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Abstract

Consider the system of linear equations AX = b where A is an

— nxn real symmetric, positive definite matrix and bp is a known vector.

Suppose we are given an approximation to x , & , and we wish to

= determine upper and lower bounds for ||x - 3 where I...] indicates

g the euclidean norm. Given the sequence of vectors (r, Js, where
r. = Ar. 4 and r = b-AE , it is shown how to construct a sequence

- of upper and lower bounds for |x-¢ | using the theory of moments.

In addition, consider the Jacobi algorithm for solving the system

x=Mx+b viz. X:p7 = Mx, +b . It 1s shown that by examining

oO. =X, -.X , 1t 1s possible to construct upper and lower bounds
L ~1 ~1t1 <1

for Ix, -x|| .~1 ~
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1, Introduction

— Consider the system of linear algebraic equations

Az=Db : (1.1)

ha whereA is an nxn real symmetric, positive definite matrix and b

1s a given vector. Assume we have an approximation tox so that

x=£E+e (1.2)

i where € is the approximation vector and e is the error vector. We

are concerned with determining upper and Lower bounds for |e] where
— I... indicates the euclidean norm of the vector.

i In order to compute bounds for the norm of the error vector, it is
natural to compute the residual vector,

| r =b - At : (1.3)

| Thus since r_ = Ae ,
EN (1.4)

| lal]
| Here IN| indicates the spectral norm of the matrix A . Assuming that

i Ia = 1 (this can be accomplished via a simple scaling of (1.1)), we see
that even though |r| is "small", the bound for |lell can be quite

~ large when lad 1s very large.

’ By computing additional information, it is possible to obtain more

‘precise upper and lower bounds on the euclidean length of the error

| vector. In Section 2, we give an algorithm which depends upon computing
an auxilliary sequence of vectors and an explicit knowledge of all the

eigenvalues of the matrix A | The bounds are actually obtained as a

solution to a linear programming problem.
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In Section 3, we use the same sequence of vectors as described in

|
— Section 2 but we assume that the only information that the investigator

has 1s an upper bound on the largest eigenvalue of A and a non-trivial
-

lower bound for the smallest eigenvalue. Using the theory of moments,

§ an algorithm 1s given for determining upper and lower bounds. Then in
Section4, we consider the Jacobi iterative method for solving the system

— of equations (1.1), and we show it is possible to establish bounds for

| the error by examining the difference of successive iterates. Finally,
—

a numerical example is given in Section 5. In a future report, we shall

L give methods for improving the approximate solution using the techniques

] described in this paper.
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2. Bounds using linear programming

. Consider the Krylov sequence [6],

Se

where r. 1s defined by (1.3). Thus

= r. = Ar (i = 0,1 k)

Ne We define

n |

so that

~ ~ P. AQ
(x ory) = (A rsh r)

= Aba- ( sr.)

L = Hotq (prq a 0,1, o« sk) a
Since A 1s symmetric and positive definite, we have

— with

| : 0 for i #7

TT 1 for i = j
~.

_ and

O<a<A <A. <...<AN <Db .
| - 1-2 = - n-

Now writing

n

= r =) au| ~0 L iti1.=

we have |



p= (Ar ,r_) = h of Az (m = 0,1,...,2k) . (2.1)
i=1

— -1
Since e = A Tr, ,

| . 11

- Iel® = rer) = Xap rin osu, (2:2)
i=1

oe Equations (2.1) and (2.2) are equivalent to

: | b m |
i. po= [ »daa(h) (m = -2,0,1,...,2k) (2.3)

a

_ where the weight function of the Stieltjes integral 1s determined as

follows:

- -

a(N) = 0 for a <M <M

— aM) = of + al +... + of A <AZSD

— The problem of determining an upper and lower bound for ell 1s

equivalent to the following:

h Given the (2k+1) moments Ms , determine upper and lower

: bounds for ho

The solution to this classical problem (cf. [7]) is dependent upon the

— amount of information available.

Suppose we know the eigenvalues of the matrix A . An example of

= this 1s the usual five point approximation to Poisson's equation with

Dirichlet boundary conditions in a rectangular region. Thus to determine
—

an upper bound for lel , we wish to maximize

L
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” 27M

i=1

er subject to the constraints )

2 m

Fr m
| (2.4)

The numerical solution to this problem can be obtained by the simplex

algorithm of G. Dantzig [3]. Special techniques may be used to take

L advantage of the fact that a Vandermonde system is solved at each

iteration of the simplex algorithm. A lower bound for ell 2 may
' n ~

be obtained by determining the minimum of y A subject to the
i=1

constraints (2.4) by the simplex algorithm.
 _—
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3. Error bounds using the theory of moments

| In the more usual situation, one has the information that

-

l

|

a This 1s a problem in the classical theory of moments which has been

solved by A. A. Markov. In order to give a numerical algorithm for
-

determining bounds for ell , we review some facts from the theory

i of Gaussian quadrature.
2K

| Suppose we are given 0 , and a function (MN) (a A <b) ’=

— and we wish to determine (L,U) so that

b

| L < [ e(M)aa(™) <U
- SU

| We can determine a quadrature rule such thatb m

b= Mag(n) H IE =] ES 00 « @ 0oL 0 Z0&=0Ter a 1= J=

- where {A t 1E and (B.}" are unknown and (2.1. 1s specified-
Then

-

b nm

J o(v)aa(™) NIH > 2 @(z,) + Ro]
i. a 1= J=

where

(2k+m) b
¢ (n) 2 ARip] = Cry Mvez)) | (Mt,) 1 aa(N)2ktm )? J j<1 1 1

(3.1)

: a<f<b .

2

— Thus if @©(A)= A and m= 1,

-2 ~(2k+3) b 2
RINT] = -2(k+1)7 [ (vz) [| Ont)1780 (M) .her AoI i=1

—
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L Hence for Zq = a , the Gauss-Radau type quadrature rule yields an upper
b_ _

L bound for [A Zac (N) and if z, = b , we have a lower bound. Itq" 1

can be shown (cf. [7, pg. 80]) that these bounds are attainable.

| It 1s not necessary to solve-the equations for the quadrature rule.
Let us note that

X r r
p= At, + Bjz) (r = 0,1,...,2Kk)

1 i=1
where z, may be a or b . Let us write

- = ~ — . \Hh, = 2. A, t. + Bia for all r and for Z, a (3.2)
i=1 SA————————

| so that _

| bo, 2H, .
~ Ce vuth

1 From (3.2), we see that i, satisfies a (ktl)— order difference equation
So Mp « Bp Hpg =v ome Be Hyg” Ho (k+1) = 9 (3.3)

L and t,t, .-., NG , and a are the roots of the characteristic polynomial
- k+l  - k -

| J — + -| p(¢) = gt gE +f... ttl
A

Since p(a) = 0 , we must have

L - k+l A k s 5a _ n8,8 ga tga 1 0 : (3.4)

L Thus using (3.3) and (3.4) and the fact that H.. = Is for r = 0,1,...,2k ,
- k

we have enough equations to determine 18310 Having determined

- te; 5 » one can solve for Wu 5 by recurring twice backwards with

i equation (3.3).
To determine a lower bound for the error viz. bo it 1s

1 necessary to solve for 12535 0 from equations similar to (3.3) and
the additional equation

|



k+1 k| + | JE b-1 = 0 .

| £0 b 81 x
Note to solve for lg, 1s , it 1s nocessary to change only one row in

L the matrix and one can use the devices given in [2] for solving such a

L modified system efficiently.
For large k , the system of linear equations which one solves for

1 the coefficients of the difference equation may be quite 1ill-conditioned.
For that reason it 1s sometimes preferable to solve explicitly for the

L quadrature rule. As 1s well known, the.nodes of the quadrature rule are

| the roots of orthogonal polynomials. Now the orthogonal polynomials
satisfy a three term recurrence relationship viz.

i po (A) = (6.0 = Np. (A) = 1p, L(A)
+1 j+1 J J Tj-1

L p_1(M) = 0, Po) = 1 =
The coefficients fe 1% EW Ea can be computed directly using

~ j‘i=1 , 13 3=1

: the Lanczos algorithm [8].
[

Again, let

| : “b - A. r, =b - Af

kk
We generate a sequence of vectors {z.}. such that

. ~ lL 1=0

0 for i # 7

. (23025) = CL
1 for 1 = J

he Let 2 r x (|r yt~0 = LO ~0 .

! Then for 7 = 0,1,...5k ,
—

—

"
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C J J J

Ww. = Az. - E, Z,= MN. Z. = 0)| ~Jt1l ~d Jtl ~J 3 ~j-1 7 (ng
—

—

z i Ww

| Zph1 7 Mgr KS
For numerical stability, one must re-orthogonalize 2:41 with respect

| ~
t

i. to all the previous Z;'8 . Let

o I

{ h . . ()
| J =

{ [J LJ [ J

-

. . The

| EL Me Sk+l

L Tt is well known (cf. [5]) that the eigenvalues of J are the roots

of the polynomial Pryq(M) . In order to compute the upper bound for

— ell , we need to compute the Gauss-Radau quadrature rule with the fixed

node a . This can be accomplished by the following algorithm suggested

|-—

+ by Mr. David Galant [4]. Let

!

. C =J - al

sO Cc 1s a real symmetric positive definite or semi-definite matrix. Let
-

C = FEL ,

= where F 1s the lower triangular Choleski factor of C . Now let

9
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_ C=FF = ST

: | he Seen J
- “ (k+l) x(k+1)

and

] SI1 | | ()

| | The1 E, 0
| 0 0

| +1)x (kt1)

i Then the eigenvalues of (§ 4 aI) yield the nodes of Gauss-Radau rule.
By using a variant of the algorithm described in [5], it is possible to

. compute the quadrature rule. 1p order to compute the Gauss-Radau rule
.

with the fixed node b | one performs similar operations to those

described above on the matrix C = bI-J .

10
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L, Error bounds for the Jacobi method

. EE—
Consider the system of equations,

- cy = f (4.1)

where C 1s a real, symmetric positive definite matrix of order n .
—

. -1/2 -1

LetD = diag[ (c,;) / Le ey (¢,) 2 . We may write (4.1) in the form
— pepD ly = Df (4.2)

|

L or equivalently,

| Ax =b : (4.3)

Note the diagonal elements of the matrix A are all equal to one. Hence

- A=1-M

| where the diagonal elements of M are zero. We shall assume that M
-

1s convergent viz. max In; (M) < 1 ., The Jacobi method viz.
! 1<i<n

L

Xiep ~ ME; FD (1 =0,1,...)

1s frequently used to solve (4.3).

| . Let
-

e. = X-X, =M e
~1 ~ 1 ~0

(-

and

~1i ~1itl Li ~0

O ] ] 1 = -— =" The vector 5. is the difference vector. Since 0 Xop1 = Xo

Mx. + b - x. =b - AX, s the difference vector 1s the residual vector

— associated with X, Note

— 11
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e, = (1-M)"t O, = (1-M)"% od 8~1 Ji 20 .

Given {® JE we compute
N— ~1 1=0 !

5 ,8 ) = pq _
5 (8, ~Jq (5, M 5.) m Vtg >» ta = 0,...,2k).

i. Thus

2 ~ -1 k+l “1 k+l
legs | - (C1417 pp) = ((I-M)™" mM 5 (1-M) M >)

_ ~ .

Since M 1s symmetric, we have

|

0 fori #

(u;5u5) =
| 1 for 1 = J

| and we assume

| | <& < £5 < <E 3S
] Thus

~ da

vp = | £Mas(e)m o (m = 0,1,...,2k)
b . and

| d 2+
(Cro 8er) = —— ap(¢)

c (1-¢)

We wish to determine upper and lower bounds for )
I. This

problem was first discussed by H. Weinberger [9] for Co 1 |

12



Again, 1f the eigenvalues of M are known then one can use linear

4 programming for determining upper and lower bounds of lesa? © Thus

| to determine an upper bound for Ile 15 we wish to maximize

n g Skt 2
- i

). Ls PN
i=l © (1-¢,)

oo subject to the constraints

2. ES =v (m = 0,1 2k)
i=; * 1 m Tree

If the eigenvalues are unknown, then we are unable to use the

| arguments associated with the residual vector since the (2k+1)SL
: : _ pckt2 2 : :

derivative of Q(t) = ¢ /(1-¢)“ is not of constant sign in the

| interval (e,d) .

| Now, if we can determine a polynomial Poy (€) such that
2k+2

ck €} PoE), c. ct 3 > 22k = 0 = 1 Ee wh @ = C 2k = >L (0

for ¢c <t& <d
[. S— [R—

then this will determine an upper bound for lepeq] since

d d g2kt2
J Pac (8)AB(E) =cqgy . . « tegyy > [ —=—s ape)

c  (1-¢)

| The polynomial P,, (€) is not unique and consequently we desire that
polynomial for which

13



j + LI =
CoVo . F CoV oe = min.

Unfortunately, there does not seem to be any numerical algorithms which

will satisfactorily solve this problem in general.

_ Let A = (1-¢t) so that

d 2k+ 2 b k+E oY 2k+2
z : 2c  (1-¢) a A

ee

(Du + 3 (c1)° (22=u, - 2(kFL)u + 1 ( )
where

i "oe
Hq - J A dax(N) (s — ~2y=1,..., 2k) .

| It 1s easy to verify that

| He = (-1)° A% ®

where

-
Dy = -
Vo © Va Vo

S s=-1
A =

» Vo AA v,)

| S
| . and hence He a (8,5 (I-M)73) . Our problem now 1s to determine upper

and lower bounds for

- +

Ho 2(k eq

In order that there exist a distribution function a{A) | onin the

Lnterva (2,b) associated with tg ko, » 1t 1s necessary and sufficient
that

1h



3 |

| —— M od . .

2 "a yo1 |

H_ 1 Hy : hy

| Mp1 He tl
2K 2)x (k+2)

L (i
and

= | _ re ’ . Yq |
| Y 7, . 9? . !-1

G = * d . !

- 'k-2 : © Toes
»  (k+1)x(k+1)

| where

Y. = =lab 4 (at; [ab 1-( Pig LI (4.4)

“be positive semi-definite (cf. [1]).It is easy to see why G must be

- positive Semi-definite, Note from (4.4)

b ;Yo = - abr? - (a+p)Jdti +

3
= [ Ma) naan

a

Hence,

15



o i Tz GZ = Y.,.Z2. 2

~~ i=al jE vd + J

o b k-1 1.0
— | ( y ZA ) (N-a)(b-a)da(r) > =

S i=-1

— A similar argument shows that M must be positive semi-definite.

Observe that there are two elements which are unknown 1n G and two
|

elements which are unknown in M and they occur in either the first

is row or column of the matrix.

- / 1

| Figurel

| Since M and G are positive semi-definite, 1t 1s necessary and
—

sufficient that de-t(M) > 0 and det (G) > 0 in order for the values

L hook 1 be consistent with some distribution a(h) with moments

Has bys seesbin The positive semi-definite property of M and G 1s

. equivalent to the non-negativity of the sub-determinants indicated in

| - Figure I.
We partition the Hankel matrix M as follows:

H_o J H_q Ho * ee) Hye 9 .

| A B
— H_1 2 Hp | Hyseeerby

i M = = °

Her Px Pre ooo boy

16



| Since M 1s positive semi-definite

-1 T

| det(M) = det(C) det(A-BC™™ B) > 0

so that

— + +
Hoe TT Pa TT

» det > 0 (4.5)
aE + +

CL hq r, Hy Tz

BN where
—

EE: 1 _T
— = -BC © B :

| fa 13

L -3 7
The matrix -BC ~ B can easily be computed by applying the Choleski

| algorithm to the matrix

0 B

BT| ¢

- One must begin the pivoting operation, however, from the bottom diagonal

element and after k eliminations, the upper 2x2 matrix will contain
|V—

pet pT . In a similar fashion,

det > 0.(4.6)

abu, (8*b)uy - py +s, 5 -8bHy + (a+b)u, - b+ Ss

— From equation (4.5), we see that

2+ + -

3 (hp rug +75) = (by + 2))% > 0

17



and hence since Hy + rg > 0 by the positive semi-definiteness of M

2 2

- M > ———F— 1 = ———=— -R .
2 Ho rz 1 Lo Ry 1

- From (4.6), we have

J H_o S41 H_4 + So
det | > 0

) ho, +8 S

— -1 2 3 |

where

| -— -.

~ (a+ + -

; Sg. = @—_——= ZZ << 0
f 3 ab
bee

since ab > 0 ,
be

and hence

- (bn, + 8,)°
KH < _-t 2 - S-2 = 5 1
‘ 3

~—

Therefore

a 2

= (h_; +R) (b_q 8) )—x —-B << MH, < —g—- 5; . (4.7)
5 3

-

a

-

18
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he. 2
| +

oo. Hoo = Rr. - Ry
| 5

level lines of Db
Ho =2(kt1

I |

r

I I A
. } (b_q + S,)

Hoo = Sg - 5,3 |

Figure 11

Thus to determine the maximum of

1t 1s simply necessary to examine the boundary of the shaded region in

Figure II. a short calculation yields CIC for which
<

A Shy SQ |

Then - + |
oz 2(k Lu = maximum subject to (4.7) if

2

du S © 5) = = 2(kt1

and

19



— Q =< H_4 =< Q, >

otherwise the maximum occurs atUu . = Q, or WY
_ «1 1 1 Q, according to

uJ = max{Q,, min{-S (k+1)8,,Q 1}-1 Y r- 3772 :
L—

| Similarly, the minimum occurs at

ut = max{Q., min{-R_ + (k+1)R,,Q 13
| ) -1 1° 2 3’%2

Thus, it is possible to determine upper. and lower bounds for Cy ,

| and these bounds are attainable.

20)



| 5. A numerical example
” Zeonvac Eo

Consider the system of equations

~—- Ax =b

|
— where A is a tri-diagonal matrix with elements (-1,2,-1) and

3 b = 0, the null vector. It 1s well known that
x

—

Jn :

| hs (A) = 2+ 2 cos er , j=L2 ..4gn'.
-

The Jacobi matrix M is also tri-diagonal and has elements (1/2,0, 1/2).

3 Here -
j 7

The Jacobi method was used for solving the system for n = 20 and

x = (1,1,00.,1) . In Tables I, II, and III, we give the error bounds

1 associated with the error vector of 210 To use the methods of
Section 3, we must compute in addition {r,} for p = 0,1,...,k.

L In Tables II and III, we give bounds for the error using the difference

vectors {8g oN for p = 0,1,...,k . Note that the bound using the~0-

—
residual vector is slightly better than those computed using the difference

_ k

| vectors but 1t requires additional work to compute EN whereaslL “Dp p=

the difference vectors are computed in the natural sequence of events.
§

| In addition, note that the lower bounds are less influenced by the

interval of the eigenvalues than are the upper bounds. Furthermore, we

~~ see that in this case that a knowledge of all the eigenvalues does not

provide much smaller intervals for the error.
-

|

= 21

[

hh.



~—

i The authors are very pleased to acknowledge the stimulating comments

of Professor H. Weinberger of the University of Minnesota and

~ Mr. David Galant of the Ames Research Center.

—

LL

—

|
|
-

-

-

—

“

—

1

~

| 22



— Error bounds after 10 iterations

2

| e ||” = 2.700138

Table-1
—

Error bounds computed from residual vector using Gauss-Radau quadrature rule

- Lower bounds Upper bounds |

| a=1.116917, ,-2 8=10"* a=1.116917, -2 a=10""
3 K

b=1. 988831 b=1.99 b=1. 988831 b=1.99

. ..1 1.35 1.35 5.40, 51 ly 21 ot

2 1.55 1.54 2.05, 41 2.52,,1
— —-—

3 1.66 1.66 9.40 1.12,1

4 1.81 1.81 6.89 8.08

5 1.89 1.89 4.84 5.50

_

Table II

| Error bounds computed from difference vectors using determinantal inequalities

Lower bounds Upper bounds

a = 1.116917. -2 a =10"2 a =1.116917. -2 a =1072
" 10 10

b =1.988831 b =1.99 b = 1.988831 b =1.99

— ] _

1 1.55 1.35 2.29% 6.59, ot

— 2 1.43 1.43 3.88.41 4.82, 41

} b, 1.48 1.48 2.05, 41 2:51, 41
4 1.56 1.56 1.70, 41 2.08, 1

_ p) 1.59 1.59 1.29.41 1.57141

25
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| Table III

Error bounds computed from-difference vectors using

~~ linear programming

- k Lower bounds Upper bounds

1 1.35 ok. 1

{ 2 10
2 1.45 86, 1> 10

5 1.55 1 1| 7310
4 1.61 1.50. 1

| +2 10> 1.62 1.04. 1
10

|
~

\

|
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