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Abstract

The problem of determining a zero of a given polynomial with guaranteed

error bounds, using an amount of work that can be estimated a priori, 1s

L attacked hereby means of a class of algorithms based on the idea of systematic

| search. Lehmer's "machine method" for solving polynomial equations 1s a

- special case. The use of the Schur-Cohn algorithm in Lehmer's method is
L replaced by a more general proximity test which reacts positively ifapplied

at a point close to a zero of a polynomial. Various such tests are described,

— and the work involved in their use is estimated. The optimality and non-

optimality of certain methods, both on a deterministic and on a probabilistic

. basis, are established.
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—— l. Introduction

In 1961 D. H. Lehmer [6] proposed a "machine method" for solving poly-

nomial equations. His algorithm was guaranteed to approximate a zero of any

- given complex polynomial with an arbitrarily small error. The amount of

work necessary to compute a zero to a given precision could be estimated a

— priori.

; In the present paper we shall describe a class of algorithms for pely-

= nomial zerofinding which contains Lehmer's method as a special case. Our

. ) algorithms borrow from Lehmer's method the basic idea of enclosing zeros

” in disks of decreasing radius, and of covering disks containing a zero by

— smaller disks,. However, instead of usinga special procedure to determine

i whether or not a given disk contains a zero of a polynomial, the algorithms

- discussed here merely require a "proximity test" ($2) which reacts positively

| 1f applied at a point close to a zero of the given polynomial. Very simple
“

such proximity tests exist, and as a consequence some of our algorithms are

- arithmetically simpler than Lehmer's method ($3).

‘ The convergence of the general search algorithm is established (§+),

~ and the maximum amount of work necessary to determine a zero to a preassigned

| . accuracy is estimated ($5).
“-

Among the class of all proximity tests, we then identify a subclass for

- . which the convergence of the resulting algorithms 1s linear. Among these

tests, the classical Schur-Cohn test (which forms the basis for Lehmer's

— method) is shown to enjoy a certain property of optimality ($6). We finally

| discuss the best covering strategy 1f coverings by disks of constant radius ,

~ are used. From a deterministic point of view, the best strategy consists

as in covering a disk of radius r by eight disks of radius qT where

Le



B dq = (1 + 2 cos om/7) = 0.44504 . From a probabilistic point of view, -

| if coverings by disks of variable radius are permitted, Lehmer's original |

— covering is slightly better, although not optimal. |

Besides Lehmer's paper, the present study was inspired by the methods

” of search used in the constructive proofs of the fundamental theorem of

_ algebra due to Brouwer [3,4] and Rosenbloom [10].

2. Proximity tests

For positive integers N , let Py denote the class of all monic

— ) polynomials of degree N with complex coefficients,

= To p(z) = 2 ay % tooo tag,

whose zeros 6, » & >» ... > Ey satisfy I<, <1l, i=1, 2,  ..
i N . It 1s our objective to study a class of algorithms for solving the

following problem: Given any PpeFp and any¢ > 0 , to construct a disk

D of radius ¢ which contains a zero of p . The algorithms to be

discussed are uniformly convergent on Py , 1n the following sense: The

amount of work necessary to construct D 1s bounded by a quantity which

— depends on ¢ and N , but not on the individual polynomial p .

| The basic tool of the algorithms to be described 1s a proximity test

~ 'T = T(r) , which can be applied to any polynomial Pel) at any point z

such that 2; <1, and which the polynomial either passes or fails. The

= test must be such that it is passed at all points z sufficiently close to

_ a zero, and failed at all points sufficiently far away. (There may be an

in-between region where the test may'be passed or failed.) The parameter

— r regulates the difficulty of the test. The smaller r 1s, the more

difficult 1t becomes to pass the test.

— ,



~ Speaking formally, a test T(r) is called a proximity test if there

exist two positive functions ¢ and § , defined on some interval
|—

O<r< ry and having the following properties:. If p is any polynomial

C in PN », and 1f { 1s any zero of 'p, then for all rel0,r]

(1) p passes T(r) at all points z such that |z | < 1 and
LS

: 2 = ¢l < §tx)

_ (11) p fails T(r) at all points z such that | | < 1 and

— ~ lz - ¢| > ¢(r) .

The above evidently implies that ¢(r) < §(r) ; we do not require that

_ $ = ¥ » We postulate that T(r) becomes arbitrarily difficult to pass for
r -0, i.e.,

(111) lim §(r) = 0 .
_ r = 0

~~ We furthermore require

(iv) ¢ iscontinuous and strictly monotonically increasing.
-

| The functions ¢ and § are called, respectively, the inner and

- outer convergence function of the test T(r)'.

The following test, to be denoted by Ty , May serve.as a first example

ee of a proximity test:

— tt
" p passes T, (r) at z " «===. |p(z)| < r .

or 3



— To show that thls test has the required properties for 0 < r <1, let| _ e

p(z) = 1 (z - G;)
| i=1

If’ p fails the test at z , then

N

p(z)|= nm ]z -¢.| > r .
— i=1

'g Hence for every 1 ,

| | 1] N
lz - ¢ | >rnfz-¢ |.

j=1 J

| JA :

i | Since [#4 <1, |] S 1, every factor of the product on the right is
at least 1/2 , and we find that

w= ,

H r j “N+ i

ence T, ( ) cannot be failed if 2 - C; | < 0 L. for some i , and (i)
1s true for

(x) = 27

If, on the other hand p passes I, (r) at z , then

|I (z-¢. [<r
i=1 th="07
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Lo and it follows that

|
1/N- <z-¢ | <r

| y

for at least one index 1 . . Thus the test cannot be passed if

| 1/N CL
i lz - C. | > r for all i , and we find that (ii) is true for

3 1/N| §(r) =r / :

“-

(By considering a polynomial with a single zero of multiplicity N , we

- see that (11) Is not true for any smaller function .) It is clear

3 that § has the properties (111) and (iv).
Two tests are called equivalent 1f they are defined on the same domain

i of r and if they produce 1dentical results for all polynomials p at
| all points z and for all values r .

- Example: The test IT, is equivalent to a test which is declared

| passed if and only if In(z) [F < re
/

Two proximity tests T and T% are called similar if there exists

an increasing function r¥ mapping [0,7] onto an interval [0,r¥] such

| that the test T(r) 1s equivalent to T*(r) = T(r*(r)) . Similar tests

. thus differ only in the choice of the parameter. It 1s clear that the

similarity of tests, too, 1s an equivalence relation.

— Example: The test T, is similar to the test T(r) which is passed

if and only if lp(z) | < rN Convergence functions for ik) are ¢(r) =
» =

-N+1

oN rr and y(r)=r .

L By (iv), every proximity test is similar to a test with'outer con-

| vergence function ¢(r) =r .

WN -



— 3. The search algorithm

We require the notion of an s-covering. If g¢ 1s any positive number,

and 1f S 1s any set 1n the complex plane, an e-covering of S 1s any

BN system of closed disks of radius _< e whose union contains S . The covering

1s said to be centeredin S 1f the midpoints of the covering disks belong

he to s . The construction of a minimal s-covering of a given bounded set

A (i.e., a covering containing the least number of disks) can raise intricate
. questions of elementary geometry. Of course, one can always use coverings

1 ) whose centers form a square or hexagonal grid.
| Let PePy , let T be a proximity test, and let la, } be a mono-
L tonic sequence of positive numbers converging to zero such that dy = 1.
| We shall describe an algorithm for constructing a sequence of points {z, }

| such that each of the disks

i
D, = {z: Jz -1z]<ql,

k=0, 1, 2, .., contains'at least one zero of p .

Let 2,5 = O . Then Dy certainly contains a zero, for 1t contains

“all zeros. The algorithm now proceeds by induction. Suppose we have

found a point 2) 1 such that Dk 1 contalns a zero. To construct Zp

We cover the set Dy _q ND, with an e, “covering centered in it and

apply a test I(r, ) at the center of each covering disk. The parameters

Ep and ry are chosen such that the following two conditions are met:

(A) The test 1s passed at the center of each disk of the covering

which contains a zero.

(B) Any point at which the test 1s passed is at a distance < 9

from a zero. |



— Condition (A) 1s satisfied if ye < 3(r, ) Condition (B) is satisfied

if ¥(r,) < 9 Thus both conditions are fulfilled if

~1,

(1)

. _ _ -1
a = $n) = 447 (x)

where denotes the inverse function of ¢ .

| i At least one of the covering disks contains a zero, since Dy 1 contains
one, and since all disks are contained in 1p Thus by (A), the test

| T(r, ) is passed &t least once. We let 2, be the first center at which
| the test is passed. There is no assurance that the disk of radius €

| surrounding z,, actually contains a zero, but by (B), the disk D, does.
| The whole algorithm thus may be summarized as follows: [.¢ 72 = 0== “0 y

: Having constructed Z, 1 r Cover the set Dy 1 N D, by an e, “Covering
:

— centered in it, and apply I(r, ) at the center of each covering disk, where,

€ and r, are given by (1). Let Ze be the first center which passes
- the test.

- Provided that identical systems of converings are used, the above

algorithm remains unchanged if the test T is replaced by a "similar"

test T* .

Lk. Convergence

By construction, the centers 2) of successive disks D, satisfy
lz, 1 TZ < 9 > where = O . This in itself does not imply the

convergence of the sequence {z, } . Nevertheless, there holds

THEOREM 1. The sequence iz, } converges, and its limit 1s a zero of p .



— Proof. Let

CAC
i" %)

—

be the minimum distance between distinct zeros of p . Let m be an integer
—

such that ZL <§ . Let n>m . The disk Dk contains a zero, say Cs .

The disk D,_, likewise contains a zero, say Cy . From

— - -
70 Cy | Sq Zp41 C5 | S Qn

- -

it follows by the monotonicity of the sequence {a } that

— |

- < + < <I Cs | = 9p hl = 24 d

and hence that Cs = {. . Thus for all n =m , |2 - C. | <q , proving
_ J n i' = *n

that

—

lim a Cs -
-

— 5. Amount of work

We measure the amount of work required to approximate a zero with an

~ error < & by estimating the number of applications of the test T required

| to construct the first disk D, such that its radius % 1s less than g .
-

For reasons of simplicity we assume until further notice that the centers

_ of the covering disks always form a square grid.

8



| 2{ The area of D 1 1s mL4 - In a square k-covering, the centers

, of the covering disks must be not more than /2e, apart. Neglecting
_ boundary effects, approximately

{

| 5-

m m-1

\ Bn
-

L disks of radius eg, ore thus required to cover D 1 (Working with a

: . hexagonal grid, the constant > could be replaced by “Ts .) Within|
i

— the same degree of approximation, this also is the maximum number of appli-

cations of the test to proceed from =z to =z
L N m-1 m .

For the given sequence {q, } and for > 0 , let k(e) denote the

| smallestk such that Gy < e . By the above, the total number of appli-
cations of the test necessary to approximate a zero with an error < ¢ does

L not exceed a quantity of the order of
2

- k(e) a _
(2) w(T, {a },e) = 3 = —— .

k 2 2

| m=] £m
-

| . We axiomatically define the above function Ww 55 the work function of the
search algorithm based on the proximity test T and the sequence {0,3 :

| The work function does not change if the test T is replaced by a similar
test T¥* |

| From the fact that w does not depend on p it already follows that

4 the search algorithms described earlier are uniformly convergent in the
sense described earlier.

{
(

—

- 9



i — Example. For the test T, , choosing a geometric mode of subdivision
k

| (a, =q , 0<qgq<1,%k=0,1,72 , . . . ) we have in view of d(r) —
— -N+1

2 r , ¢(r) = P10

-1, ~N+1

e, = O04 (a) = 27" 2,
-

hence

. k(e)
k _ON- 2m=-2 - -I VI, ef RIE RR (ene)m=1 N

| (e = 0) , where

I 2°02
Cx=2 ZF M22).

a -q

For the determination of a zero of a polynomial of degree 10 with an error
_£
~ 1| < 10 © working with gq = 5 (which requires k = 20 ) the function w

' . . 120
yields an upper bound of approximately 291 Lt 10 applications of the
test. Since on the average we can't expect to do much better than use one

half of the maximum number of tests, a search algorithm based on Ty

certainly 1s not practical.

6. Proximity tests with linear convergence functions

Suppose the convergence functions of a proximity test T are linear,

(3) o(r) = ar, ¥(r) = pr

(0 <a< b) . Then by (1), -

10



= (47g) = 2~ ep = Pa)) = ay

— and the work function (2) becomes

oo. 5
- 2 k(e)7D Ay-1

(4) w(T, {a Le) . 55 z ~5 .k 2 2 2

a m=1 qa,

3 In particular, if = 43 / 9 qa
|—

2

ky y— 2
o (5 w(T, {fq },e) = 5 5 k(e) y

2aq

— wr
and the work necessary to compute a zero to a glven accuracy 1s proportional

| to the number of decimals required. This convergence behavior 1s known
|S.

as linear convergence.

— We now shall give some examples of proximity tests with linear con-

vergence functions. For arbitrary z andh , let

| p(z + h) =by + bh +b +... # DoHi 1

_ (by, = 1) . It will be convenient to suppress the argument z in the Taylor

coefficients Io .

| 6.1. The test Ts . Let

- b | Vk
9)

B = B(z) = min Bo
| 1<k<N | k )
a = =

The polynomialp is said to pass the test T(r) at z if and'only ifL_

B(z) <r . To determine the convergence functions of this test, let

— 11



— (6)

|
_

| The relations of Vieta imply, as 1s well known,

! . -~

L 1/k
Ny 20

-

N 1/k
| Since (3) <N, this implies p < NB(z) . Hence if p > Nr , then
p-

B(z) > r, and p fails T(r) at z . It follows that

-

u(r) = Nr

|
L ~

| is outer convergence function for T, . On the other hand, let p fail
|

the test at z . Then B » r and hence

{
!

ae

b
{ -k

| ER CC k=1l,2,...,N.. "0

L If p(z + h) = 0 and In| =p , the Taylor expansion shows that

| .
L 2 N

B+ By. +>
r 2 N =

r Yr

i
and hence that £> . It follows that the test cannot be failed if

SE 1

- | fo < 5T, i.e.

!
{
{

-

1s 1nner. convergence function for I, [ J

|

~ 12

|
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}
=

g Thus I, has convergence functions of the form (3); we note that_

= = 2N . In the numerical example considered earlier (N = 10,
6 -

— e= 10°, A = 2 ky / (4) now furnishes an upper bound of some 50,000
applications of the test,

6.2. The test Ts . The polynomial is said to pass Ty (r) at z
“— 1f and only if

_ 2 N
fool Slope + Jo, [5+ oo 0 + fo [=

C.

Let p be defined by (6). Then for some h such that In| = p we have

L p(z + nh) = 0 , hence

[og| < Joy fo + Jo, [0% + «vo + [blo

and p passes I (p) . Thus (b(r) =r is inner convergence function for
| this test. On the other hand, a theorem of G. D. Birkhoff [2] implies
r that the test cannot be passed if p > (21/N - 1)" . Thus

~ 2 -1

1 1s outer convergence function. For this palr of convergence functions,

|
b_ 1 N
a S/N] ~ log 2 (Wow)

For a given sequence {a} + and for linear convergence functions (3),

the value of the work function for a given eg 'is proportional to b°/a .

13



f For both tests Ts and Ty this ratio is oN) as N — o . This
! situation 1s typical for any test that depends only on the absolute values

E b.r , for it is known [9, 1] that the maximum of the ratio of the largestJ | ] il 3

and smallest absolute value which the smallest zero of a polynomial of degree

N can have 1f the absolute values of the coefficients are fixed 1s precisely

1/N -1
(2 - 1) . It follows that smaller values of b/a can be achieved only

with tests that do not merely use the absolute values of the Taylor coeffi-

~ cients.

i 6.3. The test Ty . This test makes use of the sums

(7) s, = IL (¢; - 2) , Kk =1, 2, ««.
i=1

It 1s easily shown by means of a generating function argument that these

| quantities can be computed from the Taylor coefficients at z by means
.

- of the following recurrence relation:

| s - b* (kb + 8.b + s.b + + b.)k= "0 “kT P1Pka 7 kp Toe Fos400),

- k = 1 hr) 2 s * 0 [ ]

~k -
Let p Dbedefinedby (6). Then ls, | s Np ,k=1, 2 . °°, and
it follows that

1/k
8 Ri _( ) P < S / k - 1 ] 2 7 ah ah ah oe

k

14



BE Let

| . 1/k
s = min |= ‘
1k | “k

We say that p passes the test T(r) at z 1f and only if S <r . It

follows from (8) that

¥(r) =r

1s outer convergence function for this test. Moreover, a rather deep result

— of Buckholtz [5} states that §< (2 + 2/2)p , where the numerical constant

1s best possible. It follows that

-1

| or) = (2 +2/2) r
—

- 1s inner convergence function. For this pair of convergence functions, the

| ratio b/a= 2 + 2/2 24,8284 is independent of N .

|—

6.4. Sharp tests. For a given sequence {a,3 , and for linear con-
;

_ vergence functions ¢ and § , the value of the work function (4) for

given € is a minimum for a test such that b = a . Without loss of

— generality 1t may be assumed that b = a = 1 . A test with convergence

. functions ¢(r) = ¢(r) = r will be called sharp. A sharp test reacts
—

positively 1f and only 1f the closed disk of radius r about the testing

. point z contains a zero. Thus all sharp tests belong to the same class

of equivalent tests.

15
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_ There exist several realizations of sharp tests. They are based either

on a conformal mapping of the disk onto the left half-plane, followed by the

— Routh-Hurwitz algorithm, or (more directly and efficiently) on the well-

| known Schur-Cohn algorithm ([8], p. 195) for counting the number of zeros

o in a given disk. ILehmer's method[6, T], the first search algorithm of the

_ type considered here, was based on the Schur-Cohn algorithm.

In our numerical example (N = 10 , q = 27% e = 1079, (5) now
— yields a maximum of a mere 129 tests in an algorithm based on a sharp test.

~ Due to neglect of boundary effects, the true maximum 1s somewhat higher;

- see below.

The mere fact that the work function 1s smallest for the Schur-Cohn

test does not in itself imply that this test defines the computationally

— most efficient algorithm, since the work function does not take into account

the work required to carry out the test. In the absence of rigorous results

= concerning the minimum number of arithmetic operations required to administer

the various tests, precise results are difficult. Suffice it to say that

all tests described in this section require, among other things, all Taylor

_— coefficients at z . If performed by the Horner algorithm, their computation

. requires ar + O(N) multiplications. The Schur-Cohn algorithm, 1f programmed
in the superior fashion recommended by Stewart [ll], requires another

SA 4 01) multiplications and divisions, roughly the same as the computation
- 'of the sums Sy required for Ty, Thus the Schur-Cohn test requires only
_ about twice as much work as I, or Ts , and about the same as Ty

3 T. Optimum choice offq, 3
Suppose the search algorithm 1s based on a test with linear convergence

. functions (3). If ¢ is given, for what choice of the sequence {a,3 1s

the work function w(T, {g, }¢) a minimum?
16



We first answer this question when k(e) 1s prescribed. Let g¢ > 0 ,

i Let k be a given positive integer, and let {q, } be any decreasing

N sequence such that qy = 1, q =¢€ . Then, by the inequality of the
arithmetic and geometric mean,

2
. k 2

- WT, fg Joe) = cp BL (c = Bo2 2

. m=1 aq 2a

i >ck | nm BL
m=1 9

( = Cke2K

and we have proved:

THEOREM 2. Let ¢ > 0 and k 3 0be given. On the space of all
| monotonic sequences _

Domo ont Seder {a} such that dq = and 9 = € the work function

(4) assumes its smallest value for the geometric sequence, a m/k; ee ——————————————————————— = € >

m=0, 1,2 |...

On the basis of this result, we now restrict our attention to geometric

| m

sequences, q =4q (0 <q <1), and ask for the optimal value of q to

achieve a given accuracy ¢ . As a function of g and
€ >» k(e) 1s nDOow

the smallest integer such that & < _ .

log

log gq

17



_ where [x] denotes the largest integer <x. Neglecting a fractional part,

we thus have approximately

—

(1, (d"),e) 2 opEE
— q log q

— (C defined as above). By differentiation we easily find that the minimum

i of the above expression is attained for gq = 12 =0.6065% , and that the

| value of the minimum is 2 e C log : :
) Unfortunately, the above result does not indicate accurately the

—

maximum number of tests to be applied, because the method of counting the

— covering disks underlying (2) becomes increasingly inaccurate (due to the

neglect of boundary effects) 1f the ratio of the radii of the covering disks

— and of the disk to covered approaches 1 . To determine the exact maximum, .

let, for 0<x<1, f (x) denote the minimum number of disks of radius

- x that are required to cover the unit disk. The function f is non-

- increasing, piecewise constant, and continuous from the right; no simple

analytical expression for it exists. To proceed from z to z ., in a

~ search algorithm based on a test with linear convergence functions and on a

: geometric sequence {q" requires covering a disk of radius q by disks

N of radius 2 . Hence, 1f an optimal covering 1s used, at most £(2 q)
_ —applications of the test are necessary. The actual maximum number of

tests to attain an error <€ e thus equals

W(a,b,q,e) . - ro) | zs

_ 18



LL We shall determine the minimum of W as a function of g for the Schur-

| Cohn test (a=b=l) .

TC THEOREM 3. For sufficiently small fixed values of ¢ , the function

F(q,e) = W(1,1,q,¢) assumes its minimum at q = dy = (1 4 2 cos =m) =
The value of the minimum is |

; F(qy,e) = - 8 -8e |. gg |_ loge
a log q, 0.80 )

- Proof. We first determine the minimum of the function

(a) = £(q) Toe ©

L Let the points of discontinuity of f be, in decreasing order, 1 _ >
70

| xq > X, > s and let the constant value of f£ 1n the interval

in each of the intervals x < q < Xn 17 and has a downward jump at the

| points L (m =1, 2 a +). It thus is smallest where
. G ff 1 o| (x) m log x

m

/

1s smallest. It can be shown that

m COS m4p L) mo Bte for m=1,2, 3 ;

| = (1 + 2 cos em y-1 én m+2 , fm=m+3 for m=14? 5 , .

19



i From these values and from the trivial estimate f(x) > x it follows

by computation that the minimum is assumed only at dy = x =
2 -1 *

(1 + 2 cos =) =0.44504 , and that it has the value

BN = log e = -1Gloag) = 8 352 9.882 log ¢ =

The function F has the form F(q) = f(q)h(q) , where

| h(g) = -=log qj .
L

L The function h ~is plecewlse constant, nondecreasing, and continuous

from the left. We denote its points of discontinuity by 0 < hy < hy <

L hy < . . . . Evidently, F(q) > G(q) , with equality holding if and only
| if a=h, for some n . Let n* be the smallest index n such that

h > dq - For sufficiently small values of ¢ , the points h are= n

| arbitrarily dense, hence hx <x, s and furthermore

} F(h ,) < G(x) ,m £5

It follows that Fh) is the smallest value of F . Tf ho = 9 »

the Theorem 1s established. If h . > q, , the Theorem follows from the

fact that F(g) is constant for 9 <q c< h x .

1 The optimal covering of the unit disk by 8 disks of radius dy consists

| of a disk centered at the origin, surrounded by 7 disks centered at the
points

2mik

zZ, =Re k=0, 1, ..., 0,
20



| BN where

B 2 cos 2

: R =le = 0.80194 .
7

8. Non—uniform converings

- So far 1n this study, 1t was assumed that the covering of each disk

_ Dy. consists of disks of constant radius. It 1s a trivial matter to

| modify the definition of the basic search algorithm to permit coverings

L of variable radius and to extend the convergence theorem to this case.

| Also the upper bounds for the amount of work are easily adapted to extend
to such non-uniform coverings.

| However, the optimality considerations of section 7 strongly depend
on the constancy of the radii of the covering disks, and it is far from

| obvious how they should be modified for non-uniform coverings. Tt appears
| certain, however, that the methods using uniform coverings are not optimal

in the class of methods using arbitrary coverings.

| The efficiency of an algorithm can also be judged from a probabilistic
point of view, for instance by computing the average number Z of appli-

cations of the test required to improve the accuracy of a zero by one

decimal digit. Here again the methods using uniform coverings are not

optimal. For the optimal method using uniform coverings determined in

Theorem 3, it can be shown that

7 = 11.168 .
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| Leh thod th lt disk b disk of di :ehmer's method covers e uni 1s a disk of radius =
Y 2 centered at

O, and by 8 disks of radius io centered on a circle of radius <
SE For this covering, if the sequence of surrounding disks is chosen optimally

as suggested in [6],

z = 11.143 .

It can be shown that Lehmer's coverings is again not optimal, if only by

-— the trivial reason that it has some built-in slack to counteract rounding.

- 1 1 1 1 1 1 1
The detailed investigation of optimal non-uniform coverings must, however,

| walt for another-paper.
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