € Q, where 0 < xy < e™7 2, satisfies the relation

2

| Go (pO, ) > av.
Hence, by (1.2),

(2) * (2)
“ Uy (0,0, ) > Quy (x4, 0,1) > ON, (1.5)

— where * 4°
N = max ( N, — +1).

| We have (cf. [3], §& 3) :

| ~ (2) 2), x 8 *
rg) (050) = 2) (x, 0,0) | «Eg max f(y) — Qlx,y,0))

| — .
<

B 1

| Hence 1t follows from (1.5) that

(2)
= [Wy (x20) | > N.
| ——

Because N was arbitrary,
re.

B sup #2) (x,0)| =. (1.6)
me O< x< 1

f=

4
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It will be proved in § 2 below that

2 2

sup (1w(2) (x,0) | = 2) (x,0) |) < «© (1.7)
OK x<1l x Y

Hence from (1.6) it follows that

2

sup Ow = ®, (1.8)

Yl

where d/o is the operator of differentiation along an arbitrary

fixed direction coinciding with neither the x nor y axes.

As 1s not difficult to show, the boundary values of the function

w are thrice continuously differentiable everywhere on vexcept

at the origin of the coordinates. Hence [4] the function w has

all 1ts second derivatives bounded 1n an arbitrary subregion of the

disk §§ whose closure does not contain (0,0). Hence from (1.8)

it follows that for the function

* Xx + -1 x —y — 1

Ww (x,y) = w(x,y) + Gar +1, sovoi) , (1.9)J? /2

which is harmonic in Q and has boundary values in C, (vy), the

second derivatives computed in an arbitrary direction, including those

parallel to the coordinate axes, are not bounded in the open disk Q .

p



$2. An upper bound for the error of the finite difference method

- We consider the Dirichlet problem

| | Mu =0 inQ u=¢ on 7, (2.1)

E | 2 2 2/\ 2 Lo
B where A = 0%/ox™ + 37 /oy , y 1s the boundary of the finite region Q , and
_—

8 ® is a given function. We assume that 7€C1 2 , that is, each point

| of y has a tangent whose angle with the x-axis satisfies a Lipschitz

B condition with respect to arc length s . Further, we assume that each

| point of y is tangent to a circle-of fixed radius r_ lying entirely

inside Q . The function @€C, 17) , that is, its first derivative
—

with respect to s satisfies a Lipschitz condition.

I. As is known ([5], p.257) a solution of (2.1) that is continuous

in Q has its first derivatives uniformly bounded in Q . We investigate

~ the higher derivatives of the function u . We construct a circular

B disk K of radius r_ , lying in Q , whose boundary 1s tangent to vy
~ Ww

at a certain fixed point M . We introduce a system of polar coordinates

_ py © , with the origin at the center of the disk and the polar axis on

| the line from the center to the point M . Let Dy be the normal to ¥

: — at the point M . Then

| — v=utaxtby te, ’ (2.2)

_ where the constants ay Ppp Cy are so chosen that

1

TE 2 FR CN FE (2.5)- S i

;



We represent the function v on the disk K by the Poisson

integral

2 2
| n (r> - p )v(r 0) ,
— v(p,0) = — [2aw (2.4)Va) 2 2 .-t rr. - 2r p cos{w-0) + p
{ 0 0)
!
-

In view of (2.2), (2.3) and the uniform boundedness in Q of the

; first derivatives of u ,
—

2

| f(zo0) cco” 5 of <= (2.5)
x-

B where c¢' 1s a certain constant not depending on the choice of the
a
| point Mey . By differentiating in the interior of the disk K under

(

L the integral sign in (2.4) both with respect to © and to p and
applying some elementary transformations, we derive 1n view of (2.5) and

{

— (2.2) the following inequalities:

: (2) < cf [ CELE < c¥= — = — — 2

- (2.6)

1 (1),(1) TS x1. To= — +

- [Guo Hor4, 00 5 8" I Tay = gb)

| — |

(x) 1 (1)
| uty’ ll |
 -— k Pe o k-1

p 'p=r_-t, 6=0 e p=r_-t, ©=0

- To dw 2-kt A * =
=< “x J K-1 = Cp © , k>2 (2.7)

CA (w)
|_—

/
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| where u is the solution of problem (2.1), 0 < t < r, , and

~ elach are constants independent of t and the choice of the point M .
. Also, a, (w) =» + tr :

In this manner, in particular, 1t 1s established that the second

| — derivative of u computed along an arbitrary normal to y , at an

| arbitrary point not farther than r from y , remains bounded by a
= constant that does not depend on the choice of the normal. Consequently,

| . by virtue of Laplace's equation, on an arbitrary normal in a neighborhood

of the boundary, the second derivative computed in a direction perpendicular

| — to the normal is also bounded. Thus (1.7) holds.

: Inside the region at a distance from y exceeding LI all

| = derivatives of the function u with respect to the variables x and y

| are bounded by constants depending on the order of the derivative;
ne.

| see [3],83. Hence from (2.6), (2.7), and the fact that u is

o harmonic 1t also follows that

max wl?) <z,(|n t| + 1) ) (2.8)
 — Om<z2 Xy

- max u(E) < g £28k , k>2 , (2.9)

- where t 1s the distance of the current point from y , and ¢, are
Lo constants not depending on t .

| The estimates (2.7)-(2.9) cannot be improved in the degree of

| — dependence on t , since they are achieved for the function (3.1).

We construct a square net by the lines x,y = 0 , + h,+ Zh,... .

We denote by Qy the set of nodes of the net lying in Q and having the

;



8 property that all interior points of the segments of net connecting them

| with the four neighboring nodes lie in Q . All other nodes that

~— lie in Q are assigned to the set Ty - We introduce on {J the

| averaging operator A ,

| Au(x, y) = (u(xth, y) + u(x-h,y) + u(x,y+h) + u(x,y-h))/4+ .

At the point P of 7, We construct the interpolating operator I ,

i.
3 Tu = 9/(1#8) + u,8/ (18)

| where wu, is the value of u at a point Pe U 7 35 @, 1s the
value of @ at the point P at the intersection of y with the line

: passing through the point P; and the point Py, ; 9 is the ratio

of the lengths of the segments PF and PP, . We assume that 8 > 2,

that the point P lies on the segment PP , that the length of the

| segment PP does not exceed 3h , and, moreover, that the segment

: PP forms with the tangent to y at the point P an angle larger

than a certain fixed positive value, for example 1/30 , and that all

Co the interior points {of PP; ? —- GEF} belong to Q .

| Let uw = ® on y.. The following system of difference equations
| = has a unique solution and approximates the problem (2.1):
|
i

| = A =I (2.10)
- w =4Aw on Q , Ww =1ly on 7, . .

a C a (vr ) thTheorem 2.1. If 7€ 1,1 804 1 4 , en

~- max |, -u] < ch?(|1n h + 1) | (2.11)]

ay Uy



| where u is the solution of (2.1), wis the solution of the system
(2.10), and¢ 1s a constant independent of h and of the rectangular

. coordinate system used to construct the net.

| Proof. Taking into account (2.8) and using the remainder term in
CL LAL

Taylor's formula in the integral form (cf. [6], §3) using the second

— derivative, we derive the 1nequality*

|lu-Tu| < ¢ h=(|1n h| + 1) on vy (2.12)— — 1 h . .

1 CL

Let Q be the subset of 2 consisting of the nodes whose
“ | 5 1

distance from vy does not exceed 3h/2 , and let = \0, .

_ Analogous to (2.12) we can derive the inequality

|lu-Au| < c h=(|1n h| + 1) "_ S © on { (2.13)

From (2.9) for k = 4 and Taylor% formula follows the inequality

Lt 2 2

| u-Au| hi 3 h /t on Qy ’

where t 1s the distance of the current node of the set on from y .

— In view of the comparison theorem ([7], p. 594)

lu, -ul <e om Q Uy, > (2.15)

| where

- -1 —2 -3
= +

a. ‘n= Tf Tf (2.16)

-1 -1 -1 -1

. €y = Ae on (ny » € = Tey + | u-Tu] on 7 (2.17)

ns x Here and below i. (P = 1,2y00.) will denote constants not depending
I on the factor standing to their right.

10



= -1 -
€, = AZ; + | u-Au| on Q, ,

— (2.18)
-2 22 2 -2 =2
€n = Ae on Qp , 4 = le, on 7,

-
-3  _ a3 1 5 I 2
€h Ae on {hy P 4 = Aer + | u-Au] on (4 ,

. (2.19)
-3 =

€y = Le, on 7,
-

and er = 0 on y for v = 1,2,% ,
—

In view of (2.12) and the estimates of [8],

- _L >
max & < ch ({In bf +1) (2.20)
QU 7

By the method expounded in [9],p. 1074, and in [8], using

_ (2.13), we easily establish the following inequality:

-2 4

max €,_ < ch (|1n h| + 1) (2.21)
- uy, 7 7Uh

— and, 1n addition, the inequality

=> -4

Co max & < cg max Ep , (2.22)
Oy Urry &

—

where

-4 -4 2 4 1
€ oN + lu u on QO , € 0 on AN U a . (2.23)

11 .



2 On the basis of (2.14) and a lemma from [1], §1 (see also [1],

- §2, 3 and [10], §2, 3) which, as is easily shown, is applicable to the

system (2.23), we derive

—
i _4 5
: max € < ch (|1n h| + 1) (2.24)
1 9 —-

| Using the fact that the constants 1n inequalities (2.12)-(2.1k),

(2.20)-(2.22), and (2.24) may be chosen so as not to depend on the system

— 'of rectangular coordinates in which the net is built, from (2.20)-(2.22),

| | (2.24), (2.16), (2.15) we are led to inequality (2.11). Theorem 2.1

= has been proved.

= Observation. In the special case where the boundary y has a

| curvature which everywhere satisfies a Hblder condition with a positive

- exponent, for the derivation of inequality (2.24) we may exploit the

| majorant

| 2 2 2

Vv = a,h In (1 + (1 - pw (xy) -V (x,¥))/ash) ,

where u,v are the real and imaginary parts of the function which

— conformally maps the region Q onto the unit circle, and aq and an

are certain positive constants [11].

| —

|

12



] 83. Lower bounds for the error

oT We prove that the estimate (2.11) is sharp with respect to h .

2 2
| We consider on the disk @ = Q{(x-1)” + y < 1) the harmonic function

2

u=1In{z° ln z}, (3.1)

| where z = x+1y . The boundary values of this function satisfy the

| conditions of Theorem 2.1. We construct a net by means of two families

3 of lines:

| Freon... ZH = 0, +h, + 2, ee
a

: Let 0 < h < 1/50 , P = P(h//2, b//2) , P = P_(0,0) ,

P, = P,(/2 h, /2 h) . Here Fey, , P. eq, . We have at the point P
[

| 2 2
| u-Tu = h°(In h = 2 In 2h) >1n"(|1n b| + 1)/2 . (5.2)

|
Since

- 4 - - (u-

it follows therefore, using also‘(3.2), that for 0 < h < 1/50

ne
max |w-u| >= (|1n b| + 1) (3.3)
UT

and, consequently, estimate (2.11) cannot be improved by any order of

| magnitude with respect to h .

; — We now prove that the speed of convergence of the system (2.10)
can be worse than h , even if the boundary values have a continuous

second derivative. Indeed, for any function g(x) such that the ratio

15



g(x)/In x is equal to unity for x = 2 and is strictly monotonically

decreasing for increasing x (x > 0) , going to zero at infinity,
Co 2 2

there exists a function u , harmonic in the disk Q{(x-1)" + y < 1}
—

| with boundary values 1n Co(7) such that on the above-considered net

~~ 2 ,. =1

max | w, -u > ch gh”) (3.4)
| U7

where Uy 1s the approximate value of the function u , derived from

— the system (2.10), 0 <h < h* , and- c* is a positive constant
= 0

| independent of h . For example, we may take g(x) = Int 2 ln x,
where @ 1s a constant with 0 < a < 1 .

| Let n(x) be the function g(x)/In x , and let E(x) be its inverse

| function (e(n(x)) =X, X 2 2 ) Then let

| . :
8 u(x,y) = ). = v, (%,¥) , (3.5)

n=1 n

where v_ = Im{z° In Z_} and| n n n’ ’/

1 : 1

90 t(n 7) 90 &(n 7)

» By Weierstrass, Theorem the function u of (3.5) is harmonic on the

be disk Q and continuous on Q ; moreover, 1n view of the uniform

| (with respect to n ) boundedness of the maximum of the moduli of the

| second derivatives of the boundary values of the functions v, + the

| boundary values of the function u are twice continuously differentiable

(ueC (7) , where Vy is the boundary of the disk Q).

= 14



i Since for 0 < x < 3

2

_ dx

: then for 0 <h < e 3/3 at the point ry, considered in the
— preceding example

| he J 2
| v. -Iv. > -Z In (2h + 0p) >0 |,
=u 90 &(n 7)

— where n = 1,2,... . In particular, at the point P for

i m>m = n-th) +1 , we have
: 2 >
| h h -1

2 v o=Iv. > -=1n3h > g-Inh

Therefore at the point P , for 0 <h < e 3/3 , we have

2 ® 2 2

elu > Inn tb F Z > Inn" > 2 In h(n)
m=m_ =m i

— 2
h -1

= 3 gh) (3.6)

= Since

a. (wu)|p = 5 (w-u)], - (u-Tu)|| Yh lp TY Py p ’

_ where Uy 1s the solution of the system (2.10) for boundary values

—coinciding with the boundary values of the function (3.5), and u is

— the function (3.5), then in view of (3.6)

2
| max |u -u| > b_ g(h™1)— "n 12

JP,
|

- 15
_
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—

- Consequently, inequality (3.4) 1s satisfied, where u 1s the function
of (3.5), and c* = 1/12 (n* = e™/3) . That is, for Dirichlet's

problem on the disk Q , the solution of the system (2.10) for boundary

values coinciding with those of (3.9) (ueC,(7)) , converges with a
0 _

~ speed not better than h g(h hy . On the other hand, in view of

Theorem 2.1 the estimate (2.11) holds.

-

C Remark. By methods analogous to those of the examples considered, one

can prove there exist functions harmonic in QQ with boundary values

— in C, (7) and Co(7) , for which for sufficiently small h areJ

4 satisfied, respectively, inequality (3.3) and (3.4) for an arbitrary
choice of coordinate systems in which the net 1s constructed.

-

—

"

-

—

-

—
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a 4h.A method with accuracy O(n”) :
| _ We assume that 7€Cy 1s We introduce on 7, UG a special
=u interpolation operator I* of the following form. Through the point

| — Fey, U ty we draw the normal to y (at the point P_) and extend
it to the point Py lying on some diagonal of the nearest net square

which is at a distance not less than h/2 from y (see the figure on

_ the next page). In a special case one of the vertices of this square

may coincide with the point P ; then the point Py must lie on the

| — ‘diagonal not containing P . We denote by ph//2 the distance from

g Py to the center of the chosen square, and by © the ratio of the

- length of the segment PP to the length of the segment PP, . At
= the point P

| Coe By ray, + (ed) (ug)
_ I"u = Te + 0 — n=) 5

|

| _ where ? is the value of u at the point P and Uy 1s the value
| of u at the point numbered Kk (see the figure). On 0’ we introduce

: the averaging operator A* :

*

= Fux,y) = (leh) + ulxny) + u(oyHh) + u(x y-h))/5
| + (u(xt+h,y+h)+ u(xth,y-h) + u(x-h,y+h) + u(x-h,u-h))/20 .

| We consider the following system of difference equations:

a) = ay on a; , uy = T*u on 7, U 0 , (4.1)

| - which have a unique solution (cf. [7], p.594).

Co 17
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Theorem 4.1. If 7€Cy 1 and eC (7) , then

— * 2
max uy, - ul < ch ’ (k.2)

| Q U7,
— . . * - - '

where u is the solution ofwrokis the.l)s o 1 u t i on o f

the system (4.1), and c¢ is a constant not depending on h nor on

the choice of rectangular coordinate system for constructing the pet.

| Proof. Let U 3 be the maximum of the maximum moduli of all
| 1

ha possible third derivatives with respect to x and y of the harmonic

function on the closed net square containing P . Then the operator
—

I* is the composition of an interpolation operator at the point Py

L in terms of points 2,3, 4,5 (see figure) with a local error not

exceeding in modulus the quantity cgi 0 5 and the operator of
“ 1

linear interpolation at P along the normal between points Po and Py

. Hence, because of (2.6) and (2.9),

* 2 1

g lu - TT] < egh on 7, U Q (4.3)

| where the constant Sq may be chosen independently not only of h ,
~-

but also of the position of the rectangular system of coordinates in

| which the net is constructed. Moreover, by using Taylor's theorem

with a remainder term computed with the eighth derivative and by using

- (2.9) with k = 8, it is easy to establish the inequality

| 8 A 2
. lu - AM] < cit /t on Q (Lok)

| where C10 is a constant independent of h , t , or the choice of—

| rectangular coordinates. Furthermore, by use of (4.3) and (4.4), and

— relying on a lemma from [1], §1 and the method of [8 » we prove Theorem 4.1

19



L analogously to the proof of Theorem 2.1.

| Observation. The estimate (4.2) cannot be improved in its order

| of magnitude with respect to h ; see the introduction to [1].

|
-

F
|

-

-

-

20
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i

: $5. On the necessity of the conditions on the boundary and boundary

| = values.
We prove first that in the statement of Theorems 2.1 and 4.1 the

| conditions on the boundary in terms of the classes AN cannot be
| _ removed. We consider a special finite region (Q , whose boundary

contains the piece described by the equation

| 3 EN FS A

| - where AN is a number, z < N<1l . On the whole boundary y, except
_ the point at the origin of coordinates, we assume the curvature to be

continuously differentiable. Moreover, we assume that the region Q

- lies entirely on one side of the curve x = |v] ails ’ |v] < eo, for

| | example on the right-hand side. Obviously, Cy 4 , but in any case
TT the angle made by the tangent to 7? with the x-axis satisfies a

_ Hblder condition with exponent A ; i.e., SRY , < Nl.
We consider the function

B u = oT cos(l + N)6 - p cos © cod) ’ (5.1)

which 1s harmonic in Q , where p = | z] , © =arg z , and z = x+1y .

| The boundary values of the function u are twice differentiable, and

their second derivative on y satisfies a Hblder condition with positive

— exponent. We have

| _ a) = uy) > (1-0) i (5.2): X 'y=0 y Y=O
|

— Moreover, on {

21



(5) (5) N=k

[v5 | + |u 5 | < Cy P . (5.3)Lo y

Construct a net with the lines x,y = 0, + 1, + 2, . . . . and

= choose hy so that for all h (0 < h< h,) , the point

| P(h(2 + | 5¢q1/ (1-7) 1,0)€Q, . By expanding the function u in the
neighborhood of the point ©P according to Taylor's formula with a

- remainder term involving the fifth derivative, in view of (5.2) and

(5.3), we obtain the inequality

ee

+ .

| - Auf, > So wil 0<h<h,,P

-

A=

where c™ = (1M) (2+ [5e,,/(1-2)]) 2/48 . Hence, since
— u -u = A (uw -u)-(u-Au) on ( , where w is the solution of the

corresponding system (2.10), °
|Wp

ce” IMA
| mex |w-ul > 5h" , 0<h<hy . (5.4)

Uy :" py Uy |

Analogously 1t can be established that the use of the scheme (4.1)

-

for the function (5.1)on the region considered above gives convergence

’ | +N
with a speed not better than h

~~

The impossibility of weakening the requirements on the boundary

— values in terms of the classes Cy 4 in the hypotheses of Theorems 2.1b

and 4.1 was already implied in the introduction to [1]. Moreover, if in

= the function (5.1) one eliminates the second term, which in view of the

: linearity in x and y does not affect the error of the schemes (2.10)
ee

2 2

| and (4.1), and considers u on the disk Q = Q{(x-1) + yv < 1} , then

o the inequality (5.4) is still satisfied. But here wey (7) , Where
| y 1s the boundary of the disk.

—
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$6. Observations

1. Theorem 2.1 can be generalized in a natural way to multiply

connected multidimensional regions with smooth boundaries in the

| class C1,1

2. In the two-dimensional case Theorem 2.1 can be generalized

to a bounded region with N (N <«) corners with angles less

i than n/2 , when the pieces y., id=21..4N , comrecting adjacent vertices of the
J

corners belong to the class Cy 12 and when the boundary values2

| are continuous on the boundary and, moreover, belong to Cy 1075) ’| 2

J = 1,25400,N .

| 3. The method in [12] for obtaining a numerical majorant of the

error 1n the form of the solution of an auxiliary system of difference

equations can be applied also to the cases considered in the present

paper. For that it 1s necessary to develop in more detail the estimates

of the derivatives in (2.6)-(2.9), giving the numerical values of the

LT exhibited constants.

4, There remains the open question, whether under the hypotheses

of Theorem 2.1 it would accelerate the convergence, if in scheme (2.10)

at IN the difference equations were not used with the operator I ,

but instead with the five-point difference operator approximating the

: laplace operator on a non uniform net (see [7], number 3, page 591). In

: — this case for the examples considered in §2 one does not succeed in

deriving an estimate from below for the maximal error that 1s worse than

0(n°) . On the other hand, the inequality (2.11) is satisfied.
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{ 5. In [13] are considered regions that are rectangular

- parallelepipeds, and under certain conditions on the boundary values

on the faces of the parallelepipeds that are weaker than Lipschitz

2h | 2 -1
4 conditions, there is derived a uniform estimate of order h In h

— for the error in the method of finite differences for the Dirichlet

problem for Laplace's equation, when the net 1s determined by planes

= parallel to the faces.

Received by the editors 27 March 1968.

] Translated by George E. Forsythe, October 24, 1969.
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