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ROUNDOFF ERROR ANALYSIS
OF THE

FAST FOURIER TRANSFORM

Abstract. This paper presents an analysis of roundoff errors occurring
in the floating-point computation of the fast Fourier transform. Upper
bounds are derived for the ratios of the root-mean-square (RMS) and
maximum roundoff errors in the output data to the EMS value of the

input data for both single and multidimensional transformations. These

bounds are compared experimentally with actual roundoff errors.
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1. Introduction. The fast Fourier transform (FFT) is a very

efficient algorithm for computing

N-1
{ogik .
11 y@) = ¥ Y ) (3 = 0,1,...,N-1) ,
k=0
where {x(k)} is a given set of complex numbers and i = /-1 . Let

y' = (y(0),...,y(N-1)) and f1l(y) be the floating-point representation

of vy . In this paper we derive bounds for

o1 (e) - yllpye / 1l 2nd 1260) - ol L1 Dy

where

12ty (£ 1o 12) )77 o 11, - nax o0

These bounds include the effect of roundoff in computing sines and
cosines and are obtained for both single and multidimensional transformations.
Special consideration is given to cases when N is a multiple of 2 or k4 .
The subject of roundoff error in the FFT has been studied and
reported by others but with less generality or using a different approach.
By comparing upper bounds, Gentleman and Sande [1] show that accumulated
floating-point roundoff error is significantly less when one uses the
FFT than when one computes (1.1) directly. In [2] Welch derives approximate
upper and lower bounds on the RMS error in a fixed-point power-of-two
algorithm. Weinstein [3] uses a statistical model for floating-point
roundoff errors to predict the output-noise variance. Liu and Kaneko [4]
also use a statistical approach to predict the roundoff error in a
floating-point transformation.
In the following sections, (1) the FFT algorithm is analyzed from the
point of view of matrix factorization, (2) error bounds are derived, and
(3) experimental comparisons of actual errors with error bounds are presented.
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2. The Fast Fourier Transform. In 1965 Cooley and Tukey [5]

introduced the algorithm now known as the fast Fourier transform.

In this algorithm for computing (1.1) the number of operations required
is proportionalto N log N rather than N2 . A close look at (1.1)
shows that it is precisely the matrix-vector equation y = Tx with
the Nth- order matrix T defined by T(j,k) = eigﬂjk/N

(j,k = 0,1,...,N-1) . Others have pointed out this fact and have observed
that the speedup of the fast Fouriertransform is due to the factorization
of T into a small number of sparse matrices [6], [7], [8], [9].

The factorization of T is derived below and is shown to be that given

by the following theorem:

THEOREM 1. If T is a matrix of order N with complex exponential
elerents T(j, k) = exp(i2njk/N) (j,k = 0,1,...,N-1) and if

N = N1N2 e NM’ then

T = Py (TyP) Oy Ty Bey) o0 (09T1P)

where Pz (I = 1,2,...,M*1) are permutation matrices,
D!z (¢ = 1,2,...,M-1) are diagonal matrices of complex exponential
elements, and Tl (a = 1,25...,M) are block-diagonal matrices whose

Hocks have elements exp(iz‘rtjlkz/Nl) (,j‘!,k‘c = O,l,...,Nl-l) .

Proof. Following Gentleman and Sande [1] we use the notation
e(0) for exp(i2n®) . Note that g(Ol+ 92) = g(Ol)g(Og) and

e(Q) =1 if @ is an integer.
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Let the indices in (1.1) be expressed as j = jl + jl Nl and

* * . K% *
k =k, +k, N (Jl,kl = 0,1, 000N -1 ok = o,l,...,Nl-:L), where

1 171 1

Nl = N2N3 .o NM . Then one can write

K% %

* *

Ky

where

. * A . * *

1

P + % N * * h
Let x ( l) = x(kl + k, N)) . Then z

1 1 1

is a diagonal matrix of complex exponentials, T

1

DlTlPlf’ where Dl

is the block-diagonal

matrix with block elements g(jlkl/Nl) (jl,kl = 0,1,.. .,Nl—l), and

Pl is the permutation matrix defined by xP =P

Next let indices in (2.1) be expressed as

:L)f .

l* 3 + .*
Jy =3 * 3o Ny

* * * . K * *
and k, =k, + k; N, (32,k2 = 0,1,..0,N5-1 5 Jorky = O,l,...,N2-l),

1

*
where 1\I2 = NjNh A NM . Then (2.1) becomes

*

. . N *N N Z V¥ *, % . + 9N+ )
v(3y + 3 Ny + 3N N,) = ), e(dp kp/Np)zp(d, *+ 310, *+ kN N,)

*

ko

where

. . * —
25(Jp + dqlNp + KN Np) =

e(y(3q + 3pN)/N) kZ e(3kp/Np)ay (3 + Ky Ny + KN/N,).
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l(,]l *ky Ny o+ kzN/Ng) . Then

52 = D2 TQPE‘fl’ where D2 and '_[‘2 satisfy the conditions of the

J-D - *
Let zl(k2 + 3oy + kleNe) =z

theorem and P2 is defined by éi = Pyz, .

Continuing in this manner one finally arrives at

y(jl t jQNl oo = JMNlNE . = :NM_l)

._,
W+
=
=4
5
=
no

= %E(ijM/NM)ZM-l(jM-l+ R VLI P CEERS

where'

2l = Pva Twer B

M-1 EM-2
- P _p - P P owh
We define By and By, by Zy 1 = By 2Zy; and ¥ = &gy ¥ » where

2 gy gty ) SR

. . . .
Zy_n (e - SyepMyoy o e o 3 plge e My g H iGN NSy )

and
LR = iy 0 00 HE (RIENY (] 67”3%32 o)

Then

o WD)
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Y = Py Ty By Zva1

Pyer (OB Cyoy Tyo1 Pyo1)%yz 2

: PM+1(TMPM)(DM-1 TM-l PM-l)° : °(D1T1Pl)§ ?

= Tx

-and the proof is complete.

At this point it is easy to count the number of operations
required by the fast Fourier transform. Whereas direct computation
of y = Tx requires N2 complex multiplications and N(N-1) complex

additions, 1t is seen that computation of

Y B (TR Py 1 Ty Py1) . .. (D,T,P,)x requires

N(M-1 + zlfd Nz) complex multiplications and N(Z%___l (Nl'l))
complex additions.

One further observation should be made before proceeding to the
error analysis. This regards a variation of the fast Fourier transform
known as the Sande-Tukey algorithm in difference to the Cooley-Tukey
algorithm derived above (see [1]). In a matrix factorization corresponding
to the Sande-Tukey algorithm, the theorem still holds but with different
diagonal matrices D, (L = 1,2,...,M-1) . Table 1 compares elements of

the diagonal matrices for the two versions.
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Table 1. FFT Diagonal Matrix Elements

Cooley-Tukey

¢ (kd oMM, )

g(kM_l(jl gy e Sy oo .NM._B) /NlNQ., [ 5% ‘\ED o

e(ly(3y 3Ny oo vy NN, Ny, )/ 1)

Sande-~-Tukey

g(jl(kMﬂ(M-lNMh'ﬁ kENﬁN’-}. . @5%‘\\#@@5%

Oy Oy + Bt/ M2 Mao1 N

e (31 Y/ My 1™



3. Roundoff Errors in the Fast Fourier Transform. In this

section we first explain the roundoff error models used and then state
and prove a theorem bounding the RMS and maximum errors.

It is assumed that the floating-point accumulator of the computer
on which the fast Fourier transform is implemented has at least one
digit of extra length (a guard digit). Then the floating—-point sum
and floating-point product of two floating-point numbers a and b

are given by

(3.1) fl(a + b) = (a + b)(1 + o¢)
and
(3.2) fl(ab) = ab(1l + e¢) ,

where ¢ 1is a computer-dependent constant and © is a generic variable
usually different in value at each occurrence but always within the

range -1 to 1 . (The relative error constant, e , is O.SBl't

for rounded operations or B -t for chopped operations on a computer,
where B 1is the floating-point computing system base and t is the
number of base-p digits in the mantissa of the floating-point number.
For example, ¢ = 16‘5 in short-precision floating-point operations on
the IBM/360.)

To represent roundoff in computing sines and cosines we introduce

an absolute error constant y > 0 such that
fl(sin(fl(a))) = sin(a) + 7 ©¢

and
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f1(cos(fl(a))) = cos(a) + y0¢ ,

where © and & are above. This constant depends on how sines and

cosines and their arguments are computed for a transformation of a
given order,but it is independent of the input data.
Let x' = (x(0),...,x(N-1)) , y' = (y(0)s+e.,y(N-1)) and

f1(y) be the floating-point representation of y and let
2 g = (¢ }; 1209 1/MY2 ana | o] max |z(x)] . Toen e

have the following:

THEOREM 2. If y = Tx is computed by a floating-point fast

~

Fourier transform of order N = N NE'”N

1 Y then

s L) - Ve /% gy < VN KO )€ + O(e%)

and
o, |1 -yl /1| % gy <N KW2)e 4 0(eB)

where

K(N,7) = ZT  ally) + (1) (5 + 27)
and

/2 (N, = 2)
am,) =€ 5 (W, = 4) :
1 2 /Nl (Nl + 7) otherwise'



Proof of a. First consider computation of the inner
product v = Z:?zl a(f)u(f) by the algorithm: begin v := a(l) ® u(1);

for £ := 2 step 1 until n do v := v + a(f) ® u(f) end where it is

known that u is exactly representable in floating-point while a

~

satisfies fl(a(f)) = a(l) + y e (£ = 1,2,...,n) for y , © and €
as above. By repeated application of (3.1) and (3.2),as in Wilkinson [10],
one finds that

f1(v) = (a(1) + 70e)u(1)(1+0e)™+ (a(2) +y o e)u(2)(1+0e)" +

-1
v (a(3)+y ee)u3)(x+ee)™ e | | ta(n) (1+y 0 e)u(n)(1+0e)°
Expanding factors (l*—@e)l and regrouping terms,this becomes

f1(v) = v+ e[ (a(1)no+y0)u(l) + (a(2)ne+ye)u(2) +
2
+ (a(3)(n-1)0+70)u(3)+ . ..+ (a(n)20+y0)u(n)]+0(e”) ,
2y . 2 .
where O(e ) includes all terms of order € . Thus,it follows that
floating-point computation of the matrix-vector product v = Au ,

where  f1(A(j,2)) = A(3,2)+y0e and fl{u(f)) = u(f) , is given

exactly by

10
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(3.3)

r‘fl(v(l))- -v(l)— | :\.(l,l)n9+70 A(1,2)n6+y0 . ..A(l,n)29+79“ :1(1; E)(ez)~

£1(v(2)) v(2) A(2,1)ne+70 A(2,2)n6+y6 . ..A(2, n)26+y |[u(2) o(ee)
: = te S

f1l(v(n)) v(n)J A(n,1)n6+y0 A(n,2)n6+y6 . ..A(n,n)20+y6{|u(n) o(ee)

- - <4 L Ju J L J

Next consider computation of (1.1) without using the FFT. Ve

write this complex computation as its real equivalent:

- - — | ) ‘ ~ -
XB ¢ i S fR
S I D ’
}
I1 S ¢ o
| - . ' o -

where C and S are real matrices with elements C(j,k) = cos(2x(j-1)(k-1)/N)
and 8(j,k) = sin(2n(j-1)(k-1)/N) (j,k = 1,2,...,N), and X o1 X1

IR ) yp are the real and imaginary parts of x and y . Note that"
the RMS value of a complex vector is /2 times as large as the RMS
value of its real equivalent and that the RMS value of any vector is

a multiple of the Euclidean norm and therefore is consistent with the
same matrix norms as the Euclidean norm. [I.e., If v = Au , then

~

VRMSS II AHuRMs,where ”A” is the Frobenius norm (the square root

of the sum of the squared-magnitudes of all elements) or the spectral
*

norm (the square root of the largest eigenvalue of A A), See

Wilkinson [10] or Isaacson and Keller [11].] Therefore, by (3.3) and

the properties of norms,

11
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(3.6) f1(z) - 2z,

(3.4) le1(y) - las < €Ml Ixllgg + 0B

where M is the matrix of Figure 1. Using the fact that

lc(3,k) |2 + 18(3,k) |2 =1 , the Frobenius norm of M is bounded by

(3.5) )l < N[ (2m)2+ (em2+ (2M-1)2+...+3° 4 22]}1/2 . 2Ny

< 2N(N+7y)

when N is greater than 2
Finally we analyze the fast Fourier transform. Let z, = DlTlPlx.
Since the permutation matrix simply reorders vector values, it introduces

no roundoff error. Assume fl(x) = x . Then

f:L(Dl fl(TlPlf)) - D.T.P. x

11712
= - + -
fl(Dl f1(v)) D, fl(z) Dl[fl(TlE) TlE],
where u = Plx and v = Tlu . To bound f1(T. u) -Tlu , recall
that Tl is a block-diagonal matrix whose blocks are Fourier transform
matrices of order N, . Let u, , Vv, (£ = 1,2,...,N/N,) be

N, -vectors such that

ES

fou ~1
u v
2
u = ~2 and v =

UN/N N/N,

12



[C(1,1)2N0 + 76 C(1,2)2N0 + 70

c(2,1)eNe + 7o .
C(N,1)2Ne + 76 .
S(1,1)2Ne + 70 .
s(2,1)2Ne + 76

S(N,1)2Ne + 76 .

Figure 1.

13

Direct Transformation Error Matrix

.+« C(L,N)(N+1)0+ 76 (-S(1,1)N0+76 ... -S(1,N)20+ 76

-5(2,N)26+ 70

-S(N,N)20+ 76

— — wme—— —

C(1,N)20+ 76

c (N,N)20 +70
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Then by (3.4) and (3.5), I fl(yt) - l’zHRMS <e 2N1(Nl+7)”B£”RMS+ o(ez)

(2 = 1,2,...,N/Nl) when N. is greater than 2 . If N, = 2 , this

1 1

inequality still holds. 1In fact, we can do much better. Figures 2
and 3 show the block-diagonal factor matrices for the cases when N
has factors 2 or 4 By inspection, one can see that in these cases
no sines and cosines are computed, no multiplications are required,
and there are only Nl elements to be summed as compared with 2Nz-l

in other cases. Thus,one can easily show that

L) - Vol < & VN o, e + OCE5) (2 = L2, /W)
where
-
/2 (Nl = 2)
o) = ¢ 5 (N, = 4)
\EJN]_ (Nl+7) otherwise

It immediately follows that

1) lenmy ) - 1y g < /N 00|y + 0(%)

for a(Nl) as above.
In the same way we obtain a bound on the error in multiplication

by the complex-diagonal matrix Dl . The bound is given by

(3.8)  ||f1(0, £1(v)) - D) F1(W|lgys < £(2V2+27) (v )lgs + O(e)

1k



Figure 2.

The Block-Diagonal Factor Matrix with 2nd-Order Blocks.

1 1 1
i -1 -1
-1 1 -1
-i -1 i

Figure 3.

The Block-Diagonal Factor Matrix with UL-th Order Blocks.
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From (3.7) it follows that |fl(v )HRMS = |lv HRMS+-O(€) Furthermore,
the spectral norms of Dl , Tl, and Pl are 1 , /Nl’ and 1,

* * —
respectively, since DlDl =1, TlTl = NlI and P*P, = I ,where

I is the N by N identity matrix. So from (3.6),(3.7) and (3.8)

we get

I fl(f]_) 'leRMS <e/W (aN)) 4 3+29)| % |lps + o(e?)

where a(Nl) is given above.

The next step is to let 2, = DETEPEEI' Then

£1(z,) - 2, = £1(D T P, fl(fl) ) - DyTPy fl(fl) + DTl £1(z2,) - 24 ]

and

| £1(25) - 25/|pys < s(N1N2>1/2<a<Nl) ra(W,)+ 23+ 27))l 2 llgys - o(%) .

The proof of part a. is completed by continuing in this manner and

using Theorem 1.

Proof of b. The proof is extremely simple. Let e(j) = £f1l(y(3))

Then

N-1
12 2
max le(3)] < E:j=0 le(3)] ,
d

from which it follows that

16



mex |e(j)| < /N |

e
y Sllrus

Substituting the bound of part a for "?"RMS completes the proof.

It is not necessary to obtain a bound on the maximum error by
using part a. Instead one can use matrix infinity norms in the same
fashion that matrix spectral norms were used above. But the infinity
norms of the factor matrices, Tl , are proportional-to NJZ rather
than /Nl , and so a higher bound results.

17



4, Roundoff Errors in Multidimensional Transformations. The

efficiency of the fast Fourier transform has made it economically
feasible to compute higher dimensional Fourier transformations in
applications such as picture processing and x-ray diffraction studies.
In this section,bounds on roundoff errors in multidimensional FFTs
are derived.

The problem is to bound roundoff errors in computing

(1) Y(bpptp . - st ) =

=y y ... SZ g(sltl/Nl+ Sobo/ N+ ...+smtm/Nm)X(sl,sz,...,sm)
1 2 m

(sl)tl = O,l,ooo,Nl-l; l = l,2,o-o,m) .

Let
E(tl’tz)ooa,tm) = fl(Y(tl,te’cuo,tm)) - Y(tl,tg,oon,tm) E]
(7. 1/2
i 2
[FL(0) - ¥l =4[ L L oo X [BCptg et ) /o, V7
t, t t
1 2 m
and
[fl(Y) -Y]M = max IE(tl,tz, co-,tm)l .

tl,tz’ .. o,tm

Then we have:

18



THEOREM 3. The RMS and maximum error due to roundoff in a

multidimensional fast Fourier transform are bounded by

IN

a. [f1(Y) -Y]RMS/XRMS E(NlNg. . .Nm)l/2 Z’;:l K(Nl,y) + o(ee)

and
< ENN,..N S" 2
b. [fl(Y) -Y]MA_X/XRMS - 172" :mzl.—-l K(N2,7) +O<€ );
where K(NI,V) 1 H 12 0 @O® is the error constant given in
Theorem 2.

Proof. Let (4.1) be rewritten as the system of equations

Zz_l(sl,...,sz_l,‘tz,...,tm) = ; g(sltl/l\ll)zz(sl,.'.,sk,'t“l,...,tm)

with ZO = Y and Zm = X, and describe this system of equations by

the notation

Z, 1 =12, (2 =2,2,...,m) .

Then by adding and subtracting identical terms to the equation

f1(Y) -y = f:L(Tl fl(TQ... fl(TmX)...)) -7y Ty . e T X

19



one gets
f1(Y) -y = fJ.(Tl f‘l(Zl)) -1, fl(Zl)
+ Ty fl(T2 fl(ZE)) -T,T, fl(Zg)
* 1,7, fl(T fl(ZB)) - T T, T fl(ZB)

+ LRI

+ TTpeeeT fl(TmX-) =TTy T X

Now take the RMS value of both sides and use the Cauchy-Schwartz

inequality to get

(4.2) [f1(Y) -Y) < [fl(Tl fl(Zl)) - T, fl(Zl) lems

RMS

+ [Tl[ fl(Te £1(z,)) - T, £1(2

») 2) 1 g

+ [TlTE...T 1 [fl(T X) -T x]]RMS

Using Theorem 2 it is not difficult to prove that
2
- +
(4.3) (12, _1) -2, 1 dpue/ 12, lpye < €V, K(W,,7) +0(%)
Nor is it difficult to prove

(1) 2y dms = Mo Pylpg

20
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Therefore, by (%.2),(4.3) and (4.4)

1/2

[£1(Y) -Ylpyg < ef ()™ T KN ,7) [£1(21) 1

o )R KB L, 4+ ..

+ (NN, .Nm)l/2 K(Nm,7)[fl(X)]RMS}+O(€2)

But by (L.3) (£1(Z2 ) Jgys = 2, lpys + 0(8) (4 = 1,2,...,m-1), and

by (34) (2l (N, Nppoc@ 2 )72 (X] . Assuning that

[fl(X)]RMS = [X]RMS , or at least [fl(X)]RMS = [X] .o+ 0(g) , the

RMS
proof of part a. is complete.

Part b is proved by arguments identical to those used in the

proof of part b of Theorem 2.

21



5. Experimental Results. Roundoff error bounds are always

pessimistic -- sometimes so much so that they give no indication of

the true error, To find out how pessimistic the error bounds of Section 3

are, the following experiment was performed. Using two different

FORTRAN programs, one by N. M. Brenner [12] and the other by

R. C. Singleton [13], a mixed radix fast Fourier transform of Gaussian

- data with mean 0 and variance 2 was computed in both short and long
precision on the Stanford IEM560/6T. The actual error was computed
as the difference between the short precision results and the truncated
long precision results. The constant y used in determining the error
bound was computed by taking the difference between short precision and

~ truncated long precision numbers representing sines and cosines. The
results of this experiment are given in Table 2. ©Note that the RMS
error bound is roughly 20 times larger than the RMS error and the MAX
error bound is roughly 2 orders of magnitude larger than the MAX error.
Also note the relative size of the error bounds with respect to values

— of the transformed data. Even though the bounds are pessimistic they

might be used as a threshold for deciding what confidence to place in

transformed data of relatively small magnitude.

22
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Order of Transform.
and Factorization

128
128

256
256

512
512

1024
102k

100
100

200
200

300
300

400
400

L
L

L L 2
2 2 2

LoLoh
Loh ok

*

Ly

*

O%
L%

L%

Lyx%

*

5-)(—)6

59H(-

*

Comparison of Actual Errors with Error Bounds -

Values of Transformed

MIN

0.9543
0.9543

1.4436
1.4436

1.4158

1.4158

2.2109
2.2110

1.5535
1.553k

1.3670
1.3670

0.6539
0.65%9

2.8367
2.8368

Data
RMS

16.54
16.54

21.78
21.78

31.20
31.20

L. 38
Lk, 38

14.98
14,98

19.50
19.50

23,64
23 .64

27.50
27.50

MAX
36.13
36.13

53.48
5%.48

81.0k
81.0k

130.41
130.41

29.17
29.17

45,60
45.60

54 42
54 42

66.6%
66.63

501
1.7

5.1
b7

L.2
L.6

9.3
8.9

5.2
T

6.8
3.4

8.1
7.0

7.1
77

RMS
0.000032
0.000026

0.0000k7
0.000070

0.000101
0.000106

0.000202

0.000291

0.000129
0.000043

0.000175
0.000046

0.000239
0.000098

0.000243
0.000120

Errors in Transformed
Data

MAX
0.000082
0.000064

0.000153
0.000216

0.000306
0.000307

0.000648
0.001163%

0.000491
0.000122

0.000560
0.000109

0.000663
0.000301

0.000743
0.000430

A Priori Bounds on

Errors
RMS MAX
0.000698  0.007897
D¢ 00D o.007138
0.000992  0.015875
0.001187  0.018992
0.001994%  0.045121
0.002083  0.0471h1
0.004720  0.151041
0.004572  0.146301
0.001755 0.017554
0.002218  0.022176
0.00301%  0.042628
0.002223  0.031432
0.004905  0.084952
0.004802  0.083172
0.004440  0.088793
0.004685  0.093692
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6. Conclusion. In the preceding sections roundoff errors in
the floating-point fast Fourier transform have been analyzed. Bounds
on RMS and maximum errors in transformed data were determined for both
single and multidimensional transforms, and in the case of a one-dimensional
transform results of a computational experiment show how close these
bounds are to the actual roundoff errors. The bounds include the effect
of roundoff in computing sines and cosines and, if contributions to the
&tual errors are in the same proportion as to the error bounds, a close
look at the error bounds shows that the effect of roundoff in computing
sines and cosines is not negligible but in fact contributes the same
order of magnitude to the total error as the roundoff in additions and
multiplications.

So far nothing has been said about floating-point representation
of input data. It was assumed that these numbers were exactly
representable in machine precision. If not, an additional term must
be added to the roundoff error to account for rounding input data.

Suppose fl(x) = x+6 . Then the additional term is

ool < /v Ho iy, -

On the-other hand, suppose that the input data is known to a number
of significant digits fewer than that of machine precision. For example,
the data might have come from an analog device of limited accuracy.

Then the bounds on roundoff error can be used in reverse as suggested by
the following: Let the roundoff error be given exactly by the complex

N-vector e . This vector can be considered the exact solution of the
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equation e = T® for some fictional & bounded by
1
”§ l"RMS = ”S“RMS//N
< & K(,7) |l x| + 0(82)
= 7777 2 'RMS ?
and

“~8 ”ao < e/N K(N, 7) | x HRMS L e 82)

If it should turn out that ¢ /NK(N,y)“ X “RMS is smaller than the least

significant digit of the input data, the roundoff error is negligible.
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