
PITFALLS IN COMPUTATION, OR WHYA MATH BOOK ISN'T ENOUGH

BY

GEORGE E. FORSYTHE

TECHNICAL REPORT NO. cs 147

JANUARY 1970

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

-

—

| ERRATA

| TO REPORT CS 147

. be George E. Forsythe

: entitled
| PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T ENOUGH

| Page 1, line -3: "criticizing" is misspelled.
~ Page 5, line 3: For the Control Data 6600, m = -975, M = 1071 .

Page 10, The first and second sentences of the second paragraph should read:

- "Actual computer programs for calculating et usually use a rational
: function of x, for x on an interval like 0 < x < 1 . For x outside

_ : this interval, well known properties of the exponential function are
used to obtain the answer from the rational approximation to eY, where

3 y = [x]-x.
Page 13, (5) and (6) assume abc # 0 .

| Re (z) and Im(z) should be replaced by |Re(z) | and | Im(2) | .
~ Page 22, line -10: Change "starting" to "startling".

lines -g, -5, —4: The polynomial should read:

- p(x) = (x -1D(x-2) . . . (x-19)(x- 20)

= x0 - 210%? + Co

CL and its zeros should be 1, 2, 19, 20 .

Page 23%, line 3: Should say: the coefficient of x1 is changed from -210
to -210 - 2720.

The twenty listed roots are of the equation p(x) - 2 Sx = 0 .
| Page 24, last matrix: Change the element -100000 to -10000 .

2 Page 30, line -7: After "desired solution" add "if A = 1," .

1

|

|

| PITFALLS IN COMPUTATION, OR WHY A MATH BOOK ISN'T ENOUGH

*

George E. Forsythe

1. Introduction

Why do students take mathematics in college and university?

I see two reasons: (1) To learn the structure of mathematics itself,

because they find it interesting. (11) To apply mathematics to the

solution of problems they expect to encounter in their own fields,

whether 1t be engineering, physics, economics, or whatever.

. I am sure that (11) motivates far more students than (i). More-

over, most solutions of major mathematical problems involve the use of

automatic digital computers. Hence we may justifiably ask what mathe-

” ma-tics courses have to say about carrying out mathematical work on a

computer. This question motivates my paper.

I am not 1n a mathematics department, and tend to moralize about

them. If the reader prefers not to be lectured to, I invite him to

ignore the preaching and just pay attention to the numerical phenomena

for their own sake.

I want to acknowledge the help of Mr. Michael Malcolm in critizing
the manuscript and doing the computations with a special floating decimal

- arithmetic simulator he wrote for Stanford's hexadecimal computer.

*

The preparation of this manuscript was supported in part by the Office
_— of Naval Research (NR Ohh 211), the National Science Foundation(GJ 798),

and the Atomic Energy Commission (Stanford PA #18). This material was
presented by invitation to the Mathematical Association of America in

_ Eugene, Oregon, 25 August 1969.
Reproduction in whole or in part 1s permitted

for any purpose of the United States Government.

2. Nature of computers

An automatic digital computer 1s a general-purpose machine. The

bits of information in 1ts store can be used to represent any quanti-

fiable objects -- e.g., musical notes, letters of the alphabet, elements

of a finite field, integers, rational numbers, parts of a graph, etc.

Thus such a machine is a general abstract tool, and the generality of

computing makes computer science an important topic, just as mathematics

and natural language are important.

In the use of computers to represent letters of the alphabet, ele-

ments of a finite field, integers, etc., there is no error in the repre-

sentation, nor in the processes that operate upon the quantities so

represented. The problems in dealing with integers (to select one

example) on 'computers are of the following types: Is there enough

storage to contain all the integers I need to deal with? Do I know a

process that 1s certain to accomplish my goal on the integers stored in

CL the computer? Have I removed the logical errors ("bugs") from my computer
representation of this process? Is this the fastest possible process or,

1f not, does it operate quickly enough for me to get (and pay for) the

i "answers I want?

The above problems are not trivial; there are surely pitfalls in

. dealing with them; and it 1s questionable whether math books suffice for

their treatment. But they are not the subject of this paper. This paper

_ 1s concerned with the simulated solution on a digital computer of the

problems of algebra and analysis dealing with real and complex numbers.

Such problems occur everywhere in technology -- for example, whenever it)

} . 1s required to solve a differential equation or a system of algebraic
equations.

N There are four properties of computers that are relevant to their

| use 1n the numerical solution of problems of algebra and analysis, and

- are causes. of many pitfalls:

- 1) Computers use not the real number system, but instead a simula-

. tion of it called a "floating-point number system." This introduces the

problem of round-off.

11) The speed of computer processing permits the solution of

very large problems. And frequently (but not always) large problems

have answers that are much more sensitive to perturbations of the data

than small problems are.

111) The speed of computer processing permits many more oOpera-

tions to be carried out for a reasonable price than Were possible in

the pre-computer era. As a result, the instability of many processes

1s conspicuously revealed.

iv) Normally the intermediate results of a computer computation

are hidden in the store of the machine, and never known to the pro-

grammer. Consequently the programmer must be able to detect errors in

his process without seeing the warning signals of possible error that

occur in desk computation, where all intermediate results are in front

of the problem solver. Or, conversely, he must be able to prove that

his process cannot fail in any way.

3

| 5. Floating-point number system

oo The badly named real number system 1s one of the triumphs of the

human mind. It underlies the calculus and higher analysis to such a

= degree that we may forget how impossible it 1s to deal with real numbers

in the real world of finite computers. But, however much the real

- number system simplifies analysis, practical computing must do without

it.

. Of' all the possible ways of simulating real numbers on computers,

one 1s most widely used today -- the floating-point number systems. Here

a number base B is selected, usually 2,8, 10, or 16. 1A certain

} integer s is selected as the number of significant digits (to base B)

in a computer number. An integer exponent e is associated with each

nonzero computer number, and e must lie in a fixed range, say

m<e<M.

Finally, there 1s a sign + or - for each nonzero floating-point number,

Let F = F(B,s, my, M) be the floating-point number system. Each

nonzero x € F has the structure

Xx =+ . d.d d ©» dydyee.d B ,

where the integers d > ' ds dg have the bounds

1< d; < 8-1,

- 0 < ds < B-1 (i=2,...,s8) |, | |

m<e<M .

Finally, the number 0 belongs to F , and is represented by

+ .00 ...0 gg"

Actual computer number systems may differ in detail from the ideal

- one discussed here, but the differences are only of.secondary relevance

for the fundamental problems of round off.

o

-

-

-

Typical floating-point systems 1n use correspondto the following

x values of the parameters:
- 975 fo#!

) B=2 , s=1L48 m=2102% , M=l02k (Control Data 6600)
| B= 2 |, s =27 , m =-128 , Mm =127 (IBM 7090)

Yo B=10 , ss = 8 , m= -50 , M=LAko (18M 650)

| B =8 , s=1> , m=-51 , M= 77 (Burroughs 5500)
) B8=16 , s=6 , m=-614 , M= 63 (IBM System/360)

| B=16 , s=1 , m=-64 , M= 63 (13M System/360)
| Any one computer may be able to store numbers in more than one system.

For example, the IBM System/360 uses the last two base-16 floating-point

systems for scientific work, and also a certain base-10 system for account-

1ng purposes.

F 1s not a continuum, nor even an infinite set. It has exactly

2(8-1)8° "(um - m + 1)+1 numbers in it. These are not equally spaced
throughout their range, but only between successive powers of 8B and

their negatives. The accompanying figure, taken from [3], shows the

| 35-point set F for the small illustrative systemBp =2 , s = 3%,
m=-1, M=2.

Because F 1s a finite set, there is no possibility of representing

the continuum of real numbers in any detail. Indeed, real numbers in

absolute value larger than the maximum member of F cannot be said to be

represented at all. And, for many purposes, the same is true of real

numbers smaller in magnitude than the smallest positive number in F .

Moreover, each number in F has to represent a whole interval of real

numbers. If x and y are two real numbers in the range of F , they

will usually be represented by the same number in F whenever

x-y|/ |x] <3 87" ; 1t 1s not important to be more precise here.
As a model of the real number system R , the set F has the

arithmetic operations defined on 1t, as carried out by the digital com-

puter. Suppose x and vy are floating-point numbers. Then the true

sum x + y will frequently not be in F . (For example, take the

33-point system illustrated above, let x = 5/4 and y = 3/8.) Thus

p)

|

=
[_—

Ql

- 0

~ i [QJ

bt

g ®)

—~t bt
|

~~ JQ
|

~~

| I

|

|

. |
IN

h

NY
{

|

Lo

-

the operation of addition, for example, must itself be simulated on the

computer by an approximation called floating-point addition whose re-

sult will be denoted by fi(x + y) . Ideally, fIZ(x + y) shouldbe

that member of F which 1s closest to the true x + yv , (and either one,

in case of a tie). In most computers this ideal is almost, but not quite,

achieved. Thus in our toy 33-point set F we would expect that ff(5/k+ 3/8)

would be either 3/2 or 7/4 . The difference between fi(x + y) and

X + y 1s called the rounding error in addition.

The reason that 5/4 +3/8 is not in the 33%-point set F is re-

lated to the spacing of the members of F . On the other hand, a sum

like 7/2 + 7/2 is not in F because 7 1s larger than the largest

member ofF . The attempt to form such a sum on most machines will

cause a so-called overflow signal, and often the computation will be

curtly terminated, for it 1s considered impossible to provide a useful

approximation to numbers beyond the range of F .

While quite a number of the sums x +y (for x,y 1n F) are

themselves in F , it is quite rare for the true product x.y to belong

to F, since it will always involve 2s or 2s-1 significant digits.

Moreover, overflow is much more probable in a product. Finally, the

phenomenon of underflow occurs in floating-point multiplication, when two

nonzero numbers XxX, y have a nonzero product that is smaller in magnitude

than the smallest nonzero number in F . (Underflow 1s also possible,

though unusual, in addition.) Thus the simulated multiplication operation,

fi(x.y) , involves rounding even more often than floating addition.

The operations of floating addition and multiplication are commutative,

but not associative, and the distributive law fails for them also. Since

these algebraic laws are fundamental to mathematical analysis, working with

floating-point operations is very difficult for mathematicians. One of the

greatest mathematicians of the century, John von Neumann, was able to carry

out some large analyses with floating-point arithmetic (see [10]), but they

were extremely ponderous. Even his genius failed to discover a method of

avoiding nonassociative analysis. Such a new method, called inverse error

analysis, owes 1ts origins to Cornelius Lanczos and Wallace Givens, and has

been heavily exploited by J. H.Wilkinson. A detailed study of inverse error

analysis is part of the subject of numerical analysis. We will mention it

_ again in Section 5.

f

—- L. Two examples of round-off problems

One of the commonest functions of analysis 1s the exponential function et.

: = Since 1t 1s so much used, 1t 1s essential to be able to have the value of
g e” readily available in a computer program, for any floating-point number x .

n- There 1s nowhere near enough storage to file a table of all values of e ,
so one must instead have an algorithm for recomputing e¥ whenever it is

_ needed. (By an algorithm we mean a process that 1s completely defined and

| guaranteed to terminate by delivering the desired output .) There are, in
fact, a great many different methods such an algorithm could use, and most

| B scientific computing systems have one programmed into 1t. put Jet us assume
such an algorithm did not exist on your computer, and ask how you would

ES program 1t. This 1s a realistic model of the situation for a more obscure

transcendental function of analysis.

- Recall that, for any real (or even complex) value of x , e* can be
represented as the sum of the universally convergent infinite series

® = 14 x+ AE cee.
o Since you learned mathematics because it is useful, you will surely expect

to use the series to compute e" . Suppose that your floating-point number
h system F 1s characterized by Bg = 10 and s = 5 . Let us use the

series for x = -5.5 , as proposed by Stegun and Abramowitz [13]. Here

. are the numbers we get:

e"7 = 1.0000

~-5.5000

+15.125

-27.730

+38.129

41.942

+38. 446

-30.208

+20.768

-12.692

+6.,9803

-3.4902

+1.5997

"0.000055
Q

The sum 1s terminated when the addition of further terms stops changing

it, and this turns out to be after 25 terms. Is this a satisfactory

algorithm? It may seem so, but in fact 700 = 0.00L408677 , so that
the above series gets an answer correct to only about 326 percent! This

1s awful.

What 1s wrong? Observe that there has been a lot of cancellation in

forming the sum of this alternating series. Indeed, the four leading

(i.e., most significant) digits of the eight terms that exceed 10 in

modulus have all been lost. Professor D. H. Lehmer calls this phenomenon

catastrophic cancellation, and it is fairly common in badly conceived

computations. However, as Professor William Kahan has observed, this

great cancellation 1s not the causeof the error in the answer -- it merely

reveals the error. The error had already been made in that whe terms

like 38.129 , being limited to 5 decimal digits, can have only one digit

that contributes to the precision of the final answer. It would be

necessary for the term (-5.5)" ht to be carried to 8 decimals (i.e.,
10 leading digits) for it to include all 6 leading digits of the answer.

Moreover, an eleventh leading digit would be needed to make it likely that

the sixth significant digit would be correct in the sum. The same 1s true

of all terms over 10 1n magnitude.

While 1t 1s usually possible to carry extra digits in a computation,

1t 1s always costly in time and space. For this particular problem there

1s a much better cure, namely, compute the sum for x = 5.5 , and then

take the reciprocal of the answer:

200 1/e”"?

= 1/(1+5.5 + 15.125 + . ..)

= 0.0040865 , with our 5-decimal arithmetic.

(The symbol' ="' means 'equals approximately'.) With this computation,

the error 1s reduced to 0.007 percent.

Note how much worse the problem would be 1f we wanted to compute e”
for x = -100 .

Actual computer algorithms for calculating e* often use a rational
— function of x , for x on a fairly short interval like l—<x<X®&. C=: _

If x 1s outside this interval, say

2 < x < Se 1 .

_ then well known properties of the exponential function are used to obtain -
at; y x7

the answer from the rational approximation to e° , where y = xe +x - 1J |

The creation of such algorithms for special functions 1s a branch of (er ¢ x
ale?”

numerical analysis 1n which the general mathematician can hardly be an

expert. On the other hand, 1t 1s part of the author% contention that

~ mathematics books ought to mention the fact that a Taylor's series 1s

often a very poor way to compute a function.

I will briefly state a second example. Recall from the calculus that

| b
b 1-p

dx X 1 _ l=

(1) [Ed e1P- a") (p £1). : _ — _ .

J 2 IF 1-p
a

w Now using a floating-point system with g = 10 and s = 6 , let us

evaluate the above formula for a =1, b=2, and p = 1.0001 .

| We have
-

2 -e

(2) 1 = | ax 1. 27% |L 1.0001 0.00011 X

If we use G-place logarithms to evaluate 2 , we have
_

log, 2 = 0.301030 ,

log, 27° £1 -0.0000301030 = -1 + 0.999969

L whence, using our logarithm table again,

-.0001 .

L 2 z 0.99995.

— 10

Thus, from (2), we get I = 0.7 , an answer correct to only one digit.

| The precise meaning of the restriction to 8 = SO , s = 61s not

so clear in the evaluation of p= +0001 as 1t would have been in the

previous example. However, the example does illustrate the fact that

prmula (1), which is precisely meaningful for real numbers as long as

ie; # l , is difficult to use with finite-precision arithmetic for p

close to 1 . Thus practical computation cannot admit the precise

distinction between equality and inequality basic to pure mathematics.

There are degrees of uncertainty caused by approximate equality.

11

| De Solving quadratic equations

The two examples of Section 4 were taken from the calculus. But

we don't have to learn college mathematics to find algorithms. Tn ninth

grade there is a famous algorithm for solving a quadratic equation,

implicit in the following mathematical theorem:

Theorem. If a , b , ¢ are real and a £ 0 , then the equation
2

ax +tbx+c=0 is satisfied by exactly two values of x , namely

2-b + \ b~ - Lac
3 “FT8bU = mab(3) 1 = 2a

and

2 = 2a |

Let us see how these formulas work when used 1n a straightforward

manner to induce an algorithm for computing Xq and Xo - This time we
shall use a floating-point system with g=10, §=8, m= -50,

M = 503; this has more precision than many widely used computing systems.

re

Case 1: a =1, b = _10%° , ¢ =1.

The true roots of the corresponding quadratic equation, correctly

rounded to 11 significant decimals, are:

Xy = 99999.999990 (true)

_ X, = 0.000010000000001 (true) .

If we use the expressions of the theorem, we compute

Xq = 100000.00 (very good)

(The reader 1s advised to be sure he sees how X becomes 0 in this

floating-point computation.)

12

| Once again, in computing X, We have been a victim of catastrophic
cancellation, which, as before, merely reveals the error we made in having

chosen this way of computing Xy There are various alternate ways of
computing the roots of a quadratic equation that do not force such

: cancellation. One of them follows from the easily proved formulas,
true if abc # 0 :

(5) x, _ — :-b - Vi - hac

(6) x, _ —-b Js - hae

Now, if b < 0 , there is cancellation in (4) and (5) but not in (3)

and (6). And, if b >0, there is cancellation in (3) and (6), but not

in (4) and (5). Special attention must be paid to cases where b or c

1s 0.

At this point I would like to propose the following criterion of

performance of a computer algorithm for solving a quadratic equation.

This 1s stated rather loosely here, but a careful statement will be found

in [2].

We define a complex number z to be well within the range of F if

either 2 = 0 or

gE < Re (2)] < 1-2 and Sak <[m(2)] < ge .

This means that the real and imaginary parts of z are safely within the

magnitudes of numbers that can be closely approximated by a member of F .

The arbitrary factor g° 1s included to yield a certain margin of safety.
Suppose a , b , ¢ are all numbers in F that are -well within the

range of F . Then they must be acceptable as input data to the quadratic

equation algorithm. If a=b=c=0, the algorithm should terminate

13

with a message signifying that all complex numbers satisfy the equation

— +bx+c=0. If a=b =0 and c¢ # 0, then the algorithm should
terminate with an error message that no complex number satisfies the

equation.

Otherwise, let Zq and Z, be the exact roots of the equation, so

numbered that |Z, < 2, | . (If a = 0 , set Zp = .) Whenever Z4
is well within the range of F , the algorithm should determine an

approximation that 1s close to 29 in the sense of differing by not
more than, say, f+1 units in the least significant digit of the root.

The same should be done for Zo

If either or both of the roots z, are not well within the range of F ,
then an appropriate message should be -given, and the root (if any) that 1s

well within the range of F should be determined to within a close

approximation.

That concludes the loose specification of the desired performance of

a quadratic equation solving algorithm. Let us return to a consideration

of some typical equations, to see how the quadratic formulas work with

them.

Case 2: a=6, b=5, c=kL.

There 1s no difficulty in computing X, = 0.50000000 and

X, _ —1.3333333 , or nearly these values, by whatever formula is used.

Case 3: a =6x 109, b = 5% 1030, c = 4y 10° .

Since the coefficients in Case 3 are those of Case 2, all multiplied

by 10°Y , the roots are unchanged. However, application of any of the
formulas (3)-(6) causes overflow to occur very soon, Since be > 10° ,
out of the range of FF . Probably this uniform large size of |a| , ol,

1c; could be detected before entering the algorithm, and all three

numbers could be divided through by some scale factor like 10% to

reduce the problem to Case 2.

14

Case i: a = 1070 , b= 100 , C = 10°

| Here =z is near 1 , while 2, 18 near 1020 Thus our

algorithm must determine z, Very closely, even though Zs 1s out of
the range of F. Obviously any attempt to bring the coefficients to

approximate equality in magnitude by simply dividing them all by the same

| number 1s doomed to failure, and might itself cause an overflow or

underflow. This equation is, 1n fact, a severe test for a quadratic

equation solver and even for the computing system in which the solver

1S run.

The reader may think that a quadratic equation with one root out of the

range of F and one root within the range of F 1s a contrived example

of no practical use. If so, he is mistaken. In many iteration algorithms

which solve a quadratic equation as a subroutine, the quadratics do have

a singular behavior in which a — O as convergence occurs. One such example

is Muller's method [9] for finding zeros of general smooth functions of z .

Case 3: a =1.0000000 , b= -4.0000000, cc , 3.9999999

Here the two roots are z; = 1.999683772 , z, = 2.000316228 .
But applying the quadratic formulas (3), (4) gives

Zy Zp = 2.0000000 ,

with only the first four digits correct. These roots fail badly to meet

my criteria, but the difficulty here 1s different from that in the other

examples. The equation corresponding to Case 5 is the first of our equations

in which a small relative change in a coefficient a , b , ¢ induces a

much larger relative change in the roots Zy 1 Zp This 1s a form of
instability in the equation itself, and not in the method of solving it.

To see how unstable the problem 1s, the reader should show that the computed

roots 2.0000000 are the exact roots of the equation

0.999999992x"- 3-999999968x + 3.999999968 = 0,

in which the three coefficients differ, respectively, from the true

a, b, c of Case Sby less than one unit in the last significant digit.

In this sense one can say that 2 , 2 are pretty good roots for Case 5.

15

This last way of looking at rounding errors 1s called the inverse

error approach and has been much exploited by J. H. Wilkinson. In general,

- it is characterized by asking how little change in the data of a problem
would be necessary to cause the computed answers to be the exact solution

of the changed problem. The more classical way of looking at round off,

the direct error approach, simply asks how wrong the answers are as

solutions of the problem with its given data. While both methods are

useful, the important feature of inverse error analysis 1s that in many

large matrix or polynomial problems, 1t can permit us easily to continue

to use associative operations, and this 1s often very difficult with direct

error analysis.

Despite the elementary character of the quadratic equation, it 1s

probably still safe to say that not more than five computer algorithms

exist anywhere that meet the author's criteria for such an algorithm.

Creating such an algorithm 1s not a very deep problem, but it does

require attention to the goal and to the details of attaining the goal.

It illustrates the sort of place that an undergraduate mathematics or

computer science major can make a substantial contribution to computer

libraries.

I wish to acknowledge that the present section owes a great deal to

lectures by Professor William Kahan of the University of California,

Berkeley, given at Stanford in the Spring of 1966.

16

~

,

Nib#

6. Solving linear systems of equations

As the high school student moves from ninth grade on to tenth or

— eleventh, he will encounter the solution of systems of linear algebraic

equations by Gauss* method of eliminating unknowns. With a little

systematization, it becomes another algorithm for general use. TI would

like to examine it in the simple case of two equations in two unknowns,

carried out on a computer with g =10 , s = 3 .

Let the equation system be one treated by Forsythe and Moler [3]:

0.000100x + 1.00y = 1.00

(7)
1.00x + 1.00y = 2.00

The true solution, rounded correctly to the number of decimals shown, 1s

Xx = 1.00010 , v = 0-99990 (truly rounded).

- The Gauss elimination algorithm uses the first equation (1f possible)

| to eliminate the first variable, x , from the second equation. This is
_ done by multiplying the first equation by 10000 , and subtracting it

from the second equation. When we work to three significant digits, the

| resulting system takes the form

frome + 1.00y = 1.00 (the old first equation)- 10000 y = —-10000 .

For just two equations, this completes the elimination of unknowns.

Now commences the back solution. One solves the new second equation for y ,

_ finding that y = 1.00 . This value is substituted into the first equation,

which 1s then solved for x . One then finds x = 0.00 . In summary, we

have found

y = 1.00

x = 0.00 .

17

: Of course, this is awful! What went wrong? There was certainly no long

: accumulation of round-off errors, such as might be feared in a large problem.

Nor was the original problem unstable of itself, as it would be 1f the lines

represented by the two equations (7) were nearly parallel.

There is one case in which it is impossible to eliminate x from

1 the second equation -- when the coefficient of x 1n the first equation

: is exactly 0 . Were such an exact 0 to occur, the algorithm 1s preceded

by interchanging the equations. Now, once again, 1f an exact zero makes a

| mathematical algorithm impossible, we should expect that a near zero will
| give a floating-point algorithm some kind of difficulty. That is a zort

of philosophical principle behind what went wrong. And, in fact, the

division by the nearly zero number 0.0001 introducedsome numbers (10009)

| that simply swamped the much smaller, but essential data of the second

| equation. That is what went wrong.
How could this be avoided? The answer 1s simple, 1n this case. If it

; 1s essential to interchange equations when a divisor is actually zero, one

| may suspect that it would be important, or at least safer, to interchange

| them when the coefficient of x 1n the first equation 1s much smaller in
| magnitude than the coefficient of x 1n the second equation. A careful

round-off analysis given by J. H. Wilkinson [14] proves this to be the

case, and good linear equation solvers will make the interchange whenever

necessary to insure that the largest coefficient of x (in magnitude) 1s

used as the divisor. Thus the elimination yields the system

| [oo + 1.007 = 2.00
L 1.00v = 1.00 .

| After the back solution we find
y = 1.00

{ x = 1.00 ,
a very fine result.

| 18

;

| This algorithm, with its interchanges, can be extended ton equations

in n unknowns, and is a basic algorithm found in all good computing

centers.

| The following example shows that there remains a bit more to the

construction of a good linear equation solver. Consider the system

10.0 x + 100000 y = 100000

(8)
1.00x + 1.00y = 2.00 .

If we follow the above elimination procedure, we see that

interchanging the equations 1s not called for, since 10.0 > 1.00 .

Thus one multiplies the first equation by 0.100 and subtracts it from

the second. One finds afterwards, still working with gg =10, 8 = 3,

that

10.0x+ 100000y = 100000

- 10000y = -10000 .

Back solving, one finds

y = 1.00

x = 0.00 !

This 1s just as bad as before, forsystem(8) has the same solution

as (7). Indeed, system(8) is easily seen to be identical with (7), except

that the first equation has been multiplied through by 100000 .

So, the advice to divide by the largest element in the column of

coefficients of x is not satisfactory for an arbitrary system of equations.

What seems to be wrong with the system (8)1s that the first equation has

coefficients that are too large for the problem. Before entering the

Gaussian elimination algorithm with interchanges, it 1s necessary to scale

the equations so that the coefficients are roughly of the same size in all

equations. This concept of scaling 1s not completely understood as yet,

| although in most practical problems we are able to do it well enough.

If you were faced with having to solve a nonsingular system of

linear algebraic equations of order 26, for example, you might wonder

how to proceed. Some mathematics books express the solution by Cramer's

rule, in which each of the 26 components is the quotient of a different

numerator determinant by a common denominator determinant. If you looked

elsewhere, you might find that a determinant of order 26 is the sum of

261 terms, each of which is the product of 26 factors. If you decide to

proceed in this manner, you are going to have to perform about 25 x 261

multiplications, not to mention a similar number of additions. On a fast

contemporary machine, because of the time required to do preparatory

computations, you would hardly perform more than 100,000 multiplications

per second. And so the multiplications alone would require about 10
years, 1f all went well. The round-off error would usually be astronomical.

In fact, the solution can be found otherwise in about (1/3) x 26°:
5859 multiplications and a like number of additions, and should be

entirely finished in under half a second, with very little round-off

error. So 1t can pay to know how to solve a problem.

I wish to leave you with the feeling that there 1s more to solving

linear equations than you may have thought.

20

Te When do we have a good solution?

Another example of a linear algebraic system has been furnished by

Moler [8]:

0.780x + 0.563y - 0.217 = 0

(9)

0.913x + 0.659y- 0.254= 0 .

Some one proposes two different solutions to (9), namely

(x5 v;) = (0.999, -1.001)
17 J1

and

(x55 Ys) = (0.341, -0.087).

Which one 1s better? The usual check would be to substitute them both

into (9). We obtain

0.780x, + 0.563y, 0.217 = -0.001243

0.913x, +0.659y, -0.254 = -0.001572
and

0.780x, + 0.563y, - 0.217 = -0.000001

0.913, + 0.659, - 0.254 = ©

It seems clear that (%,, Yo) 1s a better solution than (x45 yq) 5
since 1t makes the residuals far smaller.

However, in fact the true solution 1s (1, -1) , as the reader can

verify easily. Hence (25 Yq) 1s far closer to the true solution than
(20) y2) !

A persistent person may ask again: which solution is really better?

Clearly the answer must depend on one's criterion of goodness: , c.o11

residual, closeness to the true solution, or perhaps something else. Surely
one will want different criteria for different problems. 114 pitfall to be
avoided here 1s the belief that all such criteria are necessarily satisfied,

1f one of them is.

21

. - . ..

3 8. Sensitivity of certain problems

We now show that certain computational problems are surprisingly

3 o sensitive to the data. This aspect of numerical analysis is independent
of the floating-point number system.

We first consider the zerosof polynomials in their dependence on

the coefficients. In Case 5 of Section 4 above, we noted that, while
2

the polynomial x - 4x + 4 has the double zero 2 , 2 , the rounded

roots of the polynomial equation

2

(10) x” = bx 4 3.9999999 = o

_ are 1.999683772 and 2.000316228 . Thus the change of just one
coefficient from4 to 3.9999999 causes both roots to move a distance

| of .000316228 . The displacement in the root is 3162 times as great

as the displacement 1n the coefficient.

| The instability just described 1s a common one, and results from
the fact that the square root of € 1s far larger than € | For the

| roots of (10) are the roots of
(x-— 2) = €¢ , € = .0000001 ,

! and these are clearly 2 + Je . For equations of higher degree, a still

- more startling instability would have been possible.

| However, it 1s not only for polynomials with nearly multiple zeros

that instability can be observed. The following example is due to

Wilkinson [1h]. Let

p(x) = (x+ 1)(x + 2)...(x+ 19)(x + 20)

The zeros of p(x) are +1, +2, +19, +20 , and are well separated.

This example evolved at a place where the floating-point number system

had 8 = 2 , 8s = 30. To enter a typical coefficient into the computer,

1t 1s necessary to round it to 30 significant base-2 digits. Suppose

22

that a change in the 30-th most significant base-2 digit 1s made in

only one of the twenty coefficients. In fact, suppose that the coefficient

of x7 is changed from "210 to-220 + 2723), How much effect does this
small change have on the zeros of the polynomial?

To answer this, Wilkinson carefully computed (B = 2 , s = 90)

the roots of the equation p(x)= 225,19 = 0 . These are now listed,
correctly rounded to the number of digits shown.

1.00000 0000 10.09526 6145 + 0.64350 090khi

2.00000 0000 11.79363 3881 +1.65232 97281

3.00000 0000 13.99235 8137 + 2.51883 00701

4.00000 0000 16.73073 Th66 +2.81262 LBoLi

4.99999 9928 19.502L43 9400 +1.94033 O347i
6.00000 694k

6.99969 T7234

8.00726 7603

8.91725 0249

20.84600 8101

Note that the small change in the coefficient 210 has caused ten

of the zeros to become complex,' and that two have moved more than 2.81

units off the real axis! Of course, to enter p(x) completely into the

computer would require many more roundings, and actually computing the

zeros could not fail to cause still more errors. The above table of

zeros was produced by a very accurate computation, and does not suffer

appreciably from round-off errors. The reason these zeros moved so far

is not a round-off problem -- 1t 1s a matter of sensitivity. Clearly

zeros of polynomials of degree 20 with well separated zeros can be much

more sensitive to changes in the coefficients'than you might have thought.

To motivate a second example, let me quote a standard theorem of

algebra: In the ring of square matrices of fixed order n , if AX = 1 ,

where I is the identity matrix of order n , then XA = 1 .

It follows from this theorem and continuity considerations that, if

A 1s a fixed matrix and X a variable one, and if AX - I - © , the

zero matrix, then also XA - I - © . Hence, 1f AX - I 1s small in some

23

~- sense, then XA -" I is also small. However, as with polynomials, one's

| intuition may not be very good at guessing how small these smallnesses

— are. Here 1s an example: Fix

| 9999 9998

10000 99P9 .

§ Let

9999.9999 -9997.0001 |
- X =

-10001 0098 | .
- Then a computation without round-off shows that

.001 .0001

- AX = T =

0 0 ‘

- From the last equality the reader may conclude that X 1s close, though

not equal, to the unique inverse al . However, another calculation
q . without round off shows that

19997.0001 19995.0003 |
- XA -T = .

| -19999 -19995
f

- Thus the quantities AX- I and XA - I , which must vanish together,

can be of enormously differing magnitudes in a sensitive situation, even

C for matrices of order 2 .

The true inverse matrix 1s given by

1 9999. 9998.
A = ,

-100000 9999 |
“_

| and-this 1s hardly close to X .
|
-

"

| 9. A least-squares problemof Hilbert

: The following least-squares problem was discussed by the great

mathematician David Hilbert [6], and leads to some interesting matrices.

Fix n > 1 . Let f(t) be given and continuous for 0 <t < 1 .We

wish to approximate f(t) as well as we can by a polynomial
+ n-1Xo THEY xt £ coe TX UE of degree n- 1 | To be more precise,

we wish to determine
Xyr X95 cee. X 1 so that

) 1

o(x)= [[H(t= x -xt-...-x 42-12

is as small as possible. Tt ig not difficult to show that the minimizing

| | vector of coefficients x exists, is unique and can be determined by
solving the system of n simultaneous equations

| 30
(11) Sx. C—O (i =0,1,n01

i

i If you carry out the algebra, you find that (11) is equivalent to
- the system of n linear algebraic equations

(12) Ax = bv ,

where

1,3 5 iFio1 (i, 3 =1,2,n)
and

il 11 =~

(1%) bs } ig t f(t)at (1=1,2, ..., n) .
The matrix A of coefficients 1n (12) 1s now called the Hilbert

matrix (of order n), and is denoted by H :

25

| 1 1 1 1
2 3 Lo. n+l

A SE 1
n ntl nt2 «es 2n-1

The equations (12) with matrix A = Ho are called the normal equations
for the problem. It appears that all one has to do 1s to find and use

| a quadrature rule for approximating the b. in (14), and then solve
the system (12). This is certainly the standard advice in books on

practical statistics.

However, what is observed is that for n bigger than 8 or 9 (the

threshold depends on the system used), linear equations solvers in ordinary

floating-point precision will simply refuse to solve (12). Moreover, for

problems that can be solved (say n = 6), there are enormous differences

in the solution vectors x for apparently identical problems on slightly

| different machines. Why all this trouble?

Let me try to explain the sensitivity of the problem first. Let

I, = HT . Then 1t can be proved that

36 630 3360 -7560 7560 2772 |

~630 14700 -88200 211680 -220500 83160

3360 -88200 564480 -1411200 1512000 -582120

Te =| -7560 211680 -1411200 3628800 -3969000 1552320 |
7550 -220500 1512000 ~3969000 W410000 1746360

“2772 8 3160 ~-582120 1552320 -17L6360 608544 .

This means that a change of 107° in just the one element og will produce
changes in the solution vector x of

(.00756, -.2205, 1.512, -3.969, L.h1, 1.74636)1 :

26

Such changes are unavoidable in a system with g = 10 and s = 7.

| This means that some of the coefficients of the best fitting polynomial

- of degree 5 will have unavoidable uncertainties of the order of 4 units.

| This may give some explanation of the instability in the answers. More

- details are in Section 19 of [3].

Here are approximate values of t , the maximum elements in T ,

_ for n < 10 : ”

n t
n

2 1.20 x 100

3 1.92 x 10°

in 6.48 x 10°

p 1.79 x 10”

6 hal y 10°

’ 1.33 x 10°

. 8 4.25 x 107

9 1.22 100

- 10 3.48 x 101°

S

It cannot be demonstrated here, but 1f t >> f°, you just cannot

solve the system Hx = b with s-digit arithmetic to base pg .
_ The conclusion of this example 1s that one should not follow a

Statistics book blindly here. It is much better to arrange things so

that matrices-of Hilbert type do not arise, even approximately. And

when they do, one must be sure to use enough precision so that +t «<< a"]
n

There are other ways of attacking least-squares problems which are less

— sensitive'to the data.

- 27

10. Instability in solving ordinary differential equations

The standard initial-value problem for a single ordinary differential

equation dy/dx = f(x, y) 1s to determine y (x) as accurately as possible

forx > 0 , given y(0) . In one very common class of methods (the

multistep methods) of solving this problem approximately, one picks a

fixed interval h > 0 , and determines , to approximate y (nh) for
n=1,2, One highly recommended multistep method in desk-computing

days was the Milne-Simpson method. Here one let Vg = y(0) , the given
initial value, and determined y; by some method not mentioned here.

.

Let x! . f (nh, y,) . The idea was to determine Ype1 from V, 1 and
Vy, (n =1, 2, . ..) by the integral

(n+1)h -

(15) Yoo = V1. J flxmy(x))ax
(n-1)h

Since the integral in (15) can not usually be evaluated exactly, Milne's

idea was to approximate 1t by Simpson's formula, and so let

n+l n-1" 3 “Yn-1 7 Yn 7 Ynpt1 |

At the time we seek to find y ,4 from (16) we know y_ 1 and Vy 7 and

hence y! , and y; ; but vii is not known. For general f ,
Milne [7] determined the solution of (16) by an iterative process that

1s irrelevant to the present discussion. Let us merely assume that Yoeln

t =

has been found so that (16) holds, where VARY f ((n+l)h, Ve) , and
that this has been done for n=1, 2, . . . , as far as we wish to go.

This method was highly recommended by Milne for solution of ordinary

differential equations at a desk calculator, and it seemed to work very

well indeed. Most problems were probably solved within 30 steps or less.

As soon as automatic digital computers arrived on the scene, users

of the Milne-Simpson method started to find extraordinary behavior in |

certain problems. To illustrate what happened, let us take the very

simple test problem

28

dy/dx = f(x,y) = -Y , with y(0) = 1 .

The true solution, of course, is y = et

Take h = 0.1 , and carry out the Milne-Simpson process with Vo = 1

and Yi = 0.90483742 , an 8-decimal correctly rounded value ect
al . Thi 1s not something you can do in your head, and so I will. give
you the results, as computed on a system with fg =10, g = 3 .

: } oe 5
x computed

| 2 8187 3069 8187 3075
| Ll 74081817 . 74081822

| 3.0 .00033510912 .00033546263
| 8.1 . 00030380960 ® 00030353914

13.2 .00000036689301 0000018506012

| 13.3 . 0000032084 360 . 0000016744932

| 13.4 ~.000000070769248 .000001515144]1

We see that by x = 8.0 a noticeable oscillation has set in,

whereby successive values of on alternate in being too low and too high.
By x = 13.4 this oscillation has grown so violent that it has (for the

first time) actually thrown the sign of Vy negative, which 1s unforgiveable
in anything simulating a real exponential function!

The Milne-Simpson method is very accurate, 1n that the Simpson formula

is an accurate approximation to the above integral. What can be the matter?

Since f(x,y) = -y , we can explicitly write down the formula (10)

in-the form

no, |

ntl « nal =F Wha : “¥y : Vr) y

29

Thus the computed (v;} satisfy the 3-term recurrence relation

(17) (1+ Dy my (1 - yy = 0
3“n+tl = 3 Yn 3“ n-1l ©

We know that the general solution of (17) takes the form

(18 = ANE n18) Vy AN + AN, 5

where MN Ao are the roots of

, hy,2 . Ln h
1 1+ SIN + — - - = =(19) (z) =M- (1-3) 0 .

Some algebra and elementary analysis show that

AN. =1-h + 0(h°)1 = s as h - 0 ’

h

ho = =(1 + 3) + 0(n°) », as h-0.

Putting the values of A A, into (18), and using the relation nh =x,
we find that, for small h , |

. n n hn
Vo 7 A(1 =m)" + (-1)7 AL + 3)

- 1 x 3 X
h n hh ~ 3

hd -X n x/3

The first term 1s the desired solution, and the second 1s an unwelcome

extra solution of the difference equation (17) of the Milne-Simpson method.

Now the 1nitial conditions might have been chosen exactly so that Ay = 1

end A, =0 . (They were roughly of this nature.) Had they been so
“ chosen, and if the solution could have proceeded without round-off error,

the unwanted term 1n An would never have appeared. But, in fact, a
small amount of this solution was admitted by the initial condition, and

30

some more of it crept in as the result of round-off. Then, after enough

steps, the size of RIE caused the unwanted term to dominate the
solution, with its oscillating sign.

This disaster never occurred in desk computation, so far as we know,

because at a desk one just doesn't carry out enough steps. However,

Professor Milne tells me that he did occasionally observe harmless

oscillations in the low-order digits.

The moral of this example 1s that not only are math books not

enough, but even old numerical analysis books are not enough to keep you

out of some pitfalls!

31

: E

= 11. Instability in solvinga partial differential equation

The following 1s a simple problem for the heat equation. Suppose a

| = homogeneous insulated rod of length 1 1s kept at temperature (s+ one
! end, and at temperature 1 at the other end. If the entire rod is

FT initially at temperature 0 , how does it warm up?

Let u = u(x,t) denote the temperature at time t at that part of

| — the rod that 1s x units from the cold end. Then, 1f the units were
chosen to make the conductivity 1 , the temperature U <itisfies the

LL differential equation

ou ou

(20) — 5 (0O<x<1l; t>0) ,
ox

| : with end and initial conditions

| uff, 1) = 0 to 0,

| (21) u(l, t) = 1 (t > 0) ,

. u(x, 0)= 0 (0 <x <1).

| This problem can perhaps best be solved by separation of variables

~ and trigonometric series. But let us apply the method of finite differences,

of which might in any case be needed for a more difficult problem. 14 44

— this, we divide the length of the rod into equal intervals, each of length h .

- Instead of trying to determine u(x,t) for all x and t , we will limit

ourselves to computing u(x, t) on the discrete net of points of type

(mh, nk) , for integers m, n . The heat equation (20) can then be
| simulated by a number of finite-difference equations, of which we pick one:

= (22) u(x-h, t) - 2u(x, t) + u(x+h, t) _ u(x, t+k) - u(x, t)
3 K

|

Equation (22) can be used to determine u(x,t) for all net points

in the infinite strip of the problem, as follows: gplve (22) for

32

oo oo]

u(x, t+k) in terms of u(x-h, t) , u(x,t) , u(x+h, t) . Thus compute

u(x, k) for x = h, 2h, (n-1)h in terms of the given initial

conditions on the line t =o. The given end conditions give u(0, k)

and u(l, k) . With this set of values of u at all points of the net

with t = k , we can continue and compute all values on the net for t = 2k .

Etc. The computation 1s very attractive, because each new value of

u(x, t+k) is determined explicitly from (22) -- there is no need to solve

a large number of simultaneous equations.

How does the solution behave? To try a case, we pick h = 0.1 and

k= 0.01 . Thus the rod is represented by 9 interior points and two

endpoints, and we get a solution at time steps 0.01 apart. Just to show

the behavior of the solution of (22),we give the value of the temperature

u(0.5, t) at the midpoint of the rod, computed with g = 10, s =8,
for selected times:

t u(0.5,t) computed from k = 0.01

0 0

0.05 1

0.07 16

0.15 132276

0.20 —-28157050

0.99 +1.0196022 x 10Lk

1.00 -2.9590007 y 10 bh

The values 1n the table are ridiculous, of course. It is a classical h

example of instability. Common sense and mathematics both tell us that

33

ee ————

the real temperature can never get outside the range 0 < u(x, t) <1 .
: Our difference-equation problem 1s a disastrous model of the continuous

problem, even though both difference expressions 1n (22) are reasonable

models of the derivatives in (20).

| This terrible pitfall has been known for at least 20 years, and

| yet new problem solvers keep on rediscovering 1t.

It 1s interesting to note that if one selects a time step only

half as long, the computation proceeds very nicely. Here 1s the

corresponding table of values of u(0.5, t) for a computation (pg = 10 ,

s = 8) with h = 0.1 , k = 0.005 :

t u(0.5, t) computed for k = 0.005

0 0

0.05 . 10937500

0.06 14599609

0.07 .17956543

1 LI I ® es 0

0.15 . 35637261

C a ® ® * ee

0.20 11304382

L | [I J a @
1.00 49997173

- The values of the midpoint temperature are converging to 0.5 , as

they obviously should in the physical problem.

« What 1s the reason for the great difference in behavior between

k = 0.005 and k = 0.01 ? The matter can be analyzed in many ways, and

here is one simple approach. Let NN = k/h° . Then, from (22),

5 (23) u(x, t+k) = Mu(x-h, t) + (L-2)u(x,t) + Mu(x+h, t) .

Hence, if O <A < : , the formula (23) represents u(k, t+k) as a
L weighted average with non-negative weights of u(x-h, t), u(x,t) ,

g —
34

and u(x+h, t) . Hence u(x, t+k) will always be between the maximum

and minimum values of u(x, t) . But, if A > 3 , the weights alternate
in sign and thus permit a solution in which

u(x, t+k)| = Au(x -h, t) | + (en = 1) |u(x, t)| + Mulx+n, t)]

Here the sum of the weights is WA -1 > 1 . This permits an exponential

growth of a solution with an alternating sign pattern.

Thus the condition A 0 < N= K/h” < x 1s essential to keep the
solution bounded. A deeper discussion found, for example, in Forsythe

and Wasow [4] proves that the solution of (22) converges to the solution

of (20) uniformly for all (x, t) with 0 <x <1, O0<t<T <=,

as h-0, k= 0 1n such a way that k/n° < 1/2 .
The proof of convergence and an analysis of the stability of (22) can

be carried out by means of Fourier analysis. The stability can be examined

in more detail by studying the eigenvalues and eigenvectors of the linear

transformation (23) that maps each line of solutions onto the next line.

Note that in our two tables we had A = 1 and A = 1/2 , respectively.

|

,

35

a 12. Round-off errors in polynomial deflation

Our final example, due to Wilkinson [14], shows a more subtle

effect of round-off error that arises in the course of finding polynomial

zeros. The quartic polynomial

L 3 2

Py (x) = x - 6.7980x~ + 2.99L48x~ - 0.043686x+ 0.000089248

| has zeros that, correctly rounded, are as follows:

0.0024532 , 0.012576 , O0.hs732 6.32565 :

I. Suppose first that we compute the zero 0.0024532 , and then

Fo deflate P; to a cubic by dividing P(x) by x-0.0024532 , using
Bg =10, s =5. If we do, the resulting cubic has zeros

0.012576 , 0.457315 , 6.32561 |,

| so that the main error introduced by this deflation 1s a change of the

| largest zero by 4 units in its last place.

II. Suppose, on the other hand, that we first compute the zero

: | 6.3256, 'and then deflate P, to a cubic by dividing P) (x) by
| X -0.3256 , again using 5-place decimal arithmetic. If so, the resulting

cubic has the zeros

0.0026261 + 0.064339 i ,

0.467148

: We have perturbed two of the remaining zeros beyond recognition, and
! Cl _

have changed the second significant digit of the third.

Thus 1t appears to matter a great deal which zero of Py we locate
first. For the present case we can get a feeling for what 1s happening

| by examining the process of division of Py, (x) by the linear factors.
| We use detached coefficients:

First, the division by x-0.0024532 :

1l ~- 6.7980 + 2.9948 - 0.043686 + 0.000089248

- 0.0024532 + 0.166707206 - 0.00730587492 + 0.000089247416

l - 6.7955 + 2.9781 - 0.036380

Thus the cubic that results from the first deflation 1is

P(x) = x -6.7955%° +2.9781x - 0.036380 . Moreover, acareful
examination of the division shows that P, (x) 1s exactly (i1.e., without
round off) equal to the quotient of

Py (x) = i - 6.7979532x" + 2.99L7707206x" - 0.0L4368587492x + 0.0000892L7416

by x-0.0024532 . Hence the zeros of P, are exactly the zeros of P,
except for 0.0024532 . Note that all the coefficients of P, and Py
are quite close, so 1t 1s reasonable to expect that the zeros of P), and

P, should be close (as they are).
Now we show the deflation by x =- 6.3256:

1 - 6.7980 + 2.9948 - 0.043686 + 0.000089248

- 6.3256 + 2.988213hkkLk - 0.04174896 + 0.0122526872

1 - 0.4724 + 0.0066 - 0.001397

- 3 2

Thus the result of this deflation is a cubic P(x) = x~ - O.h72Lx
+ 0.0066x - 0.001397 . Again, P(x) is exactly the quotient of

B(x) = x - 6.7980x° + 2. gohBlaMx" - 0.04368596x + 0.0122526872

by x- 6.3256 . Note that Py, and P, differ very much in their
constant terms. Hence the product of the roots of P, must be very
different from that for Py . This is an explanation for the great

shift of the zeros of P, .

37

Further analysis shows that the shift in zeros during this kind of

| deflation 1s generally small when deflation 1s made with zeros of small

| modulus, and 1s generally large when deflation is based on zeros of large
| modulus. Thus it is better to get zeros of small modulus first in using a

polynomial solver with deflation in the above manner.

| Of course, any zero of a deflated polynomial can be refined by use

| of the original polynomial, and that is normally done. But, zeros that

; change as much as those above are difficult to refine, since the refinement
| process may converge to the wrong zero.

38

13. Conclusions

Around ten-years ago, when I last read a number of them, most

mathematics books that dealt with numerical methods at all were from ten

| to fifty years out of date. In the past ten years, many excellent new

methods have been devised for most of the elementary problems —-- methods

that are well adapted to automatic computers, and work well. Let me cite

a few examples of important algorithms hardly known ten years ago:

1. For getting eigenvalues of stored square matrices, there is an

excellent method that starts with the transformation of Householder (1958),

and follows it with the &R-algorithm of Francis (2961-62) and

Kublanovskaja (1961). It is the method of choice for most problems.

| For references, see Wilkinson[15].

~ 2. For solving ordinary differential equations, special methods
have been developed by Gear [9], Osborne [11], and others which can deal

| with so-calledstiff equations. (Roughly speaking, a stiff equation is

| one whose solutions contaln very rapidly decaying transients which

: contribute nothing to the long-term solution, but which interfere
drastically with most numericalmethods of solving the equation.)

3. For evaluating the definite integral of a smooth function of

one real variable, the method of Romberg (see Vol. 2 of Ralston and Wilf [12])

has proved to be very useful.

4. For minimizing a smooth real-valued function of n real

variables, a variant by Fletcher and Powell [1] of a method of Davidon

| is far superior to anything used in the 1950's. And there are still more

recent methods.

Many other examples couldbe given. Indeed, the 1960's have proved

almost explosive in the number of newly invented algorithms that have

supplanted those known earlier. Of the methods known years ago for common

numerical problems, only Gauss' systematic elimination method for solving

linear algebraic equation systems with dense, stored matrices remains

39

supreme today, and even 1t must be augmented with scaling and pivoting

decisions, as we noted in Section 6 above. Newton's method for solving

a nonlinear system of equations 1s still much used today, though it has

strong competition from newer methods.

Because of my knowledge of mathematics texts ten years ago, and my

knowledge of the explosive increase in numerical methods in the 1960's,

I am confident that today's mathematics courses cannot be trusted to

include important knowledge about computer methods. As we noted in

Section 10 above, you can't trust early numerical analysis textbooks

either.

On the other hand, there are experts 1n numerical analysis. They

have societies in which methods are presented and discussed. The

Society for Industrial and Applied Mathematics (SIAM) and the Special,

Interest Group on Numerical Mathematics (SIGNUM) of the Association for

Computing Machinery (ACM) are the most active 1n this country. There are

a number of journals with important information. For a start, you might

consult the keyword-in-context index of Computing Reviews, the review

journal published by ACM, as well as the algorithms in the Communications

of ACM and in Numerische Mathematik. Modern monographs and textbooks in

numerical analysis are slowly appearing, and the beginner might

profitably consult Ralston and Wilf [12].

It might be noted as a digression that, just as mathematics departments

mainly ignore modern numerical analysis, so also the newly created computer

science departments often give the subject little attention, since they

are so busy with a variety of important nonnumerical fields. Thus numerical

analysts remain a small corps of specialists whose greatest appreciation

probably comes from the users of mathematical programs.

Students of mathematics are well equipped to read about numerical

methods. Why should they repeat the classical blunders of generations

past? Why aren't they informed of the existence of good numerical

methods, and roughly where to find them?

Remembering that most students take mathematics 1n order to apply it

on computers, I ask why mathematics courses shouldn't reflect a true

40

awareness of how computing is done? Why shouldn't students demand in

their mathematics courses a greater awareness of the points of contact

of pure mathematics and its practice on a computer?

Of course, a mathematics instructor can shrug his shoulders and

say that actual computing problems don't interest him, and suggest that

| his students contact a numerical analyst sometime. If the instructor
actually says this out loud, it at least has the virtue that the students

| may realize immediately that the mathematics is not applicable directly,
instead of having to discover it for themselves. It still sounds

irresponsible to me. After all, 'Socilety has been supporting mathematicians

pretty well for the past 25 years -- not because mathematics is a beautiful

| art form, which it is —-- but because mathematics is useful, which it also

1s. But this would seem to imply that a mathematician should convey some

awareness of the main ways in which his subject 1s used.

On the other hand, a mathematics course cannot really include very

much numerical analysis. Wilkinson's treatise [15] on computing

| eigenvalues is 700 pages long, and can hardly be summarized 1n every

| course on linear algebra! As a practical matter, then, the mathematics
instructor!s main responsibility 1s to be aware of the main features of

practical computing in the areas of his mathematics courses, and mention

occasional points of contact, while giving his students important

references to important algorithmic materials in other books.

If one just 1gnores the relations between mathematics and its

important applications, I fear that an instructor 1s running the risk

of being exposed by some technological chapter of the Students for

Democratic Society for not being relevant, and that 1s a very nasty

accusation nowadays. Why risk it?

Li

= References

“ [1] R. Fletcher and M. J. D. Powell, "A rapidly convergent descent method

for minimization", Computer J. 6 (1963), pp. 163468.

[2] George E. Forsythe, "What is a satisfactory quadratic equation solver",

pp. 53-61 of B. Dejon and P. Henrici (Editors), Constructive Aspects

- of the Fundamental Theorem of Algebra, Wiley-Interscience, 1969.

[3] George E. Forsythe and Cleve B. Moler, Computer Solution of Linear

. Algebraic Systems, Prentice-Hall, 1967.

[4] George E. Forsythe and Wolfgang R. Wasow, Finite-Difference Methods

L- for Partial Differential Equations, Wiley, 1960.

[5] C. W. Gear, "The automatic integration of stiff ordinary differential

= equations", pp. A81-A85 of Anonymous, Proceedings IFIP Congress 68,

North Holland Publishing Co., 1968.

= [6] D. Hilbert, "Ein Betrag zur Theorie des Legendre'schen Polynoms",

Acta Math.18 (189k), pp. 155-160.

. [7] William Edmund Milne, Numerical Solution of Differential Equations,

Wiley, 1953.

[8] Cleve B. Moler, "Numerical solution of matrix problems", pp. 15-26

of Anonymous, The Digest Record of the 1969 Joint Conference on

- Mathematical and Computer Aids-to Design, 1.E.E.E. Catalogue NO. 69

c 63-c, 1969.

= [0] David E. Muller, "A method for solving algebraic equations using an

automatic computer'l, Math. Tables and Other Aids to Computation 10

y (1956), pp. 208-215.

[10] John von Neumann and H. H. Goldstine, "Numerical inverting of matrices

- of high order", Bull. Amer. Math. Soc. 53 (1947), pp. 1021-1099, and

- Proc. Amer. Math. Soc. 2 (1951), pp. 188-202.

he [u] Michael R. Osborne, "A new method for the integration of stiff systems

of ordinary differential equations", pp. A86-A90 of Anonymous,

- Proceedings IFIP Congress 68, North Holland Publishing Co., 1968.

. 42

1

112] Anthony Ralston and Herbert S. Wilf, Mathematical Methods for

Digital Computers, Wiley, Vol. 1, 1960, and Vol. 2, 1907.

[13] Irene A. Stegun and Milton Abramowitz, "Pitfalls in computation",

J. Soc. Indust. Appl. Math. k4 (1956), pp. 207-219.

[14] J. H. Wilkinson, Rounding Errors in Algebraic Processes,

Prentice-Hall, 1963.

[15] J. H. Wilkinson, The Algebraic Eigenvalue Problem, Oxford,

Clarendon Press, 1965.

N

43

