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Abstract

Consider the system of linear equations AX = b where A is an

nxn real symmetric, positive definite matrix and b is a known vector.

Suppose we are given an approximation to x , €, and we wish to

~

determine upper and lower bounds mdk -E” where|L..| indicates

~

the euclidean norm. Given the sequence of vectors [ri}§~0 where

r. = Ari-l and r.= b-AE , it is shown how to construct a sequence

of upper and lower bounds for ”X-E” using the theory of moments.

In addition, consider the Jacobi algorithm for solving the system

x=Mx+b viz. X:pqp = Mx;4b . It is shown that by examining

6i =X "X it is possible to construct upper and lower bounds

for “fi-f” .
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1. Introduction

Consider the system of linear algebraic equations
Ax=b . (1.1)
where A 1is an nxn real symmetric, positive definite matrix and b
is a given vector. Assume we have an approximation to x so that
x=£E+e (1.2)

where €& is the approximation vector and e ig the error vector. We

~

are concerned with determining upper and lower bounds for “e“ where
”...” indicates the euclidean norm of the vector.
In order to compute bounds for the norm of the error vector, it is

natural to compute the residual vector,

r =b - At . (1.3)

Thus since r_= Ae,

lz._|l

=2 < el < a™H e . (1.1)
[lal
Here [all indicates the spectral norm of the matrix A . Agsuming that
lall = 1 (this can be accomplished via a simple scaling of (1.1)), we see

that even thoughlhbu is "small", the bound for|k” can be quite

large when “A_ln is very large.

By Computing additional information, it 1is possible to obtaln more

‘precise upper and lower bounds on the euclidean length of the error

vector. In Section 2, we give an algorithm which depends upon computing
an auxilliary sequence of vectors and an explicit knowledge of all the
eigenvalues of the matrix A | The bounds are actually obtained as a

solution to a linear programming problem.
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In Section 3, we use the same sequence of vectors as described in
Section 2 but we assume that the only information that the investigator
has is an upper bound on the largest eigenvalue of A and a non-trivial
lower bound for the smallest eigenvalue. Using the theory of moments,
an algorithm is given for determining upper and lower bounds. Then in
Section 4, we consider the Jacobi iterative method for solving the system
of equations (1.1), and we show it is possible to establish bounds for
the error by examining the difference of successive iterates. Finally,

a numerical example is given in Section 5. 1In a future report, we shall
give methods‘for improving the approximate solution using the techniques

described in this paper.



2. Bounds using linear programming

Consider the Krylov sequence [6],

Ei""l = Afi (i '= O,l’o-o,k-l <l’1)

where rs is defined by (1.3). Thus

~

fi = Afo (i = O,l,.-.,k) .
We define
n
(x’y) = .Z xiyl
1=
so that

P a ©
- (Ap+qr ’ro)
= “p+q (P:q no,la.‘h-:k) ®

Since A is symmetric and positive definite, we have

ABi = xj}}i (i = l,z,...,n)

with
0 for 1 # 3
(ui,uj) =
T 1 for i =7
N

and

0< a < A

SKZS... <K Sb

1 - n

Now writing

we have



u =(AI‘,I‘)— Zal.z }\m (m—o,l,ooo,Zk)
i=
Since e = A™r ,
~0
.1
2 -2 2
e A e

Equations (2.1) and (2.2) are equivalent to

b
b= o (W) (m = -2,0,1,...,2k)

a

(2.1)

(2.2)

(2.3)

where the weight function of the Stieltjes integral is determined as

follows:

a(h) =0 for a < M <A
22 2
a(x)—al+a2+...+oct M
oz(>\.)=o¢2+o&2+...+oz2 A
1 2 n n

(t = 1,2y¢0.5n-1) ,

The problem of determining an upper and lower bound for He” is

equivalent to the following:

Given the (2k+1l) moments Moy determine upper and lower

ettt

bounds for u_z .

The solution to this classical problem (cf. [7]) is dependent upon the

amount of information available.

Suppose we know the eigenvalues of the matrix A .

An example of

this is the usual five point approximation to Poisson's equation with

Dirichlet boundary conditions in a rectangular region. Thus to determine

an upper bound for He“z , we wish to maximize



algorithm of G. Dantzig [3].

constraints

]

The numerical solution to this problem can be obtained by the simplex

Special techniques may be used to take

advantage of the fact that a Vandermonde system is solved at each

iteration of the simplex algorithm. A lower bound for HEHZ may

be obtained by determining the minimum of §§l7ikig subject to the
i=

by the simplex algorithm.

051y e0ey2k)
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3. Error bounds using the theory of moments

In the more usual situation, one has the information that
O<as>\-isb fori=l,o.o,n .

This is a problem in the classical theory of moments which has been

solved by A. A. Markov. In order to give a numerical algorithm for
determining bounds for |le|| , we review some facts from the theory

of Gaussian quadrature.

2
Suppose we are given {ui}ifo , and a function ®(N) (a <M<D),
and we wish to determine (I,U) so that
b
L < [o(Mda(M) U
We can determine a quadrature rule such that
b il
b= | Va0 @ i‘lAiﬂ; ERDY T A R
a 1= 'Jz

h {A,,t }k and US}m are unknown and {Z-f? is specified-
Rt M A ] 3’ 3=1 3’3=1

Then
b m
e(M)do(N) = ﬁ:A.w(t.) + ) B.o(z.) + Rlo]
where
(2k+m) b
Rlo] = Erggggy%nl aj jig(x-zp [;@i(x_ti)]eda(X)

(3.1)
a<®<b

-2
Thus if @A) = A and m =1,

b
RIN2] = -2(ir1)n (D) i (x-zl)[.ﬁl(K-ti)]Eda(k) .
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Hence for Zl = a , the Gauss-Radau type quadrature rule yields an upper
b _
bound for r N “da(N) and if z, = b , we have a lower bound. It
au .
can be shown (cf. [7, pg. 80]) that these bounds are attainable.

It is not necessary to solve-the equations for the quadrature rule.

Let us note that

k
r r
b, = }E Aty + Byzy (r = 0,1,...,2k)
i=1
where z, may be a or b . Let us write
k r r
- 5 = - .2)
i, = 2: E, fi + Bla for all r and for z, = a (3.2)
i=1
so that -
iy, >wu, -
- . . vuth , .
From (3.2), we see that b, satisfies a (k+l}—j:order difference equation
B My o By P g o - v Bl Prox = Py (1) 0 (3.3)
andti}té}..., é , and a are the roots of the characteristic polynomial
- k+l -k -
= + -
p(¢) g0§ gl§ + + gkg 1
Since p(a) = 0 , we must have
- L, -k . _
g 8 tga t...tga-1 =0 . (3.4)

Thus using (3.3) and (3.4) and the fact that ur = ﬁr for r = 0,1,...,2k ,
- k . .
we have enough equations to determine {gi3i=0 . Having determined

one can solve for by recurring twice backwards with

{- k
11=0 ’ -2

equation (3.3).
it is

To determine a lower bound for the error viz. H-Z,

k . .
necessary to solve for {§i3i=0 from equations similar to (3.3) and

the additional equation
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k1l k
+ + ... - b-1 = 0
go b §1 b gk

k

o it is nacessary to change only one row in
1=

Note to solve for {gi}
the matrix and one can use the devices given in [2] for solving such a
modified system efficiently.

For large k , the system of linear equations which one solves for
the coefficients of the difference equation may be quite ill-conditioned.
For that reason it is sometimes preferable to solve explicitly for the
quadrature rule. As is well known, the.nodes of the quadrature rule are

the roots of orthogonal polynomials. Now the orthogonal polynomials

satisfy a three term recurrence relationship viz.
Py (V) = (byq - MR, =0 D, (M)
J+l Jtl J g Ta-1
p,(M) =0, py(M) =1

k-1 . .
The coefficients {g.}%_ {n.}._l can be computed directly using
Jj’i=1L J°3=
the Lanczos algorithm [8].

Again, let

r =Db - At

~0

L
We generate a sequence of vectors {Zi}i=0 such that

0 for i # ]
(232) = .
1 for 1 = j

tet 2 _ o x(llz I

Then for j = O,l,uon,k ’
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gj"‘l = (Ej)Afj) 2

Wiep = AZy - §‘j+1 S T Bt P R (ny =0

le+1 = ”YJ"’lH ’

-1

Zy+1 T Mye1 X Wy

~Jt1

For numerical stability, one must re-orthogonalize Zj+l with respect

to all the previous z.'s . Let

e
3

e k+1

It is well kﬁown (cf. [5]) that the eigenvalues of J are the roots

of the polynomial pk_'_l(?\.) . In order to compute the upper bound for
”f” , we need to compute the Gauss-Radau quadrature rule with the fixed
node a . This can be accomplished by the following algorithm suggested
by Mr. David Galant [4]. Let

C =J -al

SO ¢ 1s a real symmetric positive definite or semi-definite matrix. Let

where F is the lower triangular Choleski factor of C . Now let



SN h
T-]l . L]
6=FTF= ] 0 .
. . ﬁk
The §k+lJ
< (k+1)x(k+1)
and
r- -
ST f
~ ﬁl . .
5 . . .
. . nk-—l
o1 Ek 0
— 0 0

T k1) x(k+1)
Then the eigenvalues of (§ 4 aI) yield the nodes of Gauss-Radau rule.

By using a variant of the algorithm described in [5], it is possible to

compute the quadrature rule. 1p order to compute the Gauss-Radau rule
with the fixed node b | one performs similar operations to those

‘described above on the matrix C = bI-J

10
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ke, Error bounds for the Jacobi method

Consider the system of equations,
cy = £ . (k.1)

where C is a real, symmetric positive definite matrix of order n

Let D = diag[(cll)-l/z, ..,(%m)J/Z]. We may write (4.1) in the form
DCDD _12 = Df (4.2)
or equivalently,
Ax =b . (4.3)

Note the diagonal elements of the matrix A are all equal to one. Hence
A=T1-M

where the diagonal elements of M are zero. We shall assume that M

is convergent viz. max |Ki(M) | <1 . The Jacobi method viz.
1<isn
Xipg - Mg+ D (i =01...)

is frequently used to solve (4.3).

Let

e. = X - X, = Ml e
~i 2 i ~0

nd
5. =X. . -x. = M & X
O3 TXip m X M8

The vector 5, is the difference vector. Since 8. = x,. - X. =
~1 L1 ~itl ~1

Mx, +b - Xi =Db - AXi » the difference vector is the residual vector

~

associated with Xi Note

~

11
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-1 - .
& = (T 8, = (tm)h w5

. K :
Given {éi%% , we compute

It
<

= q
(épJaﬂlq‘ (EO,MP-l- 50) = p+q_ s (p+q

Thus

2 1 )
e ll® = (e178p0q) = ((T) 1 Mk+l:50,(I—M) 1y s )

Since M is symmetric, we have

M,E,li = gl. Ei s (i = 1,2,...,11)

0  for i # j
(ay515) =
1 for i = j

and we assume

<d<l1

_1<c_<_§l_<_§2_<_...5§n

Thus

d .
Vm = CLr gmdﬁ(g) (m = 0,1,...,2k)

. and

: ) d ,2k+2
Crr12 k1’ = dg(¢)
" (1-¢)°

We wish to determine upper and lower bounds for

problem was first discussed by H. Weinberger [9] for

12

0y +vey2k).

~0

”Sk+l” . This

k = l .



Again, if the eigenvalues of M are known then one can use linear

. . 2
programming for determining upper and lower bounds of ”Sk+l“ * Thus

to determine an upper bound for .HekﬂHQ, we wish to maximize

n 512k+2

D, ———

o 1 2
i=1 (l-gi)

subject to the constraints

Yoo £ =y (m = 0,1 "
o B S S = 01, ..., 2k)
@, >0 (i = 1,2 ...,n) .

If the eigenvalues are unknown, then we are unable to use the
arguments associated with the residual vector since the (2k+l)-s—t

derivative of @(t) = §2k+2/(1-§)2 is not of constant sign in the
interval (ec,d) .

Now, if we can determine a polynomial p2k(§) such that

Zkt+2

2k>§

p2k(§)a co = Clg 5 e @ @ CZkg (l-g)z

for CS§Sd

. . . 2
then this will determine an upper bound for ”ek+lH since

~

d +
gZk 2

(1-¢)°

d
cf Pa(8)3B(E) =cg g . . . toguy 2 ap(¢)

The polynomial sz(é) is not unique and consequently we desire that

polynomial for which

15
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Unfortunately, there does not seem to be any numerical algorithms which

will satisfactorily solve this problem in general.

Let A = (1-¢) so that

d 2kt+2
f £ 5 dap(t) = [’b MJF_Z da(M)
¢ (1-¢) a A2

2k
=p - 2(k+l + 1)8 [ &kte
-2 ( )“—1 Z% (-1) s+2 ) s

where

a=1d4d , b =]1-¢
b s
He = aj A da(A) (s = -2,-1,...,2k)

It is easy to verify that

Hy = (-l)s A%
o

where
Dy = V1 = v,
As\)o _ A(As"l Vo)
. and hence g o (§o’(I-M)§§o) . Our problem now is to determine upper

and lower bounds for

Koo - 2(k+l)u_l

In order that there exist a distribution function a(\) | th
in the

' i i 2k
interval (a,b) associated with {“sé=-2 » it is necessary and sufficient

that

1h
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.be positive semi-definite (cf.

Meo1
Hy
]_V_[:
" " . . .
k-1 k K
~ 2k 2)x (k+2
e P2
and
,
=~ , 7_2 7_2J 7k_lj
”/v_l ’ O '
. .
lk_2 o . 0 . 721{-2
(k+1)x (k+1)
where
Y. = =lab U -(a+
J [ab u -(a b>”J’+1 + “3+21 (4.4)

[1]). Tt is easy to see why G must be

fpositiveAsemi-definite. Note from (4.4)

b
J e A WA

<
|

]

b .
éf M(h-a)(b-N)da(n -

Hence,

15
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T k-1
z Gz = E:
~ o~ 1= 34

b k=1 1.0
) 2, M) (h-a) (b-a)da(A) > -
o i==l
A similar argument shows that M must be positive semi-definite.
Observe that there are two elements which are unknown in G and two
elements which are unknown in M and they occur in either the first

row or column of the matrix.

/é////J

\

22
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]

Figurel

Since M and G are positive semi-definite, it is necessary and
sufficient that de-t (M) > 0 and det(G) > 0 in order for the values
u_2ﬂll be consistent with some distribution a(h) with moments
uo,ul,...,ugk . The positive semi-definite property of M and G is
equivalent to the non-negativity of the sub-determinants indicated in

Figure I.

We partition the Hankel matrix M as follows:

“‘_2 J p‘_l p‘o} e “'k_l .

-~
A B
L R0 Hyseeeobhy
M = = .
by B u%,. T
| BT c
U'k_l “’k uk’*’l’ . ""’Lgk
16
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Since M is positive semi-definite

det(M) = det(C) det(a-Bc™t BT) > 0
so that
+
Hpt Ty My *r,
det > 0 (4.5)
+
Wyt Ty My *7g
where
r r
1 Ty
R _ gl
rz I‘5

The matrix -BC BT can easily be computed by applying the Choleski

b

algorithm to the matrix

One must begin the pivoting operation, however, from the bottom diagonal
element and after k eliminations, the upper 2x2 matrix will contain

-BC-l BT . In a similar fashion,

-a-bIJ._2 + (a'+b)|""_l = p'o + sl 2 -a‘bu_l + (a'+b)p'o - lJ.l + Sz

det > 0.(4.6)

—abu_p , (a¥blig - By + s, 5 -8By + (avbd)ug - b, + Sy

From equation (4.5), we see that

2

(H_z + rl)(uo +r3) = (“’_l +r > 0

5)

17
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and hence since M+ r

0 3
(g + rz)z (g + 132)2
-2 Ho * T3 o T Rs
From (4.6), we have
u_2+ Sl Ky + S2
det > 0
+
u_l SZ S5
where
s _ a’bl“"o - (a‘+b)p'l + |"|'2 = 53 < 0
3 ab
since ab > 0 ,
and hence
2
(b, +8,)
p < ;—2—— - S
-2 = S 1
2 3
Therefore
2 2
(h_ +R,) (b_y. 8,)
- Rl < M o < 3
R 3
18

-Rl

> 0 by the positive semi-definiteness of M

(3.7)
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level lines of

~
b_p2(kr1)u_ \

Figure 11

Thus to determine the maximum of

u’_z = 2(k+l)“_l }
it is simply necessary to examine the boundary of the shaded region in

Figure II. A short calculation yields (Ql,QZ) for which

The -
noH o 2(k+l)“_l = maximum subject to (4.7) if

2

—r— - = & _ d
with HI_]l = -8, + (krl)s,

and

19
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9 sv; =9,

s

herwi ] tl, = .
otherwise the maximum occurs at u_l Ql or u-l _ Qz according to

U

|J,_l = ma.x{Ql, min{-sz = (Ml)SB’QZ}}

Similarly, the minimum occurs at

L

]

- maxiey, minl-r, ¢ (928,00

Thus, it is possible to determine upper. and lower bounds for ”%&l“’

and these bounds are attainable.

20
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5. A numerical example

Consider the system of equations

Ax =D

where A is a tri-diagonal matrix with elements (-1,2,-1) and

b = 0, the null vector. It is well known that

xj(A) =2+ 2 cos g;i , i =212 ..,n'

The Jacobi matrix M is also tri-diagonal and has elements (1/2,0, 1/2).

Here -

}\.(M) = COS == ) j =l,2,...,1’1

The Jacobi method was used for solving the system for n = 20 and

xg = (1,1,...,1) . In Tables I, II, and III, we give the error bounds
associated with the error vector of %10 . To use the methods of
Section 3, we must compute in addition {fp} for p = 0,1, ..4,k.

In Tables II and III, we give bounds for the error using the difference
vectors {§9_p} for p = 0,1,...,k . Note that the bound using the
residual vector is slightly better than those computed using the difference
vectors but it requires additional work to compute {fb}$=o whereas
the difference vectors are computed in the natural sequence of events.
In addition, note that the lower bounds are less influenced by the
interval of the eigenvalues than are the upper bounds. Furthermore, we

see that in this case that a knowledge of all the eigenvalues does not

provide much smaller intervals for the error.

21
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Error bounds after 10 iterations

| e ||% = 2.700138

Table~TI

Error bounds computed from residual vector using Gauss-Radau quadrature rule

Lower bounds Upper bounds
) a=1.116917, -2 a=10"* 8=1.116917, -2 a=10"2
b=1. 988831 b=1.99 b=1. 988831 b=1.99
1 1.35 1.35 B.hOlOl A.leol
2 1.55 1.54 2.05, 51 2.52, 1
3 1.66 1.66 9.40 l.lzlol
L 1.81 1.81 6.89 8.08
5 1.89 1.89 4 .84 5.50
Table II
Error bounds computed from difference vectors using determinantal inequalities
Lower bounds Upper bounds
a = 1.116917, -2 a =10"% a =1.116917, -2 a =1072
k
b =1.988831 b =1.99 b = 1.988831 b =1.99
1 1.35 1.35 5.29lol 6.59101
2 1.43 1.43 5.88101 h.SZlOl
3 1.48 1.48 2.05101 2.51101
i 1.56 1.56 l.7OlOl 2.08101
5 1.59 1.59 1.29101 1.57101

2>
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Table III

Error bounds computed from-difference vectors using

linear programming

k Lower bounds
1 1.35
2 1.45
3 1.55
L 1.61
5 1.62

24

Upper bounds
S.Ohlol
3.86101
1.75101
1.50101
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