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X Abstract. This paper presents an analysis of roundoff errors occurring
in the floating-point computation of the fast Fourier transform. Upper

: bounds are derived for the ratios of the root-mean-square (RMS) and

maximum roundoff errors in the output data to the RMS value of the

w

input data for both single and multidimensional transformations. These

1 bounds are compared experimentally with actual roundoff errors.

L

.
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- 1. Introduction. The fast Fourier transform (FFT) is a very

efficient algorithm for computing
“

(1.1) y(3) = T RESEA x(k) (3 = 0,1,...,N-1) ,
k=0

where {x(k)} is a given set of complex numbers and i = /-1 . Let

y' — (y(0),...,y(N-1)) and fl(y) be the floating-point representation

of vy . In this paper we derive bounds for

le1)= ploy / Wx ly 2nd 1209) = 5 £1 x fly

where

1/2

I 2 lls ((= 20912) 1) / and Iz ll = max |z(k)| .k k

These bounds include the effect of roundoff in computing sines and

" cosines and are obtained for both single and multidimensional transformations.

Special consideration is given to cases when N is a multiple of 2 or 4 .

The subject of roundoff error in the FFT has been studied and

] reported by others but with less generality or using a different approach.

: By comparing upper bounds, Gentleman and Sande [1] show that accumulated

- floating-point roundoff error is significantly less when one uses the

FFT than when one computes (1.1) directly. In [2] Welch derives approximate

upper and lower bounds on the RMS error in a fixed-point power-of-two

o algorithm. Weinstein [3] uses a statistical model for floating-point

roundoff errors to predict the output-noise variance. Liu and Kaneko [4]

\ also use a statistical approach to predict the roundoff error in a

| floating-point transformation.
i In the following sections, (1) the FFT algorithm is analyzed from the

_ i point of view of matrix factorization, (2) error bounds are derived, and
(3) experimental comparisons of actual errors with error bounds are presented.
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2. The Fast Fourier Transform. In 1965 Cooley and Tukey [5]

. introduced the algorithm now known as the fast Fourier transform.

In this algorithm for computing (1.1) the number of operations required

\ 1s proportionalto N log N rather than N° . A close look at (1.1)

shows that 1t 1s precisely the matrix-vector equation y = Tx with

the Nth- order matrix T defined by T(j,k) = o 12 Jk/N

a (j,k = 0,1,...,N-1) . Others have pointed out this fact and have observed
that the speedupof the fast Fouriertransform 1s due to the factorization

\ of T into a small number of sparse matrices (61, [71, 18], [9].

The factorization of T 1s derived below and 1s shown to be that given

by the following theorem:

A THEOREM1. If T is a matrix of order N with complex exponential

| eletents T (j,k) = exp(ienjk/N) (j,k = 0,1,...,N-1) and if
\

N = N,N, coe Np then

T = Br (Py) (Oyy Tyoy Bg) oor (OTP)

where P, (I = 1,2,...,M+1) are permutation matrices,

~ D, (¢ = 1,2,...,M-1) are diagonal matrices of complex exponential

elements, and T, (a = 1,2,...,M) are block-diagonal matrices whose

Hocks have elements exp(i2nj k,/N,) (35k, = 0;1,...,N -1) i

- Proof. Following Gentleman and Sande [1] we use the notation

. e(6) for exp(i2n8) . Note that e(6, + 6) = e(6,)e(6,) and
e(Q) = 1 1f © 1s an integer.



,

Let the indices 1n (1.1) be expressed as j = Jq + Jq Ny and
x * EE *

- k =k; +k; Ny (35% = 0,1, 0005-1 Jok = 0,1,...,N;,-1); where
3

Ny = N, N; Coe Ny . Then one can write

* XK, * *

2. » + - —_ - - +

ky

where

- + . — . [] ’ + .

z,(3, + kN) e(3y/M YL e(J ky /Nx(k] + ky MN)
1

-

Pie. +X WN ) * *) h = D.T.P h DLet x (kg 1 Ny) = x(k + kN) Thenz, = DT Px, where D;

~~ 1s a diagonal matrix of complex exponentials, Tq 1s the block-diagonal

_ matrix with block elements e(J k /N;) (310%; = 0,1,.. 5 N -1), and
Py 1s the permutation matrix defined by x = Px .

* *

. Next let indices in (2.1) be expressed as Jq = Jo + Jo No

| and ky =k, + k; N, (350k, = 0,L,..0,N-1 ; Jork, = 0,1,...,N,-1),
*

where N, = No Ny, Coe Ny . Then (2.1) becomes

y(3y + dp Wy + Jolly) = ) els ko/Np)zp(dp + dil + kp NyNp)
Ko

where

- [] * _
zo(dp + §yNp + kp NN) =

—

e (ko (3 i N.)/N) D, e(3.k,/N )z. (J k. N k N/N,)- Sito + dof Rt = Aar-A As Hn BE“ r=
2

Nn



Oo

P - * . + xLet z, (ks, + 3185 + k, Ny I,,) = z, (J; k, Ny + k N/N,) . Then

- Zo = D, Ts Pr2., where D, and In satisfy the conditions of the

| theorem and P, 1s defined by z > Py2z, -
\-

Continuing 1n this manner one finally arrives at

“

yi td +... Jy Ny Ns Sy)

=).epiM)71 Guan * Syl* oe oo 3NpsBt iil 020A)
. AM

- where

yA D T P .
. ~M-1 = "M-1 "M-1 "M-1 EM-2

fi P P = P =P F h« We define Py and M1 by Zul TM Zyl and Y= Sng y » where

P : BE :+ACV | SEES Hi

VLCVICI arVIER AUPLCS VIS I PSL PEERY

and

pd I \ Pi, MEMEit ht E $i 0 loles HY IRR rOLELE Lo)

N- Then

C

>



V = Beer Tv Fu Zme1

- T P.)(D T P, .)z= Byrn (Tvfne! Pycz Ton Bue1/Zm-2 2

-_— e » bj

D.T.P. )x—- + Br (TB) Opry Tyen Buen) «+ + (PT PX

| = Tx

and the proof 1s complete.
“—

- At this point it 1s easy to count the number of operations

required by the fast Fourier transform. Whereas direct computation

— of vy = Tx requires N° complex multiplications and N(N-1) complex

additions, 1t 1s seen that computation of

YP (MB)Oy g Ty Br) Lo (PaTiPy)x requires
M

— N(M-1 + Lo N,) complex multiplications and NOL, (N,-1))
complex additions.

One further observation should be made before proceeding to the

error analysis. This regards a variation of the fast Fourier transform

known as the Sande-Tukey algorithm in difference to the Cooley-Tukey

. algorithm derived above (see [1]). In a matrix factorization corresponding

to the Sande-Tukey algorithm, the theorem still holds but with different

diagonal matrices D, (£ = 1,2,...,M=1) . Table 1 compares elements of

L the diagonal matrices for the two versions.
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L Table 1. FFT Diagonal Matrix Elements

- Cooley-Tukey

D, i e(kyj /NN,)

- Co | 0 4
Dy) (i, (3 3g) coe dy Te By), @ 26 NO)

Dy ‘ e (I, (3, = IoNy Ee @ @ Jy 1NS Ny _)/N)

\

Sande-Tukey

- D :elj (k tk, JN tet kN 0 3026 020ERG1 BL I ® «s
|
—

L Dy tena (y+ Boa)Nyon Mya Ny)

| Dr * 00aMae)
.

-

|

{

-

L

7
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5. Roundoff Errors in the Fast Fourier Transform. In this

| section we first explain the roundoff error models used and then state

| and prove a theorem bounding the RMS and maximum errors.
It 1s assumed that the floating-point accumulator of the computer

| on which the fast Fourier transform 1s implemented has at least one
digit of extra length (a guard digit). Then the floating-point sum

| and floating-point product of two floating-point numbers a and Db

| are given by

| (3.1) fl(a + b) = (a + b)(1 + ©¢)

| and

[ (3.2) fl(ab) = ab(1l + eg) ,

| where ¢ 1s a computer-dependent constant and © 1s a generic variable
usually different in value at each occurrence but always within the

| range —-1 to 1 . (The relative error constant, ee , 1s 0.587"F
for rounded operations or alt for chopped operations on a computer,

| where 8 1s the floating-point computing system base and t 1s the

L number of base-p digits in the mantissa of the floating-point number.
For example, ¢ = 1677 in short-precision floating-point operations on

| the IBM/360.)
To represent roundoff in computing sines and cosines we introduce

| an absolute error constant y > 0 such that

[ f1(sin(fl(a))) = sin(a) + 7 ©¢

i and



oo

|
LC

fl(cos(fl(a))) = cos(a) + yo0¢ ,

-
where © and & are above. This constant depends on how sines and

| cosines and their arguments are computed for a transformation of a

| given order,but it 1s independent of the input data.

1 f1(y) be the floating-point representation of y and let
2\ 11/2

| 2 lps = (( 2 |2(x)| 7) /N) / and || z}| & max |z(k)| . Then we
L have the following:
[

L THEOREM 2. If y = Tx 1s computed by a floating-point fast

i Fourler transform of order N = NoNyowoly then
£1 (vy) / | < /NK(N, 7)e + 0(c)a |If2(3) = gus / 11% gus

. and
{

3 b. [£1(9) - yil, / | x llgys <T KW, 7)e + 0(e%)

where

~

M

K(N,7) = 3° aN,) + (M-1) (3 + 27)
. £=1

| and

L

| Je (N, = 2)
“ .

L | 2 MN, (;, + y) otherwise’
1

L 9
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( Proof of a. First consider computation of the inner
- product v = Lg a(2)u(f) by the algorithm: begin v := a(l) ® u(l);

for £ := 2 step 1 until n do v i= v + a(l) ® u(l) end where it is
-

known that u 1s exactly representable in floating-point while a

| satisfies fl(a(f)) = a(l) + y oe (££ = 1,2,...,n) for y , © and ¢
-.

as above. By repeated application of (3.1) and (3.2),as in Wilkinson [10],

— one finds that

- n- n
f1(v) = (a(l) + yee)u(l)(1+ee) + (a(2)+y oe)u(2)(1+0e) +

- n-1 2+ (a(3)+y 6e)u(3)(1+ee) T+ . ..+a(n) (1+y 0 e)u(n)(1+0e)°

{

Expanding factors (1+ oc) and regrouping terms,this becomes

L

f1(v) = v+ e[(a(l)no+ye)u(l)+ (a(2)ne+y0)u(2) +

— 2
+ (a(3)(n-1)0+70)u(3)+ . ..+ (a(n)20+y0)u(n)]+0(e”) ,

2\ 2 :
{ where O0(¢) includes all terms of order ¢ . Thus,it follows that

— floating-point computation of the matrix-vector product v = Au ,

where T1(A(j,2)) = A(3,2)+y0e¢e and fl(u(f)) = u(t) , is given
—

exactly by

-

-

10
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(3.3)

£1(v(1)) v(1) [21 1)n0070 A(1,2)n6+y6 . ..A(1l,n)20+y0|{u(l) 0(e°)
— f1(v(2)) v(2) A(2,1)n6+y0 A(2,2)n0+y6 . ..A(2, n)26+y0 ||u(2) 0(e°)

| . = + € . . + .
— . . .

{

| f1(v(n)) v(n) A(n,1)ne+y0 A(n,2)ne+y6 . ..A(n,n)26+y8{|u(n) 0 (9)
| -_ - -

§ Next consider computation of (1.1) without using the FFT. We

. write this complex computation as 1ts real equivalent:
- | _ ‘ -

L IR ¢ I S *R
Sp I

( J
C J1 . | ¢ XI

_ -

3 where C and S are real matrices with elements C(j,k) = cos(2x(j-1)(k-1)/N)

| and S8(j,k) = sin(2n(j-1)(kx-1)/N) (j,k = 1,2,...,N), and Xo 1 Xo
- NE V1 are the real and imaginary parts of x and y . Note that“R , =X

1 the RMS value of a complex vector is /2 times as large as the RMS
value of its real equivalent and that the RMS value of any vector 1s

1

{ a multiple of the Euclidean norm and therefore 1s consistent with the

same matrix norms as the Euclidean norm. [I.e., If v = Au , then
| ~
—

Vong S | A ||ugyg » Where | 2] 1s the Frobenius norm (the square root

i of the sum of the squared-magnitudes of all elements) or the spectral
¥*

norm (the square root of the largest eigenvalue of A A), See

L Wilkinson [10] or Isaacson and Keller [11l].] Therefore, by (3.3) and

the properties of norms,

| 11
-
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L 2
(3.4) le1(y) - yl < elm] |||ys + OCE%)

( where M is the matrix of Figure 1. Using the fact that
2L 1c (3,k) © + 18(3,x) |“ = 1, the Frobenius norm of M is bounded by

. 2 2 2 2 2.1/2
(3.5) |u| < (Em3+ (@3+ (@-1)2+... 437 4 22132 aw

_
< 2N(N+7)

L
when N 1s greater than 2 .

L Finally we analyze the fast Fourier transform. Let Z = DT, Px.
| Since the permutation matrix simply reorders vector values, 1t introduces

L no roundoff error. Assume fl(x) = x . Then

(3.6) f1(z,) - 2, = £1(D, £1(T, P, x)) - DTP;&

£1(D, £1(v)) D, £1(v) D.[£1(T} u) T, ul,

where u = P;x and v = T,u . To bound £1(T, u) -T;u, recall

. that i 1s a block-diagonal matrix whose blocks are Fourier transform
matrices of order N,. Let u, , Vv, (2 = 1,2,...,N/N,) be

. N, -vectors such that

L 21 1

u Vv
2L u = ~2 and v= |" .

| Vv- IN/N YN/NIL 1

( i _

| 12



C(1,1)eNe +76 C(1,2)2N0+ 76 . ..C(1,N)(N+1)e+ 70 [-S(1,1)N6 +76... -5(1,N)26+ 76

i C(2,1)2NQ+ 7® . -5(2,N)20+ 70

C(N,1)2N0+ yo . 3 | -S(N,N)20+ 79

S(1,1)2N6 + 70 . : RR C(1,N)20+ 76
S(2,1)2N6+ 70 : . | . .

| 3(N,1)2Ne+ 76 | Cc (N,N)26 +70

Figure 1. Direct Transformation Error Matrix

}
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2

| Then by (3.4) and (3.5), || £1( Vo) - vy las <E 2N, (Ny +7), fle + OCE )

= (£ = 1,2,...,N/N,) when N, is greater than 2 . If N, = 2, this
inequality still holds. In fact, we can do much better. Figures 2

and 5 show the block-diagonal factor matrices for the cases when N

- has factors 2 or4. By inspection, one can see that in these cases

no sines and cosines are computed, no multiplications are required,

= and there are only N, elements to be summed as compared with aN,-1

| in other cases. Thus,one can easily show that

2

5 IE1(v,) = vy lye € Np alu, fle + O(e5) (2 = 1,2,...,N/N)) »

where

Ve (wv, = 2)

aN) =4 5 (Wy = 4)

— 2/N, (N +7) otherwise

— It immediately follows that

oe 2
3.7) Euru) = Tu {lg < & VI2M)Idlgys + 0(e%)

= for aN, ) as above.

In the same way we obtain a bound on the error in multiplication

by the complex-diagonal matrix Dy . The bound 1s given by

(3.8)  ||t1(Dy f1(¥)) - Dy fL(V)|lgye < E(2/2+ 27) |f1(v) lye + O(e7)

1h



1 1

1-1

11

1-1

0 11
| 1-1

Figure 2. The Block-Diagonal Factor Matrix with 2nd-Order Blocks.

 — 1 1 1 1

1 i -1 -i 0a. 1-1 1 -1
1 -i -1 1

FT 1 1 1 1

1 i -1 -i

| — 1 -1 1 -1

| 1 -i -1 i

| -

| Figure 3. The Block-Diagonal Factor Matrix with L-th Order Blocks.
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i From (3.7) it follows that | f1(v Nuss = Iv gus * OC€) . Furthermore,

the spectral norms of D, , T;, and Py are 1, VN, and 1,
! * * _

| respectively, since DD, =1, TT = N,1 and PAP. = 1 , where

3 I is the N by N identity matrix. So from (3.6),(3.7) and (3.8)

we get

"

112021) = 2 || pug < © VW) (@(W)) 4 3+ 20)|| x [|e + O(7)

where a(N,) is given above.

| The next step 1s to let Z, = DIP, 2, Then

| £1(z,) - 2, = £1(D,T,P, £1(z,) ) - DTP, £1(z,) + DT Pl £1(z,) - z, |

and

£1(2.) =z < e(N.N 11/2 (a ) +a) + 2(3+27))|x llgyg - 0(e”)| £125) = 25|l ppg < #1 1 2 ~

| The proof of part a. is completed by continuing in this manner and

using Theorem 1.

Proof of b. The proof is extremely simple. Let e(j) = fl(y(j)) -y(3) .

Then

| N-1
i 12 2

max [e(3)|” < Lo le”,
i J

| from which it follows that

16
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max |e(] < | | .) | (3)] -_ /N ells
. J

Substituting the bound of part a for [le Il gps completes the proof.
It 1s not necessary to obtain a bound on the maximum error by

— using part a. Instead one can use matrix infinity norms in the same

fashion that matrix spectral norms were used above. But the infinity

= norms of the factor matrices, T, , are proportional-to N, rather

than /N, , and so a higher bound results.
|S—

—

—

—

—

—
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4. Roundoff Errors in Multidimensional Transformations. The

efficiency of the fast Fourier transform has made it economically

| feasible to compute higher dimensional Fourier transformations in

applications such as picture processing and x-ray diffraction studies.

_ In this section,bounds on roundoff errors in multidimensional FFTs

are derived.

— The problem is to bound roundoff errors in computing

—

(4.1) Y(t,,t,; oe st) =

| = ). ) RE ) e(s t,/N + S,5tn/Ny + eet sb /NIX(S 58,5 000,8 )
- S S S

1 2 m

|

(s,5t, = Oy Ly eee, N,=13 1 = 1,25 ¢00,m) .

Let

—

E(tystpseeest) = TLY(ttp e0est )) = Y(E tn, 00st)
—

(/: 1/2i | 5

_ [F1(Y) -Ylgye = (LL «or 1 [EG een) ) [omen 7
t. © t
1 2 m

= and

“ [£1(Y) -Y] py = . max . |E(tystpseeest
1’7°2° °° ™m

= Then we have:

—

18



THEOREM 3. The RMS and maximum error due to roundoff in a

multidimensional fast Fourier transform are bounded by

a. [f1(y) -Y1_./ < €(N,N,...N y1/2 5 K(N 7) + 0(e°)RMS Arms — 12 m I=1 £’°

and

< € NN,..N J 2
b.  [f1(Y) -Y ns! puis < pees nly K(N,,7) +0(e7),

—

where K(N,,7) { i 1,2, WO® is the error constant given in
—

Theorem 2.

—

Proof. Let (4.1) be rewritten as the system of equations

—

7 -

Zp 1(8pseeess; stent) ). e(s,t,/W)Z)(85eves8)t, 1500est )
— {

| (£ = 1,2, ¢.0,m)

with Z = Y and 2 = X, and describe this system of equations by

the notation

Z,.1 = 1,2, (£ = 1,2,¢0a,m) .

| Then by adding and subtracting identical terms to the equation
-

f1(Y) -Y = £1(T, £1(T,. .. f1(T, X)...)) -TyTy . TX

19



one gets

| £1(Y) -y = £1(T, £1(2,)) -T, £1(Z,)

+ 7, f(T, £1(2,)) -T,T, £1(Z,)

B + IT, £1(T, £1(25)) - TTT, £1(25)
- + eo.

= + T Tyee To FLTX)-TTo... TX.

N Now take the RMS value of both sides and use the Cauchy-Schwartz
— inequality to get

= (4.2) [f1(Y) -Yloys S FLT, £1(2,)) - Ty £1(Z) lpg

— + [1,0 £1(T, £1(2,)) - T, £125) 1 Iya

_ + LL... +

_ : [T Ty... T 4 [F(T X) -T X1loyg

— Using Theorem 2 it 1s not difficult to prove that

~ (4.3) [£1(Z,1) -2Z,Joye(2, Joye S E/N, KN) +0(e)

- Nor is it difficult to prove

(ed) [Zp alms = VM gla

|



|

Therefore, by (4.2),(4.3) and (4.4)

—

[£1(Y) -Y] < ef (NY 2 kw. 7) [£1(2.)]RMS = 1 177 1’ ‘RMS

(2 k(n)(LE) 1, +1 2 J . 9s ©.
—

1/2 >
+ (NqNye. oN) KM 7) LEX) I 3+ 0%)

_ But by (k.3)  [f1(2,) lps =[2, lps + 0(8) (2 = 1,2,...,m-1), and
by (4.4) [2] (N,N. 0 2 )Y2 [x] Assuming thEAR TS RayTE-RE = Mg + SSsuming that

—

[£1(X) Igy - [X]ous , or at least [£1(X) 1c = [X Ips + Oe) , the
proof of part a. 1s complete.

Part b 1s proved by arguments identical to those used in the

— proof of part b of Theorem 2.

—

21



3 De Experimental Results. Roundoff error bounds are always
= pessimistic —-- sometimes so much so that they give no indication of

| the true error, To find out how pessimistic the error bounds of. Section 3
| B are, the following experiment was performed. Using two different |
ne FORTRAN programs, one by N. M. Brenner [12] and the other by

| R. C. Singleton [13], a mixed radix fast Fourier transform of Gaussian
| ~ data with mean 0 and variance 2 was computed in both short and long
| precisionon the Stanford IBM360/67. The actual error was computed
| - as the difference between the short precision results and the truncated

| _ long precision results. The constant y used in determining the error
| bound was computed by taking the difference between short precision and

| — truncated long precision numbers representing sines and cosines. The
results of this experiment are given in Table 2. Note that the RMS

- error bound 1s roughly 20 times larger than the RMS error and the MAX

| _ error bound 1s roughly 2 orders of magnitude larger than the MAX error.
| Also note the relative size of the error bounds with respect to values
— of the transformed data. Even though the bounds are pessimistic they

might be used as a threshold for deciding what confidence to place in

: - transformed data of relatively small magnitude.

22



( r - ( rf ( ( ( rr ( (re

Teble 2

Comparison of Actual Errors with Error Bounds

Values of Transformed Errors in Transformed A Priori Bounds on

Order of Transform. Data Data Errors
and Factorization MIN RMS MAX y RMS MAX RMS MAX

128 = 4 LL 4 2 0.9543 16.54 36.13 3.1 0.000032 0.000082 0.000698 0.007897

128 = 4 2 2 2 Lx 0.9543 16.54 36.13 1.7 0.000026 0.000064 00 IED 0.007138

256 = 4 4 4 4  % 1.4436 21.78 53.48 3.1 0.000047 0.000153 0.000992 0.015875

256 = 4 4 4h Lh xx 1.4436 21.78 53.48 h.7 0.000070 0.000216 0.001187 0.018992

0 512 = 4 4 4 4 2% 1.4158 31.20 81.04 h.2 0.000101 0.000306 0.001994 0.045121
512 = 4 4 2 Lb Lx 1.4158 31.20 81.04 4.6 0.000106 0.000307 0.002083  0.0O471hl

1024 = 4 4 4h 4 hx 2.2109 44.38 130.41 9.3 0.000202 0.000648 0.004720 0.151041

1024 = 4 4 4 oh Lx 2.2110  Lh,38 130.41 8.9 0.000291 0.001163 0.004572 0.146301

100 = 4 5 5 * 1.5535 14.98 29.17 5.2 0.000129 0.000491 0.001755 0.017554

100 = 5 4 5 He 1.5534 14,08 29,17 TT 0.000043 0.000122 0.002218 0.022176

200 = 4 2 5 5 * 1.3670 19.50 45.60 6.8 0.000175 0.000560 0.003014 0.042628

200 = 5 2 2 2 5%% 1.3670 19.50 45.60 3h 0.000046 0.000109 0.002223 0.031432

300=4 3 5 5 *% 0.6539 23,64 5h 42 8.1 0.000239 0.000663 0.004905 0.084952

300 = 5 2 3 2 5%% 0.6539 23.64 54 LD 7.0 0.000098 0.000301 0.004802 0.083172

boo = 4 4 5 5 x 2.8367 27.50 66,63 7.1 0.000243 0.000743 0.0044L0 0.088793

400 =k 5 5 L  %x 2.8368 27.50 66.63 7.7 0.000120 0.000430 0.004685 0.093692
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] 6. Conclusion. In the preceding sections roundoff errors in

_ the floating-point fast Fourier transform have been analyzed. Bounds

on RMS and maximum errors 1n transformed data were determined for both

= single and multidimensional transforms, and in the case of a one-dimensional

| transform results of a computational experiment show how close these

” bounds are to the actual roundoff errors. The bounds include the effect

- of roundoff 1n computing sines and cosines and, 1f contributions to the

&tual errors are in the same proportion as to the error bounds, a close

= look at the error bounds shows that the effect of roundoff in computing

sines and cosines 1s not negligible but in fact contributes the same

order of magnitude to the total error as the roundoff in additions and

o multiplications.

S50 far nothing has been said about floating-point representation

— of input data. It was assumed that these numbers were exactly

representable in machine precision. If not, an additional term must

- be added to the roundoff error to account for rounding input data.

. Suppose fl(x) = x+6 . Then the additional term is

~ Irellys < vi lolly

On the-other hand, suppose that the input data 1s known to a number

= of significant digits fewer than that of machine precision. For example,

_ the data might have come from an analog device of limited accuracy.

Then the bounds on roundoff error can be used in reverse as suggested by

— the following: Let the roundoff error be given exactly by the complex

N-vector e . This vector can be considered the exact solution of the

— 5

-



equation e = T§ for some fictional & bounded by

| Io's = lel /

| < e Km) xl + oe)

1 and

loll, emu Nlxlyg cd

If it should turn out that e /NK(N,7)| x [I is smaller than the least
significant digit of the input data, the roundoff error 1s negligible.
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