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Abstract

The problem of determining a zero of a given polynomial with guaranteed
error bounds, using an amount of work that can be estimated a priori, is
attacked hereby means of a class of algorithms based on the idea of systematic
search. Lehmer's "machine method" for solving polynomial equations is a
special case. The use of the Schur-Cohn algorithm in Lehmer's method is

replaced by a more general proximity test which reacts posiively ifapplied

at a point close to a zero of a polynomial. Various such tests are described,
and the work involved in their use is estimated. The optimality and non-
optimality of certain methods, both on a deterministic and on a probabilistic

basis, are established.
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1.  Introduction

In 1961 D. H. Lehmer [6] proposed a "machine method" for solving poly-
nomial equations. His algorithm was guaranteed to approximate a zero of any
given complex polynomial with an arbitrarily small error. The amount of
work necessary to compute a zero to a given precision could be estimated a
priori.

In the present paper we shall describe a class of algorithms for poly-
nomial zerofinding which contains Lehmer's method as a special case. Our
algorithms borrow from Lehmer's method the basic idea of enclosing zeros
in disks of decreasing radius, and of covering disks containing a zero by
smaller disks,. However, instead of using a special procedure to determine
whether or not a given disk contains a zero of a polynomial, the algorithms
discussed here merely require a "proximity test" ($2) which reacts positively
if applied at a point close to a zero of the given polynomial. Very simple
such proximity tests exist, and as a consequence some of our algorithms are
arithmetically simpler than Lehmer's method ($3).

The convergence of the general search algorithm is established (§),
and the maximum amount of work necessary to determine a zero to a preassigned
accuracy is estimated ($5).

Among the class of all proximity tests, we then identify a subclass for

. which the convergence of the resulting algorithms is linear. Among these

tests, the classical Schur-Cohn test (which forms the basis for Lehmer's
method) is shown to enjoy a certain property of optimality ($6). We finally
discuss the best covering strategy if coverings by disks of constant radius ,
are used. From a deterministic point of view, the best strategy consists

in covering a disk of radius r by eight disks of radius Qr where



9 = (1 +2 cos2nf7yq'= 0.44504 . From a probabilistic point of view,

if coverings by disks of variable radius are permitted, Lehmer's original
covering is slightly better, although not optimal. }
Besides Lehmer's paper, the present study was inspired by the methods

of search used in the constructive proofs of the fundamental theorem of

algebra due to Brouwer [3, 4] and Rosenbloom [10].

2. Proximity tests

For positive integers N , let PN denote the class of all monic

polynomials of degree N with complex coefficients,

N N-1
p(z) =z +ay  Z2  +...*8g,

whose zeros 6, » & » ... » Gy satisfy Icil <1, i=1, 2, ...,
N . It is our objective to study a class of algorithms for solving the
following problem: Given any pePN and any ¢ > 0 , to construct a disk

D of radius ¢ which contains a zero of p . The algorithms to be

discussed are uniformly convergent on P_ , in the following sense: The

amount of work necessary to construct D is bounded by a quantity which
depends on ¢ and N , but not on the individual polynomial p

The basic tool of the algorithms to be described is a proximity test

‘T = T(r) , which can be applied to any polynomial pg?N at any point z

such that z; <1, and which the polynomial either passes or fails. The
test must be such that it is_passed at all points z sufficiently close to
a zero, and failed at all points sufficiently far away. (There may be an
in-between region where the test may'be passed or failed.) The parameter

r regulates the difficulty of the test. The smaller r is, the more
difficult it becomes to pass the test.

2



- Speaking formally, a test T(r) is called a proximity test if there

exist two positive functions 4’ and § , defined on some interval

L —
O<r < T and having the following properties:. If p is any polynomial
- in PN s and if { 1is any zero of 'p , then for all re(O,rO]
(1) p passes T(r) at all points z such that |z | <1 and
L
lz - ¢l < §(r) ;
L —
o (ii) p fails T(r) at all points z such that Iz | < 1 and
— - [z - ¢| > ¢(r) .
The above evidently implies that ¢(r) < t(r) ; we do not require that
L 1>= ¥ » We postulate that T(r) becomes arbitrarily difficult to pass for
r -0, i.e.,
(iii) lim §(r) = 0
- r -0
~ We furthermore require
\ (iv) ¢ iscontinuous and strictly monotonically increasing.
—
The functions ¢ and ¢ are called, respectively, the inner and
- outer convergence function of the test T(r)'.
The following test, to be denoted by Tl , may serve.as a first example
L of a proximity test:
-

1" t

P passes Tl(r) at z " <= |p(z)]| <_r
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To show that thls test has the required properties for 0 < r < 1, Lot
e

N
p(z) = 1 (= - ().
i=1

If’ pfails the test at z , then

N
’P(Z)'= I ,Z - Ci, > r
i=1

Hence for every i ,

N -1
’Z - gi I >rI ,Z - C. , .
J=1 ’
JH
Since ’le <1, ,Z, S 1, every factor of the product on the right is
at least 1/2 , and we find that

e-gl<2™h, i1, L

Hence T)(r) cannot be failed if |z - 6, 1<2™L for some 1, and (i)

is true for
4(1) = 2-N*lr .

If, on the other hand/ p passes Tl(r) at z , then

N
Jol-glsr,
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e

and it follows that

IZ - l < rl/N

for at least one index i . . Thus the test cannot be passed if
1/N . . o
Iz - gil >r for all i , and we find that (ii) is true for

y(r) = /¥ .

(By considering a polynomial with a single zero of multiplicity N , we
see that (ii) s not true for any smaller function ¢ .) It is clear
that § has the properties (iii) and (iv).

Two tests are called equivalent if they are defined on the same domain
of r and if they produce identical results for all polynomials p at
all points z and for all values r

Example: The test Tl is equivalent to a test which is declared
passed if and only if lp(z)l2 < re.

Two proximity tests T and T* are called similar if there exists
an increasing function r¥ mapping [O,ro] onto an interval [O,r')é'] such
that the test T(r) is equivalent to T*(r) = T(r*(r)) . Similar tests
thus differ only in the choice of the parameter. It is clear that the
similarity of tests, too, is an equivalence relation.

Example: The test Tl is similar to the test T*{(r) which is passed
if and only if |p(z)| < rN, Convergence functions for T¥ are ¢(r) =

5 -N+1rN

and ¢(r)=r .
By (iv), every proximity test is similar to a test with'outer con-

vergence function ¢(r) = » .
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3. The search algorithm

We require the notion of an s-covering. If ¢ is any positive number,
and if S is any set in the comple% plane, an e-covering of S is any
system of closed disks of radius=< € whose union contains S . The covering
is said to be _centered in S if the midpoints of the covering disks belong
to s . The construction of a minimal s-covering of a given bounded set
(i.e., a covering containing the least number of disks) can raise intricate
questions of elementary geometry. Of course, one can always use coverings
whose centers form a square or hexagonal grid.

Let peP

N

tonic sequence of positive numbers converging to zero such that 4 = 1.

, let T be a proximity test, and let {qk} be a mono-

We shall describe an algorithm for constructing a sequence of points {Zk}

such that each of the disks

D, = {z: |z - zk[ < qk} ,

k=0, 1, 2, .-, contains'at least one zero of p

Let z, = 0 . Then Dy certainly contains a zero, for it contains

*all zeros. The algorithm now proceeds by induction. Suppose we have

such that Dk contains a zero. To construct z

found a point 1

k-1 k ‘

we cover the set D _; ND, with an g -covering centered in it and

k
apply a test T(rk) at the center of each covering disk. The parameters
& and r, are chosen such that the following two conditions are met:

(A) The test is passed at the center of each disk of the covering
which contains a zero.

(B) Any point at which the test is passed is at a distance < %

from a zero.



Condition (A) is satisfied if £ < ¢(rk) . Condition (B) is satisfied

if W(rk) < 9, - Thus both conditions are fulfilled if

T = ‘&’- Eqk) s
(1)
o = ¥r) = 447

-1 . .
where ¢ denotes the inverse function of ¢ .

At least one of the covering disks contains a zero, since g contains
k-1

one, and since all disks are contained in p Thus by (A), the test

T(rk) is passed &t least once. We let z, Dbe the first center at which

the test is passed. There is no assurance that the disk of radius €

surrounding z_  actually contains a zero, but by (B), the disk D, does.

k
The whole algorithm thus may be summarized as follows: [ ¢ zy = 0
Having constructed z, 1 r cover the set Dk-l N DO by an &, ~COvering

centered in it, and apply 7T(r ) at the center of each covering disk, where,

»
e, and r,  are given by (1). Let =z

be the first center which passes

k

the test.
Provided that identical systems of converings are used, the above
algorithm remains unchanged if the test T is replaced by a "similar"

test T*

L. Convergence
By construction, the centers 2 of successive disks Dk satisfy
,Zk+l T % , < 9 > where q - O . This in itself does not imply the

convergence of the sequence {zk} . Nevertheless, there holds

THEOREM 1. The sequence {Zk} converges, and its limit is a zero of p



Proof. Let

= min .= C.
6= e le; - ¢
AN
be the minimum distance between distinct zeros of p . Let m be an integer
such that 2qm <8 . Let n>m . The disk Dk contains a zero, say gi .

The disk Dy, likewise contains a zero, say gg . From

1
‘Zn - gi‘ S 9, > Zn+l T gjl < Uy 2

-

it follows by the monotonicity of the sequence {qn} that

g5 - G5l S ay * gy 29, <8

and hence that q4=:€j . Thus for all n m , |zn-gi| § q, proving

that

lim z_ =
n
n— o

5. Amount of work

We measure the amount of work required to approximate a zero with an
error < ¢ by estimating the number of applications of the test T required
to construct the first disk Dk such that its radius G is less than ¢ .
For reasons of simplicity we assume until further notice that the centers

of the covering disks aiways form a square grid.
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The area of Dm—l is nqm_l . In a square k-covering, the centers

of the covering disks must be not more than /5-5m apart. Neglecting

boundary effects, approximately

2
-1
Em

i3

disks of radius g, ore thus required to cover Dm—l (Working with a

. hexagonal grid, the constant g could be replaced by %ﬁ? .) Within

the same degree of approximation, this also is the maximum number of appli-

cations of the test to proceed from z.1 to zm

-~

For the given sequence {qk} and for ¢> 0, 1let k(e) denote the
smallest k such that 4y < e . By the above, the total number of appli-
cations of the test necessary to approximate a zero with an error < ¢ does

not exceed a quantity of the order of

(e) qu

2——

(2) W(T, {qk}’ e) = i

=R = -y
Bm n

We axiomatically define the above function w 35 the work function of the

search algorithm based on the proximity test T and the sequence {qks'
The work function does not change if the test T is replaced by a similar
test T*

From the fact that w does not depend on p it already follows that
the search algorithms described earlier are uniformly convergent in the

sense described earlier.
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Example. For the test T. , choosing a geometric mode of subdivision

1
k
(qk =q , 0<g<1,%k=0,1,2 , . . . )we have in view of 4(r) =

oL , y(x) = rl/N

= 4 7H(g ) = 27
hence

k(e)
w(T, {g°), €) = I ANE g

q2m-2-2mN 0 q-(2N-2)k( £)
m=1 N

(¢ »0) , where

22N-2

2 2N
a4 -q

Q
[
=

(m>2) .

For the determination of a zero of a polynomial of degree 10 with an error

&
- . . 1
< 107 working with q = 5> (which requires k = 20 ) the function w
. ; . 120
yields an upper bound of approximately 2397Tr £ 10 applications of the
test. Since on the average we can't expect to do much better than use one

half of the maximum number of tests, a search algorithm based on Tl

certainly is not practical.

6. Proximity tests with linear convergence functions

Suppose the convergence functions of a proximity test T are linear,

(3) $(r) =ar, ¢(r) = br

(0<acxg b) . Then by (1), -

10
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oo

e = 4 )) =2,

and the work function (2) becomes

2

2 k(e)

b 91
(&) w(T, {a 1e) . g?mfl —;i" .
In particular, if qk = q.K ,

2
k

(5 W(T, {23, ¢) = 2 k(o)

2a q

-

and the work necessary to compute a zero to a given accuracy is proportional
to the number of decimals required. This convergence behavior is known

as linear convergence.

We now shall give some examples of proximity tests with linear con-

vergence functions. For arbitrary z and h , let

2 N
p(z+h)=bo+blh+b2h+...+bNh
(bN = 1) . It will be convenient to suppress the argument z in the Taylor
coefficients bi .
6.1. The test T2 . Let
b | Yk
. 0
B = B(z) = min 0
lgkfl\l k

The polynomial p 1is said to pass the test T2(r) at z if and'only if
B(z) <r . To determine the convergence functions of this test, let

11
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T e e o e o O e con N e cn e

(6)

The relations of Vieta imply, as is well known,

1/k
Since (ﬂ) <N,

1/k
Ny o
< () =— , k=1, s N
= k” b
k
this implies p < NMB(z) . Hence if p > Nr , then

B(z) > r, and p fails Té(r) at z . It follows that

¥(r) = Nr
is outer convergence function for I, . On the other hand, let p fail
the test at z . Then B > r and hence

2k
bO

<r ", k=1, 2, ...,N.

If p(z + h) =0 and.lhl = p , the Taylor expansion shows that

and hence that §->

p§-21-r, i.e.,

is inner. convergence function for T

L
2

2
B+ B+ ...+
r r2

T
w
}..J

It follows that the test cannot be failed if

¢(r) =

.r

oy

2 L]

12
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Thus T2 has convergence functions of the form (3); we note that

2N . In the numerical example considered earlier (N = 10 ,

£ = 19°

oo
[t}

’ qk = 2_k) ’ (4) now furnishes an upper bound of some 50,000

applications of the test,

6.2. The test T5 . The polynomial is said to pass T5(r) at z

if and only if 4
2
ool < oyl + oy 1=+ o o ko[t

Let p be defined by (6). Then for some h such that |h| - ; ye have

p(z + h) = 0 , hence
,bo, § ,bllp + 'be ng + oo F IbN’pN >

and p passes TB(D) . Thus (b(r) =r is inner convergence function for
this test. On the other hand, a theorem of G. D. Birkhoff [2] implies

that the test cannot be passed if p > QYN _ l)-lr . Thus

(>=7——1 r
v ElNl

is outer convergence function. For this pair of convergence functions,

b___1 N
a” JU/N. ~Tog e (N> o) .

For a given sequence {qk} » and for linear convergence functions (3),

the value of the work function for a given & 'is proportional to be/a2 .

13
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For both tests T, and T3 this ratio is O(NE) as N - o . This

situation is typical for any test that depends only on the absolute values

PiI » for it is known [9, 1] that the maximum of the ratio of the largest

and smallest absolute value which the smallest zero of a polynomial of degree

N can have if the absolute values of the coefficients are fixed is precisely
1/N -1 .

(2 - 1) . It follows that smaller values of b/a can be achieved only

with tests that do not merely use the absolute values of the Taylor coeffi-

cients.
6.3. The test Th . This test makes use of the sums
- N —k
(7) s, = £ (g -2, k=1,2, ..
i=1 *

It is easily shown by means of a generating function argument that these
quantities can be computed from the Taylor coefficients at z by means

of the following recurrence relation:

-1

8 -b b, +

k = " Po (kby $1% 4t SPyp et s 1by)
- k=l’ 2’... .
Let p bedefinedby(6). Then ,skf < Npqi, k=1,2 . . . and

= 4 ’
it follows that
1/
N

(8) 955; , k=1, 2, ...

14
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Let

1/

Sy

s = min
Ik

We say that p passes the test Tu(r) at z if and only if 8 <r . It

follows from (8) that

y(r) =r

is outer convergence function for this test. Moreover, a rather deep result
of Buckholtz [5} states that § < (2 + 2/2)p , where the numerical constant

is best possible. It follows that

W) = 2 +22)

is inner convergence function. For this pair of convergence functions, the

ratio b/a = 2 + 2/2 24,8284 is independent of N

6.4. Sharp tests. For a given sequence {qk3 , and for linear con-
vergence functions ¢ and ¢ » the value of the work function (4) for
given € is a minimum for a test such that b = a . Without loss of
generality it may be assumed that b = a = 1 . A test with convergence
functions ¢(r) = §(r) = r will be called sharp. A sharp test reacts
positively if and only if the closed disk of radius r about the testing
point z contains a zero. Thus all sharp tests belong to the same class

of equivalent tests.

15
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There exist several realizations of sharp tests. They are based either
on a conformal mapping of the disk onto the left half-plane, followed by the
Routh-Hurwitz algorithm, or (more directly and efficiently) on the well-
known Schur—Cohn algorithm ([8], p. 195) for counting the number of zeros
in a given disk. Lehmer's method [6, 7], the first search algorithm of the
type considered here, was based on the Schur-Cohn algorithm.

In our numerical example (N =10, g =2 , ¢= 10_6), (5) now
yields a maximum of a mere 129 tests in an algorithm based on a sharp test.
Due to neglect of boundary effects, the true maximum is somewhat higher;
see below.

The mere fact that the work function is smallest for the Schur-Cohn
test does not in itself imply that this test defines the computationally
most efficient algorithm, since the work function does not take into account
the work required to carry out the test. 1In the absence of rigorous results
concerning the minimum number of arithmetic operations required to administer
the various tests, precise results are difficult. Suffice it to say that
all tests described in this section require, among other things, all Taylor
coefficients at z . If performed by the Horner algorithm, their computation
requires %Ne + O(N) multiplications. The Schur-Cohn algorithm, if programmed
in the superior fashion recommended by Stewart [ll], requires another
éﬂz + O(N) multiplications and divisions, roughly the same as the computation

2

'of the sums s

x required for Th Thus the Schur-Cohn test requires only

about twice as much work as T2 or T5 , and about the same as Th .

7. Optimum choice ofmk3

Suppose the search algorithm is based on a test with linear convergence
functions (3). If ¢ is given, for what choice of the sequence {qu is
the work function w(T,@%},e)a.minimum?

16



is prescribed. Let ¢ > 0 ,

We first answer this question when k(e)
Let k be a given positive integer, and let @m} be any decreasing
sequence such that gy =1, @ =€ . Then, by the inequality of the

arithmetic and geometric mean,

: k qi 1 2
W(T9 {qm]yﬁ) =C z """2:"‘ (C = ﬂ%‘)
m=1 %n 2a
2 1/k
k
- m=1 qm
= ok /k

w(r, (Y5),e)

and we have proved:

THEOREM 2. Let ¢ > 0 and k 3 Obe given. On the space of all

monotonic sequences _
d &%n} such that g, =1 d 4 = ¢, the work function

(4) assumes its smallest value for the geometric sequence, n/k
. - ¢ ,

m=0, 1,2 |

-On the basis of this result, we now restrict our attention to geometric

' m
sequences, g =g (0<a<1), and ask for the optimal value of g to
achieve a given accuracy g€ . As a function of and

J Y 4 e 5> k(g) is now

the smallest integer such that & < e or

- - lo'
k(e) = [ —l-é-g-—cf

17
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where [x] denotes the largest integer < x . Neglecting a fractional part,

we thus have approximately

.o
(T, {a"}e) & o5t

g log q
(C defined as above). By differentiation we easily find that the minimum
‘1/2 2

of the above expression is attained for g = e 0.60653 , and that the
value of the minimum is 2 e C log % .

Unfortunately, the above result does not indicate accurately the
maximum number of tests to be applied, because the method of counting the
covering disks underlying (2) becomes increasingly inaccurate (due to the
neglect of boundary effects) if the ratio of the radii of the covering disks
and of the disk to covered approaches 1 . To determine the exact maximum,
let, for 0<x <1, f(x) denote the minimum number of disks of radius
x that are required to cover the unit disk. The function f is non-
increasing, piecewise constant, and continuous from the right; no simple

analytical expression for it exists. To proceed from zy to 2z in a

m+1

search algorithm based on a test with linear convergence functions and on a

‘ m .
geometric sequence {qmg requires covering a disk of radius q Dby disks

a
of radius % qm+l . Hence, if an optimal covering is used, at most f(g q)

-applications of the test are necessary. The actual maximum number of

tests to attain an error < e thus equals

a 10,
W(&,b,q,e) a7 f(B'Q.)[ l_og"i

18
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We shall determine the minimum of W as a function of g for the Schur-

Cohn test (a=b=1) .

THEOREM 3. For sufficiently small fixed values of ¢ , the function

F(q,e) = W(1,1,q,¢) assumes its minimum at gq = 9% = (1, 2 cos %_11)‘1 )

The value of the minimum is

Plagse) = - 8[— %gg_;.o_} .8 [ 1o ¢ ] |

Proof. We first determine the minimum of the function

- _ 1o
G(a) = £(q) Bg—é .

Let the points of discontinuity of f be, in decreasing order, 1 _ S

Xl > x2 > s and let the constant value of f in the interval

in each of the intervals X, <= q < X1’ and has a downward jump at the

points x (m=1, 2 . -+) . It thus is smallest where
. G =f |l o
(xm) mlog xng1

is smallest. It can be shown that

Tyl
Xm=(2003-m+2) » fp=m+2 for m=1,2, 3;

2 -1
Xm ( cos m+2) , fm=m+3 for m=14 °

5, 6.

19
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From these values and from the trivial estimate f(x) E:X_Z it follows
by computation that the minimum is assumed only at 4y = X =

5
(L + 2 cos %E)-l =0.44504 , and that it has the value

1 . -
G(q,) = 8 Tz;_g_;{_; £ 9.882 log ¢+

The function F has the form F(q) = f(q)h(q) , where

- . - lo €
h(g) = '1"0-2-—;1]

The function h ~is piecewise constant, nondecreasing, and continuous

from the left. We denote its points of discontinuity by 0 < hO < hl <

h, < . . . . Evidently, F(q) > G(q)

5 s with equality holding if and only

if q=hn for some n . Let n* be the smallest index n such that
hn > dy - For sufficiently small values of ¢ , the points h are
= n

arbitrarily dense, hence hn* <Cxu » and furthermore

F(h) <G(x),m# 5

It follows that F(hn*) is the smallest value of F . 1f by = G s

the Theorem is established. If h x > dy > the Theorem follows from the

fact that F(q) 1is constant for 9g<ac< hn* )

The optimal covering of the unit disk by 8 disks of radius 4y consists

of a disk centered at the origin, surrounded by 7 disks centered at the

points



e e ™ — — I

where

2 cos
R = = 0.80194 .
1l + 2 cos

3

Iy

8. Non—uniform converings

So far in this study, it was assumed that the covering of each disk

Dk consists of disks of constant radius. It is a trivial matter to

+modify the definition of the basic search algorithm to permit coverings

of variable radius and to extend the convergence theorem to this case.
Also the upper bounds for the amount of work are easily adapted to extend
to such non-uniform coverings.

However, the optimality considerations of section 7 strongly depend
on the constancy of the radii of the covering disks, and it is far from
obvious how they should be modified for non-uniform coverings. 1t appears
certain, however, that the methods using uniform coverings are not optimal
in the class of methods using arbitrary coverings.

The efficiency of an algorithm can also be judged from a probabilistic
point of view, for instance by computing the average number Z of appli-
cations of the test required to improve the accuracy of a zero by one
decimal digit. Here again the methods using uniform coverings are not
optimal. For the optimal method using uniform coverings determined in

Theorem 3, it can be shown that

7z = 11.168

21
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. . . . 1
Lehmer's method covers the unit disk by a disk of radius 5 centered at

O, and by 8 disks of radius fg centered on a circle of radius %’
For this covering, if the sequence of surrounding disks is chosen optimally

as suggested in [6],

z = 11.143

It can be shown that Lehmer's coverings is again not optimal, if only by

-- the trivial reason that it has some built-in slack to counteract rounding.
The detailed investigation of optimal non-uniform coverings must, however,

wait for another-paper.
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