PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T ENOUGH

-

BY

GEORGE E. FORSYTHE

TECHNICAL REPORT NO. cs 147
JANUARY 1970

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences
STANFORD UNIVERSITY

ERRATA

TO REPORT CS 147

be George E. Forsythe

entitled

PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T ENOUGH

Page 1, line -3: "criticizing" is misspelled.

Page 5, line 3: For the Control Data 6600, m = -975, M = 1071

Page 10, The first and second sentences of the second paragraph should read:
"Actual computer programs for calculating e usually use a rational
function of x, for x on an interval like 0 < x < 1 . For x outside
this interval, well known properties of the exponential function are
used to obtain the answer from the rational approximation to eY, where
y = [x] - x

Page 13, (5) and (6) assume abc # 0
Re(z) and Im(z) should be replaced by |Re(z)| and |Im(z) | .

Page 22, 1line -10: Change "starting" to '"startling".
lines -¢, -5, -4: The polynomial should read:

p(x) = (x -D(x-2) . . . (x-19)(x - 20)
= x20 —210x19 + ...
and its zeros should be 1, 2, 19, 20 .
Page 23, line 3: Should say: the coefficient of x1? is changed from -210

to -210 - 272 |

The twenty listed roots are of the equation p(x)
Page 24, last matrix: Change the element -100000 to -10000

Page 30, line -7: After "desired solution" add "if A1 =1,"

- 2-25}(19 =0

— ey

l PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T ENOUGH

George E. Forsythe

1. Introduction

Why do students take mathematics in college and university?
I see two reasons: (1) To learn the structure of mathematics itself,
because they find it interesting. (ii) To apply mathematics to the
solution of problems they expect to encounter in their own fields,

whether it be engineering, physics, economics, or whatever.

I am sure that (ii) motivates far more students than (i). More-
over, most solutions of major mathematical problems involve the use of
automatic digital computers. Hence we may justifiably ask what mathe-
ma-tics courses have to say about carrying out mathematical work on a

computer. This question motivates my paper.

I am not in a mathematics department, and tend to moralize about
them. If the reader prefers not to be lectured to, I invite him to
ignore the preaching and just pay attention to the numerical phenomena

for their own sake.

I want to acknowledge the help of Mr. Michael Malcolm in criti%ing
the manuscript and doing the computations with a special floating decimal

- arithmetic simulator he wrote for Stanford's hexadecimal computer.

*Thepreparation of this manuscript was supported in part by the Office
- of Naval Research (NR Ob4 211), the National Science Foundation (GJ 798),
and the Atomic Energy Commission (Stanford PA #18). This material was
presented by invitation to the Mathematical Association of America in
Eugene, Oregon, 25 August 1969.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

2. Nature of computers

An automatic digital computer is a general-purpose machine. The
bits of information in its store can be used to represent any quanti-
fiable objects -- e.g., musical notes, letters of the alphabet, elements
of a finite field, integers, rational numbers, parts of a graph, etc.
Thus such a machine is a general abstract tool, and the generality of
computing makes computer science an important topic, just as mathematics
and natural language are important.

In the use of computers to represent letters of the alphabet, ele-
ments of a finite field, integers, etc., there is no error in the repre-
sentation, nor in the processes that operate upon the quantities so
represented. The problems in dealing with integers (to select one
example) on 'computers are of the following types: Is there enough
storage to contain all the integers I need to deal with? Do I know a
process that is certain to accomplish my éoal on the integers stored in
the computer? Have I removed the logical errors ("bugs") from my computer
representation of this process? Is this the fastest possible process or,

if not, does it operate quickly enough for me to get (and pay for) the

" answers I want?

The above problems are not trivial; there are surely pitfalls in
dealing with them; and it is questionable whether math books suffice for
their treatment. But they are not the subject of this paper. This paper
is concerned with the simulated solution on a digital computer of the
problems of algebra and analysis dealing with real and complex numbers.
Such problems occur everywhere in technology -- for example, whenever it
is required to solve a differential equation or a system of algebraic
equations.

There are four properties of computers that are relevant to their
use in the numerical solution of problems of algebra and analysis, and
are causes. of many pitfalls:

- 1) Computers use not the real number system, but instead a simula-
tion of it called a "floating-point number system." This introduces the

problem of round-off.

ii) The speed of computer processing permits the solution of
very large problems. And frequently (but not always) large problems
have answers that are much more sensitive to perturbations of the data
than small problems are.

iii) The speed of computer processing permits many more Opera-
tions to be carried out for a reasonable price than were possible in
the pre-computer era. As a result, the instability of many processes
is conspicuously revealed.

iv) Normally the intermediate results of a computer computation
are hidden in the store of the machine, and never known to the pro-
grammer. Consequently the programmer must be able to detect errors in
his process without seeing the warning signals of possible error that
occur in desk computation, where all intermediate results are in front
of the problem solver. Or, conversely, he must be able to prove that

his process cannot fail in any way.

~

r

3. Floating-point number system

The badly named real number system is one of the triumphs of the

human mind. It underlies the calculus and higher analysis to such a
degree that we may forget how impossible it is to deal with real numbers
in the real world of finite computers. But, however much the real
number system simplifies analysis, practical computing must do without
it.

Of' all the possible ways of simulating real numbers on computers,

one is most widely used today -- the floating-point number systems. Here

a number base B is selected, usually 2,8, 10, or 16. A certain
integer s is selected as the number of significant digits (to base B)
in a computer number. An integer exponent e is associated with each

nonzero computer number, and e must lie in a fixed range, say
m<e< M.
Finally, there is a sign + or - for each nonzero floating-point number,

Let F = F(B, s, my, M) be the floating-point number system. Each
nonzero x € F has the structure

_ e
x=+.ddy..d . B,

where the integers d

1y v 8 dS have the bounds
1< dl < g-1,
0 <d <B-1 (i=2,...,s) ,
m<e<M

Finally, the number 0 belongs to F , and is represented by

+ .00 ... 0 g"

Actual computer number systems may differ in detail from the ideal
one discussed here, but the differences are only of secondary relevance

for the fundamental problems of round off.

Typical floating-point systems in use correspond to the following

values of the parameters:

- 975 [0+
B=2 , s=5L48 m=.102% , M =102k (Control Data 6600)
B=2 , s =27 , m =-128 , M =127 (IBM 7090)
B=10 , s =8 , m= -50 , M=149 (1BM 650)
B =8 s=1% , m=-51 , M= 77 (Burroughs 5500)
B=16 , s=6 , m=-64 , M= 63 (IBM System/260)
B=16 , s=1 , m=64 , M= 63 (1M System/360)

Any one computer may be able to store numbers in more than one system.
For example, the IBM System/560 uses the last two base-16 floating-point
systems for scientific work, and also a certain base-10 system for account-
ing purposes.

F is not a continuum, nor even an infinite set. It has exactly
E(B—l)BS_l(M - m + 1)+1 numbers in it. These are not equally spaced
throughout their range, but only between successive powers of B and
their negatives. The accompanying figure, taken from [3], shows the
33-point set F for the small illustrative system B =2, s =3,
m=-1, M=2.

Because F is a finite set, there is no possibility of representing
the continuum of real numbers in any detail. 1Indeed, real numbers in
absolute value larger than the maximum member of F cannot be said to be
represented at all. And, for many purposes, the same is true of real
numbers smaller in magnitude than the smallest positive number in F
Moreover, each number in F has to represent a whole interval of real
numbers. If x and y are two real numbers in the range of F , they
will usually be representgd by the same number in F whenever
lx—y'/lxl < % B~"s ; 1t 1s not important to be more precise here.

As a model of the real number system R , the set F has the
arithmetic operations defined on it, as carried out by the digital com-
puter. Suppose x and y are floating-point numbers. Then the true
sum x + y will frequently not be in F . (For example, take the

33-point system illustrated above, let x =5/ and y = 3/8 .) Thus

)

‘Tﬁ'

e

P .

the operation of addition, for example, must itself be simulated on the

computer by an approximation called floating-point addition whose re-

sult will be denoted by fi(x + y) . Ideally, fIZ(x + y) should be

that member of F which is closest to the true x + y , (and either one,

in case of a tie). In most computers this ideal is almost, but not quite,
achieved. Thus in our toy 33%-point set F we would expect that fW(S/u + 3/8)
would be either 5/2 or 7/& . The difference between fi(x + y) and

X +y 1is called the rounding error in addition.

The reason that 5/4 +5/8 is not in the 33%-point set F is re-

lated to the spacing of the members of F . On the other hand, a sum
like 7/2 + 7/2 is not in F because 7 1s larger than the largest
member of F . The attempt to form such a sum on most machines will

cause a so-called overflow signal, and often the computation will be

curtly terminated, for it is considered impossible to provide a useful
approximation to numbers beyond the range of F

While quite a number of the sums x +y (for x,y in F) are
themselves in F , it is quite rare for the true product x.y to belong
to F, since it will always involve 2s or 2s-1 significant digits.
Moreover, overflow is much more probable in a product. Finally, the
phenomenon of underflow occurs in floating-point multiplication, when two
nonzero numbers X, y have a nonzero product that is smaller in magnitude
than the smallest nonzero number in F . (Underflow is also possible,
though unusual, in addition.) Thus the simulated multiplication operation,
fi(x.y) , involves rounding even more often than floating addition.

The operations of floating addition and multiplication are commutative,
but not associative, and the distributive law fails for them also. Since
these algebraic laws are fundamental to mathematical analysis, working with
floating-point operations is very difficult for mathematicians. One of the
greatest mathematicians of the century, John von Neumann, was able to carry
out some large analyses with floating-point arithmetic (see [10]), but they
were extremely ponderous. Even his genius failed to discover a method of

avoiding nonassociative analysis. Such a new method, called inverse error

analysis, owes its origins to Cornelius Lanczos and Wallace Givens, and has
been heavily exploited by J. H.Wilkinson. A detailed study of inverse error
analysis is part of the subject of numerical analysis. We will mention it

again in Section 5.

—-- L. Two examples of round-off problems

One of the commonest functions of analysis is the exponential function e* .

— Since it is so much used, it is essential to be able to have the value of
™ readily available in a computer program, for any floating-point number x
There is nowhere near enough storage to file a table of all values of et ’
so one must instead have an algorithm for recomputing e®* jopever it is
needed. (By an algorithm we mean a process that is completely defined and
guaranteed to terminate by delivering the desired output .) There are, in
fact, a great many different methods such an algorithm could use, and most
scientific computing systems have one programmed into it. pgut let us assume
such an algorithm did not exist on your computer, and ask how you would
program it. This is a realistic model of the situation for a more obscure
transcendental function of analysis.

Recall that, for any real (or even complex) value of x , eX can be

represented as the sum of the universally convergent infinite series

) X 2 Y
X
e = 1+ x+ 5+ STt

Since you learned mathematics because it is useful, you will surely expect

. x
to use the serles to compute e . Suppose that your floating-point number

- system F is characterized by g = 10 and s =5 . Let us use the
series for x = -5.5 , as proposed by Stegun and Abramowitz [13]. Here

N are the numbers we get:

e-S'5 = 1.0000
-5.5000
+15.125
-27.730
+38.129
=41.942
+38. 4146
-30.208
+20.768
-12.692
+6.9803
-3.4902
+1.5997

+0.0026363
Q

The sum is terminated when the addition of further terms stops changing
it, and this turns out to be after 25 terms. Is this a satisfactory
algorithm? It may seem so, but in fact e_5'5 = 0.00408677 , so that
the above series gets an answer correct to only about 36 percent! This
is awful.

What 1is wrong? Observe that there has been a lot of cancellation in
forming the sum of this alternating series. Indeed, the four leading
(i.e., most significant) digits of the eight terms that exceed 10 in
modulus have all been lost. Professor D. H. Lehmer calls this phenomenon

catastrophic cancellation, and it is fairly common in badly conceived

computations. However, as Professor William Kahan has observed, this

great cancellation is not the cause of the error in the answer -- it merely

reveals the error. The error had already been made in that the terms
like 38.129 , being limited to 5 decimal digits, can have only one digit
that contributes to the precision of the final answer. It would be
necessary for the term (-S.S)A/h! to be carried to 8 decimals (i.e.,
10 leading digits) for it to include all 6 leading digits of the answer.
Moreover, an eleventh leading digit would be needed to make it likely that
the sixth significant digit would be correct in the sum. The same is true
of all terms over 10 in magnitude.

While it is usually possible to carry extra digits in a computation,
it is always costly in time and space. For this particular problem there
is a much better cure, namely, compute the sum for x = 5.5 , and then

take the reciprocal of the answer:

e o 1750

1/(1+5.5 + 15.125 + . ..)

ole

0.0040865 , with our 5-decimal arithmetic.

(The symbol ' =' means 'equals approximately'.) With this computation,

the error is reduced to 0.007 percent.

Note how much worse the problem would be if we wanted to compute e*
for x = -100

Actual computer algorithms for calculating e® often use a rational
function of x , for x on a fairly short interval like l<=x<®& . (&> < (

If x is outside this interval, say

then well known properties of the exponential function are used to obtain

-~

4
the answer from the rational approximation to =4 , where y = xfﬁfg1%¥ - [1

(Jlg Lot

The creation of such algorithms for special functions is a branch of \q,(l;’
numerical analysis in which the general mathematician can hardly be an v
expert. On the other hand, it is part of the author% contention that
mathematics books ought to mention the fact that a Taylor's series is
often a very poor way to compute a function.

I will briefly state a second example. Recall from the calculus that
(1) IP ax Xl-p b)

a x 1-p 5 =1

}p (b1 - a17P) (» £1) .

10 and s = 6 , let us

Now using a floating-point system with g

evaluate the above formula for a =1, b=2, and p = 1.0001

We have
2 -
(2) I = I _a&x %_Jl_g__gggi
1.0001 0.0001
1 X
If we use G-place logarithms to evaluate 2-'000l , we have

loglO 2 # 0.301030 ,

-.0001 .

log, 2 -0.0000301030 = -1 + 0.999969

whence, using our logarithm table again,

2-.0001

0.99993

10

Lox

Thus, from (2), we get I = 0.7,

an answer correct to only one digit.
The precise meaning of the restriction to B = SO ,

s = 61is not
so clear in the evaluation of 27+00%%

as it would have been in the
the example does illustrate the fact that
Brmula (1), which is precisely meaningful for real numbers as long as

previous example. However,

P % 1, is difficult to use with finite-precision arithmetic for p

close to 1 Thus practical computation cannot admit the precise

distinction between equality and inequality basic to pure mathematics.

There are degrees of uncertainty caused by approximate equality.

11

5. Solving quadratic equations

The two examples of Section 4 were taken from the calculus. But
we don't have to learn college mathematics to find algorithms. 1n ninth
grade there is a famous algorithm for solving a quadratic equation,

implicit in the following mathematical theorem:

Theorem. If a , b, ¢ are real and a % 0 , then the equation

2
ax +bx+c=0 1is satisfied by exactly two values of x , namely
\I 2
b + -
(5) b Lac

and

(h) x -b - db2 - lhac

Let us see how these formulas work when used in a straightforward
manner to induce an algorithm for computing X, and x, . This time we
shall use a floating-point system with g =10, s =8, m= -50

4

M = 50; this has more precision than many widely used computing systems.

Case 1: a=1, b = -10+5 , ¢ =1.

The true roots of the corresponding quadratic equation, correctly

rounded to 11 significant decimals, are:

X

1
-l

- 99999.999990 (true)
x2 = (0.000010000000001 (true)

If we use the expressions of the theorem, we compute

X, = 100000.00 (very good)

(The reader is advised to be sure he sees how x2 becomes 0 in this

floating-point computation.)

12

Once again, in computing X, we have been a victim of catastrophic
cancellation, which, as before, merely reveals the error we made in having
chosen this way of computing X5 - There are various alternate ways of
computing the roots of a quadratic equation that do not force such
cancellation. One of them follows from the easily proved formulas,
true if qbc # 0

(5) x 2 ;

l —3
-b - \Jb2 - lhac

2c -

-b - b2 - lhac

Now, if b < 0 , there is cancellation in (4) and (5) but not in (3)

and (6). And, if b >0, there is cancellation in (3) and (6), but not
in (4) and (5). Special attention must be paid to cases where b or c
is 0.

At this point I would like to propose the following criterion of
performance of a computer algorithm for solving a quadratic equation.
This is stated rather loosely here, but a careful statement will be found
in [2].

We define a complex number =z to be well within the range of F if

either z = 0 or

2

m+2 M-2 and 5m+2 S'Im(z)f < BM_ .

Sl SO Y

This means that the real and imaginary parts of z are safely within the
magnitudes of numbers that can be closely approximated by a member of F
The arbitrary factor 52 is included to yield a certain margin of safety.
Suppose a , b, ¢ are all numbers in F that are -well within the
range of F . Then they must be acceptable as input data to the quadratic

equation algorithm. I f a=b=c=0, the algorithm should terminate

13

with a message signifying that all complex numbers satisfy the equation
ax2 +bx+c=0. If a=b =0 and c # 0, then the algorithm should
terminate with an error message that no complex number satisfies the
equation.

Otherwise, let zl and z2 be the exact roots of the equation, so
numbered that |zl| < |22| . (If a =0, set z, = o .) Whenever 2,
is well within the range of F , the algorithm should determine an
approximation that is close to Zy in the sense of differing by not
more than, say, B+1 units in the least significant digit of the root.

The same should be done for Zo -

If either or both of the roots Zi are not well within the range of F ,
then an appropriate message should be -given, and the root (if any) that is
well within the range of F should be determined to within a close
approximation.

That concludes the loose specification of the desired performance of
a quadratic equation solving algorithm. Let us return to a consideration
of some typical equations, to see how the quadratic formulas work with
them.

Case 2: a=6, b=5, c =4,

There is no difficulty in computing X, = 0.50000000 and

X5 _ -1.3333333 , or nearly these values, by whatever formula is used.

Case 3: a =6x 107, b =15y 100, ¢ = 4y 10°

Since the coefficients in Case 3 are those of Case 2, all multiplied
by 1030 , the roots are unchanged. However, application of any of the
formulas (3)-(6) causes overflow to occur very soon, since b2 > lOSO ,
out of the range of F . Probably this uniform large size of|a|, |b|,
11 could be detected before entering the algorithm, and all three
numbers could be divided through by some scale factor like lO50 to

reduce the problem to Case 2.

14

-30

Case 4: a =10 , b= -1030 , € = 1030 .

6
Here =z is near 1 , while 2z, is near 10 0 Thus our

algorithm must determine z, very closely, even though Z5 is out of
the range of F . Obviously any attempt to bring the coefficients to
approximate equality in magnitude by simply dividing them all by the same
number is doomed to failure, and might itself cause an overflow or
underflow. This equation is, in fact, a severe test for a quadratic
equation solver and even for the computing system in which the solver
is run.

The reader may think that a quadratic equation with one root out of the
range of F and one root within the range of F is a contrived example
of no practical use. If so, he is mistaken. In many iteration algorithms
which solve a quadratic equation as a subroutine, the quadratics do have

a singular behavior in which a.— O as convergence occurs. One such example

is Muller's method [9] for finding zeros of general smooth functions of z

Case 5: a = 1.0000000 , b = -4.0000000 , c ., 3.9999999

Here the two roots are z; = 1.999683772 , z, = 2.000316228 .

But applying the quadratic formulas (3), (%) gives

Zy =25 = 2.0000000 ,

with only the first four digits correct. These roots fail badly to meet

my criteria, but the difficulty here is different from that in the other
examples. The equation corresponding to Case 5is the first of our equations
in which a small relative change in a coefficient a , b , ¢ induces a

much larger relative change in the roots 2y 1 Zp - This is a form of
instability in the equation itself, and not in the method of solving it.

To see how unstable the problem is, the reader should show that the computed

roots 2.0000000 are the exact roots of the equation

0.999999992%" - 3.999999968x + 3-999999968 = 0,

in which the three coefficients differ, respectively, from the true
a, b, c of Case 5by less than one unit in the last significant digit.

In this sense one can say that 2 , 2 are pretty good roots for Case 3.

15

This last way of looking at rounding errors is called the inverse

error approach and has been much exploited by J. H. Wilkinson. In general,

it is characterized by asking how little change in the data of a problem
would be necessary to cause the computed answers to be the exact solution
of the changed problem. The more classical way of looking at round off,

the direct error approach, simply asks how wrong the answers are as

solutions of the problem with its given data. While both methods are
useful, the important feature of inverse error analysis is that in many
large matrix or polynomial problems, it can permit us easily to continue

to use associative operations, and this is often very difficult with direct
error analysis.

Despite the elementary character of the quadratic equation, it is
probably still safe to say that not more than five computer algorithms
exist anywhere that meet the author's criteria for such an algorithm.
Creating such an algorithm is not a very deep problem, but it does
require attention to the goal and to the details of attaining the goal.
It illustrates the sort of place that an undergraduate mathematics or
computer science major can make a substantial contribution to computer
libraries.

I wish to acknowledge that the present section owes a great deal to
lectures by Professor William Kahan of the University of California,

Berkeley, given at Stanford in the Spring of 1966.

16

6. Solving linear systems of equations

As the high school student moves from ninth grade on to tenth or
eleventh, he will encounter the solution of systems of linear algebraic
equations by Gauss* method of eliminating unknowns. With a little
systematization, it becomes another algorithm for general use. T would

like to examine it in the simple case of two equations in two unknowns,

carried out on a computer with g =10 , s = 3

Let the equation system be one treated by Forsythe and Moler [3]:

0.000100x + 1.00y = 1.00

(7)
1.00x + 1.00y = 2.00

The true solution, rounded correctly to the number of decimals shown, is

x = 1.00010 , v = 0-9999Q (truly rounded).

The Gauss elimination algorithm uses the first equation (if possible)
to eliminate the first variable, x , from the second equation. This is
done by multiplying the first equation by 10000 , and subtracting it

from the second equation. When we work to three significant digits, the

resulting system takes the form
0.000100x + 1.00y = 1.00 (the old first equation)
- 10000 y = —-10000

For just two equations, this completes the elimination of unknowns.
Now commences the back solution. One solves the new second equation for y ,
finding that y = 1.00 . This value is substituted into the first equation,
which is then solved for x . One then finds x = 0.00 . In summary, we

have found
y = 1.00

x = 0.00

17

Of course, this is awful! What went wrong? There was certainly no long
accumulation of round-off errors, such as might be feared in a large problem.
Nor was the original problem unstable of itself, as it would be if the lines
represented by the two equations (7) were nearly parallel.

There is one case in which it is impossible to eliminate x from
the second equation -- when the coefficient of x 1in the first equation
is exactly 0 . Were such an exact 0 to occur, the algorithm is preceded

by interchanging the equations. Now, once again, 1f an exact zero makes a

mathematical algorithm impossible, we should expect that a near zero will
give a floating-point algorithm some kind of difficulty. That is a zort

of philosophical principle behind what went wrong. And, in fact, the
division by the nearly zero number 0.0001 introduced some numbers (10000)
that simply swamped the much smaller, but essential data of the second
equation. That is what went wrong.

How could this be avoided? The answer is simple, in this case. If it
is essential to interchange equations when a divisor is actually zero, one
may suspect that it would be important, or at least safer, to interchange
them when the coefficient of x 1in the first equation is much smaller in
magnitude than the coefficient of x 1in the second equation. A careful
round-off analysis given by J. H. Wilkinson [14] proves this to be the
case, and good linear equation solvers will make the interchange whenever
necessary to insure that the largest coefficient of x (in magnitude) is

used as the divisor. Thus the elimination yields the system
1.00z + 1.0Cy = 2.00
L 1.00y = 1.00

After the back soluticn we find

a very fine result.

18

This algorithm, with its interchanges, can be extended to n equations
in n unknowns, and is a basic algorithm found in all good computing
centers.

The following example shows that there remains a bit more to the

construction of a good linear equation solver. Consider the system

100000

10.0 x + 100000 y

(8)

1.00x + 1.00y 2.00

If we follow the above elimination procedure, we see that
interchanging the equations is not called for, since 10.0 > 1.00
Thus one multiplies the first equation by 0.100 and subtracts it from
the second. One finds afterwards, still working with g =10, & =3,
that

10.0x + 100000y = 100000
- 10000y = -10000
Back solving, one finds
y = 1.00
x = 0.00 !

This is just as bad as before, for system (8) has the same solution
as (7). Indeed, system (8)is easily seen to be identical with (7), except
that the first equation has been multiplied through by 100000

So, the advice to divide by the largest element in the column of
coefficients of x is not satisfactory for an arbitrary system of equations.
What seems to be wrong with the system (8) is that the first equation has
coefficients that are too large for the problem. Before entering the
Gaussian elimination algorithm with interchanges, it is necessary to scale
the equations so that the coefficients are roughly of the same size in all
equations. This concept of scaling is not completely understood as vyet,

although in most practical problems we are able to do it well enough.

19

If you were faced with having to solve a nonsingular system of
linear algebraic equations of order 26, for example, you might wonder
how to proceed. Some mathematics books express the solution by Cramer's
rule, in which each of the 26 components is the quotient of a different
numerator determinant by a common denominator determinant. If you looked
elsewhere, you might find that a determinant of order 26 is the sum of
26t terms, each of which is the product of 26 factors. If you decide to
proceed in this manner, you are going to have to perform about 25 x 26!
multiplications, not to mention a similar number of additions. On a fast
contemporary machine, because of the time required to do preparatory
computations, you would hardly perform more than 100,000 multiplications
per second. And so the multiplications alone would require about lol
years, if all went well. The round-off error would usually be astronomical.
3

In fact, the solution can be found otherwise in about (l/3)x 26

5859 multiplications and a like number of additions, and should be

entirely finished in under half a second, with very little round-off
error. So it can pay to know how to solve a problem.
I wish to leave you with the feeling that there is more to solving

linear equations than you may have thought.

20

T. When do we have a good solution?

Another example of a linear algebraic system has been furnished by
Moler [8]:
0.780x + 0.563y - 0.217 = O
(9)
0.913x + 0.659y - 0.254 =0

Some one proposes two different solutions to (9), namely

(x5 v;) = (0.999, -1.001)
and

(xa, yg) = (0.341, -0.087).

Which one is better? The usual check would be to substitute them both
into (9). We obtain

0.780xJL + O.565yl -0.217 = -0.001243

-0.001572

0.913x, +o.659y1 -0.254
and

0.780x2 + 0.5633;2 -0.217 = -0.000001
0.913x, + O.659y2 - 0.254 = 0

It seems clear that (Xe,yé) is a better solution than (x5 yl) ,
since it makes the residuals far smaller.

However, in fact the true solution is (1, -1) , as the reader can
verify easily. Hence (xy, yl) is far closer to the true solution than
(x5 v2) !

A persistent person may ask again: which solution is really better?
Clearly the answer must depend on one's criterion of goodneégi__jg small
residual, closeness to the true solution, or perhaps something else. Surely
one will want different criteria for different problems. ppq pitfall to be

avoided here is the belief that all such criteria are necessarily satisfied,

if one of them is.

21

—

hﬁ

D s |

—-——Y

8. Sensitivity of certain problems

We now show that certain computational problems are surprisingly
sensitive to the data. This aspect of numerical analysis is independent
of the floating-point number system.

We first consider the zeros of polynomials in their dependence on
the coefficients. 1In Case 5 of Section 4 above, we noted that, while
the polynomial x2 - 4x + 4 has the double zero 2 , 2 , the rounded

roots of the polynomial equation

(10) x® - bx . 3.9999999 - o

are 1.999683772 and 2.000316228 . Thus the change of just one
coefficient from 4 to 3.9999999 causes both roots to move a distance
of .000316228 . The displacement in the root is 3162 times as great
as the displacement in the coefficient.

The instability just described is a common one, and results from
the fact that the square root of ¢ is far larger than € . For the

roots of (10) are the roots of

(x- 2)" = € , € = .0000001 ,
and these are clearly 2 + /e . For equations of higher degree, a still
more startling instability would have been possible.
However, it is not only for polynomials with nearly multiple zeros
that instability can be observed. The following example is due to

Wilkinson [14]. Let

p(x) = (x+ 1)(x +2)...(x + 19)(x 4 20)

= 20 401068 4

The zeros of p(x) are +1, +2, +19, +20 , and are well separated.
This example evolved at a place where the floating-point number system

had B = 2, s =30 . To enter a typical coefficient into the computer,

it is necessary to round it to 30 significant base-2 digits. gyppose

22

that a change in the 30-th most significant base-2 digit is made in
only one of the twenty coefficients. In fact, suppose that the coefficient
of x19 is changed from "210 1:o—ié0 + 2_23). How much effect does this
small change have on the zeros of the polynomial?

To answer this, Wilkinson carefully computed (B = 2 , s = 90)

~23 19

the roots of the equation p(x) = 2 = 0 . These are now listed,

correctly rounded to the number of digits shown.

1.00000 0000 10.09526 6145 + 0.64350 090ki
2.00000 0000 11.79363 3881 + 1.65232 97281
3.00000 0000 13.99235 8137 + 2.51883 00701
14,00000 0000 16.73073 Th66 + 2.81262 L89ki
4.99999 9928 19.50243 9400 + 1.94033 O347i
6.00000 694k
6.99969 7234
8.00726 7603
8.91725 0249

20.84690 8101

I+ |+

| +

Note that the small change in the coefficient 210 has caused ten
of the zeros to become complex,' and that two have moved more than 2.81
units off the real axis! Of course, to enter p(x) completely into the
computer would require many more roundings, and actually computing the
zeros could not fail to cause still more errors. The above table of
zeros was produced by a very accurate computation, and does not suffer
appreciably from round-off errors. The reason these zeros moved so far
is not a round-off problem -- it is a matter of sensitivity. Clearly
zeros of polynomials of degree 20 with well separated zeros can be much
more sensitive to changes in the coefficients'than you might have thought.

To motivate a second example, let me quote a standard theorem of

algebra: In the ring of square matrices of fixed order n , if AX = I ,

where I is the identity matrix of order n , then XA =1

It follows from this theorem and continuity considerations that, if
A is a fixed matrix and X a variable one, and if AX - I - 0 , the

zero matrix, then also XA - I - © . Hence, if AX - I is small in some

23

r—

sense, then XA -" I is also small. However, as with polynomials, one's
intuition may not be very good at guessing how small these smallnesses

are. Here is an example: Fix

9999 9998
A=
10000 9909
Let
9999.9999 -9997-0001-1
X =

-10001 9998

Then a computation without round-off shows that

.001 .0001

0 0

From the last equality the reader may conclude that X is close, though

not equal, to the unique inverse A_l . However, another calculation

_ without round off shows that

19997.0001 19995.0003
XA - T =
|_-19999 -19995

Thus the quantities AX - I and XA - I , which must vanish together,
can be of enormously differing magnitudes in a sensitive situation, even
for matrices of order 2

The true inverse matrix is given by

1 9999, -9998

-100000 9999,

and-this is hardly close to X .

24

i

9. A least-squares problem of Hilbert

The following least-squares problem was discussed by the great
mathematician David Hilbert [6], and leads to some interesting matrices.

Fix n > 1 . ©Let f(t) be given and continuous for 0 <t < 1 .We
wish to approximate f(t) as well as we can by a polyngﬁiaf
Xo T EEH XE Flow Xn_ltn—l of degree n - 1 | To be more precise,
we wish to determine Xgp Xpp o+« - . X SO that
1
o(x) = OI [£(t) - Xy "X xn_ltn'l]2 dt

is as small as possible. 1t jg not difficult to show that the minimizing
vector of coefficients x exists, is unique, and can be determined by

solving the system of n simultaneous equations

el
(11) %, T o (i =0,1,n]

i

If you carry out the algebra, you find that (11) is equivalent to
the system of n Jjnear algebraic equations

(12) Ax = b ,
where
(13) a, . = J";L gi-Ld-lg 1 L
i,J 0 - itj-1 (1) j=12,n)
and
N 1

1=

(14) b, = of £7TOP()dt i=1,2 ..,n)

The matrix A of coefficients in (12) is now called the Hilbert

matrix (of order n), and is denoted by Ho:

25

1 1 1
1) 3 - 7
1 1 1 1
2 3 i . ntl
H —
n
1 1 1 1
n n+l n+t2 . e 2n-1 y

The equations (12) with matrix A = Hn are called the normal equations

for the problem. It appears that all one has to do is to find and use
a quadrature rule for approximating the b.1 in (14), and then solve
the system (12). This 1is certainly the standard advice in books on
practical statistics.

However, what is observed is that for n bigger than 8 or 9 (the
threshold depends on the system used), linear equations solvers in ordinary
floating-point precision will simply refuse to solve (12). Moreover, for
problems that can be solved (say n = 6), there are enormous differences
in the solution vectors x for apparently identical problems on slightly
different machines. Why all this trouble?

Let me try to explain the sensitivity of the problem first. Let
-1

Tn = Hn . Then it can be proved that
36 -630 3360 -7560 7560 _2778
-630 14700 -88200 211680 -220500 3160
3360 -88200 564480 -1411200 1512000 -582120
Te = | -7560 211680 -1411200 3628800 -3969000 1552320
7550 -220500 1512000 ~3969000 L410000 -17463€0
-2772 8 3160 -582120 1552320 -1746360 6O854L

This means that a change of 10_6 in just the one element b5 will produce

changes in the solution vector x of

(.00756, -.2205, 1.512, -3.969, L.ui1, _1.7u636)T .

26

(SRS

Such changes are unavoidable in a system with g = 10 and s = 7.
This means that some of the coefficients of the best fitting polynomial
of degree 5 will have unavoidable uncertainties of the order of 4 units.
This may give some explanation of the instability in the answers. More
details are in Section 19 of [3].

Here are approximate values of t , the maximum elements in T,

EyS 1L

for n < 10

n t
n

2 1.20 x 10°

3 1.92 x 10°

4 6.48 x 10°

5 1.79x 10°

6 L.h1 x 106

7 1.33 x 108

8 4.25 y 10°

9 1.22 x lO:Ll

10 3.48 x 1002)

It cannot be demonstrated here, but if tn >> 58 , you just cannot
solve the system an = b with s-digit arithmetic to base B .

The conclusion of this example is that one should not follow a
Statistics book blindly here. It is much better to arrange things so
that matrices-of Hilbert type do not arise, even approximately. And

when they do, one must be sure to use enough precision so that + << 8
n

There are other ways of attacking least-squares problems which are less

sensitive'to the data.

27

10. Instability in solving ordinary differential equations

The standard initial-value problem for a single ordinary differential
equation dy/dx = f(x, y) is to determine y(x) as accurately as possible

for 'x > 0 , given y(0) . In one very common class of methods (the

multistep methods) of solving this problem approximately, one picks a
fixed interval h > 0 , and determines Y, to approximate y(nh) for
n=1,2, One highly recommended multistep method in desk-computing
days was the Milne-Simpson method. Here one let Vo = y(0) , the given

initial value, and determined N by some method not mentioned here.

Let x' . f(nh, yn) . The idea was to determine Vo1 from y ~, end
Y, (n =1, 2, . ..) by the integral

(n+1)h
(15) Yoe1 = Va1 - [f(xy(x))ax

(n-1)h

Since the integral in (15) can not usually be evaluated exactly, Milne's

idea was to approximate it by Simpson's formula, and so let

h
16 = a2] '
(16) Vi1 = o1t 3 (gt Av) ot vh,)

At the time we seek to find Y1 from (16) we know Yy 1 and Yy v and

hence y! , and y; ; but X;l is not known. For general f ,

Milne [7] determined the solution of (16) by an iterative process that

is irrelevant to the present discussion. Let us merely assume that Vel

has been found so that (16) holds, where y£+l = f((n+l)h, yh+l) , and

that this has been done for n=1, 2, . . . , as far as we wish to go.

This method was highly recommended by Milne for solution of ordinary

differential equations at a desk calculator, and it seemed to work very

well indeed. Most problems were probably solved within 30 steps or less.
As soon as automatic digital computers arrived on the scene, users

of the Milne-Simpson method started to find extraordinary behavior in

certain problems. To illustrate what happened, let us take the very

simple test problem

28

dy/dx = f(x,y) = -Y , with y(0) =1

. , ~-X
The true solution, of course, is y = e

Take h = 0.1 , and carry out the Milne-Simpson process with Yo = 1
and vy = 0.90483742 , an 8-decimal correctly rounded value et
e-o'l Thi is not something you can do in your head, and so I will. give

you the results, as computed on a system with g =210, g =8 .

. -X
x Jcomputed ¢
.2 .8187 3069 .8187 3075
) 74081817 . 74081822
8.0 .00033519912 .00033546263
8.1 .00030380960 ® 00030353914
13.2 .00000036689301 .0000018506012
13.3 . 0000032084 360 .0000016744932
13.4 -.000000070769248 .0000015151441

@
]] @
@ @ @

We see that by x = 8.0 a noticeable oscillation has set in,
whereby successive values of , alternate in being too low and too high.
By x = 13.4 this oscillation has grown so violent that it has (for the
first time) actually thrown the sign of v, negative, which is unforgiveable
in anything simulating a real exponential function!
The Milne-Simpson method is very accurate, in that the Simpson formula
is an accurate approximation to the above integral. What can be the matter?
Since f(x%,y) = -y , we can explicitly write down the formula (1¢)

in-the form

SN By

Int1 + In-1 kyn-l ® Myn ® yh+l)

29

Thus the computed.[yi} satisfy the 3-term recurrence relation

Ln

h h
1 — —t—— - - — =
(17) A+ ey - Q-3 =0

@ e

We know that the general solution of (17) takes the form

(18) v

- a2 n
h = Alkl + Ae)».2 ’

where)s.l, A, are the roots of

2
, hy,2 Lh h
1 1L+ SN + — A - - = =
(19) (z) = A - (1-3) 0
Some algebra and elementary analysis show that
_ 2
A =1 -h + 0(h") » as h -0,

h
}\.=-(l+-3-)+0(h2) » as h=-0

Putting the values of Aj, Ay into (18), and using the relation nh =x,
we find that, for small h , ‘

. n n h\n
Vp T A2 =07+ (-1)7 A1+ 3)
iy E
_ n hh 3
= A(1 - 1) +(-1)" Ay(1 +)
2 =X n x/3
T A+ (-1) Ae .

The first term is the desired solution, and the second is an unwelcome
extra solution of the difference equation (17) of the Milne-Simpson method.
Now the initial conditions might have been chosen exactly so that Al =1
and A2 =0 . (They were roughly of this nature.) Had they been so
chosen, and if the solution could have proceeded without round-off error,

the unwanted term in A, would never have appeared. But, in fact, a
small amount of this solution was admitted by the initial condition, and

30

some more of it crept in as the result of round-off. Then, after enough
steps, the size of ex/5 caused the unwanted term to dominate the
solution, with its oscillating sign.

This disaster never occurred in desk computation, so far as we know,
because at a desk one just doesn't carry out enough steps. However,
Professor Milne tells me that he did occasionally observe harmless
oscillations in the low-order digits.

The moral of this example is that not only are math books not
enough, but even old numerical analysis books are not enough to keep you

out of some pitfalls!

31

11. Instability in solving a partial differential equation

The following is a simple problem for the heat equation. Suppose a
homogeneous insulated rod of length 1 is kept at temperature g s+ one
end, and at temperature 1 at the other end. If the entire rod is
initially at temperature 0 , how does it warm up?

Let u = u(x, t) denote the temperature at time t at that part of
the rod that is x units from the cold end. Then, if the units were
chosen to make the conductivity 1 , the temperature u gitisfies the

differential equation

3% du
(20) a—§ 5 (0<x<1l; t>0) ,
X

with end and initial conditions

(21) u(l, t) =1 (t >0)

4

u(x, 0) =0 (0 <x<1).

This problem can perhaps best be solved by separation of variables
and trigonometric series. But let us apply the method of finite differences,
which might in any case be needed for a more difficult problem. 4 4o
this, we divide the length of the rod into equal intervals, each of length h .
And we divide the time interval [0, ®) ipto equal intervals of length k
Instead of trying to determine u(x, t) for all x and t , we will limit
ourselves to computing u(x, t) on the discrete net of points of type

(mh, nk) , for integers m, n . The heat equation (20) can then be

simulated by a number of finite-difference equations, of which we pick one:

(22) u(x-h, t) - 2u(x, t) + u(x+h, t) _ u(x, t+k) - u(x, t)
2 - K -
h

Equation (22) can be used to determine u(x, t) for all net points

in the infinite strip of the problem, as follows: gplve (22) for

32

u(x, t+k%) in terms of u(x-h, t) , u(x, t) , u(x+h, t) . Thus compute
u(x, k) for x = h, 2h, (n-1)h in terms of the given initial
conditions on the line t =o. The given end conditions give u(0, k)
and u(l, k) . With this set of values of u at all points of the net
with t = k , we can continue and compute all values on the net for t = 2k .
Etc. The computation is very attractive, because each new value of
u(x, t+k) is determined explicitly from (22) -- there is no need to solve
a large number of simultaneous equations.

How does the solution behave? To try a case, we pick h = 0.1 and
k = 0.01 . Thus the rod is represented by 9 interior points and two
endpoints, and we get a solution at time steps 0.01 apart. Just to show
the behavior of the solution of (22), we give the value of the temperature
u(0.5, t) at the midpoint of the rod, computed with g =10 , s =8,

for selected times:

t u(0.5, t) computed from k = 0.01
0 0

0.05 1

0.06 i

0.07 16

0.15 132276

0.20 -28157050

0.99 +1.0196022 x 10kk

1.00 -2.9590007 « 10 bk

The values in the table are ridiculous, of course. It is a classical

example of instability. Common sense and mathematics both tell us that

33

-

the real temperature can never get outside the range 0 < u(x, t) f;l
Our difference-equation problem is a disastrous model of the continuous
problem, even though both difference expressions in (22) are reasonable
models of the derivatives in (20).

This terrible pitfall has been known for at least 20 years, and
yet new problem solvers keep on rediscovering it.

It is interesting to note that if one selects a time step only
half as long, the computation proceeds very nicely. Here is the
corresponding table of values of u(0.5, t) for a computation (g = 10,
s = 8) with h = 0.1, k = 0.005 :

t u(0.5, t) computed for k = 0.005
0 0

0.05 .10937500

0.06 . 14599609

0.07 .17956543

0.15 . 35637261

0.20 41304382

1.00 -49997173

The values of the midpoint temperature are converging to 0.5 , as
they obviously should in the physical problem.

What is the reason for the great difference in behavior between
k = 0.005 and k = 0.01 ? The matter can be analyzed in many ways, and
here is one simple approach. Let A = k:/h2 . Then, from (22),

(23) u(x, t+k) = Mua(x-h, t) + (1-2A)u(x, t) + Mu(x+h, t)

Hence, if O <A < % , the formula (23) represents u(k, t+k) as a

weighted average with non-negative weights of u(x-h, t) , u(x, t) ,

34

and u(x+h, t) . Hence u(x, t+k) will always be between the maximum
and minimum values of u(x, t) . But, if A >~% , the weights alternate

in sign and thus permit a solution in which
lu(x, t+k)| = AMu(x-h, t)| + (A -1)|u(x, t)| + Mul(x+h,)]

Here the sum of the weights is UIN-1 > 1 . This permits an exponential

growth of a solution with an alternating sign pattern.

Thus the condition , 0 <A = k/h2 < % is essential to keep the
solution bounded. A deeper discussion found, for example, in Forsythe
and Wasow [4] proves that the solution of (22) converges to the solution
of (20) uniformly for all (x, t) with 0 <x <1, O0<t<T<=o,
as h-0, k=0 in such a way that k/h2 < 1/2 .

The proof of convergence and an analysis of the stability of (22) can
be carried out by means of Fourier analysis. The stability can be examined
in more detail by studying the eigenvalues and eigenvectors of the linear
transformation (23) that maps each line of solutions onto the next line.

Note that in our two tables we had M = 1 and A = 1/2 , respectively.

35

12. Round-off errors in polynomial deflation

Our final example, due to Wilkinson [14], shows a more subtle

effect of round-off error that arises in the course of finding polynomial

zeros. The quartic polynomial

Ph(x) = xLL - 6.7980x3 + 2.99&8::2 - 0.043686x + 0.000089248

has zeros that, correctly rounded, are as follows:
0.0024532 , 0.012576 , 0.hks7z2 , 6‘.32565

I. Suppose first that we compute the zero 0.0024532 , and then
deflate Ph to a cubic by dividing Ph(x) by x-0.0024532 , using

g8 =10, s =5 . If we do, the resulting cubic has zeros
0.012576 , 0.457315 , 6.32561 ,

so that the main error introduced by this deflation is a change of the

largest zero by L4 units in its last place.

II. Suppose, on the other hand, that we first compute the zero
6.3256 , 'and then deflate P, to a cubic by dividing Pu(x) by
x -0.3256 , again using 5-place decimal arithmetic. If so, the resulting

cubic has the zeros

0.0026261 + 0.064339 i ,

0.4671L8

We have perturbed two of the remaining zeros beyond recognition, and
have changed the second significant digit of the third.

Thus it appears to matter a great deal which zero of Ph we locate
first. For the present case we can get a feeling for what is happening
by examining the process of division of Pu(x) by the linear factors.

We use detached coefficients:

36

First, the division by x-0.0024532

1l - 6.7980 + 2.9948 - 0.043686 + 0.000089248
- 0.0024532 + 0.166707206 - 0.00730587492 + 0.000089247L16

1- 67955 + 29781 - 0.036380

Thus the cubic that results from the first deflation is

~

PS(X) = x° -6.7955}(2 +2.9781x - 0.036380 . Moreover, a careful
examination of the division shows that i’s(x) is exactly (i.e., without

round off) equal to the quotient of

I’h(x) = >‘<‘ - 6.7979532x3 + 2.991;7707206;(2 - 0.04368587L492x + 0.0000892L7416

~

by x-0.0024532 . Hence the zeros of P‘.5 are exactly the zeros of i.éh
except for 0.0024532 . Note that all the coefficients of Ph and PL;
are quite close, so it is reasonable to expect that the zeros of be and
PL should be close (as they are).

Now we show the deflation by x -6.3256 :

1 - 6.7980 + 2.9948 - 0.043686 + 0.000089248
- 6.3256 + 2.9882134L - 0.04174896 + 0.0122526872

1l -0.4724 + 0.0066 - 0.001397

~ 3 2
Thus the result of this deflation is a cubic PS(X) = X~ - 0.b72hx
+ 0.0066x - 0.001397 ‘ Again, PS(X) is exactly the quotient of

i’h(x) = x* - 6.7980x> + 2. 9ouB13klx> - 0.04368596x + 0.0122526872

by x-6.3256 . Note that Ph and ijlt differ very much in their
constant terms. Hence the product of the roots of i’h, must be very

different from that for Ph . This is an explanation for the great

shift of the zeros of P3 .

Further analysis shows that the shift in zeros during this kind of
deflation is generally small when deflation is made with zeros of small
modulus, and is generally large when deflation is based on zeros of large

modulus. Thus it is better to get zeros of small modulus first in using a

polynomial solver with deflation in the above manner.

Of course, any zero of a deflated polynomial can be refined by use
of the original polynomial, and that is normally done. But, zeros that
change as much as those above are difficult to refine, since the refinement

process may converge to the wrong zero.

38

13. Conclusions

Around ten-years ago, when I last read a number of them, most
mathematics books that dealt with numerical methods at all were from ten
to fifty years out of date. In the past ten years, many excellent new
methods have been devised for most of the elémentaxy problems -- methods
that are well adapted to automatic computers, and work well. Let me cite

a few examples of important algorithms hardly known ten years ago:

1. For getting eigenvalues of stored square matrices, there is an
excellent method that starts with the transformation of Householder (1958),
and follows it with the &R-algorithm of Francis (1961-62) and
Kublanovskaja (1961). It is the method of choice for most problems.

For references, see Wilkinson[15].

2. For solving ordinary differential equations, special methods
have been developed by Gear [5], Osborne [11], and others which can deal
with so-called stiff equations. (Roughly speaking, a stiff equation is
one whose solutions contain very rapidly decaying transients which
contribute nothing to the long-term solution, but which interfere

drastically with most numericalmethods of solving the equation.)

3. For evaluating the definite integral of a smooth function of
one real variable, the method of Romberg (see Vol. 2 of Ralston and Wilf [12]1)

has proved to be very useful.

4. For minimizing a smooth real-valued function of n real
variables, a variant by Fletcher and Powell [1] of a method of Davidon
is far superior to anything used in the 1950's. And there are still more

recent methods.

Many other examples could be given. Indeed, the 1960's have proved
almost explosive in the number of newly invented algorithms that have
supplanted those known earlier. Of the methods known years ago for commen
numerical problems, only Gauss' systematic elimination method for solving

linear algebraic equation systems with dense, stored matrices remains

39

supreme today, and even it must be augmented with scaling and pivoting

decisions, as we noted in Section 6 above. Newton's method for solving

a nonlinear system of equations is still much used today, though it has

strong competition from newer methods.

Because of my knowledge of mathematics texts ten years ago, and my
knowledge of the explosive increase in numerical methods in the 19€0's,

I am confident that today's mathematics courses cannot be trusted to

include important knowledge about computer methods. As we noted in

Section 10 above, you can't trust early numerical analysis textbooks

either.
On the other hand, there are experts in numerical analysis.
The

They

have societies in which methods are presented and discussed.

Society for Industrial and Applied Mathematics (SIAM) and the Special,

Interest Group on Numerical Mathematics (SIGNUM) of the Association for

Computing Machinery (ACM) are the most active in this country. There are

a number of journals with important information. For a start, you might

consult the keyword-in-context index of Computing Reviews, the review

journal published by ACM, as well as the algorithms in the Communications

of ACM and in Numerische Mathematik. Modern monographs and textbooks in
numerical analysis are slowly appearing,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>