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I Abstract

I Let A be a real symmetric matrix of order n , B a real
symmetric positive definite matrix of order n , and C 4nd nyp

L matrix of rank r with r <p < n . We wish to determine vectors x

1 for which
x! Ax / xt Bx

1s stationary and clx = ¢ , the null vector. An algorithm is given

I for generating a symmetric eigensystem whose eigenvalues are the
stationary values and for determining the vectors X . gavyeral Algol

L procedures are included.
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1. Introduction and Theoretical Background

1 Let A be a real symmetric matrix of order n B a real
symmetric positive definite matrix of order n , and C an nXp

L matrix of rank r with r <p <n % We wish to determine vectors

{ X such that
x Ax / x! Bx

L . T
18 stationary and C x = © , the null vector.

g ~ ~~

L By rearranging the columns of C , we may write

[ R STr

_ QC = |=

L he
where R, 1s an upper triangular matrix of order r , S is rx(p-r) ,

T

[ and QQ =I . The matrix Q may be constructed as the product of r
Householder transformations (cf. [3]).

L Let

y

Z

where y 1s a vector of the first r components of w and z consists

[ of the last (n-r) components of w . Thus

| RY 0 yT r ~
C X = mmes—— um Q

[ st 0 Z
and hence

L Yy = © .
L



[ Ww QAQw Jw QBQlw subject to w, = Ww, =. . .=w_=0 .~ ~ r~ + —

[ Let

L . yy Gyo oT feG =Q AQ = ’ H=Q BQ =

Gi, G HY, OH

[ 12 22 12 22
where Gy10Hq1 are rxr matrices, 8and Goostog are (n-r)x (n-r)

[ matrices. The matrices H and G are symmetric; H is positive

[ definite, and Hos 1s positive definite. Indeed,

[ 0 < Moin (8) = Moin (Hap) AS Max (Hop) iS Mpa (HD) |
Thus the stationary values we seek, are the eigenvalues of the matrix

[ equation

[ : Gop 2 = NM Hp Z (1)

[ Since Gos and Hon are symmetric and Hoo 1s positive definite, we
"may solve (1) by using standard algorithms (cf. {6]). Finally, if

| then
0

T

I Xp = 9 23 (2)
I
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L When p =1, and B =I, a slightly different algorithm may be

[ used for computing the stationary values. We assume

[ ete = 1 . (3)
Let

TL o(x) = x0 AX -A xx +2 pxe (4)

[ where (MN,u) are Lagrange multipliers. Differentiating (4), we are

L led to the equation
AX = NX + uc = ©. (5)

| Multiplying (5) on the left by € and using (3), we have

| T

[ | Thus substituting (6) into (5), we have
P Ax = Ax

L : :
where P = I-cc™ . Note P = P so that

2

[ NPA) = NPA) = N(PAP)

[ . The matrix PAP is symmetric and consequently one of the standard
methods may be used for computing its'eigenvalues.

[ : It is easy to construct the matrix PAP using a device of Wilkinson [9].
: Let

L K = PAP = (I - ce A(T - cel)
rvs NY

[ —A -cw -WC +tace

[ where



L :
a =c¢ Ac and w = Ac .

[ Then 1f

[ U - 2 C - Ww 2 _

[ K = A + cut + ue”
Therefore if

L Kz. = MN. Zz. ,
~L ~~ Ld

L then

[ The vector ¢ 1s an eigenvector and the corresponding eigenvalue
1S zero.

L ;



L 2. Applicability

2.1 Testing for serial correlations

| | Let X be a given nxp matrix of rank r and y be a known

[ vector. The vectorb is the least squares estimate of regression
vector so that

t ly - Xb) = min.~ ~)

L In many situations, 1t is desirable to consider the statistic
- T ' T

[ d=2" Az /z z
where z = y-Xb , the residual vector, and A is a given symmetric

| matrix. For

[ 1 -1 | |
~1

-1 2

{ |
A = |

L () -1 2 - 1
[ —-1 1

| the statistic d is the serial correlation of lag one. Note that

L Xz = 0 . We wish to consider the distribution of d over all possible z .

L Thus under a suitable transformation, we may write
n-r n-xr

2 m2

L d= XN MELEi=1 i=1
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L n-r
where {th 1 are the stationary values of 7 Az over tz = 1) 1= ~ ~~

| with x! 2 = © . The distribution of d is discussed in special cases
~ wv

[ in [2].

2.2 Exponential fitting

m

t In many situations, we observe a sequence {z,} , and we wish
k=1

to determine parameters (aa , 3s so that
L 8 1-0 3-1

Z “oa + 5 a AE (k = 1,25 404,m) (7)[ k = To . i i > ’ |i=1

m

[ From (7), we note that tz}, 1 satisfies a difference equation of- the form

[ . . + = == + sn%0%k . B1%c1 ot. tT Bgl Prqel T f (K Tah m)
: qtl

| where ©) 1s a random perturbation. The coefficients la.) i =O1 =

[ determine the characteristic polynomial:
+1 qN) = a AS A

f P(N) = a tah ta,
Note p(l) = 0 by (7).

L One procedure which may be used to estimate the coefficients of the
k

I characteristic polynomial is the determine {a}, 5 5° that1=

Im 2

y €, = min.
L k=g+1

+1 > gt+l
y subject to the constraints ¥ a, = 1 and Y a, =0 . In matrix
l 1=0 1=0

L T



form, we have the problem of determining a so that

L al We Wa = min.

[ with
ala = 1 and ela = 0

[ where

| Zg+1 yeeesZyrZy | ® 1
+ b J > J

( w= qt2 2’ "1 | , a= 1 , e =
Z 3 Z_ apeeesZ | & 1

| m° m-l m-q-1 q+l
Thus the procedure outlined in Section 1 may be used for determining a . A more

[ sophisticated statistical model for determining a is given in [8] by Osborne.

[ 2.3 Sloshing frequencies
In [5], Henrici et al. give & method for determining approximations

[ (with rigorous error bounds) for the sloshing frequencies of an ideal

1 fluid contained in a half-space with a circular or strip-like aperture.
The stationary values may be obtainednumerically by the method described

L in Section 1.



5. Formal Parameter List

[ 3.1 Input to Procedure REDUCE
n number of rows of C.

L p number of columns of C .

[ tol a machine dependent constant equal to
eta/macheps, where eta is the smallest

[ positive real number representable
on the computer, and macheps is the

machine precision, the smallest ¢

L N such that 1lte > 1 .

{ eps a tolerance used in determining the
rank of C .

c[l:n,l:p] contains the matrix C to be reduced.

L Output of procedure REDUCE

L cll:in,1l:r] together with d4[l:r] , contains the| details of the transformations which

[ reduce C to upper triangular form.
d[l:r] see above;

L I column rank of C .

3.2 Input to procedure APPLY

L n order of the matrix AB .

L r number of similarity transformations to
be performed.

9



L d[l:r] see output of procedure REDUCE.

| c[l:n,l:r] see output of procedure REDUCE.
ab[l:n,1l:n] contains in its upper triangle the

L details--of the symmetric matrix AB .
gh(l:n-r,l:n-r] contains 1n 1ts upper triangle the

details of the symmetric matrix GH ,

3 which is an n-r x n-r submatrix of
'the matrix obtained by applying the r

similarity transformations contained

) in d and ¢c to AB .

3.3 Input to‘-'procedure BACKTRANSFORM

L n number of rows 1n C .

r number of backtransformations to be

performed.

[ all:r] see output of procedure REDUCE.

[ c[l:in,1l:r] see output of procedure REDUCE.
z[1l:n-r,1l:n-r] contains the matrix Z , the vectors to

1 ’ be transformed.

| Output of procedure BACKTRANSFORM
x[1l:n,l:n-r] contains the matrix X obtained by

| applying the r transformations
contained in d and c¢ to the

| n x {n-r) matrix, the first r rows
of which are zero, and the last n-r , Z2 .

i 1



L
4. Algol Programs

L
procedure reduce (n) data: (p,tol,eps) data and result: (c) result:(r,d);

| value n,p,tol,eps; integer n,p,r;
real tol, eps; array c,d;

comment This procedure computes the sequence of r Householder

L transformations necessary to reduce the nxp matrix C (n >p > 0)
| to upper triangular form. On input, c[l:n,l:p] contains the

3 columns of c. On output, c{l:n,l:r] and d[l:r] contain the
details of the transformations. r 1s the column rank of C;

| begin integer 1i,j,k,m;
real h,f,g;

| array sumsq[l:pl;
comment Compute the lengths of the columns of C to be used in

determining the necessary column interchanges in the reduction;

L for j:=1 step1 until p do
begin h:=0;

[ for i:=1 step 1 until n_do h:=ht+c[i, jlxeli, il;
sumsqglJ]:=h

comment Now determine the transformations;

begin r:=j;

hi=sumsq[j]; m:=3;

L for ki=j+1 step 1 until p do
if sumsq[k]>h then

begin h:=sumsq[k];
| m:=Kk

comment Interchange columns m and 3;

sumsqg[m]:=sumsq[j];

L 11
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]

L
begin g:=cli, jl;

| cli, jl:=cli,m];
cli,m]:=¢g

[ endon, :
comment Compute the Householder transformation necessary to

| reduce the jth column of c;
| h:=0;

h:=htc[i, jlxeli, jl;

| - comment If the jth column of ¢ is already essentially reduced,
the transformation 1s skipped;

| if h < tol then
begin afj]:=0; go to_skip end;
f:=c[j,j]; hi=h+fxf;

| g:=if £ > 0 then sqrt(h) else -sqrt(h);
d[j] :=h:=h+fXg;

L clj,jl:=fre;

| begin g:=0;
for k:=j step 1 until n do

| g:=gtclk, jIxclk, 1];
g:=g/h;

clk,i]:=clk,1]-gxeclk,j] }

end 1j

L skip:
h:=0;

[ comment Update the values in sumsqg and determine the modulus of
the largest element 1n the remaining matrix;

[ for i:=j+l step 1 until p do
begin sumsq[i}:=sumsq[il-c[j,ilxecl[j,1];

for ki=j+l step1 untiln do

L if abs(c[k,1]) > h then h:=abs(c[k,i])

| end 1;
12
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| |

- if h < eps then go to exit
i end J;

exit:

| end reduce;
L .

procedure apply (n) data:(r,d,c,ab) result:(gh);

| value n,r; integer n,r;
| array d,c,ab,gh;

| comment This procedure applies r orthogonal similarity transformations
to the symmetric matrix AB. GH is the (n-1) Xx (b-1) submatrix in the

| lower right hand corner of the resulting matrix. On input,
ab[l:n,1:n] contains the upper triangle of AB, and c¢[l:n,l:r] and

| d[1l:r], the details of the transformations. On output,: gh{l:n-r,1:n-r] contains the upper triangle of GH. The strict

lower triangles of ab and gh are not used. The actual parameters

| corresponding to ab and gh may be the same;
begin integer i,j,k; real f,g,h;

| wkian];

[ begin h:=d[j];
if h #0 then

| begin f:=0;

L ) for k:=j step 1until i do g:=gtablk,i]lx clk, jl;
for k:=itl step 1 until n do g:=gtabli,k]x clk, Jj];

| w[i]:=g:=g/h;
fi=fteli,j] x ¢g

f:=f/ (hth);

[ for i:=j+l step1 until n do
begin wlil:=wl[i]-f x c[i,]j];

| ablk,i]:=ablk,i]-c[i,j] x wlk]-clk,j] x wl[i]

L
13
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| end conditional
end J;

_ for i:=1 step1 until n-r do.
for j:=1 step 1until n-r do

- ghli, j]:=ablit+r, j+r] :
end apply;

g
procedure backtransform(n) data:(r,d,c,z) result: (x);

| value n,r; integer n,r; array d,C,Z,X;
L comment This procedure applies r orthogonal transformations to the

n X n-r matrix, the first r rows of which are zero, and the last

| n-r, the matrix Z, to produce the matrix X. On input,
z[1l:n-r,l:n-r] contains Z, and d4[l:r] and c[l:n,l:r], the details |

| of the transformations. On output, x[l:n,l:n-r] contains X. The
actual parameters corresponding to x and z may be the same;

| begin real h,s;
integer 1i,Jj,k;

for i:=n step_ -1 until r+1 do

x[1,j]:=2li-r,i];

L for ki=r step -1 until 1 do
begin h:=d[k];

. begin s:=0;

for i:=ktl step1 until n do’

R s:=stcli,k] xx[i, jl;
s:=s/h

8 xlk,j]:=0;
x[1,3]:=x[1,j]-s xeli,k]

end k

| end back-transform;
|

_
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| De Organizational and Notational Details
The matrix Q defined in Section 1 1s constructed in REDUCE as

| the produce of r Householder transformations. Using the notation in
[3], we have

L EY
| k+1| (EL) |p)

and

i (x) (1), (6)
P = (I - Buu )

[ where |
oo, n

2 (k).2

[ se = 2 (e5y)i=k

(k)= +[ 8, = (5,05, + 1)

L (k) _ (k) (x)

We have, then, that

L To recover the p(k) for use in the procedures APPLY and RACKTRANSFORM,
| it 1s necessary merely to retain the vectors 2 (K) and the values Bl .

15



_
kThis is done in REDUCE by storing ul ) in the k-th column of the

-1g array c¢ , and by retaining Bye in the array element alk] .

| In APPLY, it 1s necessary to form the matrix
T

QAQ

(since (p{ENT = p(k) ) This is done in r steps

I (1) =A
= a1) | p(k), (R)p(k) oy gp

These similarity transformations are accomplished 1n the manner outlined

[ at the end of Section 1.
The procedure BACKTRANSFORM performs the transformation of the

| eigenvectors of the eigenproblem (1) according to (2).

I The use of the parameter tol in REDUCE is discussed in [7].
The problem of determining a good value for the parameter eps

| ; in REDUCE for the purpose of determining rank is rather difficult,

I (cf [k]).

|
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©. Numerical Properties

g The stability of the eigensystem of a matrix with respect to

I similarity transformations by elementary Hermitian matrices 1s
discussed by Wilkinson in [10]. )

L ,



IE Test Results

I These procedures were programmed and tested on the IBM System 360/67

| at the Stanford Computation Center, Stanford, California.Iong floating point arithmetic was used (14 hexadecimal-digit

| fraction). Inner products were not accumulated in double precision.
To provide an example of the results produced by these procedures,

b the following matrices were used:

| 1 -1 0 Q 0 0-1 2 -1 0 0 0

0 -1 2 -1 0 0

I CAT 0 0 a1 2 ao ’
0 0 0 -1 2 -1

L 0 0 0 0 -1 2

L 6 5 L 3 2 1
I 5 5 4k 3 2 1LL kh 3 2 I

BR —_—

5 5 > fo 2 1 |’
I 2 2 2 2 2 1

[ 1 1 1 1 1 1

I 1 1 8 5
1 -1 2 1

I 1 1 8 5
“Tl 1 a1 2 1

I 1 1 3 5
1 -1 2 1

L y



With eps = 3,514 REDUCE correctly determined that the

L rank of C was 2 .
, The following stationary values and vectors were then determined

L by finding the eigensystem of the resulting generalized eigenproblem (1):

L
Stationary values: 1.7003926L8L7579, ,-01

t 1.23788202328080, +00
| 4.91760119261002, +00

L 9.27447751926161, +00

Vectors: 2.8608538248L4507, 1-01 -1 8964700766029, ,-01

[ 2.8212L288705312, ,-O1 2.2102074910217h, ,-02
1.55676307221979, 4-02 5.7254999836396k, -01

L -1.09686L418150L06, ,-01 L.49859712956573, ,-01
I -3.01653015206705, ,-01 -8.29052975979350, ,-02

-1.72437870554907, ,-01 -1.71961787866790, ,-01

L
-4.95022659856k11, ,-01 4 .83069132908663, ,-01

L 3.95292112932390, ,-01 -9.81662063525T467, ,-01
1 7.68429013103898, ,-O1 5.30528981364161, ,-01

-8.92878392907869, 4-01 L.54008k1LLL63L3, J-01

[ -2.73406353247487,, -01 -1.01359811427282, +00
L.97586279975478, 4-01 5.47654220811123, ,-O1

L
In addition, for each vector x above, the vector XC was computed.

| In each case, the value of the maximum element in this vector was less
in modulus than 1.1;,-15 .

L ?
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L
The elgensystems of the generalized eilgenproblems arising 1n our

i work were found using the procedures reducl and rebaka [6],

] tred2 [7], and taqf2 [1].
J

L
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