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: 1. Introduction
—

In [2] Wielandt and Hoffman proved a theorem on the eigenvaluesof

normal matrices which 1s of considerable importance in the error analysis

| of eigenvalue algorithms based on the use of unitary transformations

- [4,5]. Their proof was very elegant and was based on the use of linear

programming techniques. In [5] Wilkinson gave an elementary proof in
—

the case when the matrices are Hermitian, which was based on an earlier

| , proof due to Givens [1]. This proof did not extend easily to the general
|

case. Here we give an elementary proof for the general case which

_ applies immediately to a generalization of the Wielandt-Hoffman theorem

{ due to Kahan [3]. Not surprisingly the proof involves techniques which
}

= are familiar in the area of linear programming but no direct appeal 1s
f

] made to results from that field.
—

(

-

2. The Basic Theorem

— The proof depends on a theorem which 1s not directly concerned with

| normal matrices. Before stating this theorem we give two definitions.
—

: DEFINITION 1. The set of n elements a, . »8,5 . seces8 of

~ an nxn matrix A is called a diagonal of A if 1ip,1i,,...,1 is

a permutation of the integers 1,2,...,n . If fs = 3 (3 = 1yee.yn)
then we have the principal diagonal.

|

- DEFINITION 2. A matrix X 1s called a doubly stochastic matrix 1if
n

; x,. >0 and YX. = $x. = 1 (7 = 1,e.050) i.e., all row
| tT i=l to i=1 Jt
a !

and column runs are unity.

a | }
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be

THEOREM 1. If P is a real matrix such that the sum of the

— elements on the principal diagonal 1s not greater than the sum

of the elements on any other diagonal, and X 1s any doubly
—

| stochastic matrix, then S(X) = PR AEN 1s a minimum when
- X=1.

Proof. The minimum is attained, possibly for many different X .
. Too

Let us choose X to be a minimizing doubly stochastic matrix having

— the maximum number of zero off-diagonal elements. We shall show that

f all its off-diagonals must be zero. For suppose that this 1s not true.

~ Let x. : be a non-zero off-diagonal. Thenx. . < 1 and hence
| 1’ 72 2 2

| ' _ i . . . . . .

| there 1s a non-zero element ¥ii, (say) 1n row 1, If 1g # 1s
then similarly there is a non-zero element x. . in row 1, .

. Continue in this way until we reach an X. for which 1 equals
m-—Pm

some earlier 1 . Let x be the smallest of the positive elements

, X. . 1X, . 3 sees X, . .
i Rl ANY m-17 "x

! Construct a matrix Y such that
.

= = + . - [Vi x.3 FX , 8 = kk+t1,. . .m-1 (2.1)
ds s’ 7s

—

! — an = + evs - 242Vi 4 Xoo XxX 5, 5 =Zkyktl,...,m-1 (2.2)
- s’ stl s’ stl

L Vis T%is otherwise. (2.3)

i Then Y 1s clearly a doubly stochastic matrix and

|—-—

-



») » bl m-1- De .Ve. = pP..X.. = X P. . - DP. (2.4)
L tod 1d s=k Ts’'s L ter tel

[ The expression 1n brackets cannot be positive since otherwise by replacing
the elements P. 4 in the principal diagonal by the elements: 2

ss

L p. we could obtain a smaller diagonal sum. Hence
Ts’ Tstl

L 2.0. P;3Yi3 EINES .
L . But Y 1s clearly a doubly stochastic matrix and it has at least one

more off-diagonal zero than X , contradicting the hypothesis. Hence

) all off-diagonal elements of X must be zero, i1.e., X = 1 .

L An exactly analogous theorem holds when the principal- diagonal
has the maximum sum.

L 3. The Wielandt-Hoffman Theorem

[ THEOREM 2. If A and B are normal matrices and C = A-B , and
if a, and b, are the eigenvalues of A and B arranged so

| n )

L that y ER -b. | 1s a minimum for all possible orderings, then
5

L 5° 2 2a, -D, | < Clg (dls = the Frobenius norm of C) (3.1)

Proof. Since A and B are normal there exist unitary Qq and Qn

[ such that

A = q. aias(a)Ql , B = q. diag(b.)Q (3.2)[ 1 iA 2 i’ 72°
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L

| (Note then we are free to prescribe the ordering of the ao and b,-

and we choose the ordering which gives y EVER a minimum value.$

- Hence .

A-B = Q. diag(a To - Q, diag(b Yo = C . (3.3)“ 1 i771 2 i’ m2

giving

—

diag(a,)Q; As = @7 Qp diag(b.) = qd; CQ, (3.4)

~ H
Writing Q = Aq Qo , a unitary matrix, we have

t

- |diag(a,)a - Q diag(b iE = cll (3.5)i i’UF F

— since the Frobenius norm 1s unitarily invariant. Hence

o 2 2

Ccle; -v;l lay 51 = Clg . (3.6)
2

Now the matrix P with p.. = a. -b.| 1s real and from the ordering
- 1J A J

of the a, and Db. its principal diagonal is minimal. Further, since

L Q is unitary, the matrix Z with z,, = la; | is a doubly stochastic=

matrix. Hence by Theorem 1 and equation (3.6)

-
n

2 2 2 2

2 18s -D, | < CC 8s -b,| lay 5 = cll; (3.7)
-

and the result 1s proved.

— When A and B are Hermitian, the a, and b. are real, and it

i is easy to prove that the orderings &, 28,2. . . 2a , Dy 2by >. > Db
give the minimal value. In fact, returning to Theorem 1 in the case when

p.. = (a. -b.)° with a, and b. real and monotonically ordered, the
. 1] i J i i

proof is much simpler. For 1f X has a non-zero off diagonal element

_ _

)
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| in row 1 or column 1 it must have at least one such in both. Suppose
Xy., and xo. are non-zero and x 1s the smaller. If we increase

L X19 and Xp by x and diminish X10, and Xq by x the sum 1s
changed by

- + - - - - - = - -x[ (a; b.) (a b.) (a; b.) (a b.)] x(a, a) (bo b,) <0 (3.8)

Hence continuing in this way the minimizing X has no non-zero off-diagonal

[ . elements in row 1 or column 1, and continuing again the minimizing X
is IT . (Notice we do not even have to show that for this P , the

g principal diagonal 1s minimal; this emerges from the proof.)

4, Generalization of the Wielandt-Hoffman Theorem

A generalization of the Wielandt-Hoffman Theorem which 1s of

. practical importance 1s the following.

| THEOREM 3. If X is an nxr matrix with orthonormal columns,
A 1s an nxn normal matrix, B 1s an rxr normal matrix

i and R an nxr matrix 1s defined by

| 1f the eigenvalues g- (i = 1,...,n) of A and ob. (1 = 1,ec0,1r)r
2

of B are ordered so that ). la; -b, | 1s a minimum, then
i=1

L : : -
2 lag =v < irlp - (4.2)

| i=1

L
2

| A weaker result with | Rg replaced by 2M 2 |g) 2 was given by
. ) Wilkinson in [5] and the result itself by Kahan [3].

I | 5



| Notice we are interested only in the selection and ordering of the

relevant r of the as to be associated with the bo. . Writing

i. A = q, diag(a,)l , B = Q, diag(b,)al (1.3)= 1 i’ f 2 i’™2 :

= with the prescribed ordering of the a, and b,, we have1

| _ 2 _ oH 2 °
| laiag(a,)a - Q diag(b,) [lp = [lay BR ll. = | ® Il, (4.4)

— where Q 1s an nxr matrix with ortho-normal columns. Hence

= r n
= 2 2 2

| Yo Yoda; =v]la lt = IR] (1.5)
| FE] i J 1J | F

So Let Y = [Q | 2] be an nxn unitary matrix given by the completion

| | of Q 3 then if

= p.. = B. ENE (3 <r),p.. =O (3 > r) (4.6)
B 1] L J = 1J

141 n Ir n
B - 2 2 2
- EDIE EA a DE DE EVR 0 haPT (4.7)

i=l jo 0H 501 im +0 30 Td

— and from the definition of the 'ordering of the a. and b., the diagonali

BE of P is minimal. Hence by Theorem 1 and Equation (4.))

n r r n
| 2 2 2

Sp, = 9 la -b. |< Cla, -b.] la. |° = IRS . (4.8)| — i=1 “tim 7 2 5 :
B This theorem 1s of practical value when r orthonormal approximate

eigenvectors X seesX are known corresponding to alleged eigenvalues

ne )
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. Ax, = p.X, = r (i =1,.e..,1) (4.9)

Then

fo

» AX - X diag(u,) = R (4.10)

= with an obvious notation, and diag(u,) 1s the matrix B of Theorem 3.

Ba This then states that there exist r eigenvalues 310 ma of A
B such that

r

| 2 2

Lo (a; =p)" =r; : (4.11)
- i=1

Notice that the wg can include multiple or pathologically chic

— eigenvalues. The result is well known when r = 1 and the

Wielandt-Hoffman theorem corresponds to the case r = n. We observe
—

that by using less than r of the alleged eigenvectors we can obtain

g results of the type (4.11) corresponding to any s (< r) of the

| approximate eigenvalues.

—

—

—

CL
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