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1. Introduction

In [2] Wielandt and Hoffman proved a theorem on the eigenvalues of
normal matrices which is of considerable importance in the error analysis
of eigenvalue algorithms based on the use of unitary transformations
[4,5]. Their proof was very elegant and was based on the use of linear
programming techniques. In [5] Wilkinson gave an elementary proof in
the case when the matrices are Hermitian, which was based on an earlier

, proof due to Givens [l]. This proof did not extend easily to the general
case. Here we give an elementary proof for the general case which
applies immediately to a generalization of the Wielandt-Hoffman theorem
due to Kahan [3]. Not surprisingly the proof involves techniques which
are familiar in the area of linear programming but no direct appeal is

made to results from that field.

2. The Basic Theorem

The proof depends on a theorem which is not directly concerned with

normal matrices. Before stating this theorem we give two definitions.

DEFINITION 1. The set of n elements al,;L’aQ iz,---,an,in of
an nxn matrix A is called a diagonal of A if il,iz,...,in is
a permutation of the integers 1,2,...,n . If ij =3 (3 = 1ly.ee.yn)

then we have the principal diagonal.

DEFINITION 2. A matrix X is called a doubly stochastic matrix if

n

x,, >0 and Zx = ix.. =1 (j =1ye.eyn) i.e., all row
= =1 i= 9t

and column runs are unity.
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THEOREM 1. If P is a real matrix such that the sum of the
elements on the principal diagonal is not greater than the sum
of the elements on any other diagonal, and X is any doubly
stochastic matrix, then S(X) = Ejz:Pijxij is a minimum when

X=1.

Proof. The minimum is attained, possibly for many different X .

Let us choose X to be a minimizing doubly stochastic matrix having

" the maximum number of zero off-diagonal elements. We shall show that

all its off-diagonals must be zero. For suppose that this is not true.

Let x, . be a non-zero off-diagonal. Then x. . < 1 and hence
1., 1 1,91
e 2° 72
there is a non-zero element Xiz,is (say) in row i, . If iz # iy
then similarly there is a non-zero element x, . in row i, .
13, lh 3
Continue in this way until we reach an x, . for which %n equals
m—Pm
some earlier ik . Let x be the smallest of the positive elements
X. }x. s P AL -,x. .
s 5 M U Ry N 10tk

Construct a matrix Y such that

VA =Xy gt s 8 =kktl, . . .n-1 (2.1)
d7s s’ 7s
Vi 4 =x. -Xx , s =Xkktl,...,m-1 (2.2)
Tt tet1 g terl
= ise. 2.
yij Xij otherwise (2.3)

Then Y is clearly a doubly stochastic matrix and
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2: m-1 m-1
R ZZ Pi,jyij - ZPinij =X Sgk pis)is - S?;k piSJiS+l . (2.14)

The expression in brackets cannot be positive since otherwise by replacing

the elements Py 4 in the principal diagonal by the elements
J
s s

p. we could obtain a smaller diagonal sum. Hence

7 i
B

s’ Tstl

Ly .y, <3V D; %45

ijviy —

. But Y is clearly a doubly stochastic matrix and it has at least one

more off-diagonal zero than X , contradicting the hypothesis. Hence
all off-diagonal elements of X must be zero, i.e., X =1 .
An exactly analogous theorem holds when the principal- diagonal

has the maximum sum.

3. The Wielandt-Hoffman Theorem

THEOREM 2. If A and B are normal matrices and C = A-B , and
if a, and bi are the eigenvalues of A and B arranged so

1
I 2
that 2: |ai -bil is a minimum for all possible orderings, then
L
f: 2 2 .
. |ai -bil < HCHF ) (quF = the Frobenius norm of C) (3.1)

Proof. Since A and B are normal there exist unitary Ql and Q2

such that

A = Q diag(ai)QIi s B = Qediag(bi)Qg. (3.2)
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(Note then we are free to prescribe the ordering of the a. and b.l

1

. . . 2 L
and we choose the ordering which gives Z |ai-bi| a minimum value.

Hence

A-B = Q o‘Liag(ai)c,flI - Q, diag(bi)QI; = C . (3.3)
giving

diag(ai)QI]{_ Q - Q,I]{_ Qs diag(bi) = c;f_:_ICQ2 . (3.4)

Writing Q = QEIQQ , a unitary matrix, we have
. . 2 2
|diag(a,)a - Q aiag(b,)lp = [[Clip (3.5)

since the Frobenius norm is unitarily invariant. Hence

2

Ccley-o,1% ol = felp (5.6)

Now the matrix P with p,. = |ai-bj|2 is real and from the ordering

of the a, and b.l its principal diagonal is minimal. Further, since

Q is unitary, the matrix z with z,, = Iqij|2 is a doubly stochastic
+y
matrix. Hence by Theorem 1 and equation (3.6)
n
2 2 2 2
(.E Iai'bil < CC By 'bj| |qijl = HC“F (3.7)

and the result is proved.

When A and B are Hermitian, the ai and bi are real, and it

is easy to prove that the orderings &, >8,2> . . .28 , bl 2by > L zbn

give the minimal value. In fact, returning to Theorem 1 in the case when

P:: = (a. --b.)2 with a, and b, real and monotonically ordered, the
1] i J 1 i

proof is much simpler. For if X has a non-zero off diagonal element
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in row 1 or column 1 it must have at least one such in both. Suppose

Xlr and xSr are non-zero and X 1is the smaller. If we increase
Xqq and X by x and diminish Xy, and Xy by x the sum is
changed by

x[ (al -b1)2+ (as -br)2 - (al“br)z' (as -bl)]2 = x(al-as)(br -bl) <0

Hence continuing in this way the minimizing X has no non-zero off-diagonal
elements in row 1 or column 1, and continuing again the minimizing X
is I . (Notice we do not even have to show that for this P , the

principal diagonal is minimal; this emerges from the proof.)

4, Generalization of the Wielandt-Hoffman Theorem

A generalization of the Wielandt-Hoffman Theorem which is of

practical importance is the following.

THEOREM 3. If X is an nxr matrix with orthonormal columns,
A is an nxn normal matrix, B is an rxr normal matrix

and R an nxr matrix is defined by
Ax -XB = R (k.1)

if the eigenvalues 3. (i = 1,...,n) of A and b, (1= 1,e.0,1)

r
of B are ordered so that Z |ai-bi|2 is a minimum, then
i=1
2 2
Zl|a1 -b | < |Rllp - (4.2)

l/2||R||§, was given by

A weaker result with || RH§ replaced by 2
Wilkinson in [5] and the result itself by Kahan [3].

5

(3.8)



Notice we are interested only in the selection and ordering of the

relevant r of the a; to be associated with the bi . Writing

. H . H
A = Q) diag(a;)Q; , B = Q, diag(b,)a, (k.3)
with the prescribed ordering of the ai and bi‘ we have
i . 2 H E 2
|aiag(a;)q - Q diag(b,) ||p = ey R Qullp =1 R lIg (k.h)

where Q is an nxr matrix with ortho-normal columns. Hence

r n
2 2 2
,jgl i§l|ai - bjl Iqij| = HRHF . (k.5)
Let Y = [Q | Z] be an nxn wunitary matrix given by the completion
of Q 3 then if
p.. =k -5, ]° (<) -0 (3> (1.6)
1 i J J = s pij = J . .

L |© (%.7)
i=1l J

n o r n 5
=lp.;lj|yI'Ji| - Z Z lai - bjl |q.ij

j=1 i=1

and from the definition of the 'ordering of the a. and bi the diagonal

v

1

of P is minimal. Hence by Theorem 1 and Equation (4.5)

n
) Pii 7

i=1

g

la, - 0,02 < ¥ Cloy-v,lla 12 - IRIE . (4.8)
1L i -j=l P J iJ ro-

This theorem is of practical value when r orthonormal approximate

eigenvectors x X, are known corresponding to alleged eigenvalues

l,-o
ul’o.o,urol f
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Axi - “'ixi =7 (i =1,0.0,1) (%.9)
Then
AX - X diag(p;) = R (4.10)

with an obvious notation, and diagQL) is the matrix B of Theorem 3.

i
This then states that there exist r eigenvalues al,..qar of A
such that
r
2 2
igl(ai - u) = Rl . (4.11)

Notice that the Wy can include multiple or pathologically chic
eigenvalues. The result is well known when r = 1 and the
Wielandt-Hoffman theorem corresponds to the case r = n. We observe
that by using less than r of the alleged eigenvectors we can obtain
results of the type (4.11) corresponding to any s (< r) of the

approximate eigenvalues.
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